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Abstract

Reducing bias from missing confounders is a challenging problem in the analysis of observa-

tional data. Information about missing variables is sometimes available from external validation

data, such as surveys or secondary samples drawn from the same source population. In prin-

ciple, the validation data permits us to recover information about the missing data, but the

difficulty is in eliciting a valid model for nuisance distribution of the missing confounders. Mo-

tivated by a British study of the effects of trihalomethane exposure on risk of full-term low

birthweight, we describe a flexible Bayesian procedure for adjusting for a vector of missing con-

founders using external validation data. We summarize the missing confounders with a scalar

summary score using the propensity score methodology of Rosenbaum and Rubin. The score

has the property that it induces conditional independence between the exposure and the missing

confounders given the measured confounders. It balances the unmeasured confounders across

exposure groups, within levels of measured covariates. To adjust for bias, we need only model

and adjust for the summary score during Markov chain Monte Carlo simulation. Simulation

results illustrate that the proposed method reduces bias from several missing confounders over

a range of different sample sizes for the validation data.

Keywords: Bias; Observational studies; Bayesian inference, causal inference
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1. Introduction

A challenge in observational research is how to reduce bias when there are missing confounding

variables. A popular approach is to use sensitivity analysis techniques that work from the

assumption of a single binary missing confounder (e.g. Rosenbaum and Rubin (1983a)). In

regression analysis, this involves a parametric model for the observed data, averaging over

the distribution of the missing variable. The resulting model is nonidentifiable and indexed

by so-called bias parameters that characterize the confounding effect of the missing variable.

To eliminate confounding, the investigator substitutes values for bias parameters taken from

the literature. Alternatively, one can use a Bayesian approach where uncertainty about bias

parameters is incorporated into the analysis using prior distributions (McCandless, Gustafson

and Levy, 2007).

In practice, we may have complicated patterns of missing confounders and the assumption

of a single binary missing variable is unrealistic. One estimation strategy is to use Bayesian

iterative simulation methods based on data-augmentation (Little and Rubin 2002). This ap-

proach involves modelling the joint distribution of the data and missing confounders. Inference

proceeds via posterior updating of the missing confounders using Markov chain Monte Carlo

(MCMC). But the difficulty is in eliciting a satisfactory model for the nuisance distribution of

missing confounders. They may be numerous, correlated and have continuous or categorical

components. Parametric models may give inadequate representations of complex patterns of

missing data.

In this article, we consider the setting where supplementary information on missing con-

founders is available from external validation data. Examples include secondary samples taken

from the source population, or alternatively, population surveys such as census datasets. See

for example, the paper of Stürmer, Schneeweiss, Avorn and Glynn (2005) from pharmacoepi-

demiology who use survey data with information on missing confounders to improve inferences

in a large healthcare database study. We distinguish between the primary data which denotes
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the original dataset and the validation data which denotes a second smaller sample of subjects

drawn from the same source population and with additional information about missing vari-

ables. The motivation for this work is the intuitive idea that it should be possible to develop a

flexible procedure for using the validation data in order to recover information about the missing

confounders.

The problem of combining inferences from primary and validation data to control for missing

confounders has been studied in the context of two-stage sampling designs. Schill and Drescher

(1997) and Breslow and Holubkov (1997) review two-stage sampling methods for control of

confounding and other biases in observational studies. Fully parametric methods for adjusting

for several missing confounders are available (Wacholder and Weinberg 1994; Wakefield and

Salway 2001; Lin, Sundberg, Wang and Rubin 2006; Jackson, Best and Richardson 2008). But

they are restricted to the setting of one or two covariates that are categorical or continuous.

Alternatively, Chatterjee, Chen and Breslow (2003) describes techniques that use non-parametric

density estimates of the distribution of the missing confounders. However high dimensional

density estimation is difficult in small samples, and these methods are best suited to the case of

a single missing covariate.

We describe a novel Bayesian method for adjusting for several missing confounders using

external validation data. It can be used when the confounders are both continuous and categor-

ical, and it does not require strong parametric assumptions about the distribution of the missing

variables. To adjust for bias we use the idea of propensity scores, proposed by Rosenbaum and

Rubin (1983b). Propensity scores techniques are a class of statistical methods that alleviate the

challenges of specifying a regression model for the outcome variable in the face of multiple con-

founders. See Rubin and Thomas (1996) and Lunceford and Davidian (2004) for an overview of

propensity score techniques. Little and Rubin (2002) review missing data imputation techniques

using probabilities of selection.

In the present investigation, the focus is somewhat different from standard applications of
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propensity scores. We assume that some but not all confounders are measured. To adjust for

the missing confounders, we summarize them using a scalar summary score, which can be inter-

preted as the propensity score conditional on measured confounders. The score has the property

that it induces conditional independence between the exposure and missing confounders, given

measured confounders. It balances the missing confounders across exposure groups. To adjust

for missing confounders in the primary data, we need only adjust for the summary score. Our

approach is to first specify a joint model for the primary and validation data with the propen-

sity score as a missing covariate. We then integrate the propensity score out of the likelihood

function for the primary data during Markov chain Monte Carlo simulation. Modelling the

distribution of the missing confounders is not required.

To illustrate the problem of missing confounders, Section 2 describes a study from environ-

mental epidemiology of the effect of trihalomethane exposure, a water disinfection by-product,

on risk of full-term low birthweight in England. The primary data are obtained from the Hos-

pital Episode Statistics (HES) database, which benefits from a large sample size and national

UK geographic coverage. However, the HES has only limited information on factors influenc-

ing birthweight such as maternal smoking and ethnicity. Rich covariate information on seven

missing confounders is taken from validation data from the Millennium Cohort Study (MCS),

which describes the health of a cohort of UK mothers and children. In Section 3, we describe

a Bayesian method to adjust for missing confounders using propensity scores. We outline the

model, prior distributions and an algorithm for posterior simulation. We apply the method in

Section 4 and show that trihalomethane exposure is associated with increased risk of full-term

low birthweight, but that this association is reduced upon adjustment for missing confounders.

Additionally, we contrast the results with those obtained using propensity score calibration

(PSC) (Stürmer, Schneeweiss, Avorn and Glynn 2005). PSC is an alternative method to adjust

for several missing confounders using propensity scores and external validation data. In Section

5, we present simulation results that study performance over a range of sample sizes for the
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validation data. Section 6 concludes with a discussion.

