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Mediation

¢ In many research contexts we might be interested in the extent
to which the effect of some exposure X on some outcome Y is
mediated by an intermediate variable M.
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Mediation

¢ In many research contexts we might be interested in the extent
to which the effect of some exposure X on some outcome Y is
mediated by an intermediate variable M.

¢ In other words we are interested in the study of mediation.
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Example medlatlon in life course epidemiology

Focus on distal exposures for later life outcomes:

Health in childhood

Psychosocial Psychosocial

factors in childhood factors in adulthood

Social Disadvantage in Educational Health outcome in

childhood achievement adulthood
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SEM Causal Inference Comparison Example Summary

Example: mediation in life course epidemiology

LONDON
St

Focus on distal exposures for later life outcomes:

Health in childhood

Psychosocial

Psychosocial

factors in childhood factors in adulthood

Social Disadvantage in Educational Health outcome in
childhood achievement adulthood

Interest: disentangle the underlying processes.
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Other examples

o What proportion of the effect of prenatal care on infant mortality
is mediated by medically-induced pre-term birth?
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in reducing suicide rates?
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SEM Causal Inference Comparison Example Summary

Other examples

o What proportion of the effect of prenatal care on infant mortality
is mediated by medically-induced pre-term birth?

¢ |s cognitive behaviorial therapy acting via increased compliance
in reducing suicide rates?

e Is the effect of tamoxifen on CVD mediated/modified by other
drugs taken to control its symptoms?
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LONDON

The study of mediation

e Two main strands in the literature for the study of mediation:

e Social sciences / psychometrics garon and kenny, 1986)
e Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)

e The first more accessible, but also misused/misunderstood

e The second more rigorous and general, but more complex
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SEM Causal Inference Comparison Example Summary

The study of mediation

e Two main strands in the literature for the study of mediation:

e Social sciences / psychometrics garon and kenny, 1986)
e Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)

e The first more accessible, but also misused/misunderstood

e The second more rigorous and general, but more complex

Aims:
e outline these two approaches
e compare them and show important differences

e show an application
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Outline

@ SEM framework

@ Causal inference framework

€ Comparison

O A life course epidemiology example

© Summary
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Simplify the question: one mediator

Exposure X, mediator M, outcome Y and confounders C.

C

-

M
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Simplify the question: one mediator

Exposure X, mediator M, outcome Y and confounders C.
Mediation leads to separate the two pathways: indirect and direct.

C

-

M
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@ SEM framework
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SEM

A Simple linear Structural Equation Model (LSEM) (1)

Consider the LSEM corresponding to this diagram:
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SEM

A Simple linear Structural Equation Model (LSEM) (1)

C
K El,,,
M
=
X =
Consider the LSEM corresponding to this diagram:

v

en and ey uncorrelated error terms, also uncorrelated with the explanatory variables in their equations.

ap + axX + OécC + €
60 + BXX + BmM + ﬂLC + €
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SEM

A Simple linear Structural Equation Model (LSEM) (2)
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If the model is correctly specified:
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SEM

A Simple linear Structural Equation Model (LSEM) (2)
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If the model is correctly specified:
e direct effect of X on Y: 5,
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SEM

A Simple linear Structural Equation Model (LSEM) (2)

LONDON
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If the model is correctly specified:
e direct effect of X on Y: 5,

o the marginal effect of X is (5, + «,8,,) = indirect effect is a3,
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SEM Causal Inference  Comparison Example Summary

A Simple linear Structural Equation Model (LSEM) (2)

LONDON

If the model is correctly specified:
e direct effect of X on Y: j3,

o the marginal effect of X is (5, + «,8,,) = indirect effect is a3,

Estimation via ML/OLS; delta method/ bootstrapping to obtain
SEs for the indirect effect.
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SEM

Intermediate confounders (1)

X Y

Here L is an intermediate confounder (endogenous variable) because
it is influenced by X. If L is a continuous variable:
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SEM

Intermediate confounders (1)

Here L is an intermediate confounder (endogenous variable) because
it is influenced by X. If L is a continuous variable:

L = ’70+'VxX+'YCC+E[
M = o+ aoaX+ oL+ a.C+ ey (2)
Y = 60+6XX+BmM+BlL+BLC+€V

€/, em, and €, uncorrelated error terms, also uncorrelated with the explanatory variables in their equation.

