

Phase analysis of uranium oxides after reaction with stainless steel components and ZrO2 at high temperature by XRD, XAFS, and SEM/EDX

著者	Daisuke Akiyama, Hidenori Akiyama, Akihiro Uehara, Akira Kirishima, Nobuaki Sato
journal or	Journal of Nuclear Materials
publication title	
volume	520
page range	27-33
year	2019-07
URL	http://hdl.handle.net/10097/00132126

doi: 10.1016/j.jnucmat.2019.03.055

1	Manuscript for Journal of Nuclear Materials
2	
3	Title:
4	Phase analysis of uranium oxides after reaction with stainless steel components and ZrO ₂ at
5	high temperature by XRD, XAFS, and SEM/EDX
6	
7	Authors:
8	Daisuke Akiyama ^{*a} , Hidenori Akiyama ^a , Akihiro Uehara ^{b, c} , Akira Kirishima ^a , and Nobuaki
9	Sato ^a
10	
11	Affiliation:
12	^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1
13	Katahira, 2, Aoba, Sendai, 980-8577, Japan
14	^b Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-
15	1010, Asashironishi, Kumatori, Osaka, 590-0494, Japan
16	^c National Institute of Radiological Sciences, National Institutes for Quantum and
17	Radiological Science and Technology, 4-9-1, Anagawa, Inage, Chiba, 263-8555, Japan
18	
19	Footnotes:

20 *Corresponding author,

Text pages	21 (excluding previous and this page)
Tables	1
Figures	7
Corresponding author	Daisuke Akiyama
Address	Institute of Multidisciplinary Research
	for Advanced Materials, Tohoku
	University, 1-1 Katahira 2-chome, Aoba-
	ku, Sendai 980-8577, Japan
Tel	+81-22-217-5141
Fax	+81-22-217-5141
Email	d.akiyam@tohoku.ac.jp

24 Abstract

25

In the Fukushima Daiichi nuclear power station accident in March 2011, fuel debris was 26 27 formed when fuel materials reacted with various structural materials in reactor core. Fuel 28 debris retrieval is expected to start in 2021 for decommissioning of the damaged plants. To 29 perform this activity safely, it is necessary to know the properties of the fuel debris. In this study, we investigated the reaction of UO₂, stainless steel (SS) components, and ZrO₂ at 30 31 high temperature under oxidizing and reducing conditions, and determined the valence state 32 of uranium in the products, such as $CrUO_4$ and $(Fe_x, Cr_{1-x})UO_4$, by X-ray absorption near 33 edge structure (XANES) spectroscopy. Mixed powders of UO2 and SS, Fe, and/or Cr were 34 heated in Ar + 2% O_2 (oxidizing condition) or Ar + 10% H_2 (reducing condition) at a flow 35 rate of 20 mL/min for 2 h at 1473 or 1673 K. After heat treatment, the phase relation of the 36 products was analyzed by powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Under reducing conditions, UO₂ did not react with 37 38 SS, Fe, Cr, or ZrO₂. In contrast, under oxidizing conditions, UO₂ reacted with SS and Cr to 39 form CrUO₄ or (Fe_x, Cr_{1-x})UO₄ at 1473 and 1673 K. When the UO₂ and Fe mixture was 40 heated under oxidizing conditions, the Fe_2O_3 phase coexisted with U_3O_8 at 1473 K, 41 whereas FeUO₄ formed at 1673 K. When the UO₂, Fe, and Cr mixtures were heated at 1473 K under the oxidizing condition, the molar ratio of Fe/Cr in the (Fe_x, Cr_{1-x})UO₄ phase 42 43 corresponded to the initial molar ratio in the sample. As the iron content of these samples 44increased, all three lattice parameters of $(Fe_x, Cr_{1-x})UO_4$ approached those of FeUO₄. XANES spectra revealed that the oxidation state of uranium in CrUO₄ and $(Fe_x, Cr_{1-x})UO_4$ 45

46	is pentavalent.
47	
48	Keywords: Uranium oxide; Stainless steel; Iron; Chromium; XAFS; XANES; XRD;
49	SEM/EDX; Fukushima Daiichi Nuclear Power Plant; Fuel debris
50	
51	High lights
52	▶ UO ₂ reacted with chromium and SS at 1473 and 1673 K under oxidizing conditions,
53	forming CrUO ₄ and (Fe _x , Cr _{1-x})UO ₄ .
54	▶ UO ₂ reacted with iron at 1673 K under oxidizing conditions, forming FeUO ₄ .
55	> Chromium promoted the formation of $(Fe_x, Cr_{1-x})UO_4$ in the UO ₂ –SS system.
56	> When zirconium was coexisted with the UO ₂ -SS, formation of (Fe _x , Cr_{1-x})UO ₄ was
57	suppressed.
58	> The oxidation state of uranium in CrUO ₄ and (Fe _x , Cr_{1-x})UO ₄ was pentavalent.
59	
60	1. Introduction
61	A severe accident occurred at Fukushima Daiichi nuclear power plant (NPP) in Japan,
62	which is operated by the Tokyo Electric Power Company, in March 2011, in which the fuel
63	reacted with the cladding material at high temperature, and the reactor core melted down. It
64	was suggested that the nuclear fuel materials reacted with not only the fuel cladding but
65	also core structural materials, the concrete pedestal, and sea salt introduced by emergency
66	cooling using seawater. These components might be present in the fuel debris in the
67	pressure vessel and/or on the concrete pedestal [1].
68	The pressure vessel and containment vessel in a boiling water reactor are normally filled
69	with nitrogen gas. In a loss-of-coolant accident, hydrogen generated by the reaction between
70	the zircaloy cladding and H2O coolant at high temperature would create reducing conditions

