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1 Foundations

This practical teaches the basic theory and practice of ‘spatial microsimulation’ using the popular
free software package R. The term microsimulation means different things in different disciplines,
so it is important to be clear at the outset what we will and will not be covering.

We will be learning how to create spatial microdata, the basis of all spatial microsimulation
models, using iterative proportional fitting (IPF). IPF is an efficient method for allocating in-
dividuals from a non-spatial dataset to geographical zones, analogous to the ‘Furness method’
in transport modelling, but with more constraints. There are other ways of generating spatial
microdata but, as far as the author is aware,1 this is the most effective and flexible for many
applications. An alternative approach using the open source ‘Flexible Modelling Framework’
program is described in detail, with worked examples, by Harland (2013).

We will not be learning ‘dynamic spatial microsimulation’ (Ballas et al., 2005): once the spatial
microdata have been generated and integerised, it is up to the user how they are used — be it
in an agent based model or as a basis for estimates of income distributions at the local level or
whatever.

We thus define spatial microsimulation narrowly in this tutorial as the process of generating
spatial microdata (more on this below). The term can also be used to describe a wider approach
that harnesses individual-level data allocated to zones for investigating phenomena that vary
over space and between individuals such as income inequality or energy overconsumption. In
both cases, the generation of spatial microdata is the critical element of the modelling process
so the skills learned in this tutorial will provide a firm foundation for further work.

One of the tricky things about spatial microsimulation for newcomers is its use of specialist
language. It is important to know exactly what is meant by ‘spatial microdata’ and other
technical terms. To this end we have created a glossary that provide succinct definitions (see
Section 5). Any term that is italicised in the text has a glossary entry.

1.1 Prerequisites for this practical

Figure 1: The RStudio user interface. Note the project title
‘smsim-course’ in the top right and the ‘Files’ tab at the top of
the left hand window.

This practical uses the stat-
ical analysis and modelling
software R. We suggest you
install and take a look at
this powerful program be-
fore getting started. We
recommend using R within
RStudio Fig. 1, which makes
using R much easier. In-
structions to install both R
and RStudio can be found
at rstudio.com.

The other prerequisite for
the course is downloading
the example data. These
can be downloaded in a sin-
gle zip file which can be

1There is much need to compare different methods of generating spatial microdata, for example by building
on the work of (Harland et al., 2012). A project for doing these tests in a transparent way has been started at
github.com/Robinlovelace/IPF-performance-testing and there are probably many opportunities for improving the
computational efficiency of the code presented in this course — please get in touch if you would like to contribute.

http://www.rstudio.com/ide/download/desktop
https://github.com/Robinlovelace/IPF-performance-testing
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found on the course’s GitHub repository:2

github.com/Robinlovelace/smsim-course. Click on the “Download ZIP” button to the right of
this page and extract the folder into your desktop or other suitable place on your computer.

Once the folder has been successfully extracted open it in your browser and take a look around.
You will find a number of files and two sub-folders entitled ‘data’, and ‘figures’. When you get to
the sections that use R code, it is useful for R to operate from within the smsim-course-master
folder. Probably the best way to set this up is to open the file ‘smsim-course.Rproj’ from within
RStudio (Fig. 1). Try this now and click on the ‘Files’ tab in the bottom right hand window of
RStudio. Before using the power of R in RStudio it’s worth understanding a bit about ‘IPF’, the
algorithm we will use to generate the synthetic population or ‘spatial microdata’ (Fig. 2).

Figure 2: Schema of iterative proportional fitting (IPF) and combinatorial optimisation in the
wider context of the availability of different data formats and spatial microsimulation.

1.2 Learning by doing

As Kabacoff (2011, xxii) put it regarding R, “the best way to learn is to experiment” and the
same applies to spatial microsimulation. We believe you will learn the technique/art best not
by reading about it, but by doing it. Mistakes are inevitable in any challenging task and should
not be discouraged. In fact it is by making blunders, identifying and then correcting them that
many people learn best. Think of someone learning to skate: no one ever picks up a skateboard
for the first time being able to ‘surf the sidewalks’. It takes time, patience and plenty of falls
before you master the art. The same applies to spatial microsimulation.

Spatial microsimulation works by taking microdata at the individual level and using aggregate-
level constraints to allocate these individuals to zones. The two main methods are deterministic
reweighting and combinatorial optimisation. This practical takes the former approach using a

2GitHub is used to serve this .zip file because if anything changes in the tutorial, the .zip file from the same
location will automatically be updated. The other advantages of GitHub are its visibility — a pdf of this tutorial,
for example, is kept up-to-date at github.com/Robinlovelace/smsim-course in the ‘handout.pdf’ file — accessibility
and encouragement of evolution: to contribute to this project all one needs to do is ‘fork’ it.

https://github.com/Robinlovelace/smsim-course
https://github.com/Robinlovelace/smsim-course/blob/master/handout.pdf
https://help.github.com/articles/fork-a-repo
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process called iterative proportional fitting (IPF). IPF is used to increase the weights of indi-
viduals who are representative of the target area and reduce the weights of individuals who are
relatively rare (Lovelace and Ballas, 2013). The output is a spatial microdataset.

A schematic of the process is shown in Fig. 2. Take a look at the image and think about the
process. But we don’t want to get bogged down in theory or applications in this course: we want
to ‘get our hands dirty’. Next we will do just that, by applying the process to some example
data.

1.3 Input data

Let’s start with two very basic datasets. To aid understanding, we will primarily do the reweight-
ing by hand to understand the process before automating it on the computer. As outlined in
Figure 2, there are two input files required to perform spatial microsimulation:

• Survey data - information about individuals

• Geographically aggregated (‘wide’) data - typically aggregated Census tables

Table 1 shows 5 individuals, who are defined by two constraint variables: age and sex. This is
analogous to the survey data shown in Figure 2. Table 2 presents this same data in aggregated
form, whose margin totals can be used in the IPF procedure described shortly. Note that
individual 3 is highlighted in blue and bold for future reference.

