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Abstract

Observational studies are notoriously full of non-responses and missing values. Bayesian full

probability modelling provides a flexible approach for analysing such data, allowing a plausible

model to be built which can then be adapted to carry out a range of sensitivity analyses. In

this context, we propose a strategy for using Bayesian methods for a ‘statistically principled’

investigation of data which contains missing covariates and missing responses, likely to be non-

random.

The first part of this strategy entails constructing a ‘base model’ by selecting a model of

interest, then adding a sub-model to impute the missing covariates followed by a sub-model

to allow informative missingness in the response. The second part involves running a series of

sensitivity analyses to check the robustness of the conclusions. We implement our strategy to

investigate some typical research questions relating to the prediction of income, using data from

the Millennium Cohort Study.
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1 Introduction

Social science data typically suffer from non-response and missing values, which often render stan-

dard analyses misleading. Cross sectional studies tend to be rife with missing data problems, and

studies which are longitudinal inevitably lose members over time in addition to other sources of

missingness. As a consequence, researchers generally face the problem of analysing datasets com-
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plicated by missing covariates and missing responses. The appropriateness of a particular analytic

approach is dependent on the mechanism that leads to the missing data, which cannot be deter-

mined from the data at hand. Given this uncertainty, researchers are forced to make assumptions

about the missingness mechanism and are strongly recommended to check the robustness of their

conclusions to alternative plausible assumptions. A number of different approaches to this task

have been proposed and determining a way forward can be daunting for the analyst.

An extensive literature has built up on the topic of missing data, with the various methods, cover-

ing both cross sectional and longitudinal studies, catalogued and reviewed in papers (Schafer and

Graham, 2002; Ibrahim et al., 2005), as well as detailed in comprehensive textbooks (Schafer, 1997;

Little and Rubin, 2002; Molenberghs and Kenward, 2007; Daniels and Hogan, 2008). Broadly

speaking, there are two types of methods for handling missing data: ad hoc methods and ‘statisti-

cally principled’ methods. Ad hoc methods, such as complete case analysis or single imputation, are

generally not recommended because, although they may have the advantage of relative simplicity,

they usually introduce bias and do not reflect statistical uncertainty. By contrast, so-called ‘sta-

tistically principled’ or ‘model-based’ methods combine the available information in the observed

data with explicit assumptions about the missing value mechanism, accounting for the uncertainty

introduced by the missing data. These include maximum likelihood methods which are typically

implemented by the EM algorithm, weighting methods, multiple imputation and Bayesian full

probability modelling.

In this paper, we provide guidance to the analyst on the practicalities of modelling incomplete

data using Bayesian full probability modelling. We propose a modelling strategy and apply this to

investigate two questions relating to the prediction of income, using data from the first two sweeps

of the most recent British birth cohort study, the Millennium Cohort Study (MCS). Specifically,

for mothers who are single at the start of the study, we look at the income gains from higher

education and changes in pay rates associated with acquiring a partner. In Section 2 we introduce

some of the key definitions relating to missing data and briefly describe a Bayesian approach to

modelling data with missing values. Our proposed modelling strategy is then described in Section

3. In Section 4 we apply this strategy to an extended example, discuss possible modifications and

the circumstances where these would be necessary in Section 5 and conclude in Section 6.
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2 Bayesian full probability modelling of missing data

The appropriateness of a particular missing data method is dependent on the mechanism that

leads to the missing data and the pattern of the missing data. From a modelling perspective,

it also makes a difference whether we are dealing with missing response, missing covariates or

missingness in both the response and covariates. Following Rubin (Rubin, 1976), missing data are

generally classified into three types: missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR). Informally, MCAR occurs when the missingness does

not depend on observed or unobserved data, in the less restrictive MAR it depends only on the

observed data, and when neither MCAR or MAR hold, the data are MNAR.

In longitudinal studies, non-response can take three forms: unit non-response (sampled individuals

are absent from the outset of the study), wave non-response (where an individual does not respond

in a particular wave but re-enters the study at a later stage) and attrition or drop-out (where an

individual is permanently lost as the study proceeds), and these may have different characteristics

(Hawkes and Plewis, 2006). Also, different kinds of non-response can often be distinguished, typi-

cally not located, not contacted and refusal. Missing data patterns may be further complicated by

data missing on particular items (item non-response) or on a complete group of questions (domain

non-response).

Bayesian full probability modelling provides a flexible method of incorporating different assump-

tions about the missing data mechanism and accommodating different patterns of missing data. It

entails building a joint model consisting of a model of interest and one or more models of missing-

ness, and such models can be implemented using Markov Chain Monte Carlo (MCMC) methods.

By estimating the unknown parameters and the missing data simultaneously, this method ensures

that their estimation is internally consistent. Since the required joint models are built in a modu-

lar way, they are easy to adapt, facilitating sensitivity analysis which is crucial when the missing

data mechanism is unknown. The Bayesian formulation also has the advantage of allowing the

incorporation of additional information through informative priors.

Suppose the data for our research consists of a univariate outcome yi and a vector of covariates

x1i, . . . , xpi, for i = 1, . . . , n individuals, and we wish to model this data using a linear regression

model assuming Normal errors. Then the Bayesian formulation of our model of interest, f(y|β, σ),
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is

yi ∼ N(µi, σ
2),

µi = β0 +
p∑

k=1

βkxki,

β0, β1, . . . , βp, σ
2 ∼ prior distribution,

(1)

where N denotes a Normal distribution. Suppose also that the response contains missing values

such that y can be partitioned into observed, yobs, and missing, ymis, values, i.e. y = (yobs, ymis).