71 around the fuel debris. Then, the hydrogen gas caused explosion in units 1, 3 and 4 of 72 Fukushima Daiichi NPP. After that, in units 1 and 2, concentration of oxygen in containment vessel has not changed approximately 0%, on the other hand, in unit 3, it was reported as a 73 74 plant condition report of July 2012 by TEPCO, that the O₂ concentration of unit 3 was 75 approximately 11% due to damage of the containment vessel [2]. Therefore, it is necessary 76 to assess the reaction of fuel materials and core structural materials, the concrete pedestal, 77 and sea salt at high temperature under both reducing and oxidizing conditions. For understanding the characteristics of fuel debris generated in Fukushima Daiichi NPP, the 78 79 knowledge from studying the core samples from Three Mile Island Unit-2 (TMI-2, 80 pressurized water reactor [PWR]) is important [3-6]. However, there are the differences in 81 reactor type and in the circumstances during melting cores. Since the debris sampling from 82 1F is still under consideration, several types of simulated fuel debris were synthesized and 83 used for laboratory studies [7, 8]. The interaction between corium and structural materials in oxidizing conditions was also investigated [9-11]. We have reported the phase relation 84 85 between UO₂ and ZrO₂ at 1473 K resulted in the formation of a solid solution of $U(Zr)O_2$ by 86 phase analysis [12]. Kitagaki et al. investigated thermodynamic evaluation on fuel debris in 87 the UO_2 -ZrO₂ system and the molten core concrete interaction [13]. Furthermore, the 88 leaching of fission products (FPs) and actinides into seawater has been performed using UO2-ZrO₂ debris synthesized by heat treatment at 1473 K. Here, FPs and actinides in the UO₂-89 90 ZrO₂ were produced by neutron irradiation of a solid solution of U(Zr)O₂ [14, 15]. On the 91 other hand, the leaching tests for actinide elements were conducted by doping a U(Zr)O₂ solid solution with Np, Am, and Pu tracers; our previous study revealed only very limited 92

leaching of the actinide tracers into seawater and the reducing effect of the leached actinides 93 94 by Zr(IV) dissolution in the UO₂ crystal structure [16, 17]. Stainless steel (SS) was used as a core structural material and would have reacted with most of the solidified fuel material. We 95 have reported that UO₂ reacted with SS and formed (Fe_x, Cr_{1-x})UO₄ at 1473 K under 96 97 oxidizing conditions [18]. On the other hand, metal monouranates, MUO₄, have been interested due to their importance in actinide chemistry and nuclear technology. So the 98 99 characteristics of these compound are frequently reported [19-29]. For example, the reaction behavior of UO2 and metals, and the properties of the reactants, such as CrUO4, FeUO4, and 100 101 MgUO₄, have been studied recently [29]. In this previous study, oxidation states of uranium 102 in FeUO₄ or CrUO₄ was confirmed pentavalent. Petrrov et al. reported that in the U-Fe-O 103 system and U-Zr-Fe-O system, samples melted with quenching in air. Then, FeUO₄, UO₂, 104 U₃O₈, Fe₂O₃ and Fe₃O₄ phases were observed in the both systems [35, 39]. Furthermore, 105 thermodynamic measurement and characterization of UFeO4 were reported [36]. D. Labroche 106 et al. indicted that the formation enthalpy of FeUO₄ was -25.2 ± 0.6 kJ/mol at 298.15 K, and 107 the enthalpy increased with temperature. In addition, the CrUO₄ phase was insoluble in hot 108 50% HNO₃, then it is important to obtain the forming condition for planning chemical treatment after retrieval fuel debris. [31]. However, the reactions of UO₂ and alloys such as 109 110 SS and forming condition of $(Fe_x, Cr_{1-x})UO_4$ were not clear. Following the earlier study [18], it is necessary to know the phase relation among UO₂, Fe, and Cr at high temperature to 111 112 understand the reaction mechanism between UO2 fuel and SS. Furthermore, the phase 113 relation among UO₂, SS, and ZrO₂ was also studied as a realistic system for the fuel debris of Fukushima NPP. Because Zr is a major component of fuel cladding, UO₂, SS, and Zr 114

115	should interact in the damaged reactors. The purpose of this paper is to investigate the
116	reactions between UO ₂ , Fe, Cr, SS, and ZrO ₂ . The compounds prepared were analyzed by X-
117	ray powder diffraction spectroscopy (XRD) and scanning electron microscopy- Energy
118	Dispersive X-ray Spectroscopy (SEM-EDX). Oxidation state of uranium in (Fe _x , Cr _{1-x})UO ₄
119	was confirmed based on X-ray absorption near edge structure (XANES) of U L_{III} edge.
120	
121	2. Experimental
122	
123	2.1. Materials
124	
125	UO_2 was prepared by H_2 reduction of U_3O_8 at 1273 K. The formation of UO_2 was
126	confirmed by an X-ray diffraction (XRD) measurement. Iron powder (the content of the
127	main component was 99.95%, <60 mesh) and chromium powder (the content of the main
128	component was 99.5%, <100 mesh) were purchased from Nilaco Corporation and Sigma-
129	Aldrich, respectively. Cr2O3 (the content of the main component was 99.9%) and ZrO2 (the
130	content of the main component was 98.0%) were purchased from Mitsuwa Chemical
131	Corporation and Wako Pure Chemicals Ind., Ltd. SUS304 SS composed of 68.77% iron,
132	18.71% chromium, 11.09% nickel, and minor elements was purchased from Nilaco
133	Corporation.
134	UO ₃ was synthesized by heating UO ₂ (NO ₃) ₂ ·6H ₂ O at 773 K with Ar + 2% O ₂ for 5 h.
135	