Table 1: Hypothetical input microdata (‘survey data’) (the original weights set to one). The
bold and blue value is used subsequently for illustrative purposes.

Individual Age Sex Weight

1 59 Male 1
2 54 Male 1
3 35 Male 1
4 73 Female 1
5 49 Female 1

Table 2: The aggregated results of the weighted microdata set (m — think “m” for Modified or
siMulated). Note, these values are updated by each new set of weights.

Marginal totals j
Age/sex Male Female T

i
Under-50 1 1 2
Over-50 2 1 3
T 3 2 5

Table 3 contains data for a single area. This is analogous to the geographically aggregated ’wide’
data shown in Figure 2.

Table 3: Small area constraints (geographically aggregated or ‘wide’ input data). Note that
although individual 3 fits into both “under 50” and “male” categories, only the value of the
former is highlighted as age is the first constraint.

Constraint ⇒ i j
Category ⇒ i1 i2 j1 j2

Area ⇓ Under-50 Over-50 Male Female
1 8 4 6 6
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Now, it will be recognised by the astute reader that the data in Tables 2 and 3 are incompatible;
they are two matrices with different dimensions (3 × 3 and 1 × 4 respectively). To solve this
problem we can rearrange the small area census constraints data (s, presented in Table 3) to
match the dimensions of m(1) (table 2). Table 4 illustrates s in a different form. Note that
although we are ignorant of the internal values of this matrix, it is of the same dimension as
m(1) and the marginal totals (denoted “T” for total) can be directly compared. This is the
basis of the method and provides a way to systematically compare individual level data with
geographic aggregates.

Table 4: Small area constraints (matrix s) re-arranged to be the same dimension as m (Table
2). “s” here stands for Small area data or conStraint. Note only the marginal totals are known.
The internal cell values (represented by “?”) must be estimated by spatial microsimulation.

Marginal totals j
Age/sex Male Female T

i
Under-50 ? ? 8
Over-50 ? ? 4
T 6 6 12

With our input data in place, we can begin our first iteration.

1.4 The IPF equation

Using the tables m and s presented above we readjust the weights of the individuals so that:

• Individuals who are rare in the geographic zone of interest are given a smaller weight (we
need fewer of them).

• Individuals who are common in the zone of interest are given a larger weight (we need
more of them).

• Their sum equals the total population of the geography of interest (12 in our example).

For each constraint the current weight (Table 2) is multiplied by the respective total from the
geographically aggregated (census) table (Table 3) and divided by the corresponding marginal
total of the survey data (see Table 2). For example, using the age constraint the new weight
of individual 3 is calculated based on the following numbers: the initial weight is set as 1, the
number of individuals under 50 in the geographically aggregated (Census) data is 8 (see Table
3) and the number of individuals under 50 in the survey data is 2 (see Table 2). Thus the new
weight is 1 × 8

2 . These figures are highlighted in bold and blue in the preceding tables. The
same process is used to calculate the new weights for all individuals — remember we are only
constraining by age for now. This process of reweighting is done one constraint at a time and
can be described more succinctly in the form of a word equation Eq. (1), and more generally by
Eq. (2) for constraint i (age):

WeightNew = WeightCurrent ×
CensusConstraint Total

SurveyConstraint Total
(1)

w(n + 1)ij =
w(n)ij × sTi

mT (n)i
(2)

where w(n + 1)ij is the new weight for individuals with characteristics i (age, in this case), and
j (sex), w(n)ij is the original weight for individuals with these characteristics, sTi is element
marginal total of the small area constraint, s (Table 3) and mT (n)i is the marginal total of
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category j of the aggregated results of the weighted microdata, m (Table 2). n represents the
constraint number.

Do not worry about completely understanding the above procedure for now, its meaning will
probably take time to sink in. More important is implementing it.

Follow the blue emboldened values in tables 1 to 4 to fill in the question marks in Table 5
and calculate the new weight of individual 3, a male under 50 years of age. To validate your
calculation, the sum of weights (W1 to W5) should equal the population of the zone (12, in our
example). This is a useful check.

Table 5: Reweighting the hypothetical microdataset in order to fit Table 3.

Individual Sex age-group Weight New weight, w(2)

1 Male Over-50 1 1× 4/3 = 4
3

2 Male Over-50 1 1× 4/3 = 4
3

3 Male Under-50 1 1× 8
? = ?

4 Female Over-50 1 1× 4/3 = 4
3

5 Female Under-50 1 1× 8
2 = 4

Total 5 12

1.5 Re-aggregation after the first constraint

After creating WeightNew for all possibilities of the first constraint (under 50 and 50+ for age),
the individual level data is re-aggregated before the next weight can be calculated using the
next constraint.

Re-aggregating the individual-level data — to compare the marginal totals with the constraint
tables ready for the second constraint — will result in Table 6. To generate this table, the
new weights (w(2), presented in Table 5) are multiplied by the number of individuals in each
category. Thus, to calculate the new estimate for the number of males we multiply the weight of
males under 50 (4 — follow the emboldened values above) by the number of individuals in this
category (1) and add the corresponding values for males over 50 (43 and 2). This is as follows
(see the bold value in the bottom left of Table 6):

∑
i=male

m(2) = 4× 1 +
4

3
× 2 = 4 +

8

3
= 6

2

3
(3)

After performing this process of re-aggregation (Table 6) for all categories in the **age** con-
straint,n the next stage is to repeat Eq. (2) for the **sex** constraint to generate a third set of
weights, by replacing the i in sTi and mT (n)i with j and incrementing the value of n:

w(3)ij =
w(2)ij × sTj

mT (2)j
(4)

1.6 Test your understanding: the second constraint

To test your understanding of IPF, try to apply Eq. (4) to the information above and that
presented in Table 6. This should result in the following vector of new weights, for individuals
1 to 5. Calculate the correct values and pencil them in in place of the question marks.
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w(3) = (
6× 4

3

62
3

,
6× 4

3

?
,

6 × 4

62
3

,
? × ?

