Social disadvantage and infant mortality:

 the birth weight paradox revisitedBianca De Stavola
with Rhian Daniel, Richard Silverwood, Rachel Stuchbury, Emily Grundy

UK Causal Inference Meeting • 28-29 April 2014

Infant mortality (deaths $<1 \mathrm{yr}$):

- negatively related to birth weight (BW)
- patterned by socio-economic conditions.

Infant mortality (deaths $<1 \mathrm{yr}$):

- negatively related to birth weight (BW)
- patterned by socio-economic conditions.

Complication:
low BW babies in high-risk populations tend to have lower mortality rates than low BW babies in low-risk populations.

Infant mortality and disadvantage

Infant mortality (deaths $<1 \mathrm{yr}$):

- negatively related to birth weight (BW)
- patterned by socio-economic conditions.

Complication:
low BW babies in high-risk populations tend to have lower mortality rates than low BW babies in low-risk populations.

First observed by Yerushalmy $(1964,1971)$ and interpreted as BW modifying the effect of many factors associated with infant mortality:

BW paradox

Example

■ Smoking known risk factor for low BW.
■ Low BW babies born to smokers lower mortality than those of non-smokers:

Figure: Birth-weight-specific infant mortality curves, US, 1991 (Hernandez-Diaz, AJE 2006)

Outline

1 Background

2 An alternative model

3 Questions and estimands
4 Preliminary results
5 Critique and Conclusions

The low birth weight paradox: collider bias?

■ BW is on the causal pathway from "Disadvantage" (E) to "Infant death", but there are unmeasured confounders U_{1}.

The low birth weight paradox: collider bias?

■ BW is on the causal pathway from "Disadvantage" (E) to "Infant death", but there are unmeasured confounders U_{1}.

- Paradox explained if U_{1} and U_{2} act in opposite directions (Basso et

- BW is on the causal pathway from "Disadvantage" (E) to "Infant death", but there are unmeasured confounders U_{1}.

■ Comparing infant mortality rates at given values of BW leads to opening up a spurious path from E to "Infant death" (Hernandez-Diaz et al. , 2006).

- BW is on the causal pathway from "Disadvantage" (E) to "Infant death", but there are unmeasured confounders U_{1}.

■ Comparing infant mortality rates at given values of BW leads to opening up a spurious path from E to "Infant death" (Hernandez-Diaz et al. , 2006).
■ Paradox explained if U_{1} and U_{2} act in opposite directions (Basso et al., 2006 \& ${ }^{\text {nnni }}$

An alternative explanation

Low BW is a crude measure of the mechanism of the exposure E, "Disadvantage":

■ It is only a proxy of intrauterine growth rate and time,

- neither intrauterine dimensions are usually available in large observational studies. - Otherparnways may 'in' exposure to the infant mortality BW

An alternative explanation

Low BW is a crude measure of the mechanism of the exposure E, "Disadvantage":

- It is only a proxy of intrauterine growth rate and time,

■ neither intrauterine dimensions are usually available in large observational studies.

An alternative explanation

Low BW is a crude measure of the mechanism of the exposure E, "Disadvantage":

- It is only a proxy of intrauterine growth rate and time,
- neither intrauterine dimensions are usually available in large observational studies.

■ Other pathways may link exposure to the infant mortality (hence the added arrows).

An alternative explanation

Low $B W$ is a crude measure of the mechanism of the exposure E, "Disadvantage":

■ It is only a proxy of intrauterine growth rate and time,
■ neither intrauterine dimensions are usually available in large observational studies.

■ Other pathways may link exposure to the infant mortality (hence the added arrows).

But how can we proceed without information on intrauterine growth?

Wilcox Birth weight model

Wilcox $(1983,2001)$ suggested that there are two sub-populations of newborns:
(a) predominant: mostly term babies,
(b) compromised: mostly pre-term babies and small-for-gestational-age.

Reformulated alternative model

,
รูะ|r
■ The model
can be reformulated in terms of these classes

Reformulated alternative model

■ The model can be reformulated in terms of these classes.

Reformulated alternative model

■ The model can be reformulated in terms of these classes.
■ Assuming that the birth weight distribution for each sub-population is normal,

Reformulated alternative model

■ The model can be reformulated in terms of these classes.
■ Assuming that the birth weight distribution for each sub-population is normal,

- and including predictors, we can estimate Prob(class $=$ compromised) using Latent Class Modelling.

