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Unmeasured Confounding in Epidemiological Studies

• The study of the influence of environmental risk factors on health
is typically based on observational data

• Due to the nature of the research question, existing
environmental contrasts (e.g. related to air pollution, water
quality, ...) are commonly exploited in designs that link
environmental measures with routinely collected administrative
data (e.g. disease registers, hospital admissions,...)

• Such data sources will typically have a limited number of
variables for a large population, and might miss important
confounders

• Exposure effect estimates will be biased without proper
adjustment for confounders
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Dealing with Unmeasured Confounding

Problem:
• Administrative databases are important source of data on health

and socioeconomic outcomes on large populations, but they
typically lack detailed information on potential confounding
variables

Possible solutions to adjust for unmeasured confounders:
• Sensitivity analysis

• requires prior information (fully elicited, ‘plausible bounds’,
previous studies) about effects of unmeasured confounding

• Treat as missing data problem
• requires use of additional data that contains more detailed

information

In this talk, I will discuss the missing data perspective
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Information About Unmeasured Confounders
Use of Supplementary (enriched) Datasets

• We consider the situation where
• Confounders are identified but not measured in main database
• Information about the unmeasured confounders may be available

from additional datasets (e.g. surveys or cohort samples)

• We distinguish between the primary data versus the
supplementary (enriched) data, which provide information about
unmeasured confounders

• Analysis involves synthesis of multiple sources of empirical
evidence

• This will require exchangeability (compatibility) assumptions
between different data sources....
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Case study: Water Disinfection By-Products and Risk
of Low Birthweight

• Objective: To estimate the association between trihalomethane
(THM) concentrations, a by-product of chlorine water disinfection
potentially harmful for reproductive outcomes, and risk of full
term low birthweight (LBW; <2.5kg)

• Information was collected for 8780 births between 2000 and
2001 in North West England, serviced by the United Utilities
Water Company.

• Birth records obtained from the Hospital Episode Statistics (HES)
data base were linked to estimated THM water concentrations
using postcode of residence at birth and a model to estimate
THM concentration from the water company monitored samples.
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The Primary Data: HES

• The primary data have the advantage of capturing information on
all hospital births in the population under study.
→ Good statistical power, fully representative

• However, they contain only limited information on the mother and
infant characteristics which impact birth weight.
→ Potentially biased

• They contain data on mother’s age, baby gender, gestational age
and an index of deprivation, but no data on on maternal smoking
or ethnicity.
→ How to account for unmeasured confounders?
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Sources of Supplementary (enriched) Data

• The Millennium Cohort Study (MCS) contains survey information
(stratified sample) on mothers and infants born during
2000-2001.

• 824 cohort births in study region — can be matched to the
hospital data using postcode, sex, DOB

• Contains detailed information on maternal ethnicity, smoking,
and other covariates, such as alcohol consumption, education,
BMI.

• We combine information from the survey data with the hospital
data using Bayesian hierarchical models.
→ treat unmeasured confounders as ‘missing data’
→ approx 90% births have missing data
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Summary of Data Sources

Primary data (n=7956) Supplementary data (n=824)
THM>60µg/L THM≤60µg/L THM>60µg/L THM≤60µg/L

LBW 144 (3.8%) 130 (3.1%) 14 (4.0%) 9 (1.9%)

Maternal 27.9 ± 6.1 27.3 ± 6.0 27.8 ± 6.2 28.1 ± 5.9
age

Male 1956 (52%) 2076 (50%) 176 (51%) 254 (53%)
baby

Deprivation 4.1 ± 1.3 4.3 ± 1.2 4.0 ± 1.1 4.0 ± 1.2
index

Maternal 126 (36%) 181 (38%)
smoking

Non-white 77 (22%) 48 (10%)
ethnicity
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Analysis results using a single data source

Odds ratio (95% interval estimate)
HES only (n=8969) MCS only (n=824) MCS only (n=824)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 2.06 (0.85,4.98) 1.87 (0.76, 4.62)
Mother’s age
≤ 25 1.14 (0.86,1.52) 0.65 (0.23,1.79) 0.57 (0.20, 1.61)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.13 (0.02,1.11) 0.13 (0.02, 1.11)
≥ 35 1.10 (0.73,1.65) 1.57 (0.49,5.08) 1.82 (0.55, 5.99)

Male baby 0.76 (0.60,0.96) 0.59 (0.25,1.43) 0.62 (0.25, 1.49)
Deprivation index 1.37 (1.20,1.56) 1.54 (0.78,3.02) 1.44 (0.73, 2.85)
Smoking 3.39 (1.26, 9.12)
Non-white ethnicity 2.66 (0.69,10.31)
? Reference group