136 2.2. Heat treatment

137

138 2.2.1. UO ₂ –Fe syst	tem
-------------------------------------	-----

139 UO₂ powder was mixed with Fe in a molar ratio of 1:1 and ground in an agate mortar. A 140 quartz or alumina boat containing this mixture was placed in the center of a reaction tube 141 made of quartz or alumina. After the reaction tube was evacuated, it was refilled with Ar + 142 10% H₂ or Ar + 2%O₂, which were introduced to obtain reducing or oxidizing conditions, respectively. Then each sample was heated to 1473 or 1673 K at a heating rate of 17 K/min 143 144 up to 1273 K and 7 K/min from 1273 to 1473 or 1673 K. The target temperature was maintained, and Ar + 10% H₂ gas or Ar + 2% O₂ gas was added at 1473 or 1673 K to 145 146 obtain the reducing or oxidizing condition, respectively. After heat treatment, the samples were cooled at a cooling rate of 17 K/min to 873 K and furnace cooled to room 147 148 temperature. After cooling, they were removed from the reaction tube for phase analysis. 149 150 2.2.2. UO₂–Cr system 151 UO₂ powder was mixed with Cr powder in a molar ratio of 1:1 and ground in an agate 152 mortar. Alternatively, U₃O₈ was mixed with Cr₂O₃ in a molar ratio of 2:3 and ground in an 153 agate mortar. The UO₂--Cr mixture was heated by the same procedure as that used for the 154 UO₂-Fe system. The U₃O₈-Cr₂O₃ mixture was also heated by almost the same process 155 except that ultrapure Ar was used during heating at 1473 K for 2 h. 156

157 2.2.3. UO₂–Fe–Cr system

158	UO_2 powder was mixed with Fe and Cr powders. The molar ratio of $UO_2/(Fe + Cr)$ was
159	kept at 1, whereas the molar ratio of Fe/(Fe + Cr) was varied from 0.1 to 0.9. The molar
160	ratio of SUS304, the SS used in this study, was approximately 0.79. The UO ₂ -Fe-Cr
161	mixtures were heated by the same procedure as that used for UO2-Fe system.
162	
163	2.2.4. UO ₂ –Zr–SS system
164	UO_2 was mixed with SS powder or SS and ZrO_2 powders. The molar ratio of (UO_2 +
165	ZrO_2 / (Fe in SS) was maintained at 1. The molar ratio of UO ₂ / (UO ₂ + ZrO_2) was 0.5 and
166	1. The UO_2 -Fe-Cr mixtures were heated by same process as that used for the UO_2 -Fe
167	system.
168	
169	Table 1 summarizes the composition of the initial samples and the heating conditions.
170	[Table 1]
171	
170	
172	2.3. Phase analysis
172	2.3. Phase analysis
172 173 174	2.3. Phase analysis The XRD patterns of the products were measured using a Rigaku MiniFlex 600
172 173 174 175	2.3. Phase analysis The XRD patterns of the products were measured using a Rigaku MiniFlex 600 diffractometer with Cu Kα irradiation at 40 kV and 15 mA. The diffraction data were
172 173 174 175 176	2.3. Phase analysis The XRD patterns of the products were measured using a Rigaku MiniFlex 600 diffractometer with Cu K α irradiation at 40 kV and 15 mA. The diffraction data were collected from 20° to 120° (2 θ) with a step interval of 0.02° at a scan rate of 20°/min. The
 172 173 174 175 176 177 	2.3. Phase analysis The XRD patterns of the products were measured using a Rigaku MiniFlex 600 diffractometer with Cu K α irradiation at 40 kV and 15 mA. The diffraction data were collected from 20° to 120° (2 θ) with a step interval of 0.02° at a scan rate of 20°/min. The phase of the products was determined by matching the measured patterns with XRD
 172 173 174 175 176 177 178 	2.3. Phase analysis The XRD patterns of the products were measured using a Rigaku MiniFlex 600 diffractometer with Cu K α irradiation at 40 kV and 15 mA. The diffraction data were collected from 20° to 120° (2 θ) with a step interval of 0.02° at a scan rate of 20°/min. The phase of the products was determined by matching the measured patterns with XRD patterns from the Inorganic Crystal Structure Database [32]. The lattice parameters of the
 172 173 174 175 176 177 178 179 	2.3. Phase analysis The XRD patterns of the products were measured using a Rigaku MiniFlex 600 diffractometer with Cu K α irradiation at 40 kV and 15 mA. The diffraction data were collected from 20° to 120° (2 θ) with a step interval of 0.02° at a scan rate of 20°/min. The phase of the products was determined by matching the measured patterns with XRD patterns from the Inorganic Crystal Structure Database [32]. The lattice parameters of the compounds were calculated using PDXL2 (Rigaku).

	8
202	and formed the FeUO ₄ phase at 1673 K by the following reaction.
201	quenching in the U-Fe-O system in air [35]. Then, these uranium and iron oxides reacted
200	result at 1673K almost agreed with the phase relation of samples that melted with
199	contrast, UO2 and Fe were oxidized to U3O8, Fe3O4, and FeUO4 was formed at 1673 K. The
198	under the oxidizing condition, UO_2 and Fe were oxidized to U_3O_8 and Fe_2O_3 at 1473 K; in
197	react with Fe up to 1673 K under the reducing condition. When this sample was heated
196	under the reducing condition at either temperature up to for 8h, indicating that UO2 did not
195	significant change was observed in the diffraction patterns obtained after heat treatment
194	treatment at 1473 and 1673 K for 2 h under the reducing and oxidizing conditions. No
193	Fig. 1 shows the XRD patterns of the UO ₂ –Fe (1:1) samples before and after heat
192	
191	3.1. Temperature dependence of phase relation in the UO ₂ -Fe system
190	
189	3. Results and discussion
188	
187	materials, respectively.
186	BL01B1 beamline. UO_2 and UO_3 were used as standard tetravalent and hexavalent U
185	collected at SPring-8 (Japan Synchrotron Radiation Research Institute, Hyogo, Japan) using
184	structure (XANES) spectroscopy. X-ray absorption fine structure (XAFS) spectra were
183	The oxidation state of U in the products was determined by X-ray absorption near edge
182	Corp.) to observe the microstructure and analyze the elemental composition.
181	Corp.) with energy-dispersive X-ray spectroscopy (EDX, EMAX EX-250, XACT, Horiba

