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Why are we interested in pathways?
An example

Being socially disadvantaged in childhood is associated with
having poorer health outcomes in adulthood.
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Why are we interested in pathways?
An example

Natural first question: is this causal?
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Why are we interested in pathways?
An example

Or explained by other things? (Confounding).
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Why are we interested in pathways?
An example

Suppose a causal effect can be established.
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Why are we interested in pathways?
An example

Health in childhood

Educational
achievment

Psychosocial
factors in adulthood

Psychosocial
factors in childhood

(all other pathways)

Natural next step: how does this causal effect act?

How important are the different pathways?

Where should interventions be targeted?
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A simpler question
Two pathways

(all other pathways)

Consider a much simpler (but still very challenging!) question.

How much of the effect of social disadvantage in childhood
on, say, systolic blood pressure in adulthood, is mediated by
educational achievement?

Only two pathways (‘direct’ and ‘indirect’).
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The curruent/old approach to estimating pathways
Combination of simple least squares regressions

(all other pathways)

Suppose social disadvantage and educational achievement are
each measured using a univariate continuous score.

Write X for the exposure, M for the mediator and Y for the
outcome.

Let’s explicitly include confounders C .
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‘Difference’ method
Baron and Kenny, 1986

α1

α2

α3

Consider two regression models:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C

E (Y |C ,X ) = β0 + β1X + βT2 C
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‘Difference’ method
Baron and Kenny, 1986

Consider two regression models:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C

E (Y |C ,X ) = β0 + β1X + βT2 C

α1 is interpreted as the direct effect (not via M),

β1 is interpreted as the total effect,

and thus β1 − α1 is the indirect effect (via M).

Estimation via ordinary least squares.

Various options (delta method, bootstrapping) to
obtain SE for the indirect effect.
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‘Product’ method
Wright, 1921

α1

α2

α3

Alternatively, consider the two regression models:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C

E (M |C ,X ) = γ0 + γ1X + γT2 C
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α1 is (as before) the direct effect,

and now γ1α2 is the indirect effect.

These (‘difference’, ‘product’) are equivalent: β1−α1 = γ1α2.
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Problem 1: estimands and assumptions
Specific to this (associational) model; correspondence to direct/indirect vague

α1

α2

α3

Consider the regression model that includes α1:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C
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Problem 1: estimands and assumptions
Specific to this (associational) model; correspondence to direct/indirect vague

α1

α2

α3

Consider the regression model that includes α1:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C

α1 is just a parameter in an associational model.

For two subjects with the same values of C and M, but values of X
that differ by 1 unit, it is the expected difference in their values of
Y .

Under what conditions does this correspond to a direct effect?

Does this question even make sense without a definition (other than
α1) of ‘direct effect’?
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Problem 1: estimands and assumptions
Specific to this (associational) model; correspondence to direct/indirect vague

β1

β2

Consider the regression model that includes X and C but not M:

E (Y |C ,X ) = β0 + β1X + βT
2 C
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Problem 1: estimands and assumptions
Specific to this (associational) model; correspondence to direct/indirect vague

β1

β2

Consider the regression model that includes X and C but not M:

E (Y |C ,X ) = β0 + β1X + βT
2 C

β1 is the total causal effect of X on Y only if C is sufficient to
control for all confounding between X and Y .

There must surely be similar conditions for α1 to be interpreted as a
direct effect.

No unmeasured confounding of M and Y ? Of X and M? In
addition to no unmeasured confounding of X on Y ?

Without a (model-free) definition of direct effect, this is impossible
to establish.
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Problem 2: model (in)flexibility

Consider the regression models again:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C exp (C2)

E (Y |C ,X ) = β0 + β1X + βT2 C C 2
1

E (M |C ,X ) = γ0 + γ1X + γT2 C
√

C1C2

E (Y |C ,X ,M )= α0 + α1X + α2M + α31C1 + α32C2 + α33C1C2
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These are flexible for C .

We can include interactions between confounders, and
non-linearities for the confounders.

But the flexibility ends here.
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Problem 2: model (in)flexibility

Consider the regression models again:

E (Y |C ,X ,M ) = α0 + α1X + α2M + αT
3 C + α4XM

E (Y |C ,X ) = β0 + β1X + βT2 C

E (M |C ,X ) = γ0 + γ1X + γT2 C

E (Y |C ,X ,M )= α0 + α1X + α2M + α31C1 + α32C2 + α33C1C2
What about interactions between X and other terms?