Biased from unmeasured confounders?
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Analysis results using a single data source

Odds ratio (95% interval estimate)
HES only (n=8969) MCS only (n=824) MCS only (n=824)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 2.06 (0.85,4.98) 1.87 (0.76, 4.62)
Mother’s age
≤ 25 1.14 (0.86,1.52) 0.65 (0.23,1.79) 0.57 (0.20, 1.61)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.13 (0.02,1.11) 0.13 (0.02, 1.11)
≥ 35 1.10 (0.73,1.65) 1.57 (0.49,5.08) 1.82 (0.55, 5.99)

Male baby 0.76 (0.60,0.96) 0.59 (0.25,1.43) 0.62 (0.25, 1.49)
Deprivation index 1.37 (1.20,1.56) 1.54 (0.78,3.02) 1.44 (0.73, 2.85)
Smoking 3.39 (1.26, 9.12)
Non-white ethnicity 2.66 (0.69,10.31)
? Reference group

Lacks power to detect an association
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Analysis results using a single data source

Odds ratio (95% interval estimate)
HES only (n=8969) MCS only (n=824) MCS only (n=824)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 2.06 (0.85,4.98) 1.87 (0.76, 4.62)
Mother’s age
≤ 25 1.14 (0.86,1.52) 0.65 (0.23,1.79) 0.57 (0.20, 1.61)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.13 (0.02,1.11) 0.13 (0.02, 1.11)
≥ 35 1.10 (0.73,1.65) 1.57 (0.49,5.08) 1.82 (0.55, 5.99)

Male baby 0.76 (0.60,0.96) 0.59 (0.25,1.43) 0.62 (0.25, 1.49)
Deprivation index 1.37 (1.20,1.56) 1.54 (0.78,3.02) 1.44 (0.73, 2.85)
Smoking 3.39 (1.26, 9.12)
Non-white ethnicity 2.66 (0.69,10.31)
? Reference group

Some evidence of confounding
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Modelling the Unmeasured Confounders
Overall Objectives

• Building models that can link various sources of data containing
different sets of covariates

• to fit a common regression model
• and to account adequately for uncertainty arising from missing or

partially observed confounders in large data bases

• We compare

• Fully Bayesian joint model for the outcomes and missing
confounders

• Alternative two-stage imputation strategies

• Bayesian propensity score adjustment for missing confounders
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Bayesian graphical models

• Bayesian graphical models provide a coherent way to connect
local sub-models based on different datasets into a global unified
analysis.

• BHM allow propagation of information between the model
components following the graph

• In the case of missing confounders, several decompositions of
the marginal likelihood can be used, as well as different
imputation strategies
• Lead to different ways for information propagation or feedback

between the model components

• Modularity helps our understanding of assumptions made when
adjusting for missing confounders
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Variables and Notation

Introducing some notation:
• Y - outcome, e.g. low birthweight

• X - exposure of interest, e.g. THM concentrations

• C - vector of fully measured confounders, e.g. mother’s age,
baby gender, deprivation index

• U - vector of partially measured confounders, e.g. smoking,
ethnicity. Note that covariates in U are identified but might be
missing.

• Objective: estimate the association between X and Y while
controlling for (C,U)

We now compare three Bayesian approaches
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Approach 1: Bayesian joint model

• Build a Bayesian joint model (BJM) consisting of
• an analysis sub-model (to answer question of interest)
• an imputation sub-model (to impute missing U)

• This is a single stage process in which the unknown parameters
and missing data are estimated simultaneously
• ensures consistency
• all sources of uncertainty are automatically propagated

P(Y |X ,C) =

∫
P(Y |X ,C,U)P(U|X ,C)dU

This strategy requires modelling distributional assumptions about U
given (X ,C).
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Specification of Bayesian joint model for case study

• Analysis model: Logit for P(Y |X ,C,U)

Yi ∼ Bernoulli(pi), baby i

logit(pi) = β0 + βX Xi + βT
CC i + βT

UU i

• Imputation model: Multivariate Probit for P(U|X ,C)

U?
i ∼ MVN(µi ,Σ)

µi = γ0 + γX Xi + γT
C C i

Uiq = I(U?
iq > 0), q = 1,2

U?
i =

(
U?

i1
U?

i2

)
, µi =

(
µi1
µi2

)
, Σ =

(
1 κ
κ 1

)
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Accounting for the sampling bias in the MCS