Now define m = (mi) to be a binary indicator variable such that

mi =





1: yi observed

0: yi missing

and let θ denote the unknown parameters of the missingness function. The joint distribution of

the full data, f(yobs, ymis, m|β, σ,θ), can be factorised as

f(yobs,ymis,m|β, σ,θ) = f(m|yobs,ymis, θ)f(yobs,ymis|β, σ) (2)

suppressing the dependence on the covariates, and assuming that (m|y,θ) is conditionally inde-

pendent of (β, σ), and (y|β, σ) is conditionally independent of θ, which is usually reasonable in

practice. This factorisation of the joint distribution is known as a selection model (Schafer and

Graham, 2002). The missing data mechanism is termed ignorable for Bayesian inference about

(β, σ) if the missing data are MAR (f(m|yobs, ymis, θ) = f(m|yobs, θ)) and the parameters of the

data model, (β, σ), and the missingness mechanism, θ, are distinct and the priors for (β, σ) and θ

are independent (Little and Rubin, 2002).

For a response with missing values, we do not need a missingness model, f(m|y,θ), provided we

can assume that the missing data mechanism is ignorable. The imputation of ymis is unnecessary

for valid inference about β and σ. However, if we cannot assume that the missing data mechanism

is ignorable, then we need to specify a response model of missingness.

The situation is different for covariates with missing values. In this case, an imputation model for

the missing data is required to fully exploit all the available data, regardless of our assumptions

about the missingness process (see Section 3). If they are assumed to be generated by a nonignorable

missing data mechanism, then an appropriate missingness indicator will also need to be modelled.

The data for our application contains missing values for some covariates and for the response, in-

come. Survey methodology literature has shown that income non-response is usually non-ignorable

4



(Yan et al., 2010). Plewis et al. (2008) investigate predictors of sample loss in the MCS with par-

ticular reference to residential mobility, distinguishing between different types of non-response, and

conclude that assuming MAR is perhaps too strong. More specifically, the patterns and correlates

of missing income data in the MCS are analysed by Hawkes and Plewis (2008). Before proceeding

to the application, we introduce our proposed modelling strategy for missing data.

3 Modelling strategy

The basic steps in our general strategy for analysing longitudinal or cross sectional data with

missing values are shown in Figure 1. This approach allows the uncertainty from the missing data

to be taken into account, and a range of relevant sources of information relating to the question

under investigation to be utilised. It can be implemented using currently available software for the

Bayesian analysis of complex statistical models, such as WinBUGS (Spiegelhalter et al., 2003).

This strategy can be thought of as consisting of two parts: 1) constructing a base model and 2)

assessing conclusions from this base model against a selection of well chosen sensitivity analyses.

Each of these is now discussed, drawing attention to the key decisions based on our experience. Our

proposed strategy allows informative missingness in the response, but assumes that the covariates

are MAR. We defer discussion of adaptations, extensions and limitations until Section 5.

3.1 Construct a base model

In essence, this part involves building a joint model by starting with a model of interest, and then

adding a covariate model of missingness followed by a response model of missingness. For each

sub-model, we recommend that plausible alternative assumptions are noted for use in selecting

the sensitivity analyses in the second part. The estimation of some parameters in the two models

of missingness can be difficult when there is limited information, but the amount of available

information can be increased by incorporating data from other sources and/or expert knowledge.

We now look at each step in more detail.

1 Select an initial model of interest (MoI) based on complete cases. The process of

building a base model starts with the formation of an initial model of interest using only com-

plete cases and previous knowledge. This includes choosing a transform for the response, model

structure and a set of explanatory variables. The most critical assumption is the error distribu-
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Figure 1: Strategy for Bayesian modelling of missing data

BASE MODEL

6: ASSUMPTION

SENSITIVITY

run alternative models
with key assumptions

changed including

7: PARAMETER

SENSITIVITY

run model with the
RMoM parameters
associated with the

informative missingness
(δ) fixed to range of

plausible values

8: Are
conclusions

robust?

report
robustness

determine
region of high
plausibility

YES NO

• MoI error distribution
• MoI response transform

• RMoM functional form

recognise
uncertainty

5: elicit expert
knowledge

1: select MoI using
complete cases

2: add CMoM

3: add RMoM

note plausible
alternatives

4: seek additional
data

assess
fit

MoI = Model of Interest
CMoM = Covariate Model of Missingness
RMoM = Response Model of Missingness

The numbers relate to the steps described in Section 3.
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tion of the model of interest, whose mis-specification can adversely affect the performance of a

selection model (Mason et al., 2010).

2 Add a covariate model of missingness (CMoM). The model of interest will run with

missing responses, but not with missing covariates, so to incorporate the incomplete cases the

next step is to add a covariate model of missingness to produce realistic imputations of any

missing covariates simultaneously with the analysis of the model of interest. If we have a single

covariate, x, there are two obvious ways of building this sub-model: i) specify a distribution,

e.g. if x is a continuous covariate, then could specify xi ∼ N(ν, ς2) and assume vague priors

for ν and ς2 or ii) build a regression model relating xi to other observed covariates. This sub-

model will be more complicated when there is more than one covariate with missing values, as

is usually the case with real data, and should allow for possible correlation between covariates

as necessary. A latent variable approach can be used for binary or categorical variables, as

discussed in Section 4.2.2. The reasonableness of this model can be checked by comparing the

pattern of the imputed values with the observed values.

3 Add a response model of missingness (RMoM). Next, add a response model of missing-

ness to allow informative missingness in the response. In the absence of any prior knowledge, the

recommended strategy is to assume a linear relationship between the probability of missingness

and the response or change in response (Mason et al., 2010). The estimation of the parameters

associated with the response can be difficult, as it is reliant on limited information from assump-

tions about other parts of the model. These estimation difficulties increase for more complex

models of missingness with vague priors, and motivate the parameter sensitivity described in

step 7.

4 Seek additional data. Additional data can be incorporated into the various sub-models

to help with parameter estimation where there is limited information. This may come from

another study on individuals with similar characteristics to those being modelled or in the case

of longitudinal data be provided by earlier/later sweeps not under investigation.

5 Elicit expert knowledge. Expert knowledge can also be incorporated into one or more of the

sub-models using informative priors. Information relating to the response model of missingness

has the potential to make the biggest impact, in particular regarding its functional form.

