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Part I: Introduction

This tutorial is an introduction to spatial data in R and map making with R’s ‘base’ graphics and the popular
graphics package ggplot2. It assumes no prior knowledge of spatial data analysis but prior understanding of the
R command line would be beneficial. For people new to R, we recommend working through an ‘Introduction to
R’ type tutorial, such as “A (very) short introduction to R” (Torfs and Brauer, 2012) or the more geographically
inclined “Short introduction to R” (Harris, 2012).

Building on such background material, the following set of exercises is concerned with specific functions for spatial
data and visualisation. It is divided into five parts:

• Introduction, which provides a guide to R’s syntax and preparing for the tutorial

• Spatial data in R, which describes basic spatial functions in R

• Manipulating spatial data, which includes changing projection, clipping and spatial joins

• Map making with ggplot2, a recent graphics package for producing beautiful maps quickly

• Taking spatial analysis in R further, a compilation of resources for furthering your skills

An up-to-date version of this tutorial is maintained at https://github.com/Robinlovelace/Creating-maps-in-R and
the entire tutorial, including the input data can be downloaded as a zip file, as described below. The entire tutorial
was written in RMarkdown, which allows R code to run as the document compiles. Thus all the examples are
entirely reproducible.

Suggested improvements welcome - please fork, improve and push this document to its original home to ensure its
longevity. The tutorial was developed for a series of Short Courses put on by the National Centre for Research
Methods (NCRM), via the TALISMAN node (see geotalisman.org).

Typographic conventions and getting help

To ensure reproducibility and allow automatic syntax highlighting, this document has been written in RMarkdown.
We try to follow best practice in terms of style, roughly following Google’s style guide and an in-depth guide written
by Johnson (2013). It is a good idea to get into the habit of consistent and clear writing in any language, and R is
no exception. Adding comments to your code is also good practice, so you remember at a later date what you’ve
done, aiding the learning process. There are two main ways of commenting code using the # symbol: above a line
of code or directly following it, as illustrated in the block of code presented below, which should create figure 1 if
typed correctly into the R command line.

# Generate data

x <- 1:400

y <- sin(x/10) * exp(x * -0.01)

plot(x, y) # plot the result

In the above code we first created a new object that we have called x. Any name could have been used, like xBumkin,
but x works just fine here, although it is good practice to give your objects meaningful names. Note the use of the
<- “arrow” symbol, which tells R to create a new object. We will be using this symbol a lot in the tutorial (tip:
typing Alt - on the keyboard will create it in RStudio.). Each time it is used, a new object is created (or an old
one is overwritten) with a name of your choosing.

To distinguish between prose and code, please be aware of the following typographic conventions: R code (e.g.
plot(x, y)) is written in a monospace font while prose is not. Blocks of code such as:

c(1:3, 5)^2

http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
http://www.social-statistics.org/wp-content/uploads/2012/12/intro_to_R1.pdf
https://github.com/Robinlovelace/Creating-maps-in-R/blob/master/intro-spatial-rl.pdf
https://github.com/Robinlovelace/Creating-maps-in-R/archive/master.zip
https://help.github.com/articles/fork-a-repo
http://www.geotalisman.org/
http://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf
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Figure 1: Basic plot of x and y

## [1] 1 4 9 25

are compiled in-line: the ## indicates this is output from R. Some of the output from the code below is quite long
so we only show the output that is useful - it should also be clear when we have decided to omit an image from this
document to save space. All images in this document are small and low-quality to save space; they should display
better on your computer screen and can be saved at any resolution. The code presented here is not the only way to
do things: we encourage you to play with it and try things out to gain a deeper understanding of R. Don’t worry,
you cannot ‘break’ anything using R and all the input data can be re-loaded if things do go wrong.

If you require help on any function, use the help function, e.g. help(plot). Because R users love being concise,
this can also be written as ?plot. Feel free to use it at any point you’d like more detail on a specific function
(although R’s help files are famously cryptic for the un-initiated). Help on more general terms can be found using
the ?? symbol. To test this, try typing ??regression. For the most part, learning by doing is a good motto, so
let’s crack on and download some packages and then some data.

Prerequisites and packages

For this tutorial you need to install R, if you haven’t already done so, the latest version of which can be downloaded
from http://cran.r-project.org/. A number of R editors such as RStudio can be used to make R more user friendly,
but these are not needed to complete the tutorial.

R has a huge and growing number of spatial data packages. We recommend taking a quick browse on R’s main
website: http://cran.r-project.org/web/views/Spatial.html.

The packages we will be using are ggplot2, rgdal, rgeos, maptools and ggmap. To test whether a package is
installed, ggplot2 for example, enter library(ggplot2). If you get an error message, it needs to be installed:
install.packages("ggplot2"). These will be downloaded from CRAN (the Comprehensive R Archive Network);
if you are prompted to select a ‘mirror’, select one that is close to your home. If there is no output from R, this is
good news: it means that the library has already been installed on your computer. Install these packages now.

http://cran.r-project.org/
http://www.rstudio.com/
http://cran.r-project.org/web/views/Spatial.html
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Part II: Spatial data in R

Starting the tutorial

Now that we have taken a look at R’s syntax and installed the necessary packages, we can start looking at some real
spatial data. This second part introduces some spatial datasets that we will download from the internet. Plotting
these datasets and interrogating the attribute data form the foundation of spatial data analysis in R, so we will
focus on these elements in the next two parts of the tutorial, before focussing on creating attractive maps in Part
IV.