• The supplementary data (MCS) is not a random sample from the
primary data (HES)

• The MCS cohort is a stratified sample (oversamples low
socio-economic and ethnic categories)

• Each outcome Yj in the MCS cohort is associated with a stratum
Sj and a sampling weight wj

• We have implemented two approaches to account for this
sampling bias

1. include the stratum in the imputation model as stratum specific
intercepts (i.e. replace γ0 with γsj )

2. perform weighted imputation (i.e. replace Σ with Σj = 1
wj

Σ)

• For clustered sampling designs, could include cluster random
effects in imputation model
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Graphical representation of Joint Bayesian Model

Uj

γ,Σ

β

Observed

Primary Data Supplementary Data

Unobserved

Xj Cj

Yj

Ui

Ci Xi

Yi
i in 1,...,n j in 1,..,m

Si Sj
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Analysis results using Approach 1
Odds ratio (95% interval estimate)

HES only HES+MCS HES+MCS
(stratum adjusted) (weight adjusted)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 1.17 (0.88,1.53) 1.20 (0.87,1.59)
Mother’s age
≤ 25 1.14 (0.86,1.52) 1.02 (0.71,1.38) 0.99 (0.71,1.35)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.85 (0.57,1.21) 0.85 (0.57,1.20)
≥ 35 1.10 (0.73,1.65) 1.43 (0.88,2.21) 1.40 (0.86,2.16)

Male baby 0.76 (0.60,0.96) 0.76 (0.59,0.97) 0.76 (0.58,0.97)
Deprivation index 1.37 (1.20,1.56) 1.19 (1.01,1.38) 1.27 (1.10,1.47)
Smoking 3.91 (1.35,9.92) 3.97 (1.35,9.53)
Non-white ethnicity 3.56 (1.75,6.82) 4.11 (1.23,9.74)
? Reference group

Accounting for missing confounders has reduced OR of THM
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Approach 2: Two-stage imputation strategies
• Many imputation strategies for missing data do not use a fully

Bayesian formulation, but a variety of two-stage procedures to
approximate a fully Bayesian model

• Can be useful when full joint analysis is difficult computationally,
but some bias can be expected
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Multiple Imputation
• Multiple Imputation, MI (Rubin, 1978, 1987) is a widely used

two-stage procedure for imputing missing data
• first impute the missing data, P(U|X ,C,Y ,S)

• then analyse the completed datasets,
P(Y |X ,C, Ûk ), k = 1, ...,K , and pool results

• Rubin justifies MI as an approximate Bayesian procedure if the
imputations (Ûk ) are draws from a posterior predictive
distribution for the missing data given the observed data (and a
suitable model)

• Notice that imputation model needs to include all variables
related to the missing variables (including response, Y ) and
stratum variables S related to missingness

• Most of the practical issues with MI concern the choice of, and
draws from, the imputation model
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Multiple Imputation
• When U is multivariate and includes categorical variables,

drawing from fully defined joint distribution, P(U|X ,C,Y ,S), can
be difficult in practice

• One alternative is to iterate between a set of univariate conditional
distributions P(Uq |X ,C,Y ,S,U\q), q = 1, ...Q,

• Implemented in, e.g. MICE (van Buuren)
• Convergence to valid joint posterior not guaranteed
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Graphical representation for MICE approach

U1i ∼ Bernoulli(qi)

logit(qi) = θs(i) + λX Xi + λT
CC i + λUU2i + λY Yi

U2i ∼ Bernoulli(ri)

logit(ri) = φs(i) + δX Xi + δT
CC i + δUU1i + δY Yi

We have a cycle
so diagram is
NOT a DAG!

individual i
stratum s

qi

U2i

ri δ

φs(i)Xi C i Yi

U1i

λ

θs(i)

smkiλ

θs(i)

ethi δ

φs(i)Xi C i Yi

individual i
stratum s

smkiλ

θs(i)

ethi δ

φs(i)Xi C i Yi

smkiλ

θs(i)

ethi δ

φs(i)Xi C i Yi

We iterate between 2 parts of imputation model, then fit analysis model
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‘Feedforward’ imputation strategy
• A related idea with flavours of MI and JBM is to fit an

approximate JBM using a ‘Feedforward’ strategy
• performs successively P(U|X ,C,S) then P(Y |X ,C,U) within

same MCMC run
• can be thought of as cutting feedback from Y to U (and

implemented using e.g. the cut-function in Winbugs)
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Graphical representation of ‘Feedforward’ Model

