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ABSTRACT

We investigate spin–orbit torques (SOTs) in heterostructures with Pt1�xMnx alloy and CoFeB as a function of Mn composition (x) by using
an extended harmonic Hall measurement. Slonczewski-like and field-like SOT efficiencies (nSL and nFL) show non-monotonic variation
and a different trend with respect to x, and considerably large nSL up to 0.21 is obtained at x¼ 0.20. Compared to the x dependence of
longitudinal resistivity, the Slonczewski-like SOT in the low x region is mainly attributed to an intrinsic spin-Hall mechanism, whereas a
non-monotonic variation in the higher x region suggests the presence of additional factors. The present findings deliver useful clues to under-
stand the physics behind SOT generation in antiferromagnetic heterostructures and offer a route to realize efficient devices.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011448

The utilization of current-induced spin–orbit torques (SOTs) in
magnetic heterostructures has recently gained enormous importance
owing to their potential in future spintronic devices.1–8 Three-terminal
non-volatile spintronic devices utilizing SOT-induced magnetization
switching achieve fast and reliable operation, showing promise for
integrated-circuit applications.5–8 Conventional device geometries
utilize non-magnet (NM)/ferromagnet (FM) structures, where the cur-
rent passing through the stack gives rise to the Slonczewski-like (SL)
and field-like (FL) SOTs, allowing magnetization reversal.2,3,5 The
search for NM materials exhibiting large SOT efficiencies has so far
mainly focused on 5d transition metal elements owing to their strong
spin–orbit coupling.9–18 However, in a practical scenario, manipula-
tion of magnetization in the NM/FM heterostructure requires a unipo-
lar magnetic field to determine the switching direction, posing a
challenge for applications. Recent studies tackled this unfavorable
requirement using antiferromagnet (AFM)/FM structures, where an
AFM plays a dual role, generator of SOTs, and source of symmetry-
breaking magnetic fields originating from interfacial exchange
bias.19,20 Moreover, experimental results on a heterostructure with
antiferromagnetic Pt0.38Mn0.62 showed an analog-like switching,19,21

which is attractive for neuromorphic applications as well.22,23 Two
prerequisites for efficient field-free magnetization switching are large
SOTs and an exchange bias field in AFM/FM heterostructures. Some
previous experimental results on Mn-based binary AFM/FM struc-
tures have demonstrated appreciable SOT magnitude, tunable with
respect to the crystalline orientation, Mn composition, and magnetic
order.24–28 PtMn is known to show the largest SOT among the
Mn-based AFMs.24 We previously studied the SOT in PtMn/FM (FM
¼ [Co/Ni]29 or CoFeB30) heterostructures with a specific PtMn com-
position and found that the SL-SOT is mainly attributed to the spin
Hall effect (SHE) of PtMn. However, the underlying factors for the
SOT, e.g., the dominant role of intrinsic/extrinsic mechanisms in the
SHE, and the effect of structural and magnetic order have not been
investigated well. Here, we study SOTs in PtMn/CoFeB structures
with various Mn compositions. In order to get insights into the origin
of SOTs in this system, the results are analyzed with respect to the
variations in longitudinal resistivity and expected magnetic order as a
function of Mn composition.

We utilize Si/SiO2 sub./Ta(3)/Ru(1.5)/Pt1�xMnx(10)/
(Co25Fe75)0.75B0.25(1.8)/MgO(1.5)/Ru(1) structures (Pt1�xMnx/CoFeB,
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hereafter) [Fig. 1(a)], which are prepared by DC and RF magnetron
sputtering (numbers in parentheses are nominal thicknesses in nm).
Mn composition x is varied as 0, 0.11, 0.20, 0.27, 0.39, 0.51, 0.57, 0.70,
and 0.78 by co-sputtering of Pt and Pt0.18Mn0.82 targets. The composi-
tion of the PtMn layer is determined by inductively coupled plasma
mass spectrometry. The samples are annealed at 300 �C for 2 h in the
presence of an in-plane magnetic field of 1.2T, similar to our previous
studies.19,29,30 Out-of-plane x-ray diffraction (XRD) spectra indicate a
textured polycrystalline orientation of the PtMn layer along the (111)
direction.31 Figures 1(b) and 1(c) show the magnetization (m-H) curve
of annealed blanket films for the applied field (H) along the in-plane
and out-of-plane directions, respectively. The in-plane easy axis, which
is necessary for the extended harmonic Hall measurement, is con-
firmed for all Pt1�xMnx/CoFeB structures studied here. We also
observe a decrease in areal magnetic moment m with increasing x,
probably due to a slight intermixing at the PtMn/CoFeB interface,
which increases with x, and/or proximity-induced moments in PtMn,
which decrease with x.32 Besides, m-H measurements indicate
exchange bias fields of � 17 and 3mT for Mn concentrations of
x¼ 0.51 and 0.57, respectively, while they are virtually zero away from
the equiatomic composition. The resistivities (q) of the Pt1�xMnx
layers are determined by measuring sheet resistance on a series of
blanket films.19 The current flow ratio, which is used to calculate the
Oersted field (HOe)