2. Example: Estimating the Effect of Trihalomethane Ex-

posure on Low Birthweight

To illustrate the problem of missing confounders, we consider the example of an observational

study of the relationship between trihalomethanes, a water disinfection by-product, and risk of

full-term low birthweight in the United Kingdom (Toledano, Nieuwenhuijsen, Best et al. 2005;

Molitor, Jackson, Best and Richardson 2009). Trihalomethanes are formed when chlorine, which

is routinely added to public water supplies in the UK, reacts with natural organic materials in

the water. Pregnant mothers are exposed to trihalomethanes through drinking and bathing.

Animal studies show that water disinfection by-product compounds cause reproductive and

developmental harm at higher doses. But epidemiologic investigations of adverse birth outcomes

have yielded contradictory findings with some studies reporting increased risk of low birthweight,

while others show no association (Toledano et al. 2005). It is important to distinguish between

low birthweight due to preterm birth versus full-term low birthweight, which may indicate

intrauterine growth retardation. Full-term low birthweight is rare and any increase in risk is

likely to be small, but with important public health consequences in view of the large numbers of

mothers and babies exposed to trihalomethanes in the population (see Table 1). Furthermore,

exposure assessment is prone to measurement error and published studies are often missing

information on important confounders. These study characteristics are likely to mask any true

association.

In the present investigation, we build on the work of Toledano et al. (2005) and Molitor et

al. (2009). Our primary data are taken from the Hospital Episode Statistics (HES), which is a

data warehouse with details of all hospital admissions, including births, from National Health

Service (NHS) hospitals in the UK. We consider a total of 8780 births occurring between 2000

and 2001 in a region of Northern England serviced by a single water supply company. A small
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proportion of births occurring in non-NHS hospitals or at home are not included, but there is

no reason to believe that these missing births will cause bias in our analysis. Each birth is

linked to area-level estimates of trihalomethane water concentrations using a postcode-to-water

supply zone link file that was developed by the Small Area Health Statistics Unit at Imperial

College London. See Toledano et al. (2005) for details. The outcome under study is full-term

low birthweight, which is defined as gestational age greater than 37 weeks in combination with

a birthweight less than 2.5kg.

Let Y be an indicator variable for the outcome, taking value one if an infant has full-term low

birthweight, and zero otherwise. Let X be an indicator variable for trihalomethane exposure,

taking value one if the area-level exposure is greater than 60µg/L and zero otherwise. Let C

denote a vector of p = 5 confounding variables that are contained in the primary data. These

include indicator variables for mother’s age (≤ 25, 25-29, 30-34, ≥ 35), an indicator variable if

the baby is male, and Carstairs score quintile, which measures neighborhood-level socioeconomic

deprivation. Upper quintiles imply greater deprivation.

Table 1 gives demographic details of the exposure groups. Full-term low birthweight is more

common in the exposed group occurring in 3.8% of births versus 3.1% for the unexposed group.

To explore the association between X and Y in the primary data, we fit a logistic regression

of Y on X while adjusting for C. The results are presented in Table 2 under the heading

“NAIVE”. We see an odds ratio of 1.32 with 95% interval estimate (1.04, 1.68) indicating that

trihalomethane exposure seems to be associated with increased risk of full-term low birthweight.

A difficulty with the NAIVE analysis is that the effect estimate is likely to be biased from

missing confounders. The HES data has the advantage of a large sample size and nearly exhaus-

tive coverage. But it contains only limited information on factors that influence birthweight,

such as maternal smoking and ethnicity. Trihalomethane water concentrations vary by neighbor-

hood, as do smoking rates and other socioeconomic variables. Without appropriate adjustment

for confounding, the risk patterns between exposure groups may be an artifact of systematic
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differences in characteristics of populations.

In this investigation, information about missing confounders is available from external vali-

dation data. The UK Millennium Cohort Study (MCS) contains survey information on mothers

and infants born during the period 2000-2001 in the same region where the primary data were

collected. The MCS data are a disproportionately stratified sample based on three distinct

strata determined by neighborhood income and ethnicity. Hence, inferences from the MCS data

must adjust for non-random sampling. In regression analysis, this is accomplished by includ-

ing strata-specific intercepts in the model that are indicator variables for each of the sampling

strata. Following Molitor et al. (2009), postcode at birth is used to match MCS subjects with

birth records in the HES, resulting in a match for 824 births. We thus have information about

missing confounders for 824 out of the 8780 births in the same region during 2000-2001. Thus

the primary data has sample size n = 7956, while the validation data where more complete

information on missing confounders is available, has sample size m = 824.

Upon consultation with subject area experts, we identify seven variables in the validation

data that could potentially confound the exposure-outcome association. Let U denote the q = 7

vector of missing confounders, which include lone parent family, number of children living outside

of the home, maternal smoking, alcohol consumption, body mass index prior to pregnancy

≥ 25 kg/m2, non-white ethnicity, and an indicator variable for low education. Table 1 gives a

breakdown of the covariate distributions for the validation data. We see that non-white ethnicity

is imbalanced between exposure groups, whereas smaller imbalances are observed for the other

variables.

Denote the primary data as {(Yi, Xi, Ci, Ui)| for i ∈ 1 : n = 7956} and the validation data

as {(Yj, Xj, Cj, Uj)| for j ∈ 1 : m = 824}. The quantity Ui is completely unobserved. To study

potential confounding induced by U , Table 3 presents odds ratios for the association between

Yj and Xj when adjusting for Cj alone, versus adjusting for Cj and Uj in the validation data.

In the first column of Table 3, we fit a logistic regression of Yj on Xj and Cj. To account for
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the non-random sampling of the MCS data, we include strata-specific intercepts to indicate the

sampling strata. The odds ratio for the exposure effect is equal to 2.06 with 95% interval (0.87,

4.89). In the second column we fit the same regression, but adjust for both Cj and Uj and obtain

1.75 (0.70, 4.34). The odds ratio is shifted towards 1 and the interval is slightly wider, indicating

some evidence of additional confounding by Uj. Together with epidemiological knowledge, this

suggests that the missing Ui may confound the association between Xi and Yi in the primary

data. However, it is difficult to hazard a guess of how much confounding Ui might induce.