At each step, checks of model fit should be carried out to ensure that the models are plausible.
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3.2 Perform sensitivity analysis

When modelling missing data, some form of sensitivity analysis is essential because we are forced

to make assumptions which are untestable from the data. There are many possible options, and

to some extent the choice will be determined by the problem at hand. We propose that two types

of sensitivity analysis should be carried out, an assumption sensitivity and a parameter sensitivity.

This part of our strategy is encapsulated by the following steps.

6 Assumption sensitivity. For the assumption sensitivity, form a number of alternative models

from the base model by changing key assumptions. These should include, but not be limited to,

changes in the model of interest error distribution, the transformation of the model of interest

response and the functional form of the response model of missingness.

7 Parameter sensitivity. The parameter sensitivity involves running the base model with the

response model of missingness parameters controlling the extent of the departure from MAR

fixed to values in a plausible range. Expert knowledge can help with setting up the parameter

sensitivity.

8 Determine robustness of conclusions. The results of both sets of sensitivity analyses

should then be examined to establish how much the quantities of interest vary. A range of

plots, providing complementary views of the analysis is recommended (examples are provided

in Section 4.5). If the conclusions are robust, this should be reported. Otherwise a range of

diagnostics, for example the fit of a validation sample and Bayesian measures of fit (as discussed

in Section 4.4.3) should be used to determine a region of high plausibility, and the uncertainty

in the results recognised. The sensitivity analysis may also suggest that the base model should

be reconsidered, or more external information sought from experts or related studies.

4 Application of strategy to MCS income data

We now provide two examples of the application of this strategy, fitting all the described models

using the WinBUGS software (the code for a base model is provided as an Appendix). All the

models are run with two chains initialised using diffuse starting values, and converged. Convergence

is assumed if the Gelman-Rubin convergence statistic (Brooks and Gelman, 1998) for individual

parameters is less than 1.05 and a visual inspection of the trace plots is satisfactory.
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4.1 Description of data

The MCS was set up to provide information about children living and growing up in each of the

four countries of the UK, including information about the children’s families, and has over 18,000

cohort members born in the UK between specified dates at the start of the Millennium (Plewis,

2007a). Data is collected through interviews and self-completion forms undertaken by a main

respondent (usually the cohort member’s mother) and a partner respondent (usually the father),

and four sweeps of this cohort are now available. Non-response is discussed by Plewis (2007b),

Ketende (2008) and Calderwood et al. (2008).

Analysis of data from the MCS needs to take account of its design, as it is clustered geographically,

and disproportionately stratified (Plewis, 2007a). The population is stratified by UK country

(England, Wales, Scotland and Northern Ireland), with England further stratified into three strata

(ethnic minority, disadvantaged and advantaged) and the other three countries into two strata

(disadvantaged and advantaged). For each stratum individuals are clustered by electoral ward.

However, allowing for this clustering is unnecessary for our applications, as we use a subset of the

MCS cohort in which most wards contain a single individual.

Using data from sweeps 1 and 2, we investigate two questions relating to the income from paid

work of single mothers. We consider the gains from having a degree (which we shall refer to as

the Education Question) and the changes in a mother’s rate of pay related to gaining a partner

(Partner Question). In line with the literature (Blundell et al., 2000; Zhan and Pandey, 2004),

we expect that higher pay is related to having a degree. Research has found that marital splits

are associated with declines in income for separating women and children (Jenkins, 2008), but it

is not obvious what we should expect to find if a mother gains a partner. On the one hand we

might hypothesise that on gaining a partner, maximising income from their work is no longer such

a priority for mothers and they can afford to settle for a lower paid job which is more attractive

on other counts. It is also possible that the mother may switch from full-time to part-time work

which is less well paid, or do less overtime to boost pay. Under these scenarios we would find a

decrease in hourly pay associated with gaining a partner. On the other hand, we could hypothesise

that the greater stability of family life resulting from acquiring a partner allows mothers to find a

better paid job. There is a lot of uncertainty surrounding this question, and the relationship could

be in either direction.

To investigate these questions, we model income for the subset of main respondents who are single
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in sweep 1, in paid work and not self-employed, using either education level or partnership status,

and other known predictors of income. We also exclude those who are known to be self-employed

or not working in sweep 2, and four records with extreme pay values which look suspicious, leaving

559 individuals.

By definition we are looking at a set of individuals who are the mothers of very young children,

so it is hardly surprising that many are working part-time. To simplify our models, we choose

hourly net pay as our response variable. Hourly net pay, hpay, is calculated by dividing annual

pay by number of hours worked in a year, and we find that the distribution of the observed hpay

is positively skewed.

Drawing on existing literature, we select potential covariates with our motivating questions and

the structure of the survey in mind. Our dataset also includes variables which may help to explain

the missingness (Hawkes and Plewis, 2008). All these variables are detailed briefly in Table 1. Our

educational level variable, edu, indicates whether or not an individual has a degree and is based on

the level of National Vocational Qualification (NVQ) equivalence of the main respondent’s highest

academic or vocational educational qualification. The main respondent’s social class, sc, uses the

National Statistics Socio-Economic Classification (NS-SEC) grouped into 5 categories, but since

we have excluded the self-employed from our dataset, there are no individuals in category 3 and

sc has 4 levels. Our partnership status variable, sing, is always 1 in sweep 1 from the definition of

our dataset, but is used to indicate whether the individual has acquired a partner by sweep 2.

Ctry and stratum are fully observed by survey design. Of the other variables in the dataset, in

sweep 1, 8% of individuals have missing hpay, a very small number have missing edu or sc, and

the remaining variables are completely observed. In sweep 2 missingness is substantially higher,

with 32% of individuals having no sweep 2 data due to wave missingness, and a small amount of

item missingness, predominantly for hpay. We restrict our analysis of this dataset to modelling the

missingness in sweep 2.