18,30 and SOT generation efficiency later, is derived
from the obtained q of each layer. Figure 1(d) shows the variation of q
for PtMn as a function of x. We observe a linear increase in q up to x
� 0.27, followed by a non-monotonic variation for higher Mn compo-
sitions; the trend is roughly consistent with a previous report.33 This
result will be used to discuss the origin of SOT later.

The deposited films are then patterned into 10� 50 mm2 Hall bar
devices by photolithography and Ar-ion milling. We use an extended

harmonic Hall method to quantify the SL and FL components of SOTs,
free from thermal effects.15,17 Figure 2(a) shows the schematic diagram
of the harmonic Hall measurement setup. AC of frequency 11Hz is
applied to the Hall bar structures while rotating an external magnetic
field (Hext) with a constant magnitude along the azimuthal plane (angle
u between Hext and current is measured from the x-axis). We measure
the first (Rx) and second (R2x) harmonic Hall resistance using a lock-in
technique. We obtain SL (HSL) and FL (HFL) components of SOT-
induced effective fields by fitting Rx and R2x vs u. Prior to the har-
monic Hall measurement, we determine the anomalous Hall resistance
coefficient (RAHE) and effective anisotropy field (Heff

K ) for all the sam-
ples, which are required for the determination of HSL and HFL. Figure
2(b) shows typical experimental data of Hall resistance (RHallÞ vs out-of-
plane field Hz under the application of DC for a Pt0.70Mn0.30/CoFeB
structure. A linear fit to the high field region yields RAHE, while that
from low field regions yieldsHeff

K , as illustrated in the figure.
Now, we show the results for the extended harmonic Hall mea-

surements. Figures 3(a) and 3(b) show the measured Rx and R2x as a
function of u for PtMn/CoFeB with various x values under an applied
l0Hext ¼ 200mT (l0 is the permeability in free space). Owing to the
in-plane easy-axis along with negligible anisotropy in the film plane,
Rx can be expressed as15,17,30

Rx ¼ RPHE sin 2u; (1)

where RPHE is the planar Hall resistance coefficient. Black curves in
Fig. 3(a) denote the fitting of Eq. (1) to the experimental results. RPHE

obtained from fitting is later used for the determination of HSL and
HFL. Under the SHE scenario, the application of charge current along
the x-direction results in a transverse spin accumulation at the PtMn/
FM interface, leading to current-induced SOTs, as shown previously
in Pt0.38Mn0.62/FM structures.29,30 The resulting modulation of the
magnetization direction by SOTs manifests in a harmonic dependence
of R2x, expressed as

15,17,30

R2x ¼ � RAHE
HSL

Hext �Heff
K

þ R0
DT

� �
cosu

þ 2RPHE 2 cos3u� cosu
� �HFL þHOe

Hext
; (2)

where R0
�T is the second harmonic Hall coefficient originating from

thermal effects. Figure 3(b) shows the raw data and fitting curves with

FIG. 1. (a) Schematic representation of the stack structure and (b) and (c) areal
magnetic moment (m) vs applied magnetic field for in-plane and out-of-plane config-
urations, respectively, for Mn compositions x¼ 0.20, 0.51, and 0.70. (d)
Longitudinal resistivity (q) of Pt1�xMnx as a function of Mn composition (x).

FIG. 2. (a) Schematic representation of the experimental setup. (b) Hall resistance
(RHall) vs out-of-plane magnetic field (HZ) for the Pt0.70Mn0.30/CoFeB structure.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 117, 012402 (2020); doi: 10.1063/5.0011448 117, 012402-2

Published under license by AIP Publishing

https://scitation.org/journal/apl


Eq. (2). We carry out similar experiments for different magnitudes of
Hext to eliminate R0

�T . We obtain HSL from a linear fitting of the Hext

dependence of the coefficient of the first term in Eq. (2), while HFL is
obtained from the coefficient of the second term for maximum applied
l0Hext (¼ 300mT).