Bianca De Stavola/IC: Intro to mediation 11/42



SEM

Intermediate confounders (2)
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SEM

Intermediate confounders (2)

LONDON
SC

Following the same steps as before we find, if the model is correctly
specified:

e Marginal effect of X on Y is (8, + a.fm + Y01 Bm + 1/31)
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SEM

Intermediate confounders (2)

LONDON
SC

Following the same steps as before we find, if the model is correctly
specified:

e Marginal effect of X on Y is (B, + B + V21 Bm + V201)
e Effect mediated via M, the indirect effect is (B + Y1Bm)
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SEM

Intermediate confounders (2)

LONDON

Following the same steps as before we find, if the model is correctly
specified:

e Marginal effect of X on Y is (8, + a.fm + Y01 Bm + 1/31)
e Effect mediated via M, the indirect effect is (B + Y1Bm)
o Effect not mediated by M, the direct effect: (8, + 7.0)
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SEM LONDON

SEMs: comments

e Extension to the case with intermediate confounder L is
straightforward
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SEMs: comments

e Extension to the case with intermediate confounder L is
straightforward
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e Derivations of direct and indirect effects are always specific to a
particular model
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SEM

SEMs: comments

e Extension to the case with intermediate confounder L is
straightforward

e Models can only be linear for Y, M and L, with no interactions nor
other non-linearities (e.g. M?)

e Derivations of direct and indirect effects are always specific to a
particular model

e For non-linear settings: approximate solutions (and for defining
indirect effects only (Hayes and Preacher, 2010))
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@ Causal inference framework
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Causal Inference

The causal inference framework

e |n this framework, definitions of direct and indirect effects do not
depend on the specification of a particular statistical model
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different”
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Causal Inference

The causal inference framework

e |n this framework, definitions of direct and indirect effects do not
depend on the specification of a particular statistical model

e Explicitly aiming for causal statements, this approach invokes the
notion of “how the world would have been had something been
different”

e Hence use of quantities that are not all observable: potential
outcomes and the potential mediators.
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Causal Inference

Potential outcomes

e Y(x): the potential values of Y that would have occurred had X been
set, possibly counter to fact, to the value x.

e M(x): the potential values of M that would have occurred had X been
set, possibly counter to fact, to the value x.

e Y(x,m): the potential values of Y that would have occurred had X
been set, possibly counter to fact, to the value x and M to m.
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SEM Causal Inference  Comparison Example Summary

Potential outcomes

e Y(x): the potential values of Y that would have occurred had X been
set, possibly counter to fact, to the value x.

e M(x): the potential values of M that would have occurred had X been
set, possibly counter to fact, to the value x.

e Y(x,m): the potential values of Y that would have occurred had X
been set, possibly counter to fact, to the value x and M to m.

e For simplicity consider the case where X is binary

e |t also helps to start with the definition of fotal causal effect

Bianca De Stavola/IC: Intro to mediation 16/42



SEM Causal Inference Comparison Example Summary

Total Causal Effect (TCE): definition

The average total causal effect of X, comparing exposure level X = 1
to X = 0, can be defined as the linear contrast ':

TCE = E[Y(1)] — E[Y(0)] ]

This is a comparison of two hypothetical worlds: in the first, X is set to
1, and in the second X is set to 0.
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SEM Causal Inference Comparison Example Summary

Total Causal Effect (TCE): definition NN

The average total causal effect of X, comparing exposure level X = 1
to X = 0, can be defined as the linear contrast ':

TCE = E[Y(1)] — E[Y(0)] ]

This is a comparison of two hypothetical worlds: in the first, X is set to
1, and in the second X is set to 0.