?
,

4× 6

51
3

) (5)

After simplifying these fractions, the results are as follows. One ‘sanity’ check of your method
here is whether the sum of these weights is still equal to the area’s total population of twelve.
Test this is true:

w(3) = (
6

5
,
6

5
,
18

5
,
3

2
,
9

2
) (6)

What do the weights in w(3) actually mean? They indicate how representative each individual
is of the target zone after one iteration of IPF, constraining by age and sex. Individual number 5
has the highest weight because there is only one young female in the survey dataset yet seemingly
many in the area in question.

Notice also that after each iteration the fit between the marginal totals of m and s improves.3

Table 6: The aggregated results of the weighted microdata set after constraining for age (m(2)).

Marginal totals i
Age/sex Male Female T

j
Under-50 4 4 8
Over-50 8

3
4
3 4

T 62
3

51
3 12

1.7 IPF in a spreadsheet

R is an unfamiliar programme to many, so before we move on to producing an R script that
can calculate weights, we will carry out an intermediary step in a spreadsheet programme.4 For
small examples like the one we are using, a spreadsheet has the two main advantages that: it is
already familiar to many so can act as a bridge to calculating IPF using a computer; and it is
easier to see and recall more than one table in a spreadsheet compared to R with R Studio.

Open sms-spreadsheet-exercise.xlxs if you are using Microsoft Excel or sms-spreadsheet-exercise.odt
(note the different file types) if you are using LibreOffice/OpenOffice Calc and follow the tasks
outlined in the file. The steps are exactly the same as the pen and paper example above to allow
you to more easily check your answers; to help with the transition of performing the calculations
of IPF in a computer programme; and to aid recall of the procedure through repetition.

2 IPF in R

So far we have implemented IPF by hand and in a spreadsheet. This section explains how the
IPF algorithm described above is implemented in R, using the same input data. Now we will
be working within the RStudio environment with the ‘smsim-course’ project loaded and the
‘simple.R’ file open in the top left panel (Fig. 3).

3This can be checked by comparing the aggregated weighted individuals with the small area constraints. Total
absolute error (TAE), defined as the sum of all differences between simulated and observed marginal totals,
improves between m(1) to m(2), falling from 14 to 6 in Table 2 and Table 6 above. TAE for m(3) (not shown,
but calculated by aggregating w(3)) improves even more, to 1.3. This number would eventually converge to 0
through subsequent iterations, a defining feature of IPF.

4This example was produced by Phil Mike Jones — see philmikejones.net.

http://www.philmikejones.net/


8

Figure 3: The RStudio user interface with the ‘simple.R’ file loaded in the top left window and
some output displayed in the bottom left window.

Note a couple of things from this figure: there are many explanations of the code and these are
commented out by the # (’hash’) symbol. Also not in the bottom left panel R displays the output
of the commands we send it from the script. Hitting the Ctrl and Enter keys simultaneously
from within the upper (script) window will cause R to run these commands, line by line. In the
code blocks below, any outputs from R are preceded by ‘##’. Comparing these outputs with the
output on your screen will ensure that R is behaving as it should.

We will spend the rest of this section working through the commands contained in this file.5

The code snippets are taken from the ‘simple.R’ script file (just a plain text document, like all
R scripts) so you can copy and paste. However, it is highly recommended to not look at this file
until you need to, towards the end of this section. This is learning by typing, as advocated by
Shaw (2013).

2.1 Loading and exploring the input data

The data presented in the above worked example are saved in the ‘simple’ sub-folder of ‘data’
as .csv files. To load them in R, we use the following commands:

Listing 1: Loading the input data in R

ind <- read.csv("data/simple/ind.csv") # load the individual level data

cons <- read.csv("data/simple/cons.csv") # load aggregate constraints

To check that the data frames have loaded correctly, simply ask R to print their contents by
entering the object’s name. To display the individual level data, for example, simply type
ind:6

5A longer tutorial is available from Rpubs, a site dedicated to publishing R analyses that are reproducible:
rpubs.com/RobinLovelace/5089.

6An alternative solution is to click the object’s name in ‘Environment’ in RStudio’s top right window.

http://rpubs.com/RobinLovelace/5089
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Listing 2: Checking the contents of the individual level data frame

ind # Show the data frame in R

## id age sex

## 1 59 m

## 2 54 m

## 3 35 m

## 4 73 f

## 5 49 f

Note that the input data is identical to the tables illustrated above for consistency. Instead of
constraining for just one zone as we did in the example above, we will fit the data to six zones
here. To subset a dataset, add square brackets to the end of the object’s name in R. Entering
cons[1:2,] , for example, should output the first two rows of the constraint variable. Within
the square brackets the number before the comma refers to rows (blank means all rows) and
the numbers after the comma refer to columns. If the output of this command looks like the
text below, congratulations are in order: you have successfully loaded a subset of the constraint
dataset.

Listing 3: Printing a subset of the constraint data in R

cons [1:2, ]

## X16.49 X50. m f

## 1 8 4 6 6

## 2 2 8 4 6

Note that the top row is identical to Table 3 — we can therefore compare the results of doing
IPF on the computer with the results obtained by hand.

Using the subset command just introduced, we must now subset the constraint (cons) data
frame so we can access each constraint (age or sex) separately. Using your knowledge of the
subsetting command, we select columns 1 to 2, and 3 to 4 leaving all rows in place. Give these
subsets (constraints) the name con1 and con2 respectively:

Listing 4: Subsetting the constraint file

con1 <- cons[ ,1:2]

con2 <- cons[ ,3:4]

To make the individual level dataset comparable to the aggregate level we must first categorise it
and count the number in each category. This job is performed by the R script categorise.R, con-
tained in the ‘simple’ data folder. Run it by entering source("data/simple/categorise.R")).7

This results in the creation of a new object called ind.cat in R, which is a matrix of 0s and 1s
with same number of columns as the constraint data — try exploring ind.cat using the square
bracket notation mentioned above.