Downloading the data

Download the data for this tutorial now from : https://github.com/Robinlovelace/Creating-maps-in-R. Click on
the “Download ZIP” button on the right hand side and once it is downloaded unzip this to a new folder on your
PC. Use the setwd command to set the working directory to the folder where the data is saved. If your username is
“username” and you saved the files into a folder called “Creating-maps-in-R-master” on your Desktop, for example,
you would type the following:

setwd("C:/Users/username/Desktop/Creating-maps-in-R-master/")

If you are working in RStudio, you can create a project that will automatically set your working directory.To do
this click “Session” from the top toolbar and select “Set working directory > choose directory”.

It is also worth taking a look at the input data in your file browser before opening them in R, to get a feel for them.
You could try opening the file “london sport.shp”, within the “data” folder of the project, in a GIS program such as
QGIS (which can be freely downloaded from the internet), for example, to get a feel for it before loading it into R.
Also note that .shp files are composed of several files for each object: you should be able to open “london sport.dbf”
in a spreadsheet program such as LibreOffice Calc. Once you’ve understood something of this input data and where
it lives, it’s time to open it in R.

Loading the spatial data

One of the most important steps in handling spatial data with R is the ability to read in spatial data, such as
shapefiles (a common geographical file format). There are a number of ways to do this, the most commonly used
and versatile of which is readOGR. This function, from the rgdal package, automatically extracts information about
the projection and the attributes of data. rgdal is R’s interface to the “Geospatial Abstraction Library (GDAL)”
which is used by other open source GIS packages such as QGIS and enables R to handle a broader range of spatial
data formats. If you’ve not already installed and loaded the rgdal package (as described above for ggplot2) do so
now:

library(rgdal)

sport <- readOGR(dsn = "data", "london_sport")

## OGR data source with driver: ESRI Shapefile

## Source: "data", layer: "london_sport"

## with 33 features and 4 fields

## Feature type: wkbPolygon with 2 dimensions

In the code above dsn stands for “data source name” and is an argument of the function readOGR. Note that each
new argument is separated by a comma. The dsn argument in this case, specifies the directory in which the dataset
is stored. R functions have a default order of arguments, so dsn = does not actually need to be typed. If the data
were stored in the current working directory, one could use readOGR(".", "london sport"). For clarity, it is good
practice to include argument names, such as dsn when learning new functions.

https://github.com/Robinlovelace/Creating-maps-in-R
http://en.wikipedia.org/wiki/Shapefile
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The next argument is a character string. This is simply the name of the file required. There is no need to add a file
extension (e.g. .shp) in this case. The files beginning london sport from the example dataset contain the borough
population and the percentage of the population participating in sporting activities and was taken from the active
people survey. The boundary data is from the Ordnance Survey.

For information about how to load different types of spatial data, the help documentation for readOGR is a good
place to start. This can be accessed from within R by typing ?readOGR. For another worked example, in which a
GPS trace is loaded, please see Cheshire and Lovelace (2014).

Basic plotting

We have now created a new spatial object called “sport” from the “london sport” shapefile. Spatial objects are
made up of a number of different slots, mainly the attribute slot and the geometry slot. The attribute slot can be
thought of as an attribute table and the geometry slot is where the spatial object (and it’s attibutes) lie in space.
Lets now analyse the sport object with some basic commands:

head(sport@data, n = 2)

## ons_label name Partic_Per Pop_2001

## 0 00AF Bromley 21.7 295535

## 1 00BD Richmond upon Thames 26.6 172330

mean(sport$Partic_Per)

## [1] 20.05

Take a look at this output and notice the table format of the data and the column names. There are two important
symbols at work in the above block of code: the @ symbol in the first line of code is used to refer to the attribute slot
of the dataset; the $ symbol refers to a specific variable (column name) in the attribute slot of the dataset, which
was identified from the result of running the first line of code. If you are using RStudio, test out the autocompletion
functionality by hitting tab before completing the command - this can save you a lot of time in the long run.

The head function in the first line of the code above simply means “show the first few lines of data”, i.e. the head.
It’s default is to output the first 6 rows of the dataset (try simply head(sport@data)), but we can specify the
number of lines with n = 2 after the comma. The second line of the code above calculates the mean value of the
variable Partic Per (sports participation per 100 people) for each of the zones in the sport object. To explore the
sport object further, try typing nrow(sport) and record how many zones the dataset contains.You can also try
ncol(sport).

Now we have seen something of the attribute slot of the spatial dataset, let us look at sport’s geometry data, which
describes where the polygons are located in space:

plot(sport) # not shown in tutorial - try it on your computer

plot is one of the most useful functions in R, as it changes its behaviour depending on the input data (this is
called polymorphism by computer scientists). Inputing another dataset such as plot(sport@data) will generate an
entirely different type of plot. Thus R is intelligent at guessing what you want to do with the data you provide it
with.