Questions

With this more general theoretical framework, we reconsider the two main questions.
Is BW:
1 an effect modifier of the effect of "Disadvantage" on Infant mortality?

2 a mediator for the effect of "Disadvantage" on Infant

With this more general theoretical framework, we reconsider the two main questions.
Is BW:
1 an effect modifier of the effect of "Disadvantage" on Infant mortality?
2 a mediator for the effect of "Disadvantage" on Infant mortality?

The extended mediation model

■ BW: potential mediator (M); "Disadvantage": exposure (E); Infant mortality: outcome (Y); "Intrauterine growth": intermediate confounder (L).

The extended mediation model

■ BW: potential mediator (M); "Disadvantage": exposure (E); Infant mortality: outcome (Y); "Intrauterine growth": intermediate confounder (L).

- Replacing L with $\hat{L}=\operatorname{Pr}(L=1)$ (1: compromised, 0 : predominant),

Question 1: is BW an effect modifier?

- We address the first question:
- by comparing Controlled Direct Effect of E on Y holding M at either 0 or 1 - If thoce affents are similar there is no support for effect modification by M

Question 1: is BW an effect modifier?

- We address the first question:

■ by comparing Controlled Direct Effect of E on Y holding M at either 0 or 1 .

Question 1: is BW an effect modifier?

- We address the first question:

■ by comparing Controlled Direct Effect of E on Y holding M at either 0 or 1.

- If these effects are similar there is no support for effect modification by M.

Question 2: is BW a mediator?

■ We address the second question:
by estimating the Natural Direct and Indirect Effects of E on Y where:

Question 2: is BW a mediator?

- We address the second question:

■ by estimating the Natural Direct and Indirect Effects of E on Y, where:

Question 2: is BW a mediator?

- We address the second question:

■ by estimating the Natural Direct and Indirect Effects of E on Y, where:

- the indirect effect is made of (a)

Question 2: is BW a mediator?

- We address the second question:

■ by estimating the Natural Direct and Indirect Effects of E on Y, where:

- the indirect effect is made of (a)
- and (b),

Question 2: is BW a mediator?

■ We address the second question:
■ by estimating the Natural Direct and Indirect Effects of E on Y, where:

- the indirect effect is made of (a)
- and (b),
- and the direct effect is (c):

(c)

Estimands and their estimation

Estimands (CDE(m) and PNDE, TNIE) are expressed as OR

 contrasts.No interference, consistency, conditional exchangeability, and because of L. either:

- via Monte Carlo G-computation
- accounting for the estimation of Pr($L=1$) and clustering of children.

Estimands and their estimation

Estimands (CDE(m) and PNDE, TNIE) are expressed as OR

 contrasts.Assumptions:
No interference, consistency, conditional exchangeability, and, because of L, either:

■ No $E-M$ interaction:Model I (Robins and Greenland, 1992).
■ No non-linearities in L:Model II (Petersen etal, 2006).

- via Monte Carlo G-computation (Daniel, etal, 2011),
accounting for the estimation of $\operatorname{Pr}(L=1)$ and clustering of

Estimands (CDE(m) and PNDE, TNIE) are expressed as OR contrasts.
Assumptions:
No interference, consistency, conditional exchangeability, and, because of L, either:

■ No $E-M$ interaction:Model I (Robins and Greenland, 1992).
■ No non-linearities in L:Model II (Petersen et al., 2006).

Estimation:

■ via Monte Carlo G-computation (Daniel, et al, 2011),

- accounting for the estimation of $\operatorname{Pr}(L=1)$ and clustering of children.

■ Record linkage study set up in 1974 (see htpp://celsius.Ishtm.ac.uk).
■ Comprises linked census and event (and thus infant mortality ${ }^{1}$) records for 1% of the population of England and Wales (about 500,000 people at any one census).

■ Includes BW of babies born to LS mothers (regularly since 1981, recorded at registration).

■ Several indicator of social disadvantage: here we show results for maternal education

■ Today: data restricted to births of white mothers (85\%), with complete information on maternal education (loss of 3.8%).

■ Record linkage study set up in 1974 (see htpp://celsius.Ishtm.ac.uk).
■ Comprises linked census and event (and thus infant mortality ${ }^{1}$) records for 1% of the population of England and Wales (about 500,000 people at any one census).