In general: TCE # E[Y|X = 1] — E[Y|X = 0]
hence TCE cannot be naively estimated from the data.
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Causal Inference

Total Causal Effect (TCE): identification

To identify TCE we need to infer E[Y(1)] and E[Y(0)] from the data.
This is possible under certain assumptions. Those most invoked are:

(i) no interference: Y; is not influenced by X;, i # j
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Causal Inference LONDON

Total Causal Effect (TCE): identification

To identify TCE we need to infer E[Y(1)] and E[Y(0)] from the data.
This is possible under certain assumptions. Those most invoked are:
(i) no interference: Y; is not influenced by X;, i # j
(i) consistency: Y(x) can be inferred from observed Y when X = x

(iii) conditional exchangeability: Y(x) can be inferred from Y(x) of
comparable others when X # x:
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Causal Inference LONDON
SC

Total Causal Effect (TCE): identification

To identify TCE we need to infer E[Y(1)] and E[Y(0)] from the data.

This is possible under certain assumptions. Those most invoked are:
(i) no interference: Y; is not influenced by X;, i # j
(if) consistency: Y(x) can be inferred from observed Y when X = x

(iii) conditional exchangeability: Y (x) can be inferred from Y(x) of
comparable others when X # x: i.e. no unmeasured confounding
between X and Y:

C

X Y
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SEM Causal Inference  Comparison Example Summary

Total Causal Effect (TCE): identification

To identify TCE we need to infer E[Y(1)] and E[Y(0)] from the data.
This is possible under certain assumptions. Those most invoked are:
(i) no interference: Y; is not influenced by X;, i # j
(i) consistency: Y(x) can be inferred from observed Y when X = x

(iii) conditional exchangeability: Y (x) can be inferred from Y (x) of
comparable others when X # x: i.e. no unmeasured confounding
between X and Y:

If these are satisfied, we can infer the TCE from the data

S {E(¥|IX=1,C=c)-E(Y|X=0,C=¢)} Pr(C =)

| N

X Y
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SEM Causal Inference Comparison Example Summary OATDON

Controlled Direct Effect (CDE): definition

The average controlled direct effect of X on Y, when M is
controlled at m, is:

CDE(m) = E|[Y (1,m)] — E[Y (0,m)]
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Controlled Direct Effect (CDE): definition

The average controlled direct effect of X on Y, when M is
controlled at m, is:

CDE(m) = E|[Y (1,m)] — E[Y (0,m)]

This is a comparison of two hypothetical worlds:
e Inthe first, X is set to 1, and in the second X is set to 0.
e In both worlds, M is set to m.

e By keeping M fixed at m, we are getting at the direct effect of X,
unmediated by M.
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SEM Causal Inference  Comparison Example Summary LONDCN

Controlled Direct Effect (CDE): definition

The average controlled direct effect of X on Y, when M is
controlled at m, is:

CDE(m) = E|[Y (1,m)] — E[Y (0,m)]

This is a comparison of two hypothetical worlds:
e Inthe first, X is set to 1, and in the second X is set to 0.
e In both worlds, M is set to m.

e By keeping M fixed at m, we are getting at the direct effect of X,
unmediated by M.

e In general CDE(m) varies with m
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Causal Inference

Controlled Direct Effect: identification

Identification possible under extensions of the earlier assumptions:

(i) no interference

(ii) consistency: extended to include
Y=Y(x,m)ifX=xand M =m
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Causal Inference

Controlled Direct Effect: identification

Identification possible under extensions of the earlier assumptions:

(i) no interference

(ii) consistency: extended to include
Y=Y(x,m)ifX=xand M =m

(iii) sequential conditional exchangeability:

@]
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SEM Causal Inference  Comparison Example Summary

Controlled Direct Effect: identification

Identification possible under extensions of the earlier assumptions:

(i) no interference

(ii) consistency: extended to include
Y=Y(x,m)ifX=xand M =m

(i) sequential conditional exchangeability:

If these assumptions are satisfied we can infer the CDE(m)
from the observed data

S H{EYIX=1,M=m,C=c)—E(Y|X=0,M=m,C=c)}

Pr(C=c¢)
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SEM Causal Inference Comparison Example Summary

Pure Natural Direct Effect (PNDE): definition

The average Pure Natural Direct Effect of X on Y is:

PNDE = E[Y(1,M(0))] — E[Y(0,M(0))]
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SEM Causal Inference  Comparison Example Summary

Pure Natural Direct Effect (PNDE): definition

The average Pure Natural Direct Effect of X on Y is:

PNDE = E[Y(1,M(0))] — E[Y(0,M(0))]

This is a comparison of two hypothetical worlds:
e In the first, X is set to 1, and in the second X is set to 0.