One way to study the effect of missing confounders in the primary data is to do a sensitivity

analysis. In Table 4, we present results using the method of Rosenbaum and Rubin (1983a),

which assumes that there is a single binary unmeasured confounder. Table 4 gives odds ratios

for the association between Xi and Yi, conditional on Ci, under various assumptions about the

magnitude of confounding. The analysis assumes that the effect of the missing confounder is

homogeneous across levels of Xi and Ci. Point estimates and standard errors are computed via

maximum likelihood. See Rosenbaum and Rubin (1983a), and McCandless et al. (2007) for

computational details. Note that because the confounder is unmeasured, and the labelling is

arbitrary, we may assume without loss of generality that it increases the probability of exposure.

Table 4 illustrates that a single binary confounder that doubles the odds of the exposure and

outcome would suffice to eliminate the association between Xi and Yi seen in the NAIVE analysis

of Table 2.

3. Bayesian Adjustment for Missing Confounders using

Propensity Scores (BayesPS)

We present a Bayesian method to adjust for missing confounders using external validation

data and propensity scores, which we henceforth call by the acronym BayesPS. In Section 3.1,

we introduce the propensity score conditional on measured confounders, and we illustrate that

it can be used to adjust for missing confounders. We obtain likelihood functions for the primary
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and validation data, integrating over the distribution of the missing propensity score. A family

of prior distributions for model parameters is given in Section 3.2, while Section 3.3 describes

an algorithm for posterior simulation.

3.1 Models

3.1.1 A Model for the Exposure and Outcome Variables

Suppose that (Yi, Xi, Ci, Ui) and (Yj, Xj, Cj, Uj) for i ∈ 1 : n and j ∈ 1 : m are identically

distributed observations drawn from the same population with probability density function

P (Y,X,C, U). Building on the Bayesian propensity score analysis of McCandless, Gustafson and

Austin (2009), we model the conditional density P (Y,X|C,U) using a pair of logistic regression

models:

Logit[P (Y = 1|X,C, U)] = βX + ξTC + ξ̃Tg{Z} (1)

Logit[P (X = 1|C,U)] = γTC + Z, (2)

where Z = γ̃TU .

Equation (1) is a model for the outcome and includes an exposure effect parameter β and a

linear term for the covariates C with regression coefficients ξ = (ξ0, . . . , ξp). Equation (2) models

the probability of exposure, which depends on the measured and missing confounders via the

regression coefficients γ = (γ0, . . . , γp) and γ̃ = (γ̃1, . . . , γ̃q). To ease modelling of regression

intercept terms, we set the first component of C equal to one, so that C is a (p+ 1)× 1 vector,

which includes the intercept.

In equations (1) and (2), the quantity Z = γ̃TU is a scalar summary of U . We define Z as

the propensity score conditional on C, or for the sake of brevity, we say that Z is the propensity

score. The quantity Z is not a propensity score in the usual sense because it lies on the log

odds scale. However, if we condition on C, then the quantity γTC is a constant intercept term

in equation (2), and variability in X due to U is mediated entirely through Z.
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From equation (2) we have that

X ⊥⊥ U |C,Z. (3)

This result is analogous to the conclusion of Theorem 1 of Rosenbaum and Rubin (1983b).

It states that within levels of C, conditioning on Z forces independence between X and U .

The quantity Z functions as a standard propensity score, in the sense that it balances the

distribution of confounders between exposure groups. However, the key difference is that Z

balances the missing confounders U , conditional on C. In Appendix I, we prove that if there

is no unmeasured confounding conditional on (C,U), then equation (3) implies that there is

no unmeasured confounding conditional on (C,Z). This means that exposure effect measures

computed from the marginal density P (Y |X,C,Z) have a causal interpretation. To control for

confounding bias in a Bayesian analysis, we can estimate the exposure effect by using models

which assume that Y ⊥⊥ U |X,C,Z. Thus we can assume that the unmeasured confounders

enter into the conditional expectation of Y only as a function of Z = γTU . For discussion of

Bayesian regression adjustment for the propensity score, see Rubin (1985).

Accordingly, equation (1) includes the quantity Z as a covariate in a regression model for the

outcome. Because Z is a complex scalar quantity with no epidemiological interpretation, its link

to Y is modelled in a nonparametric manner via the linear predictor g{.}. For the trihalomethane

data example, we use splines and let ξ̃Tg{z} =
∑l

j=1 ξ̃jgj{z}, where the quantities gj{.} are

natural cubic spline basis functions with l knots and regression coefficients ξ̃ = (ξ̃0, . . . , ξ̃l). This

gives a smooth yet flexible relationship between Z and Y within levels of X and C. See Little

and An (2004) for a detailed discussion of regression modelling strategies that use the propensity

score as a covariate.

The preceding discussion is valid only if Z is known. However the regression coefficients

γ̃ are not known, and if we multiply the wrong coefficients by U then none of the conditional

independence assumptions hold. The parameter γ̃ is estimated simultaneously with (β, γ, ξ, ξ̃)

in a full Bayesian analysis. Consequently, when fitting equations (1) and (2), we average over
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the posterior distribution of γ̃. Provided that all models are correctly specified, then the pos-

terior will tend to concentrate at the true value of γ̃ as we collect more data, hence providing

increasingly better control of confounding.

We note that we could alternatively control confounding from C and U by fitting the outcome

model

Logit[P (Y = 1|X,C, U)] = βX + ξ̃Tg{Z̃} (4)

where Z̃ = Logit[P (X = 1|U,C)] = γTC + γ̃TU . This is a standard approach to adjustment for

confounding (e.g. Lunceford and Davidian 2004), and it does not distinguish between measured

and missing confounders in calculating the propensity score. However, an advantage of using

equation (1) rather than equation (4) is that it allows direct modelling of variability in Y arising

from C. We include a linear term “...+ξTC+ ..” while summarizing U with the propensity score

Z. This is appropriate in the present context because C is measured while U is not. Another

approach to control confounding from U would be to include the covariates and propensity score

in the outcome model simultaneously, in the spirit of double robustness (Lunceford and David-

ian 2004).