■ Includes BW of babies born to LS mothers (reguarly since 1981, recorded at registration).

■ Several indicator of social disadvantage: here we show results for maternal education

■ Today: data restricted to births of white mothers (85\%), with complete information on maternal education (loss of 3.8%).
(Data only available at a dedicated lab at the Office for National Statistics, all results vetted before release.)

The study population

■ 160,366 singleton live births in 1981-2011.

■ E: 38\% of mother with fewer that 5 ○-levels ("Low education"

 ■ $M: 5.3 \%$ with birth weight $<2.5 \mathrm{~kg}$
The study population

■ 160,366 singleton live births in 1981-2011.
■ $E: 38 \%$ of mother with fewer that 5 O-levels ("Low education").

The study population

■ 160,366 singleton live births in 1981-2011.
■ $E: 38 \%$ of mother with fewer that 5 O-levels ("Low education").
■ $M: 5.3 \%$ with birth weight<2.5kg.

- Y: 0.54\% (862) infant deaths.
- Mortality rates vary greatly by BW, moderately by sex, improving
with calendar time:

The study population

■ 160,366 singleton live births in 1981-2011.
■ $E: 38 \%$ of mother with fewer that 5 O-levels ("Low education").

- $M: 5.3 \%$ with birth weight<2.5kg.

■ $Y: 0.54 \%$ (862) infant deaths.

- Mortality rates vary greatly by BW, moderately by sex, improving with calendar time:

The study population

■ 160,366 singleton live births in 1981-2011.
■ $E: 38 \%$ of mother with fewer that 5 O-levels ("Low education").
■ $M: 5.3 \%$ with birth weight<2.5kg.

- $Y: 0.54 \%$ (862) infant deaths.

■ Mortality rates vary greatly by BW, moderately by sex, improving with calendar time:

Natural direct and indirect effects of low maternal education VERY PRELIMINARY RESULTS- SEs not yet corrected

	Model I		Model II	
	In OR	(SE)	In OR	(SE)
CDE(0)	-	-	0.205	(0.076)
CDE(1)	-	-	0.206	(0.076)
PNDE	0.221	(0.082)	0.227	(0.077)
TNIE	0.011	(0.007)	-0.012	(0.005)
TCE	0.232	(0.082)	0.205	(0.076)

	Model I		Model II	
	In OR	(SE)	In OR	(SE)
CDE(0)	-	-	0.205	(0.076)
CDE(1)	-	-	0.206	(0.076)

PNDE	0.221	(0.082)	0.227	(0.077)
TNIE	0.011	(0.007)	-0.012	(0.005)

TCE	0.232	(0.082)	0.205	(0.076)

- Model I and II give similar results, despite the difference in assumptions.
- CDE(0) and CDE(1) from Model II are very similar: no evidence of effect modification.
- There is little support for a mediating effect of BW (also supported by sensitivity analyses).
- However problems of stability of the results.

Critique

What about unmeasured confounders?

■ Results would still be biased.

Critique

What about unmeasured confounders?
■ Results would still be biased.
■ However, not if U_{1} and U_{2} influenced L directly.

Conclusions

■ Approach may contribute to the debate about the BW paradox by representing the underlying biological process via a latent variable.

Conclusions

■ Approach may contribute to the debate about the BW paradox by representing the underlying biological process via a latent variable.

■ Results depends on strong and partly unverifiable assumptions, although similarity of results from alternative parametric specifications are reassuring.

Conclusions

■ Approach may contribute to the debate about the BW paradox by representing the underlying biological process via a latent variable.

■ Results depends on strong and partly unverifiable assumptions, although similarity of results from alternative parametric specifications are reassuring.

■ Estimation of mediation effects and their SEs raises several problems. There are issues with:

- estimation of the class probability,
- correlations among the outcomes of siblings,
- instability due to small number of events.
- These are being addressed by extending the Monte Carlo G-formula algorithm

■ Approach may contribute to the debate about the BW paradox by representing the underlying biological process via a latent variable.

- Results depends on strong and partly unverifiable assumptions, although similarity of results from alternative parametric specifications are reassuring.

■ Estimation of mediation effects and their SEs raises several problems. There are issues with:

- estimation of the class probability,
- correlations among the outcomes of siblings,
- instability due to small number of events.