Non-linearities for X ?

Non-linear link functions (eg for binary Y )?

Not clear how ‘difference’ and ‘product’ methods extend.
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Problem 3: intermediate confounding

Thus far, we have considered confounders C that are
(potentially) common causes of X , M and Y .

Intermediate confounders L are common causes of M and Y
that are affected by X .

eg childhood health in our example.
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Problem 3: intermediate confounding

Such L are problematic as we now show.

Let us ignore C for simplicity, and, let us even ignore the
arrow from X to L at first, ie L is NOT an intermediate
confounder in this diagram for now. . .
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Problem 3: intermediate confounding

Why can’t we ignore L altogether?

Recall that the regression model (forgetting C ) that defines
the direct effect α1 is:

E (Y |X ,M ) = α0 + α1X + α2M.

This model conditions on M.
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Problem 3: intermediate confounding

Conditioning on M induces an association between X and L
even if there was none there before (and would alter an
existing association)—why?
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Problem 3: intermediate confounding

Thus α1 in:

E (Y |X ,M ) = α0 + α1X + α2M

represents this spurious association. . .

. . . as well as this direct effect.

Estimating causal pathways/ESRC Research Methods Festival 2012 28/69



Why pathways? Simplified setting Old approach Problems New approaches Back to reality Summary Refs

Problem 3: intermediate confounding

Thus α1 in:

E (Y |X ,M ) = α0 + α1X + α2M

represents this spurious association. . .

. . . as well as this direct effect.

Estimating causal pathways/ESRC Research Methods Festival 2012 28/69



Why pathways? Simplified setting Old approach Problems New approaches Back to reality Summary Refs

Problem 3: intermediate confounding

A solution would be to include L in the model:

E (Y |X ,M, L) = α0 + α1X + α2M + α3L

—blocking the spurious association.
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Problem 3: intermediate confounding

But this is NOT a solution when L is affected by X .

Since we block part of the direct effect (unmediated by M).

Thus it is unclear how the ‘old’ approaches can be used when
there is intermediate confounding.
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Summary so far

Traditional methods for estimating direct and indirect effects
(more generally pathways) suffer from some limitations:

1 They give no model-free definitions of direct/indirect effect.
2 It is therefore unclear under what assumptions the parameters

being estimated can be interpreted as direct/indirect effects.
3 The models are restricted to be linear.
4 It is unclear how intermediate confounders can be dealt with.

More recent contributions from the causal inference literature
have brought clarity to these issues, and greater flexibility to
the modelling.

Issues 1–3, and, to a certain extent, 4, have been addressed.
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Direct and indirect effects are about causality

Recall that if there are ignored common causes L of M and Y ,
the ‘direct effect’ we would näıvely estimate includes an
association via this pathway. . .

. . . as well as this one.

Thus the whole enterprise makes sense only if we are talking
about path-specific causal effects.

There’s no such thing as a direct association.
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Counterfactuals

Causal, unlike associational, quantities are not just about
describing this world, but involve a notion of how the world
would have been had something been different.

The causal quantities we will define thus require
counterfactuals (or equivalent).

So first let’s define the counterfactuals we’ll need.
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Counterfactuals

Let Y (x) be the value that Y would take if we intervened on
X and set it (possibly counter to fact) to the value x .
Let Y (x ,m) be the value that Y would take if we intervened
simultaneously on both X and M and set them to the values
x and m.
Let M (x) be the value that M would take if we intervened on
X and set it to x .
Let Y {x ,M (x∗)} be the value that Y would take if we
intervened on X and set it to x whilst simultaneously
intervening on M and setting it to M (x∗), the value that M
would take under an intervention setting X to x∗, where x
and x∗ are not necessarily equal.
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Let Y (x) be the value that Y would take if we intervened on
X and set it (possibly counter to fact) to the value x .
Let Y (x ,m) be the value that Y would take if we intervened
simultaneously on both X and M and set them to the values
x and m.
Let M (x) be the value that M would take if we intervened on
X and set it to x .
Let Y {x ,M (x∗)} be the value that Y would take if we
intervened on X and set it to x whilst simultaneously
intervening on M and setting it to M (x∗), the value that M
would take under an intervention setting X to x∗, where x
and x∗ are not necessarily equal.