3.1.2 The Resulting Model when U is Missing

In the primary data, the quantities Y,X and C are observed while U is missing. Equations

(1) and (2) define the density P (Y,X|C,U), and we can use it to calculate the marginal model

for P (Y,X|C) integrating over U . We have

P (Y,X|C) = E{P (Y, U,X|C)}

=

∫
P (Y |X,C, U)P (X|C,U)P (U |C)dU, (5)

where P (Y |X,C, U) and P (X|U,C) are given in equations (1) and (2). To complete the spec-

ification, equation (5) requires a model for U given C, which can be difficult to specify if U

is high dimensional with complex correlation structure. However, this can be circumvented by
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using propensity scores because only Z is needed to fit equations (1) and (2). We do not need

to model U directly in order to estimate the exposure effect. Instead we propose to model the

missing one-dimensional Z.

One simplification is to assume that C and U are marginally independent, meaning that

P (U |C) = P (U). In this case, we propose to model the missing Z in the primary data by using

the empirical distribution of the propensity scores in the validation data, which are given by

{Zj = γ̃TUj|j ∈ 1 : m}. This permits us to compute equation (5) using the approximation

P (Y,X|C) ≈ 1

m

m∑
j=1

[
exp{Y (βX + ξTC + ξ̃Tg{Zj})}
1 + exp{βX + ξTC + ξ̃Tg{Zj}}

][
exp{X(γTC + Zj)}
1 + exp{γTC + Zj}

]
. (6)

Alternatively, we can use a quadrature estimate

P (Y,X|C) ≈
M∑

k=1

ωk

[
exp{Y (βX + ξTC + ξ̃Tg{Ẑk})}
1 + exp{βX + ξTC + ξ̃Tg{Ẑk}}

][
exp{X(γTC + Ẑk)}
1 + exp{γTC + Ẑk}

]
, (7)

based on a histogram of the empirical distribution of the propensity scores in the validation data.

Here the index k equals 1, . . . ,M , where M is the number of histogram bins. The quantities

Ẑk are the interval midpoints in the histogram and ωk are the bin frequencies. In applications,

we find equation (7) faster to compute than equation (6) because it is a summation of size M

rather than size m and typically M << m.

An advantage of using equation (7) as a model for the primary data is that it requires no

parametric assumptions for the nuisance distribution of U . It can be used regardless of the

correlation structure of the components of U and with continuous and categorical variables.

However, a disadvantage is that it assumes that U and C are marginally independent and this

may not be plausible in some settings. For example, in the trihalomethane data we might expect

that mothers living in more deprived areas may be more likely to smoke or head lone parent

families.

A different strategy is to model the distribution of Z given C. The quantity Z is a missing

continuous covariate in the regression model for the primary data, and we can use a general
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location model (Little and Rubin 2002) to assigns a linear regression model

Z|C ∼ N
(
θ̂TC, σ̂2

)
. (8)

The linear predictor θ̂TC = θ̂0 + θ̂1C1 + . . . + θ̂pCp is the estimated mean propensity score

conditional on C with variance σ̂2. The estimates (θ̂, σ̂2) are obtained from a preliminary

analysis of the validation data. Specifically, we regress ˆ̃γTUj onto Cj, where ˆ̃γ is the maximum

likelihood estimate of γ̃ computed by fitting equation (2) to the validation data alone. By using

equation (8), we can then obtain P (Y,X|C) for the primary data by using equation (7) and

setting (Ẑk, ωk) for k = 1, 2, ...,M as a histogram approximation to the normal distribution in

equation (8). In the trihalomethane data, we set M = 7 with Ẑ1, . . . , Ẑ7 equal to q × σ̂ + θ̂TC,

and additionally, ω1, . . . , ω7 equal to φ(q)/
∑3

q=−3 φ(q) for q = −3,−2,−1, 0, 1, 2, 3, where φ() is

the probability density function of a standard normal.

The motivation behind equation (8) is that we do not need to know the quantity U in order

to control confounding in the primary data. It suffices to use a missing data model for the

missing propensity score Z. A priori, using a Gaussian model to approximate the distribution

of the missing propensity scores is plausible because the quantity Z lies on the log odds scale.

Alternatively, we could follow the recommendation of Little and Rubin (2002) and assign a more

flexible distribution such as the t-distribution. Equation (8) uses plug-in point estimates and

does not incorporate uncertainty in (θ̂, σ̂2). Although it would be desirable to estimate (θ̂, σ̂2)

jointly with other model parameters during MCMC, this is computationally demanding. The

quantity U is unobserved in the primary data, and updating (θ, σ2) leads to slow convergence

and increased computational time. The plug-in estimates of equation (8) are easy to implement,

although less rigorous and they may lead to smaller interval estimates for model parameters.

See Little and Rubin (2002; Section 10.2.3) for discussion of using plug-in estimates in missing

data models.

Alternatively, we could model the distribution of U directly. This is feasible in the tri-

halomethane data example because the components of U are primarily categorical. For the case
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of two missing confounders, this is explored by Molitor et al. (2009). However, only Z is needed

to estimate the exposure effect, and our intent is to avoid a model for U . Full Bayesian updating

and monitoring convergence of U is computationally expensive, even for moderate dimensional

U .

3.2 Prior Distributions

The quantities β, ξ, ξ̃, γ, γ̃ are regression coefficients, and we assign prior distributions of the

form

β, ξ0, . . . , ξp, ξ̃1, . . . , ξ̃l, γ0, . . . , γp, γ̃1, . . . , γ̃q ∼ N

{
0,

(
log(15)

2

)2
}
.

This models the belief that the odds ratio for the exposure effect β is not overly large and lies

between 1/15 and 15 with probability 95%. These priors make similar assumptions about the

association between Y and (C,Z) given X, and also the association between X and (C,U).

Such priors are plausible and capture the magnitude and direction of effect estimates in typical

epidemiologic investigations (Greenland, 2005). In Section 4.1, we study prior sensitivity in the

trihalomethane data example.