¢ In both worlds, M is set to the natural value M (0), i.e. the value it
would take if X were set to 0.

e Since M is the same (within individual) in both worlds, we are still
getting at the direct effect of X, unmediated by M.
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Causal Inference

Pure Natural Direct Effect: identification

Identification possible, as before, under extensions of the earlier
assumptions:

(i) no interference

(ii) consistency, extended to include:
Y=Yx,m)ifX=xand M =m, M = M(x) if X = x, and
Y=Y {x,Mx*)}if X =xand M = M(x*).
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Pure Natural Direct Effect: identification

Identification possible, as before, under extensions of the earlier
assumptions:

(i) no interference

(ii) consistency, extended to include:
Y=Yx,m)ifX=xand M =m, M = M(x) if X = x, and
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Causal Inference

Pure Natural Direct Effect: identification

Identification possible, as before, under extensions of the earlier
assumptions:

(i) no interference
(ii) consistency, extended to include:
Y=Yx,m)ifX=xand M =m, M = M(x) if X = x, and
Y=Y {x,Mx*)}if X =xand M = M(x*).
(iii)y sequential conditional exchangeability extended to include no
unmeasured X — M confounding

(iv) either no intermediate confounders or some restrictions on
X — M interactions in their effecton Y

Bianca De Stavola/IC: Intro to mediation 22/42



SEM Causal Inference  Comparison Example Summary

Pure Natural Direct Effect: identification

Identification possible, as before, under extensions of the earlier
assumptions:

(i) no interference
(ii) consistency, extended to include:
Y=Yx,m)ifX=xand M =m, M = M(x) if X = x, and
Y=Y {x,Mx*)}if X =xand M = M(x*).
(iii)y sequential conditional exchangeability extended to include no
unmeasured X — M confounding

(iv) either no intermediate confounders or some restrictions on
X — M interactions in their effecton Y

If these assumptions are satisfied: we can infer the NDE from
the observed data
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SEM Causal Inference Comparison Example Summary

Total Natural Indirect Effect (TNIE): definition

The average Total Natural Indirect Effect of X on Y is:

TNIE = TCE — PNDE = E[Y(1,M(1))] — E[Y(1,M(0))]
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SEM Causal Inference Comparison Example Summary

Total Natural Indirect Effect (TNIE): definition

The average Total Natural Indirect Effect of X on Y is:

TNIE = TCE — PNDE = E[Y(1,M(1))] — E[Y(1,M(0))]

This is a comparison of two hypothetical worlds: In both X is set to 1,
while M is set to the natural value when X is setto 1 or 0.

The same assumptions as for PNDE are required to identify the TNIE.
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Causal Inference LONDON

The identification equations

e Each of these estimands can be identified under certain assumption
and via an identification equation, e.g.

CDE(m) = Z{E(Y\X: ILM=mC=c¢)—E{Y|X=0,M=m,C=c)}Pr(C=c)

PNDE = Z{Z{E(y\x: ILM=mC=c¢) — EY|X=0,M=m,C=c)}

c m

Pr(M:m|X:O,C:c)}Pr(C:c)
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The identification equations

e Each of these estimands can be identified under certain assumption
and via an identification equation, e.g.

CDE(m) = Z{E(Y\X: ILM=mC=c¢)—E{Y|X=0,M=m,C=c)}Pr(C=c)

c m

PNDE = Z{Z{E(Y\X: ILM=mC=c¢) — EY|X=0,M=m,C=c)}

Pr(M:m|X:O,C:c)}Pr(C:(')

e These equations can be extended to deal with continuous M and C
and to include intermediate confounders L.
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Causal Inference

The identification equations

e Each of these estimands can be identified under certain assumption
and via an identification equation, e.g.