To quantify the strength of SOTs irrespective of material parame-
ters, we introduce a dimensionless quantity nSLðFLÞ characterizing the
efficiency of SOT generation, expressed as16,17

nSL FLð Þ ¼
2eHSL FLð ÞMSt

�hJPtMn
; (3)

where e is the elementary charge, �h is the Dirac constant, JPtMn is the
current density in the Pt1�xMnx layer determined from the current
flow ratio, MS is the spontaneous magnetization of FM, and t is the
thickness of the FM. Note that nSL corresponds to the effective spin
Hall angle under an assumption that the SHE is responsible for SOT.
Figures 4(a) and 4(b) summarize the x dependence of nSL and nFL,
respectively. We measure five identical devices for each x, and the aver-
age and standard deviation for them are shown by the plot and error
bar. We observe a non-monotonic variation for both nSLðFLÞ with x,
and their trends are different from each other. At x¼ 0, i.e., pure Pt,
nSLðFLÞ ¼ 0.0886 0.001 (0.0076 0.001), comparable to previous results
for Pt.9,16 An increase in x increases nSL up to 0.2086 0.001 at x¼ 0.20
and then decreases gradually with a further increase in x. nFL shows a
similar behavior, but its maximum is located at around the equiatomic
composition. The maximum values of nSL for Pt0.8Mn0.2/CoFeB are
substantially larger than those of most of the commonly known 5d
transition metal elements (e.g., Pt and Ta).2,3,9,11–17 These results indi-
cate the presence of additional factors beyond the spin–orbit coupling
of the heavy elements on the strength of SOTs in Mn-based alloys.

Finally, we discuss the possible origins for the observed variation
of SOTs with x and considerably large nSL. Under the SHE scenario,

the spin-charge conversion mechanism possesses intrinsic contribu-
tions arising from the Berry curvature associated with the electronic
band structure and extrinsic contributions originating from spin-
dependent skew and side-jump scattering. Accordingly, nSL can be
expressed as34 rSH qel þ nSS, where qel represents the bulk electrical
resistivity of the material, rSH denotes the spin-Hall conductivity
from the intrinsic and side-jump mechanisms, and nSS represents the
qel-independent contribution from skew scattering. Note that the
intrinsic mechanism could originate not only from the spin–orbit cou-
pling of heavy elements but also from the local spin structure.27

Our results in the low x (� 0.2) regime show a mutual increase in q
[Fig. 1(d)] and nSL [Fig. 4(a)]. This rules out any dominant contribu-
tion from nSS and suggests the qel-dependent part to be mainly
responsible for nSL. We estimate rSH � 1784X�1 cm�1, in this regime,
comparable to the previous results for intrinsic spin Hall conductivity
of Pt.35–37 Interestingly, nFL also shows a similar behavior with a much
smaller magnitude, implying a common origin. For x> 0.2, q
increases further, while nSL decreases, indicating the presence of addi-
tional factors. We speculate that this progressive decrease in nSL may
be associated with magnetic order,25,27,28 the presence of the pseudo-
gap at the Fermi level37 at a high Mn-composition, and/or the influ-
ence of intermixing/induced moments at the PtMn/CoFeB interface.
Note that the emergence of collinear or non-collinear antiferromag-
netic order can modify spin–orbit coupling,26–28 while the presence of
the gap at EF can modify the band structure,38 both of which can influ-
ence SOT efficiencies. The complicated behavior of nFL may be related
to the Rashba–Edelstein effects and/or spin-dependent scattering
effects.39–41 Nevertheless, our results indicate a possibility to enhance
SOTs in metallic AFM/FM structures and call for further studies on
SOT generation in AFM/FM systems.

In summary, we quantified the composition dependence of
SOTs in Pt1�xMnx/CoFeB using an extended harmonic Hall mea-
surement. We observed a large nSL (¼ 0.21) for Pt0.80Mn0.20 and a
non-monotonic variation of SOTs with x. The large SOT efficiency
is qualitatively found to arise from an intrinsic mechanism, while
the non-monotonic variation of SOTs with x suggests the presence
of additional factors that may be associated with magnetic order or
modification of the band structure. The present experimental
results provide considerable insights into the origin of SOTs in
AFM/FM and suggest a possible route toward enhancing SOTs for
future spintronic devices.

FIG. 3. Azimuthal angle (u) dependence of (a) first (Rx) and (b) second (R2x) har-
monic Hall resistance for Pt1�xMnx/CoFeB (0� x� 0.78) structures. Solid lines
denote fitting to the experimental data using Eqs. (1) and (2). Figure legends (right)
denote the Mn composition x (in %) for the Pt1�xMnx/CoFeB structures, investi-
gated in this study.

FIG. 4. Mn composition (x) dependence of (a) nSL and (b) nFL component of SOT
efficiencies for Pt1�xMnx/CoFeB structures. Data points (error bars) in (a) and (b)
are obtained as the average (standard deviation) of nSL,FL from measurements of
five identical devices.
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