Some sweep 2 data was collected from individuals who were originally non-contacts or refusals in

sweep 2, after they were re-issued by the fieldwork agency. In our dataset, seven individuals have

a complete set of sweep 2 variables as a result of these re-issues. We set these data to missing for

the purpose of fitting our models, so they can be used subsequently for model checking.
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Table 1: Description of MCS income dataset variables (these relate to the main respondent)

name description details

hpay hourly net pay continuous - median = £7, range = (£1,£56)
age age at interview continuousa - median = 26, range = (15, 48)
eth ethnic group 2 levels (1 = white; 2 = non-white)
reg region of country 2 levels (1 = London; 2 = other)
edu educational level 2 levelsb (1 = no degree; 2 = degree)
singe single/partner 2 levels (1 = single; 2 = partner)
sc social class 4 levelsc (NS-SEC 5 classes with 3 omitted)d

ctry country 1 = England; 2 = Wales; 3 = Scotland; 4 = Northern Ireland
stratum country by ward type 9 levelsf

a all continuous covariates are centred and standardised; the median and ranges are for sweep 1 on the original
scale.

b based on the level of National Vocational Qualification (NVQ) equivalence of the individual’s highest academic or
vocational educational qualification. We regard individuals with only other or overseas qualifications as missing.

c 1 = managerial and professional occupations; 2 = intermediate occupations; 3 = lower supervisory and technical
occupations; 4 = semi-routine and routine occupations

d NS-SEC 3 is small employers and own account workers, and these individuals are excluded by definition
e always 1 for sweep 1 by dataset definition
f three strata for England (advantaged, disadvantaged and ethnic minority); two strata for Wales, Scotland and

Northern Ireland (advantaged and disadvantaged)

4.2 MCS example - constructing a base model

4.2.1 Choice of model of interest

For our application, we assume that based on previous work we have available a satisfactory pro-

posed model of interest for addressing each question. The models are similar in both cases. Skew-

ness in the response, hpay, is dealt with by taking a log transformation, and t4 errors are used for

robustness to outliers. The design of the survey and the correlation between the two data points

for each individual are taken into account using stratum specific intercepts and individual random

effects. Hence our model of interest is given by the equations

yit ∼ t4(µit, σ
2)

µit = αi + γs(i) +
p∑

k=1

βkxkit

(3)

for t = 1, 2 sweeps, i = 1, . . . , n individuals and s = 1, . . . , 9 strata. αi are the individual ran-

dom effects, s.t. αi ∼ N(0, ς2) and its hyperparameter, ς, has a vague N(0, 100002)I(0, ) prior

(N(mean, variance)I(0, ) denotes a half Normal distribution restricted to positive values). Vague

priors are also specified for the other unknown parameters of the model of interest: the stratum

specific intercepts, γs(i), and βk parameters are assigned N(0, 100002) priors and the precision, 1
σ2 ,

a Gamma(0.001, 0.001) prior.
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For both questions age (main respondent’s age) and reg (London/other) are included in the set of

time dependent x covariates. For the Education Question we also include edu (no degree/degree),

whereas for the Partner Question we add sing (single/partner). The parameter estimates for these

initial models of interest, MoI, based on complete cases only are shown in Table 2 (the other models

in this table will be discussed later). They suggest that higher levels of hourly pay are associated

with increasing age and having a degree, and lower levels of hourly pay are associated with living

outside London and gaining a partner between sweeps.

Plausible alternative model of interest assumptions

The areas of chief concern, based on the insights gained through simulations by Mason et al. (2010),

are: 1) choice of error distribution; 2) choice of explanatory variables and 3) choice of transform

for the response. For each of these, there are a number of possible alternatives to the choice

incorporated in the model of interest. We identify the alternatives we consider most plausible for

sensitivity analysis to the base model: 1) assume Normal rather than t4 errors, 2) include age2

and for the Education Question age× edu interaction terms and 3) use a cube root rather than log

transform of the response.

4.2.2 Choice of covariate model of missingness

To include the incomplete cases, we need to impute the missing sweep 2 values for age, reg and

edu or sing. For reg and age we do not use a statistical model, but set their missing values

prior to the analysis using simple rules. Missing reg are set to their sweep 1 values, which seems

reasonable as amongst the 348 individuals with observed reg in sweep 2, only three moved from

London to another region and just one moved into London. The missing values of age are set to the

individual’s sweep 1 age plus the mean difference in ages between sweeps 1 and 2 for individuals

with observed age at both sweeps.

By contrast, for edu or sing, the variables which particularly interest us, we define a simple Bernoulli

model. For the Education Question, if an individual has a degree in sweep 1, they must also have a

degree in sweep 2 so there is no need to include them in the imputation model. Hence the covariate

model of missingness can be defined as

eduj2 ∼ Bernoulli(q)

q ∼ Uniform(0, 1)
(4)
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for j = 1, . . . ,m individuals who have missing edu values in sweep 2 and who do not have a degree

in sweep 1. A similar model is defined for all individuals who have sweep 2 missing sing values

for the Partner Question. In this joint model consisting of our proposed model of interest and

covariate model of missingness (MoI.CMoM), not only are the covariates assumed to be MAR, but

the response is also assumed to be MAR.

From Table 2 we see that there are small changes in some of the model of interest parameters

from fitting MoI.CMoM compared to the complete case analysis (MoI). We are interested in the

imputations of the missing covariates and compare the imputed and observed covariates. Among

individuals without a degree in sweep 1 and observed educational level in sweep 2, 5 individuals

(1.9%) gained a degree by sweep 2. Based on the posterior means, this is similar to the 2.3% (95%

interval from 0% to 5.7%) imputed to gain a degree between sweeps. For sing, 35.8% of those with

observed sing at sweep 2 gained a partner, compared to 33.6% of those with missing sweep 2 sing.