3.3 Posterior Simulation

Let data denote both the primary and validation data. Inferences from BayesPS are obtained
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from the posterior density P (β, ξ, ξ̃, γ, γ̃|data), which we sample from using MCMC. We have

P (β, ξ, ξ̃, γ, γ̃|data) ∝
{ n∏

i=1

P (Yi, Xi|Ci)
}
×
{ m∏

j=1

P (Yj, Xj|Cj, Uj)
}
× P (β, ξ, ξ̃, γ, γ̃)

≈
n∏

i=1

{
M∑

k=1

ωk

[
exp{Yi(βXi + ξTCi + ξ̃Tg{Ẑk})}
1 + exp{βXi + ξTCi + ξ̃Tg{Ẑk}}

]

×

[
exp{Xi(γ

TCi + Ẑk)}
1 + exp{γTCi + Ẑk}

]}

×
m∏

j=1

{[
exp(Yj(βXj + ξTCj + ξ̃Tg{γ̃TUj)}))
1 + exp(βXj + ξTCj + ξ̃Tg{γ̃TUj})

]

×
[

exp(Xj(γ
TCj + γ̃TUj))

1 + exp(γTCj + γ̃TUj)

]}
× P (β, ξ, ξ̃, γ, γ̃) (9)

where the products over i and j are the likelihood functions for the primary and validation data,

respectively, and P (β, ξ, ξ̃, γ, γ̃) is the prior density for β, ξ, ξ̃, γ and γ̃.

We sample from P (β, ξ, ξ̃, γ, γ̃|data) by updating from the conditional distributions for

[β, ξ, ξ̃|γ, γ̃, data] and [γ, γ̃|β, ξ, ξ̃, data] using the Metropolis Hastings algorithm. To update

from [β, ξ, ξ̃|γ, γ̃, data], we use a proposal distribution based on a random walk that updates

each component β, ξ0, . . . , ξp, ξ̃0, . . . ξ̃l one at a time using a mean zero normal disturbance.

Multivariate updating from [γ, γ̃|β, ξ, ξ̃, data] is accomplished using the proposal distribution

described in McCandless et al. (2009).

4. Analysis Results for the Trihalomethane Data

We use BayesPS to adjust for missing confounders in the trihalomethane data. In Section

4.1, we use the empirical distribution approach, described in Section 3.1.2, which assumes that

U and C are marginally independent (i.e. P (U |C) = P (U)). Then in Section 4.2, we study

the independence assumption and apply BayesPS using the Gaussian regression model for the

missing propensity scores in equation (8). Finally, in Section 4.3, we contrast BayesPS with

propensity score calibration (PSC) (Stürmer et al. 2005). PSC is a method that also uses

propensity scores and external validation data in order to adjust for missing confounders. PSC

is based on regression calibration. It assumes a linear measurement error model for the relation-
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ship between the missing propensity score and an error prone propensity score. PSC proceeds

in two stages. First, the measurement error model is estimated in the validation data, and then

the fitted model is used to impute the missing propensity score. See Stürmer et al. (2005) for

a detailed discussion.

4.1 BayesPS assuming U and C are marginally independent

Before applying BayesPS to the trihalomethane data, we set a priori values for the knots used

to define the linear predictor g{.} in equation (1). Following McCandless et al. (2009), we fit the

logistic regression model given in equation (2) to the validation data using maximum likelihood

to estimate the parameter γ̃. The quantities Ẑj, computed by evaluating {Ẑj = ˆ̃γTUj|j ∈ 1 : m},

range from -0.3 to 2.0. Two knots are chosen as 0.03, 0.92 to define approximate tertiles for the

true distribution of Z.

Table 3 gives a preliminary illustration of Z as a tool to adjust for missing confounders in the

validation data. In the rightmost column we fit the model in equation (1) using Ẑj to control for

confounding, rather than using Uj. The resulting odds ratios for the exposure effect is 1.77 (0.73,

4.31), which agrees closely with the estimate 1.75 (0.70, 4.34) obtained from the analysis which

adjusts for Uj directly. This illustrates that we can use Ẑj as a covariate to control confounding

in the validation data, rather than including the entire covariate vector Uj in the model for Yj.

We now fit BayesPS to the primary and validation data combined. We assume that P (U |C) =

P (U), meaning that U and C are marginally independent, and we use the empirical distribution

of the propensity scores in the validation data as a model for the missing propensity scores in the

primary data. As discussed in Section 2, the MCS data are collected through disproportionately

stratified sampling based on neighborhood income and ethnicity. Thus we must account for non-

random sampling when combining the likelihood functions of the primary and validation data.

Following Molitor et al. (2009), we include strata-specific intercepts when fitting equations (1)

and (2) to the MCS data. These intercepts enter into equation (9) as indicator variables that
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are added to the linear predictors for the likelihood contributions of the validation data. This

eliminates bias from non-random sampling of the MCS data, and ensures that inferences for

(β, ξ, ξ̃, γ, γ̃) have valid uncertainty assessments.

We then apply BayesPS to the trihalomethane data by sampling from the posterior density

P (β, ξ, ξ̃, γ, γ̃|data). We obtain two different MCMC chains with overdispersed starting values

and length 100 000 after 40 000 burn-in iterations. To illustrate sampler convergence, Figures

1 and 2 give density plots for the two different MCMC chains. Convergence of the parameters

β, ξ, γ is better than for ξ̃, γ̃ because the solid curves in Figure 1 match well with the broken

curves. These results are somewhat expected because the model for the missing confounders is

only weakly identifiable. The primary data contain no information with which to inform the

parameters ξ̃, γ̃, which determine the magnitude of confounding from U . Slow mixing is also

reported in other contexts using nonidentifiable models (Little and Rubin 2004).

We argue that poorer mixing has a modest impact on the overall model fit. To illus-

trate, the top right corner of Figure 2 gives density plots of the model deviance, given by

−2 log
[∏n

i=1 P (Yi, Xi|Ci) ×
∏m

j=1 P (Yj, Xj|Cj, Uj)
]
, and calculated at each MCMC iteration.

The deviance is a measure of overall model fit with low values corresponding to better fitting.

In the figure, the densities of deviance for the two chains are closely overlapping. Slow mixing

of ξ̃, γ̃ does not greatly affect model fit. Because the convergence of β, ξ and γ is satisfactory,

we can compute summaries of the marginal posterior distributions of β, ξ and γ. Ideally, we

could use longer MCMC runs, but this is computationally intensive.