CDE(m) = Z{E(Y\X: ILM=mC=c¢)—E{Y|X=0,M=m,C=c)}Pr(C=c)

PNDE = Z{Z{E(Y\X: ILM=mC=c¢) — EY|X=0,M=m,C=c)}

c m

Pr(M:m|X:O,C:c)}Pr(C:(')

e These equations can be extended to deal with continuous M and C
and to include intermediate confounders L.

e Their essence is the specification of conditional expectations of ¥,
conditional distributions for M (and L) (and marginal distributions for
C).
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Causal Inference LONDON

Estimation

Wide range of options, for most combinations of M and Y:

e G-computation—uvery flexible and efficient but heavy on parametric
modelling assumptions:
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Causal Inference

Estimation

Wide range of options, for most combinations of M and Y:

e G-computation—uvery flexible and efficient but heavy on parametric
modelling assumptions:

e |tis the direct implementation of the identification equations

e requires correct specification of all relevant conditional
expectations and distributions

e implemented in gformula command in Stata

e Semi-parametric methods make fewer parametric assumptions:

¢ Inverse probability of treatment weighting (IPTW):
e not practical when M is continuous

e Various flavours of G-estimation
e generally more complex to understand
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e Disturbances are mutually uncorrelated
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Comparison

Revisiting SEMs

Structural assumptions with no intermediate confounders

LONDON
St

e Disturbances are mutually uncorrelated

e Disturbances are uncorrelated with the exogenous variables

‘Same’ as no unaccounted common causes forM — Y, X — Y, X — M.
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Comparison

Revisiting the SEM assumptions (2)

Structural assumptions with intermediate confounders

e SEM requires ¢ to be uncorrelated with e,, €,, and e,
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X
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Comparison

Revisiting the SEM assumptions (2)

Structural assumptions with intermediate confounders

X

i
GO
e SEM requires ¢ to be uncorrelated with e,, €,, and e,

e Modern causal inference does not require the equivalent assumption
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Comparison

Revisiting the SEM assumptions (2)

Structural assumptions with intermediate confounders

X

1
G

e SEM requires ¢; to be uncorrelated with ¢, ¢, and e,

e Modern causal inference does not require the equivalent assumption

e This is not required for SEM mediation analysis either (pe stavola et ar.)
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héwsﬂing the SEM assumptions (2)

Structural assumptions with intermediate confounders

X

t
GO
e SEM requires ¢ to be uncorrelated with e,, €,, and e,

e Modern causal inference does not require the equivalent assumption
e This is not required for SEM mediation analysis either (pe stavota et al.)

With linear models, structural assumptions for mediation analysis
from the two schools are essentially equivalent
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Comparison

Revisiting the SEM assumptions (3)

Parametric assumptions

If a structural model is linear and does not include interactions or
other non-linear terms:

e identifying equation for modern causal inference would lead to same
estimands as adopting an SEM approach:

e CDE(m) = PNDE = 3,
o TNIE = a,f,
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Parametric assumptions

If a structural model is linear and does not include interactions or
other non-linear terms:

e identifying equation for modern causal inference would lead to same
estimands as adopting an SEM approach:
e CDE(m) = PNDE = 3,
e TNIE = o f3,,
e Limitations of SEMs can be lifted by adopting the estimands defined

within the ‘modern’ school but still using the machinery of SEM
framework:
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Revisiting the SEM assumptions (3)

Parametric assumptions

If a structural model is linear and does not include interactions or
other non-linear terms:

e identifying equation for modern causal inference would lead to same
estimands as adopting an SEM approach:

e CDE(m) = PNDE = 3,
e TNIE = o f3,,
e Limitations of SEMs can be lifted by adopting the estimands defined

within the ‘modern’ school but still using the machinery of SEM
framework:

Estimation-by-combination
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SC

Estimation-by-combination

Consider a more general linear SEM:

L = 7+7%X+7%C++e
M = ap+a X+ ol + a.C+ey
Y = Bo+BX+BLA+ BuM + BumM?* + B.C + XM + €,

Applying the appropriate identification equations leads to:

CDE(m) = Bx + ﬁl’yx + mem

PNDE = B+ B + Bon [a0 + s (70 + 7.C) + a.C]

TNIE = (Bu+ Bum) (x + 1ecu) +
Bnm [(O‘x + ’Yxal)z + 2 (o + eu) (Oé() + o (70 + ’y"é)
+a.C)]

where each of these parameters can be estimated by the model
above, leading to the same results as from g-computation.
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Comparison

Comparison of G-computation and

Estimand
PNDE TNIE CDE(0)
Scenario Method estimate (s.e.) estimate (s.e.) estimate (s.e.)