This covariate model of missingness could be expanded to include the imputation of the other two

covariates with missing values, age and reg. Such an extension, which would impute the missing

values for multiple covariates allowing for correlation, can be implemented using a multivariate

probit model approach for binary covariates (Chib and Greenberg, 1998) and its extension to

ordered categorical variables (Albert and Chib, 1993) as appropriate. By creating an underlying

set of latent variables in this way, models for mixtures of binary, categorical and continuous variables

can be developed (Dunson, 2000; Goldstein et al., 2008). Molitor et al. (2009) provide an example

of this approach for two binary covariates.

4.2.3 Choice of response model of missingness

Our base model is completed by adding a response model of missingness of the form mi ∼
Bernoulli(pi), where mi is a binary missing value indicator for hpayi2, set to 1 when hourly pay

in sweep 2 for individual i is observed and 0 otherwise. The addition of this sub-model changes

our assumption about the missing responses from MAR to MNAR. Before defining this part of the

model, we need to think about the process that led to the income missingness, gathering as much

information as possible from the literature. Previous work in this area suggests that income is more

likely to be missing if it is high or low, or if it has changed substantially between sweeps. Then,

our findings have to be translated into a statistical model, and a piecewise linear functional form
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is appropriate given our information. So, we define logit(pi) as

logit(pi) = θ0 + Piecewise(leveli) + Piecewise(changei)

+ (θctry × ctryi1) + (θeth × ethi1) +
3∑

k=1

(θsc[k] × sc[k]i1)

leveli = hpayi1

changei = hpayi2 − hpayi1

Piecewise(leveli) =





θlevel[1] × (leveli − 10) : leveli < 10

θlevel[2] × (leveli − 10) : leveli ≥ 10

Piecewise(changei) =





δ1 × changei : changei < 0

δ2 × changei : changei ≥ 0

(5)

where the second index on the variables indicates sweep, and sc[k] is a binary indicator for sc

category k (1 if sci is category k, 0 otherwise). The inclusion of variables sc (social class), eth (ethnic

group) and ctry (country) as predictors of missing income is based on work on item missingness by

Hawkes and Plewis (2008). Note that in the response model of missingness we use an untransformed

version of hpay. The specification of the piecewise linear functional form for level and change

places the knots at £10 and £0 respectively. The priors for the θ and δ parameters are specified

as θ0 ∼ Logistic(0, 1), θk ∼ N(0, 100002) and δ1, δ2 ∼ N(0, 100002). It is the inclusion of the δ

that allows the response missingness to be MNAR. If δ1 = δ2 = 0, then we are assuming MAR

missingness.

Plausible alternative response model of missingness assumptions

We could set up a sensitivity analysis in which the explanatory variables are varied. However, we

restrict our attention to varying the functional form of these variables. A linear functional form

for level and change is an obvious alternative. Possible extensions of this sub-model are discussed

in Section 5.

4.3 Conclusions from base model

The parameter estimates for the two base models, BASE, are shown in Table 2. The θ parameters

associated with country, ethnicity and social class in the response model of missingness are only

shown for the Education Question base model, as those for the Partner Question are similar. As

regards our substantive questions, we find strong evidence that having a degree is associated with

higher pay and weaker evidence that gaining a partner between sweeps is associated with lower
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pay. Compared to the complete case analysis (MoI), the evidence for the association with gaining

a partner has strengthened. The covariate imputations are similar to MoI.CMoM (Section 4.2.2).

We defer discussion of the response model of missingness parameters until Section 4.4.2.

Our strategy also allows for including additional data (step 4) and an elicitation to provide expert

priors (step 5). For example, if we wished to incorporate additional data into the covariate model

of missingness part of our base model, one possibility would be to use a subset of data from the

1970 British Cohort Study (BCS70) taken from sweeps 5 and 6. Data from these sweeps would

be appropriate as they were carried out at similar times to the MCS sweeps 1 and 2, when the

cohort members were aged 30 and 34. The difference is that the BCS70 data would be on the

cohort members themselves rather than their mothers. The BCS70 and MCS data would then be

modelled by simultaneously fitting two sets of equations with common parameters, one for each

data source, allowing these parameters to be estimated with greater accuracy.

As regards elicitation (O’Hagan et al., 2006), it is difficult to elicit priors on parameters directly

and a better strategy is to elicit information about the probability of response and convert this

into informative priors. Elicitation effort should concentrate on the parameters which are not well

identified by the data, in particular those associated with the degree of departure from MAR, and

the process should allow for correlation between variables. For our models, level and change are

the key variables. If a comprehensive elicitation is impractical, extracting information about the

functional form of important parameters from experts or the literature is worthwhile, and this

approach informed our choice of piecewise linear functional form.

4.4 MCS example - assumption sensitivity

We now investigate some of the plausible alternative modelling assumptions noted during the

building of the base model by fitting four sensitivity analyses (models AS1-AS4). These sensitivity

analyses are by no means exhaustive, but are chosen to demonstrate the type of analyses that can

be performed. Each of our chosen sensitivity analyses varies from our base model in a single aspect

so their individual effects can be assessed. A second stage of sensitivity analysis could combine

several changes which are shown to have a sizeable impact on results.

The differences between each of the models AS1-AS4 and BASE are summarised in Table 3. AS1

allows us to explore sensitivity to the choice of functional form in the response model of missingness,

while the last three (AS2, AS3 and AS4) investigate different model of interest assumptions.
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Table 3: Summary of the differences of the joint models for the sensitivity analyses (AS1-
AS4) from the base model (BASE)

model difference from BASEa

AS1 linear functional form for level and change in the response model of missingness
AS2 Normal error distribution for the model of interest
AS3 additional covariates age2 and age× edub for the model of interest
AS4 cube root transform of response for the model of interest
All models run with 2 chains for 100,000 iterations of which 50,000 are burn-in and a thinning rate of 5.

a The key features of BASE are: model of interest - covariates {age, reg, edu or sing}, a log transform of
the response and a t4 error distribution; response model of missingness - piecewise linear functional form
for level and change.

b Education Question only.