To check that the script has worked properly, lets count the number of individuals it con-
tains:

The sum of both age and sex variables is 5 (the total number of individuals): it worked! Now the
data is in the same form as the constraint variables and we have checked the data makes sense, we
can create the ‘weight’ matrix and begin reweighting the individuals to zones (listing 6).

7Note that the ‘categories.R’ script must be modified each time it is used with a different dataset.
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Listing 5: Output from ind.cat

colSums(ind.cat)

## a16.49 a50. m f

## 2 3 3 2

Listing 6: Creating the weight and aggregated individual level matrices — see lines 21 and 22
in ‘simple.R’

weights <- array(1, dim=c(nrow(ind),nrow(cons )))

ind.agg <- matrix(rep(colSums(ind.cat), nrow(cons)), nrow(cons) )

The code in listing 6 may not make total sense. Do not worry about this for now, you can
always check what is going on later by checking R’s documentation (e.g. try entering ?rep) or
by pressing the tab key when entering arguments for R commands in RStudio. For the time
being, it is best to press-on with the example and understand the concepts — the details can
be looked at later.

2.2 Reweighting by the age constraint

With all of these objects in place, we are ready to begin allocating new weights to the individuals
via IPF. Below is written in code the IPF formula presented in Section 1.4. It begins with a
couple of for loops, one to iterate through each zone (hence the 1:nrow(cons) argument, which
means “from 1 to the number of zones in the constraint data”) and one to iterate through each
category within constraint 1 (under 50 and over 50 in this case). Before running this code,
ensure that all previous commands in the ‘simple.R’ script have been performed.

Listing 7: Calculating new weights for the individuals based on constraint 1 (age) via IPF —
see line 30 and beyond in ‘simple.R’

for (j in 1:nrow(cons )){

for(i in 1:ncol(con1 )){

weights[which(ind.cat[,i] == 1),j] <- con1[j,i] / ind.agg[j,i]}}

The above code updates the weight matrix by dividing the census constraint (con1) by the
aggregated version of the individual level data, just as in Section 1.4 above. Further explanation
is provided in Section 3.2: for now let’s push on to the next block of code, which updates the
aggregated data (named ind.agg in R) based on the the new weights.

2.3 Re-aggregation

The above line of code multiply the new weights by the flat version of the individual-level data,
one zone (i) at a time. This is equivalent to the re-aggregation stage described in Section 1.5
and the result can be checked by printing the first row of our new ind.agg object:

To recap, we have updated ‘ind.agg’ with new values that are constrained by the age variable.
This seems to improve the fit between the census and individual-level data as the marginal
totals for age are now equal to the aggregate values for age of zone 1. This is further verified in
the ‘simple.R’ script file with a line of code that calculates the Total Absolute Error after each
iteration — sum(abs(ind.agg- cons)) . Check that the error decreases with each iteration (see
Section 3.4 for more on model checking and validation).
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Listing 8: Re-aggregation of the individual level data based on the new weights (see lines 35 and
36 in ‘simple.R’)

for (i in 1:nrow(cons )){ # convert con1 weights back into aggregates

ind.agg[i,] <- colSums(ind.cat * weights[,i])}

Listing 9: The new aggregate (marginal) totals for each category after weights have been con-
strained by age. Compare with Table 6 above.

ind.agg[1, ]

## [1] 8.000000 4.000000 6.666667 5.333333

Continue to enter the code contained in ‘simple.R’ line by line to constrain by the second
constraint, sex. Notice that we have done in code what was previously done by hand and in a
spreadsheet. Depending on which method you feel most comfortable with, it is worth spending
time repeating the previous steps to ensure they make sense.

The other advantage of running the same process 3 times in 3 different ways is that we can
cross-compare the results from each. Compare the following listing with Eq. (6), for example:
are the weights the same?

Listing 10: W(3) after constraining by age and sex in R. Compare with Eq. (6)

weights3 [,1] # check the weights allocated for zone 1

## [1] 1.2 1.2 3.6 1.5 4.5

2.4 Iterations

In the above example, we have seen the ‘bare bones’ of spatial microsimulation using IPF to
generate weights from which sample populations can be created. To perform multiple iterations
of the same model, we have prepared a slightly more complex script than ‘simple.R’ called
‘simple-iterations.R’ that can also be found in the project’s root directory. We set the number
of iterations manually (just change the value of num.its). This happens by calling another script
called ‘e2.R’ which runs the re-weighting process repeatedly, once for each iteration. Notice that
only 2 full iterations, the perfect solution is reached (r = 1).

There is great scope for taking the analysis further: some further tests and plots are pre-
sented on the on-line versions of this section. The simplest case is contained in Rpubs docu-
ment rpubs.com/RobinLovelace/6193 and a more complex case (with three constraints) can be
found in Rpubs document 5089. For now, however, we progress to a more complex example,
CakeMap.

3 CakeMap: A worked example

In this section we will process real data to arrive at an important result: an estimate of the
amount of cake eaten in different wards in West Yorkshire. The example is deliberately rather
absurd: hopefully this will make the technique more memorable. An attempt has been made
to present the method in a generalisable was as possible, allowing users to apply the technique
described here to their own data.

The code needed to run the main part of the example is contained within ‘cMap.R’. Note
that this script makes frequent reference to files contained in the ‘cakeMap’ folder ‘data’.

http://rpubs.com/RobinLovelace/6193
http://rpubs.com/RobinLovelace/5089
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Figure 4: The raw input data for the CakeMap model, downloaded from the InFuse website.

read.csv("data/cakeMap/ind.csv"), for example, is used to read the individual level data
into R.

Because this example uses real world data (albeit in anonymised form), we will see how important
the process of ‘data cleaning’ is. Rarely are datasets downloaded in exactly the right form for
them to be pumped directly into a spatial microsimulation model. For that reason we describe
the process of loading and preparing the input data first: similar steps will be needed to use
your own data as an input into a spatial microsimulation model.