The second column in Table 2 presents the results of applying BayesPS to the trihalomethane

data in the case where P (U |C) = P (U). It contains posterior means and 95% credible intervals

for the exposure effect and covariate effects, adjusted for the seven missing confounders using

the validation data. We see that the missing confounders have a sizable impact on estimation of

the exposure effect. Compared to the NAIVE analysis, the association between trihalomethane

exposure and full-term low birthweight is weaker with odds ratio 1.20 (0.91, 1.63). Thus the
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BayesPS point estimate for the exposure effect β is shifted towards zero. This result make sense

because in Table 3 when analyzing the validation data alone, we see that adjustment for either

Uj or Zj drives the estimate of β towards zero compared to an analysis ignoring Uj.

The interval estimate for the exposure effect calculated from BayesPS is wider than for

NAIVE (0.58 versus 0.49 on the log odds scale). This result seems puzzling at first because an

analysis of the primary and validation data combined intuitively ought to yield less posterior

uncertainty compared to an analysis of the primary data alone. However, the increased sample

size of the combined analysis is balanced by the uncertainty in magnitude and direction of bias

from the missing confounders. Furthermore, the NAIVE analysis ignores bias uncertainty from

the missing confounders. If there are missing confounders in the primary data, then the NAIVE

interval estimates should be falsely precise. We study the frequentist coverage probability of

BayesPS and NAIVE interval estimates in Section 5.

Prior sensitivity presents possible challenges because of nonidentifiability, and we investigate

whether the BayesPS analysis results depend heavily on the prior distributions of Section 3.2.

We repeat the analysis by fixing the prior variances of the regression coefficients equal to 103

rather than (log(15)/2)2. The resulting point and interval estimates for the quantities β and ξ

are almost identical to those in Table 2, with difference ≤ 0.03 on the log odds scale. Greater

sensitivity is observed for the parameters (γ̃, ξ̃) but is difficult to assess because of the impact

of slow MCMC mixing.

4.2 BayesPS assuming U and C are not marginally independent.

The assumption that U and C are independent seems questionable in the trihalomethane

data. For example, mothers with living in deprived areas may be more likely to smoke and drink

alcohol during pregnancy. To study the independence assumption, we follow the latter part of

Section 3.1.2 and assign a general location model for the missing propensity scores in the primary

data using equation (8). First, we estimate γ̃ by fitting equation (2) to the validation data alone,
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and calculate the estimated propensity scores, given by {Ẑj = ˆ̃γTUj|j = 1, . . . ,m}. Then we

fit linear regression of Ẑj on Cj in order to calculate (θ̂, σ̂2) used in equation (8). We include

strata-specific intercepts in the regression models to account for non-random sampling of the

validation data. We obtain θ̂ = (θ̂0, θ̂1, θ̂2, . . . , θ̂5) = (0.13,−0.02,−0.04,−0.09,−0.00,−0.00),

with standard errors for each component roughly equal to 0.03. Additionally, σ̂2 = 0.33, and the

adjusted R2 is 0.05. To help with interpreting these results, recall that θ is a vector of length

p+ 1, with components that correspond to each of the p+ 1 components of C listed in Table 2.

The quantity θ0 is the y-intercept, and θ1, . . . , θp govern how the mean propensity score depends

on each component of C.

Using (θ̂, σ̂2) we apply BayesPS using the methodology described in Section 3.1.2. The re-

sults are presented in the third column of Table 2 under the heading “P (U |C) 6= P (U)”. We

see an odds ratio for the exposure effect of 1.23 (0.94, 1.64) that is shifted towards 1.0 compared

to the NAIVE analysis, and which is very similar to BayesPS assuming P (U |C) = P (U). Table

2 indicates that incorporating information about the dependence between U and C has only

a modest effect on the exposure effect estimate. This is understandable because the adjusted

R2 is small and most of the variation in the propensity scores is not attributable to C. Using

equation (8) to implement BayesPS roughly amounts to using a Gaussian approximation to the

empirical distribution of the propensity scores. Consequently, the results in Table 2 are not

greatly sensitive to the independence assumption. Note that because we are plugging in point

estimates (θ̂, σ̂2) into the analysis, this means that the interval estimates may be slightly too

narrow. See Little and Rubin (2002) for details.

4.3 Comparison with Stürmer’s Propensity Score Calibration (PSC)

We contrast our results to those obtained using propensity score calibration (PSC), which

is an alternative method to adjust for missing confounders that also uses propensity scores and

external validation data. PSC assumes a linear measurement error model for the relationship
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between the missing propensity score and the error prone propensity score, which Stürmer et

al. (2005) define as the quantity P (X = 1|C). To implement PSC, one must first estimate

the measurement error model in the validation data. Next, the fitted model is used to impute

the missing propensity score for each study unit in the primary data by using the error prone

propensity score. If the measurement error model is correct, then the imputed propensity score

can be included as a covariate in the regression model for the outcome in order to adjust for the

missing confounders. Further details describing PSC are given in Appendix II. See also Stürmer

et al. (2005) for complete discussion of PSC.

We implement PSC exactly as described in Stürmer et al. (2005), except that we use a

logistic regression model for the outcome of full-term low birthweight, rather than the Cox

proportional hazards model described in the paper. Interval estimates are computed using the

bootstrap. The results are given in the fourth column of Table 2. We obtain an odds ratio for

the exposure effect of 2.36 (1.36, 7.16), which differs substantially from the results of NAIVE

and BayesPS. PSC depends on a measurement error surrogacy assumption that requires condi-

tional independence between the outcome variable and the error prone propensity score given

the true propensity score. Using the likelihood ratio test described by Stürmer et al. (2007), we

obtain a p-value of 0.27 indicating that surrogacy does not hold. Thus PSC does not appear to

be suitable in the trihalomethane data. Note however that in the simulations of Section 5 we

show that PSC can perform nearly as well as BayesPS in some settings. See also Appendix II

for detailed comparisons with PSC. We emphasize that PSC ignores the outcome variable in the

validation data when adjusting for missing confounders. Thus even when the model assumptions

of PSC are correct, it may still perform less favorably than BayesPS.