Synthesis of FeUO₄ has been reported in a previous study [29, 31, 36], in which attempts to synthesize FeUO₄ by regular solid-state synthesis, coprecipitation, and hydrothermal methods did not success. Successful synthesis was finally obtained by heat treatment of stoichiometric mixtures of (UO₃, FeO), (U₃O₈, Fe₃O₄), or (UO₂, U₃O₈, and Fe₂O₃) in a vacuum-sealed quartz tube at 1223–1423 K for 2 weeks by the following reaction [29, 31, 36].

$$209 \qquad \qquad UO_3 + FeO \rightarrow FeUO_4 \tag{1}$$

210
$$\frac{1}{3}U_3O_8 + \frac{1}{3}Fe_3O_4 \rightarrow FeUO_4$$
 (2)

211
$$\frac{1}{4}U_3O_8 + \frac{1}{4}UO_2 \quad \frac{1}{2}Fe_2O_3 \rightarrow FeUO_4$$
 (3)

212 This indicates that FeUO4 was formed from the mixture of uranium and iron oxides with different oxidation states to compensate their valence state each other by heat treatment. In 213 214 the present study, at 1473K under oxidizing condition, U₃O₈ didn't react with Fe₂O₃, on the 215 other hand, at 1673K under oxidizing condition,U₃O₈ reacted with Fe₃O₄ and FeUO₄ was 216 formed by the reaction eq.(2). U₃O₈ and Fe₃O₄ phase remained because heating time was 217 shorter than previous studies and/or it was different from temperature and open or closed 218 system [29, 31, 36]. Fe₃O₄ is more stable than Fe₂O₃ above 1653K in air [33]. Then these 219 results indicated that the reaction eq (2) could progress in the UO₂-Fe system under 220 oxidizing condition at the temperature range where U₃O₈ and Fe₃O₄ were stable. 221

222

[Fig.1]

3.2 Temperature dependence of the phase relation in the UO₂–Cr system

225

226 In the UO₂-Cr system, UO₂ and Cr did not react under the reducing condition at 1473 or 227 1673 K up to for 8h, as shown in Fig. 2a. Under the oxidizing condition, UO₂ and Cr were 228 oxidized to U₃O₈ and Cr₂O₃ at 1473 and 1673 K. Furthermore, the CrUO₄ phase was 229 observed at both 1473 and 1673 K, as shown in Fig. 2b. The CrUO₄ phase was formed with 230 heating time at 1473K, while U₃O₈ phase decreased. To confirm the formation reaction of 231 CrUO₄, U₃O₈ was mixed with Cr₂O₃ in a molar ratio of 2:3 and heated under an ultrapure 232 Ar atmosphere at 1473 K for 2 h. After heat treatment, the peaks for CrUO₄ was observed 233 in the XRD pattern of the product. Some of the U₃O₈ was reduced to U₄O₉, and Cr₂O₃ 234 remained. This result suggested that CrUO₄ was formed by the following reaction.

235

236
$$\frac{1}{3}U_3O_8 + \frac{1}{2}Cr_2O_3 \rightarrow CrUO_4 + \frac{1}{12}O_2$$
 (2)

237

238 It was confirmed that CrUO₄ was formed in a wide temperature range in the UO₂-Cr 239 system under the oxidizing condition, as shown in Fig. 2b, whereas FeUO4 was formed 240 only at 1673 K in the UO₂-Fe system, as shown in Fig. 1b. The typical peak of CrUO₄ is 241 indicated by an arrow in Fig. 2b. The reaction between U₃O₈ and Cr₂O₃ occurs in the 242 temperature region from 1128 to 1293K and CrUO₄ phase was observed below 1873K [19, 31]. These results agree well with published data. From the above discussion, it is 243 concluded that the formation of CrUO₄ is more favorable than that of FeUO₄ because of the 244 245 stability of trivalent chromium than that of trivalent iron.

[Fig. 2]

248

246

247

3.3 Temperature dependence of phase relation in the UO₂–SS and UO₂–ZrO₂–SS systems

251 In the UO₂–SS system, uranium oxide and SS phases did not change under the reducing 252 condition at 1473 and 1673 K up to for 8h, as observed in the UO₂-Fe system. It was 253 reported that they were dissolved in each other when UO2 and SS were in melted state, 254 while these compounds were not reacted each other at temperature below UO₂ melting 255 point 3120 K [37, 38]. Under the oxidizing condition, UO2 and SS were oxidized to U3O8 256 and (Fe, Cr)₃O₄ at 1473 and 1673 K. Furthermore, the (Fe_x, Cr_{1-x})UO₄ phase was observed 257 at both temperatures. Peaks for the (Fe_x, Cr_{1-x})UO₄ phase was increased with increasing 258 heating time at 1473K, while peaks for the U₃O₈ phase decreased. It was observed that Cr, 259 which is the second most abundant component in the SS used in this study, promoted the 260 formation of the (Fe_x, Cr_{1-x})UO₄ phase, as it did in the UO₂-Fe-Cr system. 261 In the UO₂–ZrO₂–SS system, the (Fe_x, Cr_{1-x})UO₄ phase was also formed with heating 262 time, however, the peak intensities of $(Fe_x, Cr_{1-x})UO_4$ phase were lower than those in the 263 UO₂–SS system because some of the UO₂ reacted with ZrO₂ and formed a (U, Zr)O₂ solid 264 solution. The crystal structure of ZrO₂ changes reversibly from monoclinic crystal structure at room temperature to tetragonal one at 1343 K [34]. After heat treatment, ZrO₂ existed as 265 266 the tetragonal phase at room temperature because the tetragonal ZrO₂ phase was stabilized by the formation of a solid solution with UO₂ at high temperature and the phase transition 267