These counterfactuals are central to the (model-free) defini-
tions of direct/indirect effects in causal inference.
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Estimands

Many (subtly different) counterfactual definitions of
direct/indirect effects have been proposed.
Direct effects:

Controlled direct effect (Pearl, 2001),
Natural direct effect (Pearl, 2001), also called Pure direct
effect (Robins and Greenland, 1992),
Total direct effect (Robins and Greenland, 1992),
Direct effect in the exposed (Vansteelandt and VanderWeele, 2012),
Principal stratum direct effect (Rubin, 2004).

Indirect effects:

Natural indirect effect (Pearl, 2001), also called Total indirect
effect (Robins and Greenland, 1992),
Pure indirect effect (Robins and Greenland, 1992),
Indirect effect in the exposed (Vansteelandt and VanderWeele, 2012).

We focus on these today (and also the total causal effect).
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Total causal effect

The total causal effect of X on Y , conditional on C = c,
expressed as a mean difference comparing x∗ vs x is

TCE (c , x , x∗) = E {Y (x∗) |C = c } − E {Y (x) |C = c } .

Note that this can also be written as

TCE (c , x , x∗) = E [Y {x∗,M (x∗)} |C = c ]

− E [Y {x ,M (x)} |C = c ] .
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Controlled direct effect
Pearl, 2001

The controlled direct effect of X on Y , conditional on C = c ,
when M is controlled at m, expressed as a mean difference
comparing x∗ vs x is

CDE (c , x , x∗,m) = E {Y (x∗,m) |C = c }−E {Y (x ,m) |C = c } .
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Controlled direct effect
Pearl, 2001

The controlled direct effect of X on Y , conditional on C = c ,
when M is controlled at m, expressed as a mean difference
comparing x∗ vs x is

CDE (c , x , x∗,m) = E {Y (x∗,m) |C = c }−E {Y (x ,m) |C = c } .

This (as always with a causal contrast) is a comparison
of two hypothetical worlds.

In the first, X is set to x∗, and in the second X is set
to x . In both worlds, M is set to m.

By keeping M fixed at m, we are getting at the direct
effect of X , unmediated by M.
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Controlled indirect effect?

Ideally, we would express the total causal effect as the sum of
a direct and an indirect effect.

But this is tricky using our definition of a controlled direct
effect.

The controlled direct effect could be different for each value
of m.

But the total causal effect is independent of m.
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Controlled indirect effect?

Even with no mediation, an interaction would mean that

TCE (c , x , x∗) 6= CDE (c , x , x∗,m) .

But in this case, the indirect effect would intuitively be zero.

And so we cannot hope to find a definition of a controlled
indirect effect (CIE) such that

TCE (c , x , x∗) = CDE (c , x , x∗,m) + CIE (c , x , x∗,m) .
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Natural direct effect
Pearl, 2001; Robins and Greenland, 1992

For this reason, it is useful to have a different definition of a
direct effect.
The natural direct effect of X on Y , conditional on C = c,
expressed as a mean difference comparing x∗ vs x is

NDE (c , x , x∗) = E [Y {x∗,M (x)} |C = c ]

− E [Y {x ,M (x)} |C = c ] .
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For this reason, it is useful to have a different definition of a
direct effect.
The natural direct effect of X on Y , conditional on C = c,
expressed as a mean difference comparing x∗ vs x is

NDE (c , x , x∗) = E [Y {x∗,M (x)} |C = c ]

− E [Y {x ,M (x)} |C = c ] .

This is a comparison of two hypothetical worlds.

In the first, X is set to x∗, and in the second X is set
to x . In both worlds, M is set to M (x), the value it
would take if X were set to x .

Since M is the same (within subject) in both worlds,
we are still getting at the direct effect of X .

In the absence of individual-level interaction between X
and M, CDE (c , x , x∗,m) = NDE (c , x , x∗) ∀m.
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Natural indirect effect
Pearl, 2001; Robins and Greenland, 1992

The advantage of defining the natural direct effect in this way,
is that it leads to a natural indirect effect.

The natural indirect effect of X on Y , conditional on C = c ,
expressed as a mean difference comparing x∗ vs x is

NIE (c , x , x∗) = E [Y {x∗,M (x∗)} |C = c ]

− E [Y {x∗,M (x)} |C = c ] .
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− E [Y {x∗,M (x)} |C = c ] .

This is a comparison of two hypothetical worlds.

In the first, M is set to M (x∗), the value it would take
if X were set to x∗ and in the second M is set to
M (x), the value it would take if X were set to x . In
both worlds, X is set to x∗.