Uj

γ

β

Observed

Primary Data Supplementary Data

Unobserved

Xj Cj

Yj

Ui

Ci Xi

Yi
i in 1,...,n j in 1,..,m

Si Sj
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‘Feedforward’ imputation strategy
• A related idea with flavours of MI and JBM is to fit an

approximate JBM using a ‘Feedforward’ strategy
• performs successively P(U|X ,C,S) then P(Y |X ,C,U) within

same MCMC run
• can be thought of as cutting feedback from Y to U (and

implemented using e.g. the cut-function in Winbugs)

• Should modify the sampling distribution of U to include Y
• performs successively P(U|X ,C,S,Y ) then P(Y |X ,C,U)
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Graphical representation of ‘Feedforward’ Model
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Unobserved
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i in 1,...,n j in 1,..,m
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‘Feedforward’ imputation strategy
• A related idea with flavours of MI and JBM is to fit an

approximate JBM using a ‘Feedforward’ strategy
• performs successively P(U|X ,C,S) then P(Y |X ,C,U) within

same MCMC run
• can be thought of as cutting feedback from Y to U (and

implemented using e.g. the cut-function in Winbugs)
• Should modify the sampling distribution of U to include Y

• performs successively P(U|X ,C,S,Y ) then P(Y |X ,C,U)

• Imputation model: multivariate imputation of U
• No need for MI combining rules as sampled U ’s are fed

automatically into analysis model at each MCMC iteration
• For normal linear analysis model with vague priors, feedforward

model is equivalent to JBM
• Main advantage is that cutting feedback can improve

computational efficiency and robustness
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Comparison with alternative imputation strategies

Odds ratio (95% interval estimate)
Fully Bayesian Feedforward only Feedforward only

joint model (no response) (with response)
Trihalomethanes
> 60µg/L 1.17 (0.88,1.53) 1.33 (1.02,1.72) 1.24 (0.76,1.93)
Mother’s age
≤ 25 1.02 (0.71,1.38) 1.15 (0.85,1.52) 1.03 (0.71,1.45)
25− 29? 1 1 1
30− 34 0.85 (0.57,1.21) 0.82 (0.57,1.15) 0.85 (0.55,1.25)
≥ 35 1.43 (0.88,2.21) 1.16 (0.74,1.68) 1.36 (0.81,2.17)

Male baby 0.76 (0.59,0.97) 0.76 (0.59,0.96) 0.77 (0.55,1.05)
Deprivation index 1.19 (1.01,1.38) 1.34 (1.17,1.53) 1.22 (1.02,1.45)
Smoking 3.91 (1.35,9.92) 1.09 (0.78,1.48) 3.33 (1.40,6.49)
Non-white ethnicity 3.56 (1.75,6.82) 1.34 (0.92,1.87) 2.84 (1.01,6.27)
? Reference group

Simple Feedforward provides inadequate adjustment
Including Y is beneficial but some bias/inefficiency seems to remain
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Comparison of Bayesian models with MICE
Odds ratio (95% interval estimate)

Fully Bayesian Feedforward only MICE: 20 imputations
joint model (with response) (with response)

Trihalomethanes
> 60µg/L 1.17 (0.88,1.53) 1.24 (0.76,1.93) 1.22 (0.91, 1.62)
Mother’s age
≤ 25 1.02 (0.71,1.38) 1.03 (0.71,1.45) 0.98 (0.69, 1.38)
25− 29? 1 1 1
30− 34 0.85 (0.57,1.21) 0.85 (0.55,1.25) 0.84 (0.58, 1.22)
≥ 35 1.43 (0.88,2.21) 1.36 (0.81,2.17) 1.32 (0.86, 2.03)

Male baby 0.76 (0.59,0.97) 0.77 (0.55,1.05) 0.73 (0.58, 0.93)
Deprivation index 1.19 (1.01,1.38) 1.22 (1.02,1.45) 1.23 (1.05, 1.44)
Smoking 3.91 (1.35,9.92) 3.33 (1.40,6.49) 4.01 (1.32,12.15)
Non-white ethnicity 3.56 (1.75,6.82) 2.84 (1.01,6.27) 2.73 (1.83, 4.09)
? Reference group

MICE provides similar adjustment to Feedforward only,
but with narrower intervals
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Approach 3: Bayesian propensity score adjustment
• JBM and MI become more difficult computationally as the

dimension of U increases

• JBM and MI require parametric assumptions about U that can be
difficult to verify

• In approach 3, we attempt to overcome these difficulties using a
propensity score approach