268	from tetragonal to monoclinic did not occur during cooling. The result at 1673K were
269	almost consistent with the phase relation of samples which melted with quenching cooling
270	in the U-Zr-Fe-O system in air [39].
271	On the other hand, it was confirmed that CrUO4 and (Fe, Cr)UO4 were formed in a wide
272	temperature range in the UO2-Cr and UO2-SS systems under the oxidizing condition,
273	whereas little of the simple FeUO ₄ phase was formed in the UO ₂ -Fe system. The results
274	indicated that the presence of chromium promoted the formation of $(Fe_x, Cr_{1-x})UO_4$ in the
275	UO2-SS system. However, when zirconium was coexistent with the UO2-SS, formation of
276	(Fe _x , Cr_{1-x})UO ₄ was suppressed by formation of the (U, Zr)O ₂ solid solution.
277	
278	[Fig. 3]
279	
280	3.4. Characterization of the (Fe, Cr)UO ₄ phase
281	It was confirmed that the (Fe, Cr)UO4 phase was formed at 1473 and 1673 K under the
282	oxidizing condition in the UO ₂ -SS system. To examine the (Fe, Cr)UO ₄ phase further, UO ₂
283	was mixed with Fe and Cr and heated at 1473 K for up to 24 h under the oxidizing
284	condition. In this case, (Fe _x , Cr _{1-x})UO ₄ ($x = 0.25-0.9$) was formed in the UO ₂ -Fe-Cr
285	system as well as in the UO ₂ –SS system. Fig. 4 shows the lattice parameters of the (Fe _x ,
286	Cr _{1-x})UO ₄ obtained in the UO ₂ –Fe–Cr system by heat treatment at 1473 K for 24 h, FeUO ₄
287	obtained in the UO ₂ -Fe system by heat treatment at 1673 K for 2 h, and CrUO ₄ obtained in
288	the UO ₂ –Cr system by heat treatment at 1473 K for 24 h. The lattice parameters of the (Fe _x ,

 Cr_{1-x})UO₄ phase obtained in the UO₂–SS system are also shown in Fig. 4 for comparison.

290	The lattice parameters of FeUO4 and CrUO4 are close to the literature values. All the lattice
291	parameters of $(Fe_x, Cr_{1-x})UO_4$ in the UO ₂ -Fe-Cr and UO ₂ -SS systems are between those of
292	CrUO ₄ and FeUO ₄ . The lattice parameters (<i>a</i> , <i>b</i> , and <i>c</i>) of (Fe _x , Cr _{1-x})UO ₄ increase in
293	proportion to the Fe/Cr ratio. This result suggests that the (Fe _x , Cr_{1-x})UO ₄ unit cell expands
294	isotopically by random replacement of Fe atoms with Cr atoms.
295	
296	[Fig. 4]
297	
298	Fig. 5 shows SEM and X-ray mapping images of the product after heat treatment at 1473
299	K under the oxidizing condition in the UO2–SS system. The U and Fe distribution in the
300	sample seem to be heterogeneous, on the other hand, the Cr seems to be homogeneous due
301	to low content of Cr in the sample. The phases were classified into three types according to
302	the U, Fe, and Cr distributions: a uranium oxide phase where U distributed position, a Cr
303	oxide and Fe oxide phase where Fe, Cr, and O distributed same position, and a (Fe, Cr)UO4
304	phase where U, Fe, and Cr distributed same position. In addition, Ni, which makes up
305	11.09% of the SS used here, appeared in the Cr oxide and Fe oxide phases.
306	This (Fe, Cr)UO4 phase was also observed in the UO2-Fe-Cr system. Then, the elemental
307	composition of the (Fe, Cr)UO4 phase was analyzed by spot analysis. Fig. 6 shows the molar
308	ratio of Fe/Cr in the (Fe, Cr)UO4 phase in the UO2-Fe-Cr system and UO2-SS system. These
309	results indicate that the (Fe _x , Cr _{1-x})UO ₄ phase in the UO ₂ -Fe-Cr and UO ₂ -SS systems is
310	consistent with the lattice parameters obtained by XRD analysis. The experimental results
311	presented in this study revealed that chromium played an important role as a catalyst in

forming the (Fe_x, Cr_{1-x})UO₄ phase in the UO₂–Fe–Cr system. The following reactions are proposed as the mechanism for (Fe_x, Cr_{1-x})UO₄ phase formation.

314

315
$$\frac{1}{3}U_3O_8 + \frac{1}{2}Cr_2O_3 \rightarrow CrUO_4 + \frac{1}{12}O_2$$
 (3)

316
$$\operatorname{CrUO}_4 + \frac{1}{12}O_2 + \frac{x}{3}\operatorname{Fe}_3O_4 \rightarrow (\operatorname{Fe}_x, \operatorname{Cr}_{1-x})UO_4 + \frac{x}{2}\operatorname{Cr}_2O_3$$
 (4)

317

318 First, UO₂ and Cr were oxidized to U₃O₈ and Cr₂O₃; then, the CrUO₄ forming reaction 319 proceeded, as shown in Eq. (3), at 1473 K. Next, the chromium ion in CrUO₄ was replaced 320 with the iron ion in Fe₃O₄, and (Fe_x, Cr_{1-x})UO₄ and Cr_2O_3 were formed, as shown in Eq. (4). 321 Therefore, Cr₂O₃ reacted continuously with U₃O₈ as long as they remained. As shown in 322 Fig. 6, the molar ratios of Fe/Cr observed by EDX analysis of the $(Fe_x, Cr_{1-x})UO_4$ phase in 323 the synthesized samples were proportional to those in the starting materials; therefore, the 324 coefficient x in Eq. (4) depends on the mixture ratio of Fe/Cr before heat treatment. Up to 325 now, the reaction of fuel materials and core structural materials was often assessed in U-Fe-O system or U-Zr-Fe-O system [9-11]. However, it is found that the phase relation of fuel 326 327 materials and core structural materials were significantly affected by chromium under 328 oxidizing conditions even if it is small amount. The existence of chromium must be 329 considered when the fuel debris in unit 3 of Fukushima Daiichi NPP, where the O₂ 330 concentration was high, is investigated.