Parameter estimates are given for these four models in Table 2. Non-negligible differences in the

parameter estimates of AS1-AS3 from BASE are highlighted in bold, where for this purpose a

non-negligible difference is defined as a percentage difference greater than 10% (and an absolute

difference greater than 0.02). The parameters for AS4 are not directly comparable with the other

models, because AS4 uses a different transform of the response, so differences are not highlighted.

4.4.1 Robustness of the conclusions to substantive questions

All four sensitivity analyses support the conclusions from BASE that gaining a degree is associated

with higher pay, although there is some variation in the strength of support. For the question

relating to partnership status, AS1 provides stronger evidence that gaining a partner between

sweeps is associated with lower pay than BASE or AS2-AS4.

4.4.2 Robustness of the response model of missingness parameter estimates

For both questions, the estimates of the response model of missingness parameters for BASE suggest

that sweep 2 pay is more likely to be missing for individuals who are non-white, but social class and

country make little difference. Those with low levels of hourly pay in sweep 1 are more likely to

be missing, as are those whose pay changes substantially between sweeps. Adding extra covariates

to the model of interest (AS3) and using a cube root transform for the response in the model

of interest (AS4) provide a consistent message. However, assuming Normal rather than t4 errors

for the model of interest (AS2) increases the magnitude of the posterior means of the parameters

associated with level and change.

It is difficult to compare the response model of missingness parameters for BASE and AS1 directly
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because of the change in functional form. However, level, change and eth remain important

predictors of missingness. Regardless of functional form, the 95% intervals of the change parameters

(δ) do not include zero, providing evidence of informative missingness given the model assumptions.

4.4.3 Fit of re-issued individuals

In Section 4.1 we described how data that was collected from seven individuals, as a result of re-

issues, was set to missing. Using data collected from individuals who were originally non-contacts

or refusals for checking the fit of our models is attractive as such individuals are likely to be similar

to those who have missing data, although we must treat our findings with caution as seven is

small. For each individual, a Bayesian p-value (Gelman and Meng, 1996) can be calculated in

WinBUGS as the proportion of iterations in which a higher value than the observed value was

imputed. For both BASE models, these do not suggest any great conflict with the proposed model

(p-values range from 0.18 to 0.76 for the Education Question and from 0.13 to 0.82 for the Partner

Question). Density plots (not shown) of the posterior predictive distribution of hourly pay for

each individual imputed by BASE show that hourly pay is estimated reasonably well for all seven

individuals, but the predictions for all the individuals are subject to considerable uncertainty.

We also calculate the mean square error (MSE) of the fit of hourly pay for the seven individuals,

and use this as a summary measure of the performance of our models in predicting their sweep

2 hourly pay. Table 4 shows the median and 95% interval MSE of the fit of hourly pay for the

seven individuals for our base model, BASE, and the four models run as a sensitivity analysis for

both questions. The posterior distribution of this MSE is somewhat skewed, so the median is a

better measure than the mean, which is unstable due to outlying values of hourly pay for some

individuals. The models with the cube root transform (AS4) and the linear functional form for the

response model of missingness (AS1) fit the seven re-issued individuals best, and there are slight

improvements over BASE for AS3.

4.5 MCS example - parameter sensitivity

The values of δ1 and δ2 control the degree of departure from MAR missingness. We know that

these two parameters are difficult for a model with vague priors to estimate, and lack of convergence

sometimes provides clear evidence of this. Verbeke et al. (2001) envisage a sensitivity analysis in

which the changes in the parameters or functions of interest are studied for different values of δ.
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Table 4: MSE of imputed hourly pay for seven re-issued individuals for models BASE and AS1-AS4

Education Question Partner Question
median 95% interval median 95% interval

BASE 23.6 (3.6,386.9) 21.4 (3.6,347.8)
AS1 10.6 (3.1,40.2) 9.5 (3.2,26.1)
AS2 22.3 (3.8,117.5) 29.1 (4.2,154.1)
AS3 16.8 (3.0,340.7) 16.4 (3.1,296.2)
AS4 9.0 (2.1,79.8) 8.0 (2.1,55.2)

In the same spirit, we also carry out a sensitivity analysis in which a series of models is run with

these two parameters fixed. We refer to this group of models as PS (Parameter Sensitivity), and

it contains eighty-one variants which are formed by combining nine values of δ1 with each of nine

values of δ2. We use the same set of values, namely {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}, for

both δ1 and δ2, which encompasses the estimated values from BASE and AS1 (see δchange values

in Table 2). The design includes nine variants in which the functional form of change is linear,

i.e. δ1 = δ2, with the δ1 = δ2 = 0 variant equivalent to assuming the response is MAR. In contrast

to BASE which estimates δ1 and δ2, the PS models fix δ1 and δ2 using point priors. An alternative

would be to use strongly informative priors.

Before analysing the results, we consider the interpretation of the δ parameters by looking at the

probability of an individual responding. The left and centre plots in Figure 2 show the probability

of response as the change in hourly pay varies assuming that all the other covariates are fixed

(we use level of pay=£10; country=England; ethnicity=white and social class=1), for some of

the scenarios we have analysed for the Partner Question. (Similar plots can be produced for the

Education Question, but are not shown.) We see that for the base case the probability of responding

reduces to almost 0 for reductions in hourly pay of more than £10. For the parameter sensitivity

analyses with δ of 0.5 or -0.5, we also find that the probability of responding can become close to

0 when pay changes by more than £10 in either direction. However, given their hourly pay levels,

we do not expect many of the individuals being modelled to have a change in hourly pay with a

magnitude much greater than £5, and this is certainly the case for those with observed change

(see right plot in Figure 2). Similar plots for parameter sensitivity analyses with δ of 1 or -1 (not

shown) reveal a further narrowing of the range of non-zero probabilities of responding.