• In approaches 1 and 2, we model

P(Y |X ,C) =

∫
P(Y |X ,C,U)P(U|X ,C)dU

• By contrast, in approach 3 we model

P(Y ,X |C) =

∫
P(Y |X ,C,U)P(X |U,C)P(U|C)dU

or, more precisely
∫

P(Y |X ,C,Z (U))P(X |Z (U),C)P(Z (U)|C)dZ (U)
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Specification of the propensity score model

• P(Y ,X |C,Z (U)) is modelled using a pair of equations:

logit [P(Y = 1|X ,C,Z (U))] = β0 + βX X + βT
CC + βT

Ug{Z (U)}
logit [P(X = 1|C,Z (U))] = γ0 + γT

C C + γT
U U

• The scalar quantity Z (U) = γT
U U is called the conditional

propensity score (conditional on C)

• Can show that there is no unmeasured confounding of the Y − X
association conditional on C,Z (U)

• In general, the quantity g{Z (U)} is a semi-parametric linear
predictor with regression coefficients βU . Its link to Y has to be
modelled flexibly, e.g using natural splines.
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Bayesian propensity score with missing data

• Recall P(Y ,X |C)=
∫

P(Y |X ,C,Z )P(X |Z ,C)P(Z |C)dZ
where, for notational convenience, Z = Z (U)

• To complete specification, require a model for P(Z |C)

• Assumption 1: U and C marginally independent
• We may approximate:

P(Y ,X |C) = EZ{P(Y ,X ,Z |C)} ≈ 1
m

m∑
j=1

P(Y |X ,C,Zj )P(X |Zj ,C)

where {Zj |j = 1, . . . ,m} is the empirical distribution of the
estimated propensity score in the Supplementary data

• Weighting can be included in the summation to account for the
stratified sampling

• Requires no parametric assumptions about distribution of U or Z
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Graphical representation of Propensity Score Model

Uj

γ

β

Observed

Primary Data Supplementary Data

Unobserved
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Bayesian propensity score with missing data
• Assumption 2: U and C not marginally independent

• Now require P(Y ,X |C) = EZ |C{P(Y ,X ,Z |C)}
• If sample size of Supplemental data is sufficiently large and C low

dimensional:
• could stratify empirical distribution of {Zj |j = 1, . . . ,m} by C-strata
• then estimate expectation by empirical summation as before
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Bayesian propensity score with missing data
• Supplementary data sample typically not large enough to stratify
→ Fit simple univariate parametric model to estimate conditional

distribution of Z |C in Supplementary data

Z |C ∼ N(θ̂T C, σ̂2)

where θ̂T C = θ̂0 + θ̂1C1 + ...+ θ̂pCp is the estimated mean
propensity score conditional on C

• (θ̂, σ̂2) are ML point estimates obtained from preliminary
regression analysis of Supplementary data

• We then approximate

EZ |C{P(Y ,X ,Z |C)} ≈ 1
m

K∑
k=1

ωkP(Y |X ,C,ZC,k )P(X |ZC,k ,C)

where (ZC,k , ωk ) is a histogram approximation to the Normal
distribution N(θ̂T C, σ̂2)
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Contrasting propensity score conditioning with
imputation

• A major benefit of this approach is that it can easily extend when
dim(U)>2, whereas a multivariate probit imputation model will
become difficult to implement with a high dimensional U

• The Us are not imputed but their empirical distribution in the
supplementary data is used

• A joint model of the primary and supplementary data is used
⇒ Uncertainty in estimation of propensity score coefficient in the

supplementary data is propagated into the primary analysis
• but, ignores parameter uncertainty in conditional distribution of

propensity score in case of non-independence of U and C

• Note that effects of other covariates on Y will not necessarily be
estimated without bias if they are correlated with U.
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Comparison of full Bayes imputation v Bayesian
propensity score adjustment

Odds ratio (95% interval estimate)
HES only Fully Bayesian Bayesian propensity

(weight adjusted) score adjustment†

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 1.20 (0.87,1.59) 1.21 (0.91,1.60)
Mother’s age
≤ 25 1.14 (0.86,1.52) 0.99 (0.71,1.35) 1.14 (0.86,1.52)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.85 (0.57,1.20) 0.80 (0.58,1.14)
≥ 35 1.10 (0.73,1.65) 1.40 (0.86,2.16) 1.11 (0.74,1.67)