3.1 Loading and preparing the input data

The raw constraint variables for CakeMap were downloaded from the Infuse website (infuse.mimas.ac.uk/).
These, logically enough, are stored in the ‘cakeMap/data/’ directory as .csv files and contain
the word ‘raw’ so it is clear which files contain the raw data. The file ‘age-sex-raw.csv’, for
example is the raw age and sex data that was downloaded. As the screenshot in Fig. 4 shows,
these datasets need to be processed before they can used as an input in our model. ‘con1.csv’
stands for ‘constraint 1’ and represents this age/sex data after it has been processed.

To ensure reproducibility in the process of converting the raw data into this ‘spatial microsim-
ulation ready’ dataset, all of the steps used to clean and rearrange the data have been saved.
Take a look at the R script file ‘process-age.R’ — these are the kinds of steps that the researcher
will need to undertake before performing a spatial microsimulation model. Here is not the place
to delve into the details of data reformatting; there are resources dedicated to that (Wickham,
2014; Kabacoff, 2011). However, it is worth taking a look at the ‘process-age.R’ script and the
other ‘process*’ files to see how R can be used to quickly process complex raw data into a form
that is ready for use in spatial microsimulation.

The input data generated through this process of data preparation are named ‘con1.csv’ to
‘con3.csv’. For simplicity, all these were merged into a single dataset called ‘cons.csv’. All the
input data for this section are loaded with the following commands:

Listing 11: Loading the input data for CakeMap (see ‘cMap.R’)

ind <- read.csv("data/cakeMap/ind.csv")

cons <- read.csv("data/cakeMap/cons.csv")

Take a look at these input data using the techniques learned in the previous section. To test
your understanding, try to answer the following questions: what are the constraint variables?
How many individuals are in the survey microdataset? How many zones will we generate spatial
microdata for?

http://infuse.mimas.ac.uk/
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For bonus points that will test your R skills as well as your practical knowledge of spatial mi-
crosimulation, try constructing queries in R that will automatically answer these questions.

It is vital to understand the input datasets before trying to model them, so take some time
exploring the input. Only when satisfied with your understanding of the datasets (a pen and
paper can help here, as well as R!) is it time to move on to generate the spatial microdata using
IPF.

3.2 Performing IPF on the CakeMap data

The R script used to perform IPF on the CakeMap data is almost identical to that used to
perform the process on the simple example in the previous section. The main difference is that
there are more constraints (3 not 2) but otherwise the code is very similar. Confirm this for
yourself: it will be instructive to compare the ‘simple.R’ and ‘cMap.R’ script files. Note that
the former works on a tiny example of 5 input individuals whereas the latter calculates weights
for 916 individuals. The code is generalisable, meaning that the IPF process would still work
given slightly different inputs. The script would still work if more individuals or zones were
added although the code will need to be adjusted to accept differenct constraints. To ensure the
process works with different constraints, the file ‘categorise.R’ must also be.

Note that ‘cMap.R’ contains 100 lines — longer than the ‘simple.R’ file. The additional length
is due to the third constraint, additional iterations (see line 66 onwards) and some preliminary
analysis. The best way to understand what is happening in this script is simply to read through
it and run chunks of it in R (remember the Ctl-Enter command) to see what happens. Try to
‘think like a computer’ and imagine what each line of code is doing. This is inevitably difficult
at first so it is recommended that users add more comments to lines that cause confusion to
help remember what is going on. To help this process, the meaning of some of the trickier and
more important lines is explained below. One potentially confusing area is the representation
of the weights object, used to store the weights after each constraint. To understand what is
happening try entering this code into R and seeing what happens:

Listing 12: Creating the initial weight matrix — see lines 28 to 30 in cMap.R

# create weights in 3D matrix (individuals , areas , iteration)

weights <- array(dim=c(nrow(ind),nrow(cons),num.cons +1))

weights[,,num.cons +1][] <- 1 # sets initial weights to 1

ini.ws <- weights[,,num.cons +1]

In the above code, weights is created by the array command, which in fact creates many 2
dimensional matrices in a ‘data cube’. This is different from the weight object used in the
‘simple.R’ script, which had only 2 dimensions.

If this is confusing, just remember that the ‘square’ weight matrix — where each column rep-
resents a zone and each row represents an individual — can be returned to by specifying the
third dimension. Dimensions in R are specified by the square brackets, so the initial weights can
be called by typing weights[,,4]. This should result in hundreds of 1s, the initial weights.
To print a more manageable-sized output, remember how to subset the other dimensions:
weights[1:3,1:5,4], for example, will print the first 3 rows (individuals) and first 5 columns of
the 4th matrix. Why do we do it like this? So that we only need one weights object to remember
all the previous weights so we can go back and check whether the model fit is improving from
one constraint and one iteration to the next.

Now, when the new weights are set after iteration 1, they are saved as follows, within a nested
for loop that iterates over all zones (j) and constraint categories (i):

https://github.com/Robinlovelace/smsim-course/blob/master/cMap.R
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Listing 13: Saving the new weights after the first constraint of IPF — see line 43 in ‘cMap.R’

weights[which(ind.cat[,i] == 1),j,1] <- con1[j,i] /ind.agg[j,i ,1]}}

Note the heavy use of square brackets in listing 13. Let’s break down each element of the code
within these square ‘subsetting’ brackets:

• which(ind.cat[,i] == 1) is a subset of the rows in the weight matrix which correspond
to all individuals who belong to category i. (Remember, ind.cat is the ‘wide’ version of
the individual level data, containing 1s for all categories to which each individual belongs.)

• ,j,1] specify the column and constraint respectively. Because we are in a for loop, j simply
runs through all categories within the current constraint (age/sex). The 1 is selected
because this is the first set of re-weighting (this is analogous to say w(2) — the first new
weight — in the IPF equations in the previous section).

• Finally, con1[j,i] /ind.agg[j,i,1] is R’s implementation of Eq. (2): we divide the
desired census values by the current simulated totals for each category based on the indi-
vidual’s current weight.