R has powerful subsetting capabilities that can be accessed very concisely using square brackets, as shown in the
following example:

# select rows from attribute slot of sport object, where sports

# participation is less than 15.

sport@data[sport$Partic_Per < 15, ]

http://spatial.ly/wp-content/uploads/2013/12/spatialggplot.zip
http://data.london.gov.uk/datastore/package/active-people-survey-kpi-data-borough
http://data.london.gov.uk/datastore/package/active-people-survey-kpi-data-borough
http://www.ordnancesurvey.co.uk/oswebsite/opendata/
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## ons_label name Partic_Per Pop_2001

## 17 00AQ Harrow 14.8 206822

## 21 00BB Newham 13.1 243884

## 32 00AA City of London 9.1 7181

The above line of code asked R to select rows from the sport object, where sports participation is lower than 15, in
this case rows 17, 21 and 32, which are Harrow, Newham and the city centre respectively. The square brackets work
as follows: anything before the comma refers to the rows that will be selected, anything after the comma refers to
the number of columns that should be returned. For example if the dataset had 1000 columns and you were only
interested in the first two columns you could specify 1:2 after the comma. The “:” symbol simply means “to”,
i.e. columns 1 to 2. Try experimenting with the square brackets notation (e.g. guess the result of sport@data[1:2,
1:3] and test it): it will be useful.

So far we have been interrogating only the attribute slot (@data) of the sport object, but the square brackets can
also be used to subset spatial datasets, i.e. the geometry slot. Using the same logic as before try to plot a subset of
zones with high sports participation.

# plot zones from sports object where sports participation is greater than

# 25.

plot(sport[sport$Partic_Per > 25, ]) # output not shown in tutorial

This is useful, but it would be great to see these sporty areas in context. To do this, simply use the add = TRUE

argument after the initial plot. (add = T would also work, but we like to spell things out in this tutorial for clarity).
What does the col argument refer to in the below block - it should be obvious (see figure 2).

plot(sport)

plot(sport[sport$Partic_Per > 25, ], col = "blue", add = TRUE)

Figure 2: Preliminary plot of London with areas of high sports participation highlighted in blue

Congratulations! You have just interrogated and visualised a spatial dataset: what kind of places have high levels
of sports participation? The map tells us. Do not worry for now about the intricacies of how this was achieved:
you have learned vital basics of how R works as a language; we will cover this in more detail in subsequent sections.

While we are on the topic of loading data, it is worth pointing out that R can save and load data efficiently into
its own data format (.RData). Try save(sport, file = "sport.RData") and see what happens. If you type
rm(sport) (which removes the object) and then load("sport.RData") you should see how this works. sport will
disappear from the workspace and then reappear.
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Attribute data

All shapefiles have both attribute table and geometry data. These are automatically loaded with readOGR. The
loaded attribute data can be treated in a similar way to an R data frame.

R delibrately hides the geometry of spatial data unless you print the entire object (try typing print(sport)). Let’s
take a look at the headings of sport, using the following command: names(sport) Remember, the attribute data
contained in spatial objects are kept in a ‘slot’ that can be accessed using the @ symbol: sport@data. This is useful
if you do not wish to work with the spatial components of the data at all times.

Type summary(sport) to get some additional information about the sport data object. Spatial objects in R contain
much additional information:

summary(sport)

## Object of class SpatialPolygonsDataFrame

## Coordinates:

## min max

## x 503571.2 561941.1

## y 155850.8 200932.5

## Is projected: TRUE

## proj4string :

## [+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 ....]

The above output tells us that sport is a special spatial class, in this case a SpatialPolygonsDataFrame, meaning it
is composed of various polygons, each of which has attributes. This is the typical class of data found in administrative
zones. The coordinates tell us what the maximum and minimum x and y values are, for plotting. Finally, we are
told something of the coordinate reference system with the Is projected and proj4string lines. In this case, we
have a projected system, which means it is a cartesian reference system, relative to some point on the surface of
the Earth. We will cover reprojecting data in the next part of the tutorial.

Part III: Manipulating spatial data

It is all very well being able to load and interrogate spatial data in R, but to compete with modern GIS packages,
R must also be able to modify these spatial objects (see ‘using R as a GIS’). R has a wide range of very powerful
functions for this, many of which reside in additional packages alluded to in the introduction.

This course is introductory so only commonly required data manipulation tasks, reprojecting and joining/clipping
are covered here. We will first look at joining an aspatial dataset to our spatial object using an attribute join. We
will then cover spatial joins, whereby data is joined to other dataset based on spatial location.

Changing projection

First things first, before we start data manipulation we will check the reference system of our spatial datasets.
You may have noticed the word proj4string in the summary of the sport object above. This represents the
coordinate reference system used in the data. In this file it has been incorrectly specified so we must change it with
the following:

proj4string(sport) <- CRS("+init=epsg:27700")

## Warning: A new CRS was assigned to an object with an existing CRS:

## +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +units=m +no_defs

## without reprojecting.

## For reprojection, use function spTransform in package rgdal

http://www.statmethods.net/input/datatypes.html
https://github.com/Pakillo/R-GIS-tutorial
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You will see a warning. This simply states that you are changing the coordinate reference system, not reprojecting
the data. R uses epsg codes to refer to different coordinate reference systems. Epsg:27700 is the code for British
National Grid. If we wanted to reproject the data into something like WGS84 for latitude and longitude we would
use the following code:

sport.wgs84 <- spTransform(sport, CRS("+init=epsg:4326"))

The above line of code uses the function spTransform, from the sp package, to convert the sport object into a
new form, with the Coordinate Reference System (CRS) specified as WGS84. The different epsg codes are a bit of
hassle to remember but you can search for them at spatialreference.org.