Male baby 0.76 (0.60,0.96) 0.76 (0.58,0.97) 0.76 (0.60,0.95)
Deprivation index 1.37 (1.20,1.56) 1.27 (1.10,1.47) 1.35 (1.19,1.55)
Smoking 3.97 (1.35,9.53)
Non-white ethnicity 4.11 (1.23,9.74)
? Reference group; † P(U|C) = P(U)

Both approaches reduce OR of THM
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Comparison of full Bayes imputation v Bayesian
propensity score adjustment

Odds ratio (95% interval estimate)
HES only Fully Bayesian Bayesian propensity

(weight adjusted) score adjustment†

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 1.20 (0.87,1.59) 1.21 (0.91,1.60)
Mother’s age
≤ 25 1.14 (0.86,1.52) 0.99 (0.71,1.35) 1.14 (0.86,1.52)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.85 (0.57,1.20) 0.80 (0.58,1.14)
≥ 35 1.10 (0.73,1.65) 1.40 (0.86,2.16) 1.11 (0.74,1.67)

Male baby 0.76 (0.60,0.96) 0.76 (0.58,0.97) 0.76 (0.60,0.95)
Deprivation index 1.37 (1.20,1.56) 1.27 (1.10,1.47) 1.35 (1.19,1.55)
Smoking 3.97 (1.35,9.53)
Non-white ethnicity 4.11 (1.23,9.74)
? Reference group; † P(U|C) = P(U)

Other OR unchanged if they are correlated with U
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Bayesian propensity score adjustment: Comparison of
assumptions about P(U|C)

Odds ratio (95% interval estimate)
Fully Bayesian Bayesian propensity Bayesian propensity

(weight adjusted) score adjustment score adjustment
P(U|C) = P(U) P(U|C) 6= P(U)

Trihalomethanes
> 60µg/L 1.20 (0.87,1.59) 1.21 (0.91,1.60) 1.23 (0.94, 1.64)
Mother’s age
≤ 25 0.99 (0.71,1.35) 1.14 (0.86,1.52) 1.13 (0.85, 1.46)
25− 29? 1 1 1
30− 34 0.85 (0.57,1.20) 0.80 (0.58,1.14) 0.82 (0.59, 1.13)
≥ 35 1.40 (0.86,2.16) 1.11 (0.74,1.67) 1.18 (0.79, 1.75)

Male baby 0.76 (0.58,0.97) 0.76 (0.60,0.95) 0.75 (0.58, 0.94)
Deprivation index 1.27 (1.10,1.47) 1.35 (1.19,1.55) 1.28 (1.07, 1.56)
Smoking 3.97 (1.35,9.53)
Non-white ethnicity 4.11 (1.23,9.74)

Assuming dependence betweenU and C has little impact
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Case Study: Conclusions

• Adjustment for unmeasured confounding in environmental
studies is feasible through the use of additional data sources
(e.g. surveys, cohorts, validation subgroups ...)

• In our case study, exposure effect estimate is driven towards the
null once the important confounding effects of mother’s smoking
and ethnicity are taken into account

• Bayesian methods can be flexibly adapted to synthesize
information across of range of additional data sources, e.g. can
incorporate additional sources of data such as area-level census
variables in the imputation model

• One precaution is that we must be careful to study
exchangeability assumptions between data sets and account for
any sampling weights or stratification in the imputation model
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Comparison of Methods (1)

odds ratio for Trihalomethanes > 60µg/L
0 1 2 3 4 5

HESonly

MCSonly

FBM(s)

CUT(s) − with Y

CUT(s) − without Y

BayesPS

MICE(s)
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Comparison of Methods (2)

Joint Feedforward MI Propensity

Model (MICE) Score

X - Y ! ! ! !
relationship

C - Y ! ! ! %
relationship

Coherency ! (!) % !

U high (%) (%) (!) !
dimension

Bayesian ! ! % !
analysis model
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Comparison of Methods (3)

Model Software Burn-in Sample ESS Run
size time

Joint WinBUGS 20000 2×20000 3268 12 hrs
model

Feed WinBUGS 10000 2×10000 6467 5 hrs
forward

MICE R package 19 20×1 20 2 mins

Propensity R code 40000 2×100000 ? 27 hrs
score
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Concluding remarks

• Conceptually, Bayesian models offer an elegant tool for
synthesizing information across data sources to handle problems
of bias in observational data

• BUT, MCMC still imposes practical constraints and can make
Bayesian methods a “hard sell”

• Might expect greater differences between approaches in
situations with

• more complex hierarchical structure

• many more unmeasured confounders

• informative priors

• model mis-specification

...... work in progress
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