We now examine the robustness of our conclusions regarding the substantive questions to changes

in the δ parameters, by analysing PS. The range of results, in terms of the proportional increase in
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Figure 2: Probability of response under different scenarios for the Partner Question and frequency
of observing different levels of change in hourly pay
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All other covariates fixed: level of pay=£10; country=England; ethnicity=white and social class=1.
PS1: δ1 = δ2 = −0.5; PS2: δ1 = −0.5, δ2 = 0.5; PS3: δ1 = 0.5, δ2 = −0.5; PS4 δ1 = δ2 = 0.5.

hourly pay associated with having a degree or gaining a partner is shown in Table 5. The effect of

gaining a partner between sweeps is most sensitive to the different values of δ. If all the PS variants

are plausible, then we cannot even be sure about the direction of this effect, as the models suggest

a range of conclusions from strong evidence of a positive effect to strong evidence of a negative

effect. The results from the MAR analysis lie between the two extremes, close to the base model

(BASE). We now look at ways of presenting the PS results in more detail.

Table 5: Proportional increase in pay associated with having a degree or gaining a partner for PS variants
compared with base model (BASE)

minimum min δ1
a min δ2

a maximum max δ1
a max δ2

a MARb BASE

degree 1.17 -1 0 1.26 1 -0.5 1.20 1.24
(1.07,1.27) (1.17,1.35) (1.09,1.28) (1.15,1.34)

partner 0.76 1 1 1.32 -1 -1 0.93 0.89
(0.70,0.82) (1.18,1.47) (0.88,0.99) (0.80,0.98)

Table shows the posterior mean, with the 95% interval in brackets.
a min δ1, min δ2 and max δ1, max δ2 are the values of δ1 and δ2 corresponding to the PS variant with the parameter’s

lowest and highest posterior mean respectively.
b δ1 = 0 and δ2 = 0 is MAR.

Yun et al. (2007) plot a quantity of interest against a sensitivity parameter, for a set of models in

which this sensitivity parameter is fixed to a range of values, and use the resulting sensitivity plot

to show the dependence of their conclusions to assumptions about the missingness. We extend this

idea to two sensitivity parameters, using trellis graphs to demonstrate the level of robustness of our
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quantities of interest to changes in δ1 and δ2. Figure 3 shows the posterior mean and 95% interval

of the proportional increase in pay associated with having a degree and gaining a partner. Our

conclusions regarding the Partner Question are clearly dependent on the δ values, but are more

robust for the Education Question.

Figure 3: Estimated proportional increase in pay associated with having a degree and gaining a
partner versus δ1 conditional on δ2 from PS variants
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For an alternative presentation of the results, we plot the posterior means of the estimated pro-

portional change in hourly pay associated with a particular covariate as a series of contour lines

(Figure 4). The points at the δ values relating to MAR missingness, our base model (BASE) and

the response model of missingness linear functional form sensitivity analysis (AS1) are marked with

a circle, triangle and diamond respectively. The closer the contour lines, the greater the variation

in the proportional change in pay associated with a selected covariate as δ1 and δ2 change. So the

sparsity of lines in the left plot of Figure 4 indicates the relative robustness of the results relating

to gaining a degree. By contrast, the dense contours in the right plot show that the proportional

increase of 1.3 in pay associated with gaining a partner when δ1 and δ2 are at their most nega-
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tive (δ1 = δ2 = −1), reduces as either δ1 or δ2 increases, until there is a substantial proportional

decrease (0.78) when δ1 and δ2 are at their most positive (δ1 = δ2 = 1).

Figure 4: Posterior mean of proportional change in pay associated with having a degree and gaining
a partner versus δ1 and δ2 from PS variants
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The points at the δ values relating to MAR missingness, BASE and the RMoM linear functional form sensitivity
analysis (AS1) are marked with a circle, triangle and diamond respectively.

As with the assumption sensitivity analyses, we use the mean square error (MSE) of the fit of

hourly pay for the seven re-issued individuals as a measure of model fit. Figure 5, which uses the

same format as Figure 4, suggests that a plausible range of values for our quantities of interest

should be based on models which fall in the upper right quadrant, i.e. the quadrant with positive

δ1 and positive δ2.

Figure 5: The mean square error of the fit of hourly pay for the re-issued individuals versus δ1 and
δ2 from PS variants
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The points at the δ values relating to MAR missingness, BASE and the RMoM linear functional form sensitivity
analysis (AS1) are marked with a circle, triangle and diamond respectively.
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Given models with δ values outside the -0.5 and 0.5 range over-narrow the range of plausible

response probabilities, the information from all these plots suggests that if our conclusions take

account of the PS sensitivity analyses with δ1 = δ2 = 0 (MAR) and δ1 = δ2 = 0.5, then we will be

adequately reporting the results from the range of plausible PS models.

4.6 Reporting conclusions on substantive questions

Our analysis for the Education question clearly suggests that having a degree is associated with

higher pay, but there is some uncertainty about the level of this association. If the results had been

robust, we could simply report the base case analysis and state that the conclusions are robust to a

sensitivity analysis, giving an indication of what this involved. However, given the uncertainty, we

report a range of results covering the region of high plausibility which we have identified, comprising

the base case, four assumption sensitivity analyses and the parameter sensitivity analyses MAR

and δ1 = δ2 = 0.5. To report these in an interpretable manner which enables direct comparison

across all the models, we present a graph (left plot in Figure 6) showing the change in hourly pay

for an individual with a degree against their hourly pay if they do not have a degree (all other

characteristics remain unchanged). We find that most of the sensitivity analyses suggest lower

increases from gaining a degree than the base case. The interquartile range for hourly pay in sweep

1 in our dataset is (£5,£10), with just 2 individuals earing over £25. Our analysis suggests that

for an individual earning £10 an hour, gaining a degree would make a difference of between £1.78

(£0.87,£2.76)(AS3) and £2.59 (£1.62,£3.67)(AS2) an hour (based on the posterior means, with

95% credible intervals shown in brackets).

In addition to plotting the black lines based on the posterior means of the parameters associated

with gaining a degree, we have added grey lines calculated using the 2.5 and 97.5 percentiles of

the posterior distribution for the base case to indicate the uncertainty within a particular model.