Attribute joins

Attribute joins are used to link additional pieces of information to our polygons. in the sport object, for example,
we have 5 attribute variables - that can be found by typing names(sport). But what happens when we want to
add an additional variable from an external data table? We will use the example of recorded crimes by borough to
demonstrate this.

To reaffirm our starting point, let’s re-load the “london sport” shapefile as a new object and plot it. This is identical
to the sport object in the first instance, but we will give it a new name, in case we ever need to re-use sport. We
will call this new object lnd, short for London:

library(rgdal) # ensure rgdal is loaded

# Create new object called ’lnd’ from ’london_sport’ shapefile

lnd <- readOGR(dsn = "data", "london_sport")

## OGR data source with driver: ESRI Shapefile

## Source: "data", layer: "london_sport"

## with 33 features and 4 fields

## Feature type: wkbPolygon with 2 dimensions

plot(lnd) # plot the lnd object

nrow(lnd) # return the number of rows

## [1] 33

The aspatial dataset we are going to join to the lnd object is a dataset on recorded crimes, this dataset currently
resides in a comma delimited (.csv) file called “mps-recordedcrime-borough” with each row representing a single
reported crime. We are going to use a function called aggregate to pre-process this dataset ready to join to our
spatial lnd dataset. First we will create a new object called crimeDat to store this data.

# Create new crimeDat object from crime data and gain an understanding of it

crimeDat <- read.csv("data/mps-recordedcrime-borough.csv", fileEncoding = "UCS-2LE")

head(crimeDat) # display first 6 lines of the crimeDat object (not shown)

summary(crimeDat$MajorText) # summarise the column ’MajorText’ for the crimeDat object

# Extract ’Theft & Handling’ crimes from crimeDat object and save these as

# crimeTheft

crimeTheft <- crimeDat[which(crimeDat$MajorText == "Theft & Handling"), ]

head(crimeTheft, 2) # take a look at the result (replace 2 with 10 to see more rows)

http://spatialreference.org/
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Figure 3: Plot of London

# Calculate the sum of the crime count for each district and save result as

# a new object

crimeAg <- aggregate(CrimeCount ~ Spatial_DistrictName, FUN = sum, data = crimeTheft)

# Show the first two rows of the aggregated crime data

head(crimeAg, 2)

There is a lot going on in the above block of code and you should not expect to understand all of it upon first try:
simply typing the commands and thinking briefly about the outputs is all that is needed at this stage to improve
your intuitive understanding of R. It is worth pointing out a few things that you may not have seen before that will
likely be useful in the future:

• in the first line of code the fileEncoding argument is used. This is rarely necessary, but in this case the file
comes in a strange file format. 9 times out of ten you can omit this argument but it’s worth knowing about.

• the which function is used to select only those observations that meet a specific condition, in this case all
crimes involving “Theft and Handling”.

• the ∼ symbol means “by”: we aggregated the CrimeCount variable by the district name.

Now that we have crime data at the borough level (Spatial DistrictName), the challenge is to join it to the lnd

object. We will base our join on the Spatial DistrictName variable from the crimeAg object and the name variable
from the lnd object. It is not always straight forward to join objects based on names as the names do not always
match. Let us see which names in the crimeAg object match the spatial data object, lnd:

# Compare the name column in lnd to Spatial_DistrictName column in crimeAg

# to see which rows match.

lnd$name %in% crimeAg$Spatial_DistrictName

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [23] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE



GeoTALISMAN Short Course 10

# Return rows which do not match

lnd$name[which(!lnd$name %in% crimeAg$Spatial_DistrictName)]

## [1] City of London

## 33 Levels: Barking and Dagenham Barnet Bexley Brent Bromley ... Westminster

The first line of code above uses the %in% command to identify which values in lnd$name are also contained in the
names of the crime data. The results indicate that all but one of the borough names matches. The second line of
code tells us that it is City of London, row 25, that is named differently in the crime data. Look at the results (not
shown here) on your computer.

# Discover the names of the names

levels(crimeAg$Spatial_DistrictNam) # not shown n tutorial

## [1] "Barking and Dagenham" "Barnet"

## [3] "Bexley" "Brent"

## [5] "Bromley" "Camden"

## [7] "Croydon" "Ealing"

## [9] "Enfield" "Greenwich"

## [11] "Hackney" "Hammersmith and Fulham"

## [13] "Haringey" "Harrow"

## [15] "Havering" "Hillingdon"

## [17] "Hounslow" "Islington"

## [19] "Kensington and Chelsea" "Kingston upon Thames"

## [21] "Lambeth" "Lewisham"

## [23] "Merton" "Newham"

## [25] "NULL" "Redbridge"

## [27] "Richmond upon Thames" "Southwark"

## [29] "Sutton" "Tower Hamlets"

## [31] "Waltham Forest" "Wandsworth"

## [33] "Westminster"

# Rename row 25 in crimeAg to match row 25 in lnd, as suggested results form

# above

levels(crimeAg$Spatial_DistrictName)[25] <- as.character(lnd$name[which(!lnd$name %in%

crimeAg$Spatial_DistrictName)])

lnd$name %in% crimeAg$Spatial_DistrictName # now all columns match

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [29] TRUE TRUE TRUE TRUE TRUE

The above code block first identified the row with the faulty name and then renamed the level to match the lnd

dataset. Note that we could not rename the variable directly, as it is stored as a factor.