X is allowed to influence Y only through its influence
on M. Thus it is an indirect effect through M.
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Effect decomposition

Now we see that the sum of the natural direct and indirect effects
is

NDE (c , x , x∗) + NIE (c , x , x∗)

= E [Y {x∗,M (x)} |C = c ]− E [Y {x ,M (x)} |C = c ]

+ E [Y {x∗,M (x∗)} |C = c ] − E [Y {x∗,M (x)} |C = c ]

= E [Y {x∗,M (x∗)} |C = c ]− E [Y {x ,M (x)} |C = c ]

= TCE (c , x , x∗) ,

the total causal effect, as desired.
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Controlled vs natural

The choice between controlled and natural direct effect partly
depends on the question.

Estimating causal pathways/ESRC Research Methods Festival 2012 45/69



Why pathways? Simplified setting Old approach Problems New approaches Back to reality Summary Refs

Controlled vs natural

The choice between controlled and natural direct effect partly
depends on the question.

Controlled direct effect

What effect does intervening on social disadvantage have on
later SBP if we also intervened on everyone’s educational
achievement and set it to a particular level?

A hypothetical world in which educational achievement does
not vary at all from child to child is strange. . .

And how would we choose a particular set level? 7 GCSEs or
10?

In other contexts, this is not so strange (eg a hypothetical
world in which a disease is eradicated).
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Controlled vs natural

Natural direct effect

What effect does intervening on social disadvantage have on
later SBP in a world in which there is no effect of social
disadvantage on educational achievement?

More meaningful in this context?

Allows effect decomposition.

But requires stronger conditions for identification (see later).
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Effects on alternative scales
Risk ratio scale (NB these decompose multiplicatively)

TCERR (c , x , x∗) =
E {Y (x∗) |C = c }
E {Y (x) |C = c }

,

CDERR (c , x , x∗,m) =
E {Y (x∗,m) |C = c }
E {Y (x ,m) |C = c }

,

NDERR (c , x , x∗) =
E [Y {x∗,M (x)} |C = c ]

E [Y {x ,M (x)} |C = c ]
,

NIERR (c , x , x∗) =
E [Y {x∗,M (x∗)} |C = c ]

E [Y {x∗,M (x)} |C = c ]
.
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Effects on alternative scales
Odds ratio scale (NB these decompose multiplicatively)

TCEOR (c , x , x∗) =
E {Y (x∗) |C = c } / [1− E {Y (x∗) |C = c }]
E {Y (x) |C = c } / [1− E {Y (x) |C = c }]

,

CDEOR (c , x , x∗,m) =

E {Y (x∗,m) |C = c } / [1− E {Y (x∗,m) |C = c }]
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What next?

Given clear definitions of the estimands we would like to
estimate, we can give assumptions under which they can be
identified from data and methods for doing so.

Whenever counterfactual quantities are to be estimated from
actual data, assumptions are needed to link the two.

The assumptions come in three flavours:

1 Consistency assumptions: allow linking of counterfactual
outcomes such as Y (x ,m) with the actual outcome Y , for
certain subjects.

2 Exchangeability assumptions: allow linking certain subjects
with certain other subjects so that counterfactuals not
identified by consistency, can be estimated by borrowing
information across subjects.

3 Modelling assumptions: allow this sharing of information to
happen more efficiently. (See models and methods).
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Assumptions for identification: TCE

Consistency for Y (x):

Y = Y (x) if X = x

Conditional exchangeability given C for X wrt Y :

Y (x) ⊥⊥ X |C ∀x

Essentially, this means no unmeasured confounding of the X –Y
relationship.
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Assumptions for identification: CDE

Consistency for Y (x ,m):

Y = Y (x ,m) if X = x and M = m

Sequential conditional exchangeability given C for X wrt Y and
given C ,X , L for M wrt Y :

Y (x) ⊥⊥ X |C ∀x

Y (x ,m) ⊥⊥ M |C ,X , L ∀x ,m

Essentially, this means no unmeasured confounding of the X –Y or
M–Y relationships.
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Assumptions for identification: NDE, NIE

Consistency for Y (x ,m), M (x) and Y {x ,M (x∗)}:

Y = Y (x ,m) if X = x and M = m, M = M (x) if X = x ,

Y = Y {x ,M (x∗)} if X = x and M = M (x∗) .