At £10, this suggests an increase between £1.52 and £3.40 is plausible. These 95% interval lines

encompass the point estimates for all the scenarios except that using a cube root transform (AS4),

where the curved profile suggests that there is less of a gain for those who already have high pay.

We also include the results of the complete case analysis (dashed-dot line labelled MoI) for com-

parison. This line is almost coincident with the AS2 line, and slightly higher than the base case

line and all the other sensitivity analyses shown. Interval lines for the complete case analysis (not

shown) are close to their base case counterparts. Using MoI, at £10, gaining a degree results in a
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Figure 6: Presentation of results on substantive questions
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coincident.

£2.57 (£1.61,£3.60) increase in pay.

Similarly, we report our conclusions for the Partner Question using the right plot in Figure 6. This

leads us to report that there is weak evidence that gaining a partner is associated with lower pay,

and the reduction is likely to be between £0.66 (£1.32,-£0.03)(MAR) and £1.71 (£2.32,£1.07)(PS)

an hour for an individual earning £10 an hour. The MAR 95% interval just includes no change.

For this question, in contrast to the Education question, the uncertainty generated by the missing

data is greater for the parameter sensitivity analysis than the assumption sensitivity analysis. The

complete case analysis (£0.79 (£1.42,£0.11) at £10) is further removed from the base case (£1.11

(£1.96,£0.20) at £10) and captures less of the uncertainty as the width of the 95% interval is

reduced. We also point out that some models run as part of the parameter sensitivity analysis

suggest that change in partnership status is associated with an increase in pay, but these models

do not fall in the region of high plausibility.
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5 Extensions of modelling strategy

Our proposed strategy assumes that the covariates are MAR, but in principle step 2 can be elab-

orated to allow MNAR covariates. This raises a number of questions, for example should we use

separate missingness indicators for the covariates and the response or should we use an overall

missingness indicator for attrition? If we use separate indicators, a new sub-model linked to the

existing covariate model of missingness is required. In implementing this we would need a different

indicator for each covariate pattern of missingness. Alternatively, if we use an overall missingness

indicator for attrition, we then also require a method for dealing with any item missingness that

occurs in the response or covariates. Although in theory a model allowing MNAR covariates could

be designed, it may currently be computationally prohibitive in WinBUGS. Conversely, if we have

reason to suspect that the responses are not generated by an informative missingness process, then

the strategy can be simplified by omitting step 3 and restricting the sensitivity analysis to varying

the assumptions.

In Section 2 we discussed the different types of non-response that can occur, but in our applications

modelled the missing data as a homogeneous process. However, the non-response in sweep 2 can

result from the failure to trace families who have moved, failure to contact families at a known

address and refusal of individuals to continue to cooperate. As we know that these three types of

non-response have different correlates (Plewis, 2007b; Plewis et al., 2008), there is considerable scope

for expanding the sensitivity analysis to re-specify the response model of missingness to specifically

allow for these differences. This could be implemented by modelling a missingness indicator with

separate categories for each type of non-response using multinomial regression.

In our application, we do not distinguish between missing income resulting from the entire sweep

being missing and item non-response. Also, as we are only using two sweeps of data, we cannot

distinguish between wave non-response and attrition. Including a further sweep would allow this

distinction to be made. Again, extending the response model of missingness using multiple missing-

ness indicators would allow different predictors to be used for item missingness, wave missingness

and attrition. Further, we restricted our analysis to individuals with fully observed data in sweep

1, and individuals with sweep 1 missingness could also be incorporated.

There are situations where it may be necessary to adapt this strategy. For example, if the dataset

to be modelled is very large, or there are large numbers of covariates with missingness, then running

times may be prohibitive or computational issues encountered. In these circumstances, one option is
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to take a two stage approach and impute some or all of the covariates prior to running the other parts

of the model. In this case issues surrounding multiple imputation regarding compatibility will apply

(Rubin, 1996; Carpenter and Goldstein, 2004), and a combination of Bayesian and non-Bayesian

methods are used. It may be possible to identify covariates where using simplistic assumptions to

impute their missingness is acceptable (as we have done for age and region here). If not all the

covariates are correlated, another option is to split the covariate model of missingness into several

smaller sub-models. Although we have implemented our strategy using Bayesian models, there is

no reason why the general principles could not be adapted for a non-Bayesian framework.

6 Conclusions

Compared to performing a complete case analysis, the implementation of this strategy which enables

a ‘principled’ missing data analysis is time-consuming in terms of the extra work in designing and

implementing a base model and number of sensitivity analyses. The computing for the applications

in this paper was reasonably rapid, typically 30-40 minutes for each model on a desktop computer

with a dual core 2.4GHz processor and 3.5GB of RAM. However, the time taken to implement

this more complex analysis is still likely to be a small fraction of the overall time spent collecting,

preparing and analysing the data. In return, realistic assumptions about the missingness mechanism

can be thoroughly explored and the uncertainty resulting from the missing data properly reflected

in the discussion of results.

A complete case analysis leads to broadly similar conclusions to our substantive questions as the

full sensitivity analysis, i.e. we would report an increase in pay associated with gaining a degree

and a decrease in pay associated with gaining a partner. However, the complete case analysis tends

to overestimate the magnitude of the increase for the Education Question and underestimate the

decrease for the Partner Question. For the second question, the complete case analysis also fails

to fully capture the uncertainty in the estimates. In short, the conclusions about a substantive

question will be more soundly based and can be reported with greater confidence if our proposed

strategy is followed.
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Appendices

This appendix contains the WinBUGS code for running the base model for the Education Ques-

tion. Function elicitor.piecewise, written by Mary Kynn, is used to implement the piecewise linear

regression in the response model of missingness, and can be downloaded from the WinBUGS de-

velopment website (http://www.winbugs-development.org.uk/). Alternatively, extra code could be

written in WinBUGS to specify this model.� ������� �	
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