We are now ready to join the datasets. It is recommended to use the join function in the plyr package but the
merge function could equally be used. Note that when we ask for help for a function that is not loaded, nothing
happens, indicating we need to load it:

‘?‘(join)

library(plyr)

‘?‘(join)

The documentation for join will be displayed if the plyr package is loaded (if not, load or install and load it!). It
requires all joining variables to have the same name, so we will rename the variable to make the join work:
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head(lnd$name)

head(crimeAg$Spatial_DistrictName) # the variables to join

crimeAg <- rename(crimeAg, replace = c(Spatial_DistrictName = "name"))

head(join(lnd@data, crimeAg)) # test it works

## Joining by: name

lnd@data <- join(lnd@data, crimeAg)

## Joining by: name

Take a look at the lnd@data object. You should see new variables added, meaning the attribute join was successful.

Clipping and spatial joins

In addition to joining by zone name, it is also possible to do spatial joins in R. There are three main varieties:
many-to-one, where the values of many intersecting objects contribute to a new variable in the main table, one-to-
many, or one-to-one. Because boroughs in London are quite large, we will conduct a many-to-one spatial join. We
will be using Tube Stations as the spatial data to join, with the aim of finding out which and how many stations
are found in each London borough.

library(rgdal)

# create new stations object using the ’lnd-stns’ shapefile.

stations <- readOGR(dsn = "data", layer = "lnd-stns")

proj4string(stations) # this is the full geographical detail.

proj4string(lnd)

# return the bounding box of the stations object

bbox(stations)

# return the bounding box of the lnd object

bbox(lnd)

The above code loads the data correctly, but also shows that there are problems with it: the Coordinate Reference
System (CRS) of the stations differs from that of our lnd object. OSGB 1936 (or EPSG 27700) is the official CRS
for the UK, so we will convert the stations dataset to this:

# Create new stations27700 object which the stations object reprojected into

# OSGB36

stations27700 <- spTransform(stations, CRSobj = CRS(proj4string(lnd)))

stations <- stations27700 # overwrite the stations object with stations27700

rm(stations27700) # remove the stations27700 object to clear up

plot(lnd) # plot London for context (see figure 4 below)

points(stations) # overlay the station points on the previous plot (shown in figure 4)

Now we can clearly see that the stations overlay the boroughs. The problem is that the stations dataset is far more
extensive than the London borough dataset; so we will take a spatially determined subset of the stations object so
that they all fit within the lnd extent. This is clipping.

There are a number of functions that we can use to clip the stations dataset so that only those falling within London
boroughs are retained. These include overlay, sp::over, and rgeos::gIntersects (the word preceding the ::

symbol refers to the package which the function is from). Use ? followed by the function to get help on each and
find out which is most appropriate. gIntersects can produce the same output as over for basic joins (Bivand et
al. 2013).

In this tutorial we will use the over function as it is easiest to use. gIntersects can achieve the same result, but
with more lines of code. It may seem confusing that two different functions can be used to generate the same result.
However, this is a common issue in programming; the question is finding the most appropriate solution.

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00080000000q000000
http://spatialreference.org/ref/epsg/27700/
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Figure 4: Sampling and plotting stations

over takes two main input arguments: the target layer (the layer to be altered) and the source layer by which the
target layer is to be clipped. The output of over is a data frame of the same dimensions as the original dataset
(in this case stations), except that the points which fall outside the zone of interest are set to a value of NA (“no
answer”). We can use this to make a subset of the original polygons, remembering the square bracket notation
described in the first section. We create a new object, sel (short for “selection”), containing the indices of all
relevant polygons:

sel <- over(stations, lnd)

stations <- stations[!is.na(sel[, 1]), ]

Typing summary(sel) should provide insight into how this worked: it is a dataframe with 1801 NA values, repre-
senting zones outside of the London polygon. Because this is a common procedure it is actually possible to perform
it with a single line of code:

stations <- stations[lnd, ]

plot(stations) # test the clip succeeded (see figure 5)

As the figure shows, only stations within the London boroughs are now shown.

The third way to achieve the same result uses the rgeos package. This is more complex and not included in this
tutorial (interested readers can see a vignette of this, to accompany the tutorial on RPubs.com/Robinlovelace).
The next section demonstrates spatial aggregation, a more advanced version of spatial subsetting.

Spatial aggregation

As with R’s very terse code for spatial subsetting, the base function aggregate (which provides summaries of
variables based on some grouping variable) also behaves differently when the inputs are spatial objects.

stations.c <- aggregate(x = stations, by = lnd, FUN = length)

stations.c@data[, 1]

## [1] 48 22 43 18 12 13 25 24 12 46 18 20 28 32 38 19 30 25 31 7 10 38 12

## [24] 16 28 17 16 28 4 6 14 26 5

http://rpubs.com/RobinLovelace/11796
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Figure 5: The clipped stations dataset

The above code performs a number of steps in just one line:

• aggregate identifies which lnd polygon (borough) each station is located in and groups them accordingly

• it counts the number of stations in each borough

• a new spatial object is created and assigned the name stations.c, the count of stations