This explanation should help understand what is going on in other parts of the script file also
— for example try printing subsets of the weights object after running constraint 1, 2 and then
3 to see how the weights change.

3.3 Integerisation

Integerisation increases the utility of results generated by IPF, such as the weights produced
in the cakeMap example. Many of the most useful things we can do with individual-level data
can only be done with whole individuals. The weight matrices we have generated, however,
are fractional weights, which could imply, for example that 0.437 of an individual resides in a
zone. From the perspective of an agent based (but not aggregated level) model, this is clearly
absurd.

Here is not the place to delve into the various methods available for integerisation — see (Lovelace
and Ballas, 2013) for detail on the problem. Suffice to say that of the two broad approaches avail-
able, deterministic and probabilistic, the latter is found to generate more accurate results.

Two scripts to integerise the final weights (referred to as fw in the code) of the cakeMap model are
provided: ‘pp-integerise.R’ and ‘TRS-integerise.R’, which stand for ‘proportional probabilities’
and ‘truncate, replicate, sampe’. These reside in the ‘data/cakeMap’ folder. We will not describe
the theory underlying the method here (see Lovelace and Ballas, 2013 for more). Instead, we
will describe a few of the functions contained in these scripts that are the keys to understand
how they work. Both scripts begin by creating a series of objects that are used during the
integerisation process and to save the results listing 14.

Listing 14: The new objects that are created in at the beginning of the integerisation scrips (see
lines 7 to 8 in ‘pp-integerise.R’ and ‘TRS-integeris.R’).

intall <- ints <- as.list (1: nrow(cons))

intagg <- cons * 0

In the first line of listing 14, two identical objects are created (note the double use of the <-

object assignment symbol). These are set objects in the list class, allowing each element to be
allocated as any other object. This differs from the stricter ‘data.frame’ and ‘matrix’ or ‘array’
objects we have been using so far. Subsequently in the script, individual elements are referred
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to using double square brackets. For example, see ints[[i]] <- on line 15 of ‘pp-integerise.R’.
Using list elements provides flexibility: we can set any list object to be anything we like without
worrying about constraints imposed by its class or dimensions.

The key function in the proportional probabilities script is sample, used in a for loop over all
areas (listing 15).

Listing 15: The sample function, key to R’s implementation of the proportional probabilities
integerisation algorithm (see lines 15 and 16 of ‘pp-integerise.R’).

ints[[i]] <- sample(which(fw[,i] > 0), size = sum(con1[i,]),

prob=fw[,i], replace = T)

The sample function in listing 15 contains four arguments, and the meaning of each is described
below:

• The first item (which(fw[,i] > 0)) provides the vector of numbers or characters from
which the sample will be drawn. In this case we are referring to the weights of all individuals
for zone i (all weights should be above 0).

• The size argument tells R how many items from the object should be selected. In this case
it is simple: the total population of zone i.

• The cleverest thing about R’s sampling function is that it allows probabilities of being
selected to be assigned to each element. Here we are setting the probability of selection as
proportional to the final weight. (Clearly the probability of selection can never be greater
than 1, as is the case with many weights; R automatically normalises the values.)

• The final argument tells R that we want to allow repeat sampling: the same individual can
be selected more than once. This makes sense in a dataset where wheights can get very
large: an individual with a weight of 10.4, for example, should ideally be selected between
10 and 11 times.

Note that ‘trs-integerise.R’ also uses the sample function, in this case to ‘top up’ individuals
already selected from the ‘truncate, replicate’ stages of the ‘truncate, replicate, sample’ method
(Lovelace and Ballas, 2013). For more information on implementing TRS in R, refer to this
paper and the paper’s detailed supplementary information, which provides reproducible results
to suggest using TRS for accuracy. (As an aside, the accuracy of each integerisation algorithm
was tested on the cakeMap data — showing TRS to yield better results for this application. The
results can be reproduced by running the ‘integerisation-test.R’ script, located in the ‘vignettes’
folder.)

The most useful result of these integerisation algorithms is the object intall. This is list of
data frames containing, each containing a population equal to the population of its respective
zone. Each has the same variables as are present in the original survey dataset. Make this object
easier to analyse, a series of commands is provided (but commented out) at the end of the script
to convert the list into a more manageable data.frame object. Try entering nrow(intall.df)

after running this code (remove the comments first!) We have cloned hundreds of thousands of
individuals. Clearly, all this data takes up more RAM on the computer, as can be seen by asking
object.size(intall.df). Try comparing this result with the size of the original survey dataset
‘ind’. From this point onwards, with the individual-level data in a straightforward dataframe
(with the zone number kept in the ‘zone’ column), the modelling and analysis applications should
be comparatively straightforward.

Next we move on to a vital consideration in spatial microsimulation models such as cakeMap:
validation.

http://eprints.whiterose.ac.uk/77037/7/lovelacesupplement-3.pdf
https://github.com/Robinlovelace/smsim-course/tree/master/vignettes
https://github.com/Robinlovelace/smsim-course/tree/master/vignettes
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3.4 Model checking and validation

To make an analogy with food safety standards, openness about mistakes is conducive to high
standards (Powell et al., 2011). Transparency in model verification is desirable for similar
reasons. The two main strategies are 1) comparing the model results with knowledge of how
it should perform a-priori (model checking) and 2) comparison between the model results and
empirical data (validation).

Within the two R scripts we have been using for reweighting the individual-level data so far (‘sim-
ple.R’ and ‘cMap.R’), there are already commands whose function is to check the results are as
expected. Returning to the former, note that on line 24 of ‘simple.R’, the fit between the sur-
vey data and census data is tested with sum(abs(ind.agg - cons)) # the total absolute

error. This, as the comment implies, calculates the total absolute error (TAE), which is a good
measure of the fit between two aggregate-level datasets and which is defined by the following
formula:

TAE =
∑
ij

|Uij − Tij | (7)

Standardised Total Error is a related measure: SAE = TAE/P where P is the total population
of the study area. Thus TAE is sensitive to the number of people within the model. SAE is not
— see more on model checking and tests of fin in Lovelace and Ballas (2013)

Note that TAE is calculated twice more in ‘simple.R’, after each additional constraint has been
applied. Work through the code slowly and check how TAE reduces after each constraint and
each iteration.