Sequential conditional exchangeability given C for X wrt Y , given
C ,X , L for M wrt Y , and given C for X wrt M:

Y (x) ⊥⊥ X |C ∀x , Y (x ,m) ⊥⊥ M |C ,X , L ∀x ,m,

M (x) ⊥⊥ X |C ∀x .
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Assumptions for identification: NDE, NIE

Essentially, this means no unmeasured confounding of the X –Y ,
M–Y , or X –M relationships.

Finally, in addition, either:

No intermediate confounding, or
Some restriction on the extent to which X and M interact in
their effect on Y (Petersen et al, 2006).
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Outline

1 Why pathways?

2 A much simplified setting

3 The current/old approach to estimating pathways: combination
of simple least squares regressions

4 Problems with the old approach
(Associational) model-specific estimands

Models too inflexible

Intermediate confounding?

5 ‘New’ approaches from causal inference
Unambiguous estimands and assumptions

Flexible models and methods

6 Back to reality. . .

7 Summary

8 References
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G-computation formula for the CDE
Robins 1986

Let’s look at how the CDE is estimated:

CDE (c, x , x∗,m) =

E {Y (x∗,m) |C = c } − E {Y (x ,m) |C = c }

=

∫
E (Y |C = c ,X = x∗, L = l ,M = m ) fL|C ,X (l |c , x∗ ) dl

−
∫

E (Y |C = c ,X = x , L = l ,M = m ) fL|C ,X (l |c , x ) dl

This is the g-computation formula.
It requires correct specification of these parametric
associational models for Y |C ,X , L,M and L |C ,X .
Both models can be completely flexible: they can include
non-linearities and interactions.
By marginalising over L |C ,X , intermediate confounding is
appropriately dealt with.
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G-computation formula for the CDE
Robins 1986

In the absence of intermediate confounding, non-linearities
and interactions, this becomes α1 as earlier.

The g-computation formula thus generalises the earlier
approaches to allow felxible modelling, interactions and
intermediate confounding.

The associational models can be estimated using usual
regression-fitting techniques (OLS, ML).

If analytically intractable, the integration over L can be done
by Monte Carlo simulation.

SEs can be obtained either by the delta method or by
bootstrapping.

This can be carried out in Stata (using the gformula

command).
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G-computation formula for the NDE/NIE

The g-computation formula can similarly be used to estimate
the NDE and NIE, with further modelling and assumptions.

A model for M |C ,X , L is now required.

Either there must be no intermediate confounding, or the
Petersen et al interaction restriction assumption is required:

E {Y (x∗,m)− Y (x ,m) |C = c ,M (x) = m}
= E {Y (x∗,m)− Y (x ,m) |C = c } .

This can also be carried out in Stata’s gformula command.

Muthén (2011) also shows how this estimation can be done
(with almost as much flexibility) in Mplus.
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Alternative semiparametric approches

One drawback of the g-computation formula is its
fully-parametric nature and hence heavy reliance on
parametric modelling assumptions.

In particular, the necessity to model L |C ,X can be
problematic if L is high-dimensional.

Alternative semiparametric methods from the causal inference
literature do not require a model for L |C ,X :

inverse probability weighted estimation of a marginal structural

model (VanderWeele, 2009),
g-estimation of a structural nested model (Robins, 1999),
other flavours of g-estimation (Joffe and Greene, 2009; Vansteelandt, 2009).
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Multiple mediators

(all other pathways)

How can we take all this discussion of direct and indirect
effects, and apply it to the complicated multiple pathway
setting we started with?

The definitions of direct and indirect effects extend easily to
path-specific effects.

But defining effects that sum to the total effect is not quite as
trivial (Daniel and De Stavola, submitted).
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Identification assumptions are along the same lines, but
require more and more assumptions of no unmeasured
confounding!
And, whenever pathways ‘interfere’, intermediate confounding
is inevitable.
Thus assumptions abound, and sensitivity analyses are
paramount (George: next talk!).
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The same methods can be used.

The extensions are straightforward but need implementing in
software.
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Quick summary

The ‘old’ approaches are somewhat limited, and too vague for
these limitations to be always apparent.

Newer contributions have led to more hygienic thinking on
these issues and more flexible methods.

But there can be no panacea.

Very strong assumptions are required for such an ambitious
causal endeavour.

But these (and more) were needed in the ‘old’ approach even
if we didn’t realise it.

Hygienic thinking keeps us honest, and aids sensitivity
analyses. . .
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