As shown below, the spatial implementation of aggregate can provide summary statistics of variables. In this case
we take the variable NUMBER and find its mean value for the stations in each ward.

stations.m <- aggregate(stations[c("NUMBER")], by = lnd, FUN = mean)

For an optional advanced task, let us analyse and plot the result.

q <- cut(stations.m$NUMBER, breaks = c(quantile(stations.m$NUMBER)), include.lowest = T)

summary(q)

## [1.82e+04,1.94e+04] (1.94e+04,1.99e+04] (1.99e+04,2.05e+04]

## 9 8 8

## (2.05e+04,2.1e+04]

## 8

clr <- as.character(factor(q, labels = paste0("grey", seq(20, 80, 20))))

plot(stations.m, col = clr)

legend(legend = paste0("q", 1:4), fill = paste0("grey", seq(20, 80, 20)), "topright")

areas <- sapply(stations.m@polygons, function(x) x@area)

This results in a simple choropleth map and a new vector containing the area of each borough (figure 6). As
an additional step, try comparing the mean area of each borough with the mean value of stations within it:
plot(stations.m$NUMBER, areas).
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Figure 6: Choropleth map of mean values of stations in each borough

Optional advanced task: aggregation with gIntersects

As with clipping, we can also do spatial aggregation with the rgeos package. In some ways, this method makes
explicit the steps taken in aggregate ‘under the hood’. The code is quite involved and intimidating, so feel free to
skip this stage. Working through and thinking about it this alternative method may, however, yield dividends if
you intend to perform more sophisticated spatial analysis in R.

library(rgeos)

## rgeos version: 0.2-19, (SVN revision 394)

## GEOS runtime version: 3.3.8-CAPI-1.7.8

## Polygon checking: TRUE

int <- gIntersects(stations, lnd, byid = TRUE) # re-run the intersection query

head(apply(int, MARGIN = 2, FUN = which))

b.indexes <- which(int, arr.ind = TRUE)

summary(b.indexes)

b.names <- lnd$name[b.indexes[, 1]]

b.count <- aggregate(b.indexes ~ b.names, FUN = length)

head(b.count)

The above code first extracts the index of the row (borough) for which the corresponding column is true and then
converts this into names. The final object created, b.count contains the number of station points in each zone.
According to this, Barking and Dagenham should contain 12 station points. It is important to check the output
makes sense at every stage with R, so let’s check to see this is indeed the case with a quick plot:

plot(lnd[which(grepl("Barking", lnd$name)), ])

points(stations)

Now the fun part: count the points in the polygon and report back how many there are!

We have now seen how to load, join and clip data. The second half of this tutorial is concerned with visualisation
of the results. For this, we will use ggplot2 and begin by looking at how it handles non-spatial data.



GeoTALISMAN Short Course 15

Figure 7: Train/tube stations in Barking and Dagenham

Part IV: Map making with ggplot2

This third part introduces a slightly different method of creating plots in R using the ggplot2 package, and explains
how it can make maps. The package is an implementation of the Grammar of Graphics (Wilkinson 2005) - a general
scheme for data visualisation that breaks up graphs into semantic components such as scales and layers. ggplot2 can
serve as a replacement for the base graphics in R (the functions you have been plotting with today) and contains a
number of default options that match good visualisation practice.

The maps we produce will not be that meaningful - the focus here is on sound visualisation with R and not sound
analysis (obviously the value of the former diminished in the absence of the latter!) Whilst the instructions are step
by step you are encouraged to deviate from them (trying different colours for example) to get a better understanding
of what we are doing.

ggplot2 is one of the best documented packages in R. The full documentation for it can be found online and it is rec-
ommended you test out the examples on your own machines and play with them: http://docs.ggplot2.org/current/
.

Good examples of graphs can also be found on the website cookbook-r.com.

Load the package:

library(ggplot2)

It is worth noting that the basic plot() function requires no data preparation but additional effort in colour
selection/adding the map key etc. qplot() and ggplot() (from the ggplot2 package) require some additional steps
to format the spatial data but select colours and add keys etc. automatically. More on this later.

As a first attempt with ggplot2 we can create a scatter plot with the attribute data in the ‘sport’ object created
above. Type:

p <- ggplot(sport@data, aes(Partic_Per, Pop_2001))

What you have just done is set up a ggplot object where you say where you want the input data to come from.
sport@data is actually a data frame contained within the wider spatial object sport (the @ enables you to access
the attribute table of the sport shapefile). The characters inside the aes argument refer to the parts of that data

http://ggplot2.org/
http://www.cookbook-r.com/Graphs/
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frame you wish to use (the variables Partic Per and Pop 2001). This has to happen within the brackets of aes(),
which means, roughly speaking ‘aesthetics that vary’.

If you just type p and hit enter you get the error No layers in plot. This is because you have not told ggplot
what you want to do with the data. We do this by adding so-called “geoms”, in this case geom point().

p + geom_point()

Figure 8: A simple ggplot

Within the brackets you can alter the nature of the points. Try something like p + geom point(colour = "red",

size=2) and experiment.

If you want to scale the points by borough population and colour them by sports participation this is also fairly
easy by adding another aes() argument.

p + geom_point(aes(colour = Partic_Per, size = Pop_2001))

The real power of ggplot2 lies in its ability to add layers to a plot. In this case we can add text to the plot.

p + geom_point(aes(colour = Partic_Per, size = Pop_2001)) + geom_text(size = 2,

aes(label = name))

This idea of layers (or geoms) is quite different from the standard plot functions in R, but you will find that each
of the functions does a lot of clever stuff to make plotting much easier (see the documentation for a full list).