Beyond typos or simple conceptual errors in model code, more fundamental questions should
be asked of spatial microsimulation models. The validity of the assumptions on which they are
built, and the confidence one should have in the results are important. For this we need external
datasets. Validation is therefore a tricky topic — see Edwards and Clarke (2009) for more on
this and Section 3.6 for (an albeit unreliable) comparison between estimated cake consumption
and external income estimates.

3.5 Visualising the results

Visualisation is an important part of communicating quantitative data, especially so when the
datasets are large and complex so not conducive to description with tables or words.

Because we have generated spatial data, it is useful to create a map of the results, to see how
it varies from place to place. The code used to do this found in ‘cMapPlot.R’. A vital function
within this script is ‘merge’, which is used to add the simulated cake data to the geographic
data frame:8

Listing 16: The merge function for joining the spatial microsimulation results with geographic
data. Compare with Eq. (6)

merge(wardsF , wards@data , by = "id")

The above line of code by default selects all the data contained in the first object (‘wardsF’)
and adds to it new variables from the second object based on the linking variable (in this case
“id”). Also in that script file you will encounter the function fortify, the purpose of which is to

8‘join’ is an alternative to merge from the ‘plyr’ package also used in the ‘cMapPlot.R’ script that performs
the same task. Assuming ‘plyr’ is loaded — ‘library(plyr)’ you can read more about join by entering ‘?join’ in R.
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convert the spatial data object into a data frame. More on this process is described in Lovelace
and Cheshire (2014). The final map result of ‘cakeMapPlot.R’ is illustrated Fig. 5.

Figure 5: Choropleth map of the spatial distribution of average frequency of cake consumption
in West Yorkshire, based on simulated data.

3.6 Analysis

Once a spatial microdataset has been generated that we are happy with, we will probably want
to analyse it further. This means exploring it — its main features, variability and links with
other datasets. To illustrate this process we will load an additional dataset and compare it with
the estimates of cake consumption per person generated in the previous section at the ward
level.

The hypothesis we would like to test is that cake consumption is linked to deprivation: More
deprived people will eat unheathily and cake is a relatively cheap ‘comfort food’. Assuming
our simulated data is correct — a questionable assumption but lets roll with it for now — we
can explore this at the ward level thanks to a dataset on modelled income from neighbourhood
statistics.

Because the income dataset was produced for old ward boundaries (they were slightly modified
for the 2011 census), we cannot merge with the spatial dataset based on the new zone codes.
Instead we rely on the name of the wards. The code below provides a snapshot of these names
and demonstrates how they can be joined using the ‘join’ function.

Listing 17: The merge function for joining the spatial microsimulation results with geographic
data. Compare with Eq. (6)

wards@data <- join(wards@data , imd)

summary(imd$NAME %in% wards$NAME)

## Mode FALSE TRUE NA’s

## logical 55 71 0

The above code first joins the two datasets together and then checks the result by seeing how
many matches names there are. In practice the fit between old names and new names is quite

http://www.neighbourhood.statistics.gov.uk/dissemination/instanceSelection.do?JSAllowed=true&Function=&%24ph=61&CurrentPageId=61&step=2&datasetFamilyId=266&instanceSelection=121427&Next.x=22&Next.y=13&nsjs=true&nsck=false&nssvg=false&nswid=1920
http://www.neighbourhood.statistics.gov.uk/dissemination/instanceSelection.do?JSAllowed=true&Function=&%24ph=61&CurrentPageId=61&step=2&datasetFamilyId=266&instanceSelection=121427&Next.x=22&Next.y=13&nsjs=true&nsck=false&nssvg=false&nswid=1920
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Figure 6: Relationship between modelled average ward income and simulated number of cakes
eaten per person per week.

Figure 7: Relationship between social class and cake consumption in the individual level data.

poor: only 71 out of 124. In a proper analysis we would have to solve this problem (e.g. via
the command pmatch which stands for partial match). For the purposes of this exercise we will
simply plot income against simulated cake consumption to gain a feeling what it tells us about
the relationship between cake consumption and wealth (Fig. 6).

The question raised by this finding is: why? Not why is cake consumption higher in wealthy
areas (this has not been established) but: why has the model resulted in this correlation? To
explore this question we need to go back and look at the individual level data. The most
relevant constraint variable for income was class. When we look at the relationship between
social class and cake consumption in the Dental Health Survey, we find that there is indeed a
link: individuals in the highest three classes (1.1, 1.2, 2) have an average cake intake of 3.9 cakes
per week whereas the three lowest classes have an average intake of 3.7. This is a relatively
modest difference but, when averaging over large areas, it helps explain the result. The class
dependence of cake consumption in the Dental Health Survey is illustrated in Fig. 7.

4 Discussion

What have we learned during the course of this practical tutorial? Given that it’s geared
towards beginners, from one perspective one could say ‘not a lot’ relative to the many potential
applications. The emphasis on understanding of the basics was deliberate: it is only on strong
foundations that large and long-lived buildings can be constructed and the same applies to
geographical research.
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The focus on foundations is also due to the nature of spatial microsimulation research: few people
are actively involved in applied work, let alone the development of new software and methods.
Specialist skills and understanding are needed to join this research area yet the barriers to entry
are high. A central outcome of this course has been to provide an accessible ‘way in’ to this
exciting research area. Specifically, we have learned how to:

• Perform iterative proportional fitting, one of the commonly used techniques for spatial
microsimulation, by hand, in a spreadsheet and in R.

• Iterate the process any number of times using pre-made R code.

• Use simple queries and visuals to check the process has worked as expected.