Y, M, with C, MX true 0.730 - 0.240 - 0.400 -
g-estimation 0.731 (0.003) 0.238 (0.003) 0.405 (0.003)
combination 0.731 (0.002) 0.239 (0.001) 0.405 (0.003)

Y, M, with MX and M> true 0.730 - 0.344 - 0.400 -
g-estimation 0.730 (0.004) 0.341 (0.004) 0.406 (0.003)
combination 0.731 (0.002) 0.342 (0.002) 0.406 (0.003)

Y, M, L, with MX, M? true 0.806 - 0.787 - 0.520 -

g-estimation 0.806 (0.007) 0.783 (0.008) 0.527 (0.004)
combination 0.807 (0.002) 0.783 (0.003) 0.527 (0.004)

Y, M,L, with C, U true 0.520 - 0.156 - 0.520 -
g-estimation 0.521 (0.003) 0.158 (0.003) 0.521 (0.004)
combination 0.520 (0.002) 0.157 (0.001) 0.520 (0.002)
Datasets of size=1,000,000 generated according to specified model with N(0, 1) errors and binary C (p = 0.5).

Standard errors obtained via bootstrap for g-computation and the delta method for estimation-by-combination.
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Comparison

Comparison: summary

With continuous endogenous variables represented by a
recursive linear system:

e structural assumptions for mediation made by the two
approaches closely related, even in the presence of
intermediate confounders

e fully parametric estimation via g-computation is achievable
within an SEM framework, even in the presence of interactions
and other non-linearities, and even if there is unmeasured L — Y
confounding.
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Outline

O A life course epidemiology example
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Eating disorders (ED) in adolescence

Example LONDON
Ne

Work in progress: girls in ALSPAC, birth cohort 1991-2

e ED comprise a variety of heterogeneous diseases

e Maternal factors possibly important

e Childhood BMI a possible mediator

e Data:

Outcome: ED scores derived from parental questionnaire on the
child’s psychological distress when aged 13.5y: today focus on
“Binge eating”

Exposure: pre-pregnancy maternal BMI (binary, > 25kg/m?)
Mediator: Childhood BMI (around age 7, age-standardized)
Confounders: pre-pregnancy maternal mental iliness, maternal
education, girl’s birth weight
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Example

Maternal BMI, childhood BMI and eating disorders

Maternal mental
ililness and education

_ ———— Birth

weight
N\
Childhood
BMI
Maternal Bingeing/
BMI overeating
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Maternal BMI, childhood BMI and eating disorders

Maternal mental
illness and education
_ ———— Birth
weight

Childhood

/ -
Maternal Bingeing/
BMI overeating

The causal question

How much of the effect of maternal BMI on her daughter’s ED score
is due to its effect on the child’s BMI?
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More specifically . . .

We can ask either of these question:

What effect does intervening on maternal BMI have on later ED if we
could also intervene on each child BMI and set it to a particular IeveI?J

e Controlled Direct Effect

world where the effect of maternal BMI has no effect on her child

What effect does intervening on maternal BMI has on later ED in a
BMI? J

e Natural Direct Effect
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Example

Identification

Identification requires assumptions that allows us to use observed
data to derive potential outcomes. According to the estimand, varying
specifications of:

no interference

)
(ii) consistency
(iii) no unmeasured confounding
(iv) for PNDE and TNIE: some parametric restrictions
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Example

Maternal BMI, childhood BMI and eating disorders

Results from g-computation and estimation-by-combination

Method
Model Estimand G-computation Combination
Estimate (s.e.) Estimate (s.e.)