- 331
- 332 [Fig. 5]
- 333 [Fig. 6]
 - 14

335	Fig. 7 shows the U L _{III} XANES spectra of standard uranium oxides, (Fe _x , Cr _{1-x})UO ₄ ($x =$
336	0.25, 0.5, 0.75), and the CrUO ₄ samples. The U $L_{\rm III}$ spectra of UO ₂ and UO ₃ show
337	absorption edge energies (E_0) of 17162.424 and 17165.700 eV, respectively. These values
338	are consistent with the U ⁴⁺ and U ⁶⁺ oxidation states. (Fe _x , Cr _{1-x})UO ₄ ($x = 0.25, 0.5, 0.75$)
339	and CrUO ₄ show E_0 values between those of UO ₂ and UO ₃ . No significant change was
340	observed in the U L_{III} XANES spectra at any molar ratio of Fe/Cr. The uranium oxidation
341	states of CrUO4 and FeUO4 are reportedly pentavalent according to XANES spectroscopy
342	[10]. In this study, the valence state of CrUO ₄ is in agreement with that in a previous study,
343	and that of $(Fe_x, Cr_{1-x})UO_4$ is found to be pentavalent regardless of the molar ratio of Fe/Cr.
344	
345	[Fig. 7]
346	
347	4. Conclusion
348	In this study, UO2 did not react with SS, iron, or chromium under the reducing condition
349	at 1473 and 1673 K. However, under the oxidizing condition, the UO2 and SS components
350	were oxidized and reacted at 1473 and 1673 K. Some of the UO_2 was oxidized to U_3O_8 at
351	1473 and 1673 K under the oxidizing condition, whereas the rest of the UO ₂ reacted with
352	chromium and SS at 1473 and 1673 K, forming CrUO4 and (Fe _x , Cr _{1-x})UO4. In addition,
353	UO2 reacted with iron only at 1673 K, forming FeUO4. In the UO2–ZrO2–SS system, UO2
354	reacted with ZrO ₂ and formed a (U, Zr)O ₂ solid solution, which prevented the formation of
355	(Fe, Cr)UO4. In the ternary system UO2–Fe–Cr, (Fe _x , Cr1-x)UO4 was formed at 1473 K, and

356	proportional to that in the starting materials. XANES spectra indicated that the oxidation
357	state of uranium in CrUO ₄ and (Fe _x , Cr_{1-x})UO ₄ was pentavalent. The results suggest that at
358	the Fukushima Daiichi NPP, molten fuel could react with structural materials consisting of
359	alloys containing chromium to form (Fe _x , Cr_{1-x})UO ₄ under the oxidizing condition at 1473
360	K, below which it is known that the molten fuel could not react with iron. Note that
361	zirconium suppresses (Fe _x , Cr_{1-x})UO ₄ formation.
362	
363	Acknowledgments

364 This work was partially supported by the Research Program for CORE lab of "Dynamic

Alliance for Open Innovation Bridging Human, Environment and Materials" in "Network 365

Joint Research Center for Materials and Devices." The authors gratefully acknowledge 366

Kazuhisa Matsumoto (Chiba University), Chiya Numako (Chiba University), Yasuko 367

368 Terada (Japan Synchrotron Radiation Research Institute), Toshiaki Ina (Japan Synchrotron

369 Radiation Research Institute), and Shino Takeda-Homma (National Institute of

370 Radiological Sciences, National Institutes for Quantum and Radiological Science and

371 Technology) for their cooperation in the XANES measurement at SPring-8 under the

372 2016A1693, 2016B1805 and 2017A1725 programs.

373

374 References

[1] (in Japanese) The Evaluation Status of Reactor Core Damage at Fukushima Daiichi 375

376 Nuclear Power Station Units 1 to 3 [Internet], Tokyo Electric Power Company, Tokyo, Dec.

25, 2017. Available from http://www.tepco.co.jp/press/release/2017/pdf2/171225j0102.pdf. 377

- 378 [2] (in Japanese) The situation in the primary containment vessel based on the result of the
- 379 gas measurement, Tokyo Electric Power Company, Tokyo, July. 23, 2012. Available from
- 380 http://www.tepco.co.jp/nu/fukushima-np/images/handouts 120723 06-j.pdf
- [3] Broughton JM, Kuan P, Petti DA, Tolman EL. A scenario of the Three Mile Island Unit 2
- 382 accident. Nucl Technol. 1989, 87, 34–53.
- 383 [4] Olsen CS, Jensen SM, Carlson ER, Cook BA. Materials interactions and temperatures in
- the Three Mile Island Unit 2 core. Nucl Technol. 1989, 87, 57–94.
- 385 [5] Bottomley PD, Coquerelle M. Metallurgical examination of bore samples from the Three
- 386 Mile Island Unit 2 reactor core. Nucl Technol. 1989, 87, 120–136.
- 387 [6] Hofmann P, Hagen SJL, Schanz G, Skokan A. Reactor core materials interactions at very
- 388 high tempratures. Nucl Technol. 1989, 87, 146–186.
- 389 [7] M. Takano, T. Nishi, N. Shirasu, Characterization of solidified melt among materials of
- 390 UO₂ fuel and B₄C control blade, J. Nucl. Sci. Technol. 51 (7–8) (2014) 859–875.
- 391 [8] M. Takano, T. Nishi, N. Shirasu, High temperature reaction between sea salt deposit and
- 392 (U,Zr)O₂ simulated corium debris, J. Nucl. Mater. 443 (2013) 32–39.
- 393 [9] BECHTA, S. V., et al. Corrosion of vessel steel during its interaction with molten corium:
- Part 1: Experimental. Nuclear engineering and design, 236.17 (2006) 1810-1829.
- 395 [10] BECHTA, S. V., et al. Corrosion of vessel steel during its interaction with molten
- 396 corium: Part 2: Model development. Nuclear engineering and design, 236.13 (2006) 1362-
- 397 1370.
- 398 [11] ALMJASHEV, V. I., et al. Eutectic crystallization in the FeO_{1.5}–UO_{2+ x}–ZrO₂ system.
- 399 Journal of Nuclear Materials, 389.1 (2009) 52-56.