5. The Performance of BayesPS in Synthetic Data

The trihalomethane analysis motivates questions about the performance of BayesPS in more

general settings. For example, does regression adjustment for Z in lieu of U give unconfounded
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exposure effect estimates? How might BayesPS compare to a gold standard analysis of the

primary data that adjusts for all the missing confounders directly? A further issue is the sample

size m of the validation data. If m is small, then we may expect that BayesPS will break down

because it fails to recover the distribution of propensity scores in the source population. We ex-

plore these issues using simulations by analyzing synthetic datasets which contain confounding

from multiple missing covariates.

5.1 Simulation Design

We generate and analyze ensembles of 200 pairs of synthetic datasets, where each pair consists

of primary data with n = 1000 and validation data with m = 100, 250, 500 or 1000. We consider

the case where there are four measured confounders and four additional missing confounders

(thus C is a 5 × 1 vector including intercept, and U is 4 × 1). Primary data (n = 1000) and

validation data (m = 100, 250, 500 and 1000) are generated using the following algorithm:

Simulate {Ci, Cj} for i ∈ 1 : n, j ∈ 1 : m, and also {Ui, Uj} for i ∈ 1 : n, j ∈ 1 : m,

where each component of Ci, Cj, Ui, Uj is independent and identically distributed as a N(0,1)

random variable. Next, for fixed γ0, . . . , γ4 = 0.1, and γ̃1, . . . , γ̃4 = 0.2, simulate {Xi, Xj} for

i ∈ 1 : n, j ∈ 1 : m using the logistic regression model of equation (2). Finally, for fixed β = 0,

ξ0, . . . , ξ4 = 0.1 and ξ̃1, . . . , ξ̃4 = 0.2, simulate {Yi, Yj} for i ∈ 1 : n, j ∈ 1 : m using the outcome

model

Logit[P (Y = 1|X,C, U)] = βX + ξTC + ξ̃TU. (10)

Note that the first component of Ci and Cj is equal to one so that γ0 and ξ0 are regression

intercept terms. The choices for ξ, ξ̃, γ, γ̃ give odds ratios equal to exp(0.1)=1.1 or exp(0.2)=1.2.

The results of Section 5.2 show that this choice of parameters produces a large amount of

confounding. Fixing β = 0 models the setting of zero exposure effect.

For each value of m, we analyze the 200 pairs of datasets using BayesPS, NAIVE and PSC

to obtain point and 80% interval estimates of the exposure effect β. Because the components of
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U and C are generated as independent unit normals, we apply the BayesPS method assuming

that P (U |C) = P (U) and by using the empirical distribution approach described in Section

3.1.2. Sampler convergence is assessed using separate trial MCMC runs. In addition, because

the quantities Ui for i ∈ 1 : n are known by construction, we also apply a method called GOLD,

which involves fitting equation (10) to the primary data using (Yi, Xi, Ci, Ui), and ignoring the

validation data altogether. Thus GOLD is a gold standard method for the best case scenario

when all the confounders are observed.

5.2 Results

Figure 3 summarizes the performance of BayesPS, NAIVE, PSC and GOLD analyses of the

synthetic datasets. The top panels quantify bias and variance of point estimates, averaged over

the simulation runs, and as a function of m the sample size of the validation data. The lower

panels give coverage and average length of 80% interval estimates. In other words, for each data

point on the graphs we analyzed an independent collection of 200 pairs of primary/validation

data using BayesPS, NAIVE, PSC and GOLD, and then we averaged the results.

For NAIVE, the estimates of β should perform poorly because the method ignores the missing

confounders. In the top left panel, we see that the dotted curve lies far from zero indicating that

NAIVE estimates are badly biased. The dotted curve is flat and does not depend on m because

the NAIVE analysis ignores the validation data completely. Similarly, in the lower left panel

the dotted curve hovers at 50%, indicating that the coverage probability of NAIVE interval

estimates for the exposure effect β is far below the nominal level of 80%. In comparison, we see

that GOLD estimates, which are denoted by solid curves, give better inferences for β.

Figure 3 illustrates that BayesPS eliminates bias from the missing confounders over a range

of values for m. In the upper left panel, we see the dashed curves lies near zero bias. BayesPS

estimates of β are essentially unbiased for all m under consideration. Summarizing the four

missing confounders using the summary score Z appears to substantially reduce confounding.
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We do not consider the case where m < 100. The reason is because there is not enough infor-

mation in the validation data to estimate the empirical distribution of the missing propensity

scores. Sampler convergence deteriorates and point estimates are highly variable. The lower left

panel of Figure 3 summarizes the performance of interval estimates for the exposure effect β.

BayesPS interval estimates have improved coverage probability compared to NAIVE, although

the performance deteriorates for small m. Note that the simulation standard errors for the cov-

erage probability estimates are approximately ±
√

0.8× 0.2/200 = ±3%. Additional simulation

runs are desirable but computationally expensive.

One interesting observation is that BayesPS estimates of β are sometimes more efficient

than either NAIVE or GOLD. Additionally, for large m, BayesPS intervals are shorter than

NAIVE or GOLD, despite the fact that they acknowledge uncertainty from missing confounders.

This is perhaps expected because BayesPS incorporates the validation data into the analysis,

while NAIVE and GOLD ignore it. But it nonetheless illustrates that incorporating external

information about confounding can actually increase precision of the exposure effect estimates.

This suggests that if it is reasonable to assume that the models in equations (1) and (2) are

correct for both primary and validation data, then estimation may be improved by analyzing

the datasets together rather than separately.

Unlike in the trihalomethane data example, PSC also reduces bias from missing confounders.

In the top left panel, we see it eliminates bias over the range of m under consideration. The

point estimates are slightly less efficient than BayesPS, particularly for m. However, this is un-

derstandable because PSC ignores the outcome variable in the validation data, and is therefore

disadvantaged compared to BayesPS. Interval estimates tend to be wider and give greater than

nominal-level coverage. It should be noted that the performance of PSC depends on a measure-

ment error surrogacy assumption described in detail by Stürmer et al. (2005). In Appendix

II, we show that PSC deteriorates compared to BayesPS through small modifications of the

simulation design.
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6. Discussion

In this article, we describe a Bayesian procedure for adjusting for several missing confounders

using external validation data. We summarize the missing variables using a scalar summary

score Z, which can be interpreted as the propensity score conditional on measured confounders.