■ These are being addressed by extending the Monte Carlo G-formula algorithm.

Acknowledgements

This work is supported by the ESRC Pathways Node (Award ES/1025561/2) of the National Centre for Research Methodology.

The permission of the Office for National Statistics to use the Longitudinal Study is gratefully acknowledged, as is the help provided by staff of CeLSIUS.
CeLSIUS is supported by the ESRC Census of Population Programme (Award Ref: ES/K000365/1).
The authors alone are responsible for the interpretation of the data.
Census output is Crown copyright and is reproduced with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

References

- Basso O, Wilcox AJ, Weimberg CR. Birth Weight and Mortality: Causality or Confounding? AJE 2006;164:303-311.
■ Basso O, Wilcox AJ. Intersecting Birth Weight-specific Mortality Curves: Solving the Riddle. AJE 2009;169:787-797
- Daniel RM, De Stavola BL, Cousens SN. gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula. Stata J. 2011;11(4):479-517.
■ Hernandez-Diaz S, Schisterman EF, Hernan MA. The birth weight "paradox" uncovered? AJE 2006;164(11):1115-2.
- Kramer MS, Zhang X, Platt RW. Analysing risks in adverse pregnancy outcomes. AJE 2014;179(3): 361-367.
- Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. Epidemiology. 2006;17(3):276-284.
- Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3(2):143-155.
■ Yerushalmy, J. Mother's cigarette smoking and survival of infant. AJOG 1964;88:505-518.
- Wilcox AJ, Russell I.Birthweight and perinatal mortality standardizing for birthweight is biased. AJE 1983; 118 (6):857-864.
- Wilcox AJ. On the importance - and the unimportance - of birth weight. International Journal of Epidemiology. 2001 Dec;30(6):1233-41.
- Yerushalmy, J. The relationship of parents cigarette smoking to outcome of pregnancy. Implications as to problem of infering causation from observed associations. AJE 1971;93(6):443-456.

Additional slides

Estimands of interest

■ The total causal effect (TCE):

$$
T C E^{O R}=\frac{E[Y(1)] /\{1-E[Y(1)]\}}{E[Y(0)] /\{1-E[Y(0)]\}}
$$

■ The natural direct effect (NDE):

$$
N D E^{O R}=\frac{E[Y(1, M(0))] /\{1-E[Y(1, M(0))]\}}{E[Y(0, M(0))] /\{1-E[Y(0, M(0))]\}}
$$

■ The natural indirect effect (NIE):

$$
\text { NIE }^{O R}=\frac{E[Y(1, M(1))] /\{1-E[Y(1, M(1))]\}}{E[Y(1, M(0))] /\{[1-E[Y(1, M(0))]]\}}
$$

[^0]
Maternal education and infant mortality

	Birth weight $\geq 2.5 \mathrm{~kg}$ Low High		Birth weight $<2.5 \mathrm{~kg}$	
Mat Education			Low	High
Births	92,704	59,141	4,393	4,128
Deaths	220	222	225	195
Rates ($\times 1,000$)	2.4	3.8	51.24	47.2
Sex-adjusted OR heterog test (p)	1.58 (1.31, 1.91) ${ }^{(0.031)}$			$0.92^{(0.76, ~ 1.12)}$
Adjusted OR heterog test (p)	1.23 (1.01, 1.49)		8. $0.92_{(0.76,1.12)}$	

	Variable	Class 1	Class 2
For μ			
	Intercept	3.51	3.65
	sex	-	-
	year birth	-	+
	mat age	+	+
	birth order	-	+
For σ			
	Intercept	0.90	0.45
For π			
	sex	-	
	Mat educ	+	

About 10\% of births predicted to be "compromised".

■ There is another source of bias: conditioning on live birth.

- Still births are a form of competing event, reducing the denominator of possible infant deaths.
■ Consider the composite outcome of Infant death or Still birth (Kramer et al. , 2014).

	Only Infant deaths Model I		Only Infant deaths \& Still births	
Model II				
	In OR	(SE)	In OR	(SE)
				(0.067)
PNDE	0.221	(0.082)	0.174	(0.008)
TNIE	0.011	(0.007)	0.018	
TCE				
			(0.082)	0.192

[^0]: where $Y(x)$ is the potential value of Y that would have occurred had X been set to x and $Y(x, m)$ the potential value of Y that would have occurred had X been set to x and M to m