- 400 [12] N. Sato, A. Kirishima, T. Sasaki, Behavior of fuel and structural materials in severely
- 401 damaged reactors, in: Proceedings of CIMTEC 2014, Advances in Science and Technology,
- 402 6th Forum on New Materials, Part B, Trans. Tech. Pub. Inc. (2014) 93–96.
- 403 [13] T. Kitagaki, K. Yano, H. Ogino, T. Washiya, Thermodynamic evaluation of the
- solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear
 power plant accident conditions, J. Nucl. Mater. 486 (2017) 206–215.
- 406 [14] T. Sasaki, Y. Takeno, A. Kirishima, N. Sato, Leaching test of gamma-emitting Cs, Ru,
- 407 Zr, and U from neutron-irradiated UO₂/ZrO₂ solid solutions in non-filtered surface seawater,
- 408 J. Nucl. Sci. Technol. 52 (2015) 147–151.
- 409 [15] T. Sasaki, Y. Takeno, T. Kobayashi, A. Kirishima, N. Sato, Leaching behavior of gamma-
- 410 emitting fission products and Np from neutron-irradiated UO₂–ZrO₂ solid solutions in non-
- 411 filtered surface seawater, J. Nucl. Sci. Technol. 53 (2016) 303–311.
- 412 [16] A. Kirishima, M. Hirano, T. Sasaki, N. Sato, Leaching of actinide elements from
 413 simulated fuel debris into seawater, J. Nucl. Sci. Technol. 52 (2015) 1240–1246.
- 414 [17] A. Kirishima, M. Hirano, D. Akiyama, T. Sasaki, N. Sato, Study on the leaching
- behavior of actinides from nuclear fuel debris, J. Nucl. Mater. 502 (2018) 169–176.
- 416 [18] D. Akiyama, A. Kirishima, N. Sato, T. Sasaki, Reaction behavior of uranium oxides and
- 417 structural materials at high temperatures, in: Proceedings of Global 2015 Meeting, 20-24
- 418 September 2015, Paris, France, 5373 (2015).
- 419 [19] FELTEN, E. J.; JUENKE, E. F.; BARTRAM, S. F, The system Cr₂O₃- UO₂- O₂, Journal
- 420 of Inorganic and Nuclear Chemistry, 24.7 (1962) 839-845.
- 421 [20] Greenblatt, M., R. M. Hornreich, and B. Sharon, Magnetoelectric compounds with two

- sets of magnetic sublattices, UCrO₄ and NdCrTiO₅, Journal of Solid State Chemistry, 10.4
 (1974) 371-376.
- 424 [21] P. A. G. Ohare, J. Boerio, D. R. Fredrickson and H. R. Hoekstra, Thermochemistry of
- 425 uranium compounds IX. Standard enthalpy of formation and high-temperature
 426 thermodynamic functions of magnesium uranate (MgUO₄) A comment on the non-existence
 427 of beryllium urinate, J. Chem. Thermodyn., 9 (1977) 963–972.
- 428 [22] G. C. Allen, A. J. Griffiths and B. J. Lee, X-ray photoelectron spectroscopy of alkaline
 429 earth metal uranate complexes, Transition Met. Chem., 3 (1978) 229–233.
- 430 [23] E. H. P. Cordfunke, A. S. Booij and M. E. Huntelaar, The standard enthalpies of
- formation of uranium compounds. XV. Strontium urinates, J. Chem. Thermodyn., 31 (1999)
 1337–1345.
- 433 [24] D. B. S. Van, M. Verwerft, J. P. Laval, B. Gaudreau, P. G, The local uranium environment
- 434 in cesium uranates: a combined XPS, XAS, XRD, and neutron diffraction analysis, Allen and
- 435 W. A. Van, J. Solid State Chem., 166 (2002) 320–329.
- 436 [25] K.-A. Kubatko, K. Helean, A. Navrotsky and P. C. Burns, Thermodynamics of uranyl
- 437 minerals: Enthalpies of formation of uranyl oxide hydrates, Am. Mineral., 91 (2006) 658–
 438 666.
- 439 [26] A. V. Soldatov, D. Lamoen, M. J. Konstantinovic, d. B. S. Van, A. C. Scheinost and M.
- 440 Verwerft, J. Solid State Chem., 180 (2007) 54–61.
- 441 [27] J. H. Liu, d. B. S. Van and M. J. Konstantinovic, Local structure and oxidation state of
- 442 uranium in some ternary oxides: X-ray absorption analysis, J. Solid State Chem., 182 (2009)
 443 1105–1108.