Conditioning on Z breaks the association between X and U , within levels of C. To adjust for

missing confounders, we need only adjust for Z. Simulations illustrate that BayesPS reduces

bias from several missing confounders, provided that the sample size for the validation data is

not too small (m ≥ 100).

The primary and validation data should be drawn from the same population to ensure that

the regression models are estimating the same quantities. For the trihalomethane data ex-

ample, the validation data were collected through disproportionately stratified sampling, and

we incorporated strata-specific intercepts into the regression models to obtain approximate ex-

changeability of the primary and validation data. Additionally, both datasets must contain the

common set of variables Y , X and C that are measured in the same fashion. We note that

valid causal inference is contingent on the assumption that there are no additional unmeasured

confounders beyond those recorded in the validation data.

We propose two strategies for modelling the distribution of the missing propensity scores in

the primary data. The first approach can be used if U and C are marginally independent, which

can be assessed in the validation data. It models the missing Z by using the empirical distri-

bution of the propensity scores in the validation data. The second approach can be used if the

assumption of independence between U and C does not hold. It treats Z as a missing covariate

and assigns a general location model for Z (Little and Rubin 2002). In the trihalomethane data,

the exposure effect estimate is insensitive to the independence assumption, however we should

not expect that this will always be the case. When U and C are strongly correlated then this

will tend to reduce the amount of confounding from U . The reason is because adjusting for C
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in the primary data has the effect of adjusting for U since they are correlated with one another.

Ignoring the correlations between U and C will cause BayesPS to overadjust for U . Similar

findings are described by Fewell et al. (2007) who show that when measured and unmeasured

confounders are correlated this tends to reduced bias from unmeasured confounding.

An alternative approach is to model the missing U directly. For the trihalomethane data,

this is feasible because there are 7 missing confounders that are mostly categorical. See Molitor

et al. (2009) for discussion of the case of two missing dichotomous confounders. However,

because only Z is needed to estimate the exposure effect, our intent is to build a procedure

that does not require a model for U . Furthermore, full Bayesian updating of U and monitoring

convergence is computationally challenging even for the case of 7 missing confounders as in the

present example.

A limitation of our analysis is that using area-level exposure estimates as substitutes for

individual-level exposure measurements can introduce ecological bias. Nonetheless, Whitaker

et al. (2005) show that the within-area variance of the exposure in our study population is

less than the between-area variance. This suggests that any ecological bias is not overly large.

Furthermore, our objective is to study tap water levels of exposures that are under regulatory

control, and therefore heterogeneity of exposure due to personal activities is less of a concern.
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Table 1: Characteristics of the primary data and validation data. Rows contain totals (percent-
ages) for dichotomous variables and means ± standard deviation for ordinal variables.

HES primary data n = 7956 MCS validation data m = 824

Trihalomethane exposure Trihalomethane exposure
≥ 60µg/L < 60µg/L ≥ 60µg/L < 60µg/L

Variables in both primary and validation data
Full-tem low birthweight 144 (3.8) 130 (3.1) 14 (4.0) 9 (1.9)

Mother’s age
≤ 25 1216 (32) 1539 (36) 111 (32) 148 (31)
25 - 29 1059 (28) 1157 (28) 105 (30) 135 (28)
30 - 34 958 (25) 991 (24) 84 (24) 137 (29)
≥ 35 526 (14) 510 (12) 46 (13) 58 (12)

Male Baby 1956 (52) 2076 (50) 176 (51) 254 (53)
Carstairs quintile 4.1 ± 1.3 4.3 ± 1.2 4.0 ± 1.1 4.0 ± 1.2

Variables in validation data only
Lone parent family . . 72 (21) 105 (22)
≥ 0 children living outside of home . . 13 (3.4) 14 (2.9)
Smoking during pregancy . . 126 (36) 181 (38)
Non-white ethnicity . . 77 (22) 48 (10)
Alcohol during pregnancy . . 110 (32) 163 (34)
Body mass index ≥ 25Kg/m2 . . 85 (25) 134 (28)
Low education . . 138 (40) 210 (44)

Total 3759 4197 346 478
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Table 3: Odds ratios (95% interval estimates) describing the confounding induced by U in the
validation data alone (m = 824). The lefthand column gives odds ratios for the association
between Yj and Xj adjusting for Cj only. The middle column gives odds ratios adjusting for
both (Cj, Uj), whereas the rightmost column adjusts for (Cj, Ẑj).

Description Odds ratio (95% interval estimate) adjusting for

(Xj, Cj) only (Xj, Cj) and Uj (Xj, Cj) and Ẑj

Trihalomethane > 60µg/L 2.06 (0.87, 4.89) 1.75 (0.70, 4.34) 1.77 (0.73 4.31)

Mother’s age
≤ 25 0.65 (0.24, 1.76) 0.52 (0.18, 1.50) 0.65 (0.24, 1.77)
25 - 29† 1.0 1.0 1.0
30 - 34 0.13 (0.02, 1.06) 0.13 (0.02, 1.09) 0.14 (0.02, 1.11)
≥ 35 1.57 (0.50, 4.97) 1.60 (0.48, 5.29) 1.65 (0.51, 5.34)

Male baby 0.59 (0.25, 1.40) 0.61 (0.25, 1.48) 0.61 (0.26, 1.45)

Carstairs quintile 1.54 (0.79, 2.98) 1.41 (0.72, 2.78) 1.55 (0.80, 3.01)

Lone parent family . 1.56 (0.59, 4.15) .
# of children living outside of home . 1.80 (0.73, 4.43) .
Smoking during pregancy . 2.86 (1.03, 7.93) .
Non-white ethnicity . 3.65 (0.87, 15.25) .
Alcohol during pregnancy . 1.76 (0.65, 4.74) .
Body mass index ≥ 25Kg/m2 . 1.06 (0.39, 2.89) .
Low education . 1.32 (0.54, 3.20) .
† Reference group
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Figure 1: Posterior density estimates for the exposure effect β, and the covariate effects ξ and
γ, based on two different MCMC chains with overdispersed starting values (solid curve versus
broken curve).
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Figure 2: Posterior density estimates for the parameters (ξ̃, γ̃) that govern the magnitude of
confounding from U , based on two different MCMC chains with overdispersed starting values
(solid curve versus broken curve).
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