The following steps will create a map to show the percentage of the population in each London Borough who
regularly participate in sports activities.

“Fortifying” spatial objects for ggplot2 maps

To get the shapefiles into a format that can be plotted we have to use the fortify() function. Spatial objects in R
have a number of slots containing the various items of data (polygon geometry, projection, attribute information)
associated with a shapefile. Slots can be thought of as shelves within the data object that contain the different
attributes. The “polygons” slot contains the geometry of the polygons in the form of the XY coordinates used
to draw the polygon outline. The generic plot function can work out what to do with these, ggplot2 cannot. We
therefore need to extract them as a data frame. The fortify function was written specifically for this purpose. For
this to work, either maptools or rgeos packages must be installed.
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Figure 9: ggplot for text

sport.f <- fortify(sport, region = "ons_label")

This step has lost the attribute information associated with the sport object. We can add it back using the merge
function (this performs a data join). To find out how this function works look at the output of typing ?merge.

sport.f <- merge(sport.f, sport@data, by.x = "id", by.y = "ons_label")

Take a look at the sport.f object to see its contents. You should see a large data frame containing the latitude
and longitude (they are actually Easting and Northing as the data are in British National Grid format) coordinates
alongside the attribute information associated with each London Borough. If you type print(sport.f) you will
see just how many coordinate pairs are required! To keep the output to a minimum, take a peek at the object using
just the head command:

head(sport.f[, 1:8])

## id long lat order hole piece group name

## 1 00AA 531027 181611 1 FALSE 1 00AA.1 City of London

## 2 00AA 531555 181659 2 FALSE 1 00AA.1 City of London

## 3 00AA 532136 182198 3 FALSE 1 00AA.1 City of London

## 4 00AA 532946 181895 4 FALSE 1 00AA.1 City of London

## 5 00AA 533411 182038 5 FALSE 1 00AA.1 City of London

## 6 00AA 533843 180794 6 FALSE 1 00AA.1 City of London

It is now straightforward to produce a map using all the built in tools (such as setting the breaks in the data) that
ggplot2 has to offer. coord equal() is the equivalent of asp=T in regular plots with R:

Map <- ggplot(sport.f, aes(long, lat, group = group, fill = Partic_Per)) + geom_polygon() +

coord_equal() + labs(x = "Easting (m)", y = "Northing (m)", fill = "% Sport Partic.") +

ggtitle("London Sports Participation")

Now, just typing Map should result in your first ggplot-made map of London! There is a lot going on in the code
above, so think about it line by line: what have each of the elements of code above been designed to do? Also note
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how the aes() components can be combined into one set of brackets after ggplot, that has relevance for all layers,
rather than being broken into separate parts as we did above. The different plot functions still know what to do
with these. The group=group points ggplot to the group column added by fortify() and it identifies the groups
of coordinates that pertain to individual polygons (in this case London Boroughs).

The default colours are really nice but we may wish to produce the map in black and white, which should produce
a map like that shown below (and try changing the colors):

Map + scale_fill_gradient(low = "white", high = "black")

Figure 10: Greyscale map

Saving plot images is also easy. You just need to use ggsave after each plot, e.g. ggsave("my map.pdf") will save
the map as a pdf, with default settings. For a larger map, you could try the following:

ggsave("my_large_plot.png", scale = 3, dpi = 400)

Adding base maps to ggplot2 with ggmap

ggmap is a package that uses the ggplot2 syntax as a template to create maps with image tiles taken from map
servers such as Google and OpenStreetMap:

library(ggmap) # you may have to use install.packages to install it first

The sport object loaded previously is in British National Grid but the ggmap image tiles are in WGS84. We
therefore need to use the sport.wgs84 object created in the reprojection operation earlier.

The first job is to calculate the bounding box (bb for short) of the sport.wgs84 object to identify the geographic
extent of the image tiles that we need.

b <- bbox(sport.wgs84)

b[1, ] <- (b[1, ] - mean(b[1, ])) * 1.05 + mean(b[1, ])

b[2, ] <- (b[2, ] - mean(b[2, ])) * 1.05 + mean(b[2, ])

# scale longitude and latitude (increase bb by 5% for plot) replace 1.05

# with 1.xx for an xx% increase in the plot size

http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://www.openstreetmap.org/
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This is then fed into the get map function as the location parameter. The syntax below contains 2 functions. ggmap
is required to produce the plot and provides the base map data.

lnd.b1 <- ggmap(get_map(location = b))

## Warning: bounding box given to google - spatial extent only approximate.

In much the same way as we did above we can then layer the plot with different geoms.