• Process the spatial microdata to create estimates of target variables and join this with
output with geographics zones.

• Map the result and begin to look for explanation in the dataset.

An important lesson from the cakeMap example is that spatial microsimulation can be used
in careless and misleading ways. The method is powerful, but it has dangers and limitations
that must be ackowledged. Many articles on spatial microsimulation omit technical details of
the method, let alone code that would allow the findings to be reproduced. Great care must be
taken not to mislead.

Returning to cakeMap, we have not demonstrated cake consumption to be higher in wealthy
areas of Leeds. We have done nothing of the sort! We have created spatial microdata for Leeds
based on 3 constraint variables. This spatial microdataset is not ‘real’. We can have a high level
of confidence that the individual attributes constrained by census data are roughly representa-
tive of the region. Yet the interrelationship between these constraint variables (e.g. the cross
tabulation between age and car ownership) will tend towards the average contained within the
survey microdataset and is likely to mask regional variability. In an ward where the proportion
of young drivers is very high, for example, our model result is likely to provide underestimates
of the numbers of young people owning cars.

The estimates generated for the target variable — cake consumption — are likely to be far from
reality. They reflect the relationship between cake consumption and a selection of constraint
variables at the national level. Do we have good evidence to suggest that age/sex, socio-economic
class and household car ownership are good proxies of cake consumption across different parts of
the country? No. So we should treat the results as what they are: an amusing example of what
you can do with spatial microsimulation, not a reliable description of the real world. To validate
this example we would need to conduct some kind of randomised survey in the target wards to
identify whether cake consumption really does vary in the ways described by the model. Most
likely we would find that it does not.

This brings us nicely on to the final point of discussion: how you use spatial microsimulation in
your own research. This of course is up to you, but during the process of this course we hope
that you have picked up some ideas about best practice in the field. These include:

• Ensure, to the extent possible, reproducibility in your method and findings. This
includes, at a minimum, clear description of the input data, explanation of the method used
and the software needed. As illustrated with the cakeMap example, it is now relatively
easy to ensure complete reproducibility even in complex analyses. This will not always
be possible due to confidentiality of input data. However, the creation of an example
dataset and provision of code should always be possible. This is highly recommended as
it will greatly help others reproduce your findings (improving the scientific credibility of
your research), provide a learning opportunity for yourself and others and increase the
probability of other academics citing your work.

• Use spatial microsimulation only when it is the most appropriate tool for the job. This



20

means that if there are alternatives such as geographically weighted regression analysis or
analysis of large secondary datasets, these should be considered beforehand. Generating
an entirely new individual-level dataset is not to be taken lightly and risks distracting
from more grounded research. Thus it should be seen as an addition to rather than a
replacement for more established methods.

• When spatial microsimulation is used, be transparent about its underlying assump-
tions and limitations. Simply forgetting to include the word ‘simulated’ in the caption
of Fig. 5, for example, could lead the reader to believe it is actual cake consumption that
is being described. In the case of a cakeMap this may not matter but in areas of public
health and the environment the consequences of such oversight could be deadly.

Underlying each of these points is a wider responsibility: to communicate one’s research with
clarity and transparency. Too much modelling research is shrouded in a cloud of jargon, unstated
assumptions and verbose English. If nothing else, this tutorial should provide guidance on how
to improve standards in the field and move towards best practice for reproducibility (Peng et al.,
2006).

Spatial microsimulation is a powerful tool. Like any powertool, it can acheive very useful results
for its user but can also cause great harm if used incorrectly. Think of a pneumatic drill: this
could be used to build new public infrastructure such as bicycle paths. It could also, in clumsy
hands, be used to destroy existing infrastructure. The same applies to spatial microsimulation:
at best it can greatly help out with complex research questions such as the distributional impacts
of new transport policies (Lovelace et al., 2014). At worst, it can waste valuable research
time, create misleading results and shroud academic research behind an impenetrable wall of
jargon.

We have little doubt that the vast majority of people will prefer the former option. This course
has hopefully equipped its students with the tools to pursue this lofty aim.

5 Glossary

• Algorithm: a series of computer commands which are executed in a well defined order.
Algorithms process input data and produce an output.

• Combinatorial optimisation is an approach to spatial microsimulation that generates
spatial microdata by randomly selecting individuals from a survey dataset and measuring
the fit between the simulated output and the constraint variables. If the fit improves after
any particular change, the change is kept. Williamson (2007) provides a practical user
manual for implementing the technique in code.

• Data frame: a type of object (formally referred to as a class) in R, data frames are square
tables composed of rows and columns of information. As with many things in R, the best
way to understand data frames is to create them and experiment. The following creates a
data frame with two variables: name and height:

data.frame(name = c("Robin", "Phil"), height.cm = c(172, 174))

Note that each new variable is entered using the command c()— this is how R creates
objects with the vector data class, a one dimensional matrix — and that text data must
be entered in quote marks.

• Deterministic reweighting is an approach to generating spatial microdata that allocates
fractional weights to individuals based on how representative they are of the target area. It
differs from combinatorial optimisation approaches in that it requires no random numbers.
The most frequently used method of deterministic reweighting is IPF.
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• For loops are instructions that tell the computer to run a certain set of command repeat-
edly. for(i in 1:9) print(i), for example will print the value of i 9 times. The best
way to further understand for loops is to try them out.

• Iteration: one instance of a process that is repeated many times until a predefined end
point, often within an algorithm.

• Iterative proportional fitting (IPF): an iterative process implemented in mathematics
and algorithms to find the maximum likelihood of cells that are constrained by multiple
sets of marginal totals. To make this abstract definition even more confusing, there are
multiple terms which refer to the process, including ‘biproportional fitting’ and ‘matrix
raking’. In plain English, IPF in the context of spatial microsimulation can be defined as a
statistical technique for allocating weights to individuals depending on how representative
they are of different zones. IPF is a type of deterministic reweighting, meaning that
random numbers are not needed to generate the result and that the output weights are
real (not integer) numbers.
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