- 444 [28] E. S. Ilton and P. S. Bagus, Surf, XPS determination of uranium oxidation states,
- 445 Interface Anal., 43 (2011) 1549–1560.
- 446 [29] X. Guo, E. Tiferet, L. Qi, J.M. Solomon, A. Lanzirotti, M. Newville, M.H. Engelhard,
- 447 R.K. Kukkadapu, D. Wu, E.S. Ilton, M. Asta, S.R. Sutton, H. Xu, A. Navrotsky, U(V) in
- 448 metal uranates: a combined experimental and theoretical study of MgUO₄, CrUO₄, and
- 449 FeUO₄, Dalton Trans. 45 (2016) 4622–4632.
- 450 [30] Collomb, A., et al. Hydrothermal Synthesis of Some Mixed Oxides A 6+ B 3+ O 6 under
- 451 High Pressures. J. Solid State Chem, 23.3-4 (1978) 315-319.
- 452 [31] H.R. Hoekstra, R.H. Marshall, Some uranium-transition element double oxides, Adv.
- 453 Chem. 71 (1967) 211–227.
- 454 [32] G. Bergerhoff, I.D. Brown, in: F.H. Allen, et al. (Eds.), Crystallographic Databases,
- 455 International Union of Crystallography, Chester, (1987).
- 456 [33] W.D.J. Evans, J. White, Equilibrium relationships in the system UO₂-Fe₃O₄-O, Trans.
- 457 Brit. Ceram. Soc. 63(12) (1964) 705–724.
- 458 [34] C. Pascual, P. Duran, Subsolidus phase equilibria and ordering in the system ZrO₂-
- 459 Y₂O₃, J. Am. Ceram. Soc. 66 (1983) 23–27.
- 460 [35] Yu. B. Petrov, Yu. P. Udalov, J. Subrt, S. Bakardjieva, P. Sazavsky, M. Kiselova, P.
- 461 Selucky, P. Bezdicka, C. Journeau, and P. Piluso, Phase equilibria during crystallization of
- 462 melts in the uranium oxide-iron oxide system in air", Glass Physics and Chemistry 35(3)
- 463 (2009) 296-305.

- 464 [36] D. Labroche et al. "Thermodynamic Measurement and Characterization of UFeO4
- 465 Compound, Proceedings of the 10 International IUPAC Conference, 10-14 April 2000,
- 466 Julich, Germany (2000) 89-95.
- 467 [37] Hodkin, D.J. and Potter, P.E, On the chemical constitution of a molten oxide core of
- 468 fast breeder reactor, Revue Internationale des Hautes Températures et Réfractaires 17
 469 (1980) 70-81.
- 470 [38] H. Kleykamp, Phase equilibria in the UO₂-austenitic steel system up to 3000°C,
- 471 Journal of Nuclear Materials 247 (1997) 103-107.
- 472 [39] Petrov, Y.B. and Udalov, Y.P. and Subrt, J. and Bakardjieva, S. and Sazavsky, P. and
- 473 Kiselova, M. and Selucky, P. and Bezdicka, P. and Journeau, C. and Piluso, P.Experimental
- 474 investigation and thermodynamic simulation of the uranium-oxide-zirconium oxide-iron
- 475 oxide system in air, Glass Physics and Chemistry, 37 (2011) 212-229.

	Molar ratio			Heating condition			
Component	U/U	U+Zr/	Fe/	A 4	Log P(O ₂)	Temperature	Time
	+Zr	Fe+Cr	Fe+Cr	Aunosphere		[K]	[h]
				$A_{n+1}00/11_{-}$	12.7	1473	2, 4, 8
UO2-Fe	1	1	1 -	AI+10%12	-13.7	1673	2
				Ar+2%O2	-1.7	1473	2, 4, 8
						1673	2
				$A_{m} + 100/11$	12.7	1473	2, 4, 8
UO2-Cr	1	1	0 -	Ar+10%H ₂ ,	-13./	1673	2
				Ar+2%O ₂	-1.7	1473	2, 4, 8
						1673	2
U ₃ O ₈ -Cr ₂ O ₃	1	1	0	Ar	-7.0	1473	2
UO ₂ -Fe-Cr	1	1	0.25, 0.5,	Ar+10%H ₂	-13.7	1473	24
			0.75, 0.9	Ar+2%O ₂	-1.7		
				A n+100/ Ha	12 7	1473	2, 4, 8
UO2-SS	1	1	0.79 -	Ar+10%H2	-13.7	1673	2
				Ar+2%O ₂	-1.7	1473	2, 4, 8
						1673	2
UO2-ZrO2- SS	0.5	1	0.79	Ar+10%H ₂ ,	-13.7	1473	2, 4, 8
						1673	2
				Ar+2%O ₂	-1.7	1473	2, 4, 8

Table 1. Compositions of the initial samples and heating conditions.

		1673	2
--	--	------	---

482 Fig. 1. XRD patterns of samples before and after heat treatment at 1473 and 1673 K in the
483 UO₂–Fe system under (a) the reducing condition and (b) the oxidizing condition.

Fig. 2. XRD patterns of samples before and after heat treatment at 1473 and 1673 K in the
UO₂-Cr system under (a) the reducing condition and (b) the oxidizing condition

Fig. 3. XRD patterns of samples (a) in the UO₂–SS system and (b) in the UO₂–ZrO₂–SS
system before and after heat-treatment at 1473 and 1673 K under the oxidizing condition.

494 Fig. 4. Lattice parameters (a, b, c) of orthorhombic FeUO₄, CrUO₄, and (Fe_x, Cr_{1-x})UO₄

 $(0.25 \le x \le 0.9).$

498 Fig. 5. SEM and X-ray mapping images of U, Fe, and Cr in UO₂–SS system after heat

499 treatment at 1473 K under the oxidizing condition for 24 h.

500

502 Fig. 6. Fe/Cr ratio of (Fe_x, Cr_{1-x})UO₄ (0 < x < 1) obtained by EDX analysis versus mixture 503 ratio of Fe/Cr in starting materials.