First fortify the sport.wgs84 object and then merge with the required attribute data (we already did this step to
create the sport.f object).

sport.wgs84.f <- fortify(sport.wgs84, region = "ons_label")

sport.wgs84.f <- merge(sport.wgs84.f, sport.wgs84@data, by.x = "id", by.y = "ons_label")

We can now overlay this on our base map.

lnd.b1 + geom_polygon(data = sport.wgs84.f, aes(x = long, y = lat, group = group,

fill = Partic_Per), alpha = 0.5)

The code above contains a lot of parameters. Use the ggplot2 help pages to find out what they are. The resulting
map looks okay, but it would be improved with a simpler base map in black and white. A design firm called stamen
provide the tiles we need and they can be brought into the plot with the get map function:

lnd.b2 <- ggmap(get_map(location = b, source = "stamen", maptype = "toner",

crop = TRUE))

We can then produce the plot as before.

lnd.b2 + geom_polygon(data = sport.wgs84.f, aes(x = long, y = lat, group = group,

fill = Partic_Per), alpha = 0.5)

Finally, if we want to increase the detail of the base map, get map has a zoom parameter.

lnd.b3 <- ggmap(get_map(location = b, source = "stamen", maptype = "toner",

crop = TRUE, zoom = 11))

lnd.b3 + geom_polygon(data = sport.wgs84.f, aes(x = long, y = lat, group = group,

fill = Partic_Per), alpha = 0.5)

Advanced Task: Faceting for Maps

library(reshape2) # this may not be installed.

# If not install it, or skip the next two steps

Load the data - this shows historic population values between 1801 and 2001 for London, again from the London
data store.

london.data <- read.csv("data/census-historic-population-borough.csv")

“Melt” the data so that the columns become rows.
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Figure 11: Basemap 3

london.data.melt <- melt(london.data, id = c("Area.Code", "Area.Name"))

Only do this step if reshape and melt failed

london.data.melt <- read.csv("london_data_melt.csv")

Merge the population data with the London borough geometry contained within our sport.f object.

plot.data <- merge(sport.f, london.data.melt, by.x = "id", by.y = "Area.Code")

Reorder this data (ordering is important for plots).

plot.data <- plot.data[order(plot.data$order), ]

We can now use faceting to produce one map per year (this may take a little while to appear as displayed in figure
12).

ggplot(data = plot.data, aes(x = long, y = lat, fill = value, group = group)) +

geom_polygon() + geom_path(colour = "grey", lwd = 0.1) + coord_equal() +

facet_wrap(~variable)

Again there is a lot going on here so explore the documentation to make sure you understand it. Try out different
colour values as well.

Add a title and replace the axes names with “easting” and “northing” and save your map as a pdf.

Part V: Taking spatial data analysis in R further

The skills you have learned in this tutorial are applicable to a very wide range of datasets, spatial or not. Often
experimentation is the most rewarding learning method, rather than just searching for the ‘best’ way of doing
something (Kabakoff, 2011). We recommend you play around with your own data.
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Figure 12: Faceted map

If you would like to learn more about R’s spatial functionalities, including more exercises on loading, saving and
manipulating data, we recommend a slightly longer and more advanced tutorial (Cheshire and Lovelace, 2014). An
up-to-date repository of this project, including example dataset and all the code used to compile the tutorial, can be
found on its GitHub page: github.com/geocomPP/sdvwR. Another advanced tutorial is “Using spatial data”, which
has example code and data that can be downloaded from the useR 2013 conference page. Such lengthy tutorials
are worth doing to think about spatial data in R systematically, rather than seeing R as a discrete collection of
functions. In R the whole is greater than the sum of its parts.

The supportive online communities surrounding large open source programs such as R are one of their greatest
assets, so we recommend you become an active “open source citizen” rather than a passive consumer (Ramsey &
Dubovsky, 2013).

This does not necessarily mean writing R source code - it can simply mean helping others use R. We therefore
conclude the tutorial with a list of resources that will help you further sharpen you R skills, find help and contribute
to the growing online R community:

• R’s homepage hosts a wealth of official and contributed guides.

• Stack Exchange and GIS Stack Exchange groups - try searching for “[R]”. If your issue has not been not been
addressed yet, you could post a polite question.

• R’s mailing lists - the R-sig-geo list may be of particular interest here.

Books: despite the strength of R’s online community, nothing beats a physical book for concentrated learning. We
would particularly recommend the following:

• ggplot2: elegant graphics for data analysis (Wickham 2009)

• Bivand et al. (2013) Provide a dense and detailed overview of spatial data analysis in an updated version of
the book by the developers of many of R’s spatial functions.

• Kabacoff (2011) is a more general R book; it has many fun worked examples.

https://github.com/geocomPP/sdvwR
http://www.edii.uclm.es/~useR-2013//Tutorials/Bivand.html
http://blog.cleverelephant.ca/2013/10/being-open-source-citizen.html
http://cran.r-project.org/manuals.html
http://cran.r-project.org/other-docs.html
http://www.r-project.org/mail.html
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R quick reference

#: comments all text until line end

x <- 3: create new object, called x, and assign value of 3

help(plot): ask R for basic help on function. Replace plot with any function.

?plot: same as above

library(ggplot2): load a package (replace ggplot2 with your package name)

install.packages("ggplot2"): install package - note quotation marks

setwd("C:/Users/username/Desktop/"): set R’s working directory (set it to your project’s folder)

nrow(df): count the number of rows in the object df

summary(df): summary statistics of the object df

head(df): display first 6 lines of object df

plot(df): plot object df

save(df, "C:/Users/username/Desktop/" ): save df object to specified location

rm(df): remove the df object

proj4string(df): set coordinate reference system of df object

spTransform(df, CRS("+init=epsg:4326"): reproject df object to WGS84
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