Model 1: no x-u interaction
TCE 0287  (0.049) 0287  (0.052)
PNDE 0.103 (0.047) 0.102 (0.050)
TNIE 0.184  (0.019) 0.485  (0.021)

Model 2:CDE(m) does not vary with M(0)
TCE 0297  (0.047) 0297  (0.049)
PNDE 0.102 (0.051) 0.103 (0.051)
TNIE 0.195 (0.026) 0.194 (0.028)
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Maternal BMI, childhood BMI and eating disorders

Results from g-computation and estimation-by-combination

Method
Model Estimand G-computation Combination
Estimate (s.e.) Estimate (s.e.)

Model 1: no x-u interaction
TCE 0287  (0.049) 0287  (0.052)
PNDE 0.103 (0.047) 0.102 (0.050)
TNIE 0.184  (0.019) 0.485  (0.021)

Model 2:CDE(m) does not vary with M(0)
TCE 0297  (0.047) 0297  (0.049)
PNDE 0.102 (0.051) 0.103 (0.051)
TNIE 0.195 (0.026) 0.194 (0.028)

Which of these models is best?
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Example

Maternal BMI, childhood BMI and eating disorders

Structural model for Bingeing/Overeating

Expl. Model 1 Model 2 Model 3
var. No X — M interaction No X — L nor L? No constraints
Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
X 0.072 (0.048) 0.084 (0.049) 0.068 (0.050)
M  0.315 (0.019) 0.313 (0.021) 0.312 (0.021)
M?>  0.044 (0.012) 0.042 (0.012) 0.043 (0.012)
L 0.034 (0.022) 0.054 (0.020) 0.034 (0.022)
L> 0.032 (0.012) - - 0.032 (0.012)
XL 0.078 (0.045) - - 0.078 (0.045)
XM - - 0.017 (0.045) 0.014 (0.045)
c, -0.011 (0.036) -0.011 (0.036) -0.011 (0.036)
¢, 0.207 (0.054) 0.209 (0.054) 0.207 (0.054)
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© Summary

Bianca De Stavola/IC: Intro to mediation 40/42



Summary LONDON

Summary

e Two main approaches for the study of mediation.
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Summary

e Two main approaches for the study of mediation.

e For a linear recursive system, can estimate causal estimands using
SEMs.

e Two main lessons:

(a) Equivalence should invite applied researchers into the greater
formality of modern causal inference.

(b) While modern causal inference focuses on summary effects,
SEMSs help closer examination of specifications (novel
semi-parametric approaches should not however be
overlooked!).
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Summary

Summary

e Two main approaches for the study of mediation.

e For a linear recursive system, can estimate causal estimands using
SEMs.

e Two main lessons:

(a) Equivalence should invite applied researchers into the greater
formality of modern causal inference.

(b) While modern causal inference focuses on summary effects,
SEMSs help closer examination of specifications (novel
semi-parametric approaches should not however be
overlooked!).

: Thank you!

Bianca De Stavola/IC: Intro to mediation 41/42



SEM Causal Inference  Comparison Example Summary

References

e Baron RM, Kenny DA. The moderator-mediator variable distinction in
social psychological research: conceptual, strategic, and statistical
considerations. Journal of Personality and Social Psychology 1986;
51,1173-1182.

e Daniel RM, De Stavola BL, and Cousens SN. gformula: Estimating
causal effects in the presence of time-varying confounding or
mediation using the g-computation formula. Stata Journal 2011; 11:
479-517.

e Imai K, Keele L, Tingley D. A general approach to causal mediation
analysis. Psychological Methods 2010; 15, 309-334.

e Pearl J. Direct and indirect effects. Proceedings of the Seventeenth
Conference on Uncertainty and Artificial Intelligence 2001; San
Francisco: Morgan Kaufmann.

e Vansteelandt S. Estimation of direct and indirect effects (chapter 4.2).
In Causality: Statistical Perspectives and Applications, Berzuini C,
Dawid AP, Bernardinelli L (eds). Wiley, 2011.

Bianca De Stavola/IC: Intro to mediation 42/42



	SEM framework
	Causal inference framework
	Comparison
	A life course epidemiology example
	Summary

