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SUMMARY

Space-time modelling of small area data is often used in epidemiology for mapping

chronic disease rates and by government statistical agencies for producing local esti-

mates of, for example, unemployment or crime rates. Although, temporal changes in

most local areas tend to resemble each other closely, abrupt changes over time exhibited

in some areas may suggest, e.g., the emergence of localized predictors/risk factor(s) or

impact of a new policy. Detection of areas with “unusual” temporal patterns is therefore

important in warranting further investigations.

In this paper, we propose a novel detection method for short time series of small area

data using Bayesian model choice between estimates that resemble the overall temporal

pattern and those retaining the local temporal structures. For each area, evidence of be-

longing to the area-specific versus the common trend is synthesised by the model weight.

By comparing the weight to its distribution under the null hypothesis, a test of signif-
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icance is performed to classify the local time trend as “unusual” or not. As no closed

form is available, we have developed a Monte Carlo procedure to approximate the null

distributions. Placed in the multiple testing context, classification rules are derived from

the method of Benjamini and Hochberg (1995) to control for the false discovery rate.

A comprehensive simulation study has demonstrated the consistent good performance

of the proposed method in detecting various realistic departure patterns, in addition to

ensuring that the FDR is well-controlled at the desired level. The proposed method is

applied to mortality data on chronic obstructive pulmonary disease (COPD) in England

and Wales between 1990 and 1997 a) to test a hypothesis that a government policy in-

creased the diagnosis of COPD and b) to perform surveillance. While results showed

no evidence supporting the hypothesis regarding the policy, an identified unusual dis-

trict (Tower Hamlets in inner London) was later recognised to have higher than national

rates of hospital readmission and mortality due to COPD by the National Health Service,

which initiated various local enhanced services to tackle the problem.

Keywords: Bayesian spatio-temporal analysis; disease surveillance; detection; FDR; COPD.

1. INTRODUCTION

For many areas of application such as small area estimates of income, unemployment,

crime rates and rates of chronic diseases, smooth time changes are expected. However,

due to changes to social structure, policy implementation or emergence of localized risk

factor(s), some areas may exhibit unexpected changes over time. Therefore, detection of

areas with unusual temporal patterns is an important issue in spatio-temporal analysis of

small area data.

In the small area context, observed data for each spatial unit are often too sparse
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to provide reliable estimates. Bayesian hierarchical models offer a flexible framework

which, through the use of spatially and/or temporally structured random effects, allows

information to be shared between areas and across time points. Uncertainty of estimates

can hence be reduced. As a natural extension to the purely spatial models such as those

discussed in Best and others (2005), time trends are often modelled independently of the

spatial pattern. For example, in disease mapping, the effects of space and time are typi-

cally modelled additively on the log or logit scale as ui+γt where ui and γt are smoothed

random effects capturing the spatial and temporal patterns respectively (Waller and oth-

ers, 1997; Knorr-Held and Besag, 1998). The separation of space and time encapsulated

in the additive formulation assumes that all areas in the study region behave identically

over time and therefore display the same temporal structure, namely, γt, an assump-

tion that ignores any localized behaviours. To relax this assumption, Knorr-Held (2000)

extended the separable framework by including a space-time interaction term, which

captures the additional variations that are not modelled by the space+time main effects.

In a series of papers by MacNab and colleagues (2001; 2007) time series data for each

spatial unit is modelled by a combination of a so-called “global” trend and a “regional”

trend, both estimated using splines. Gaussian Markov random field structure is further

imposed on the spline coefficients such that areas nearby tend to have similar trend pat-

terns. While these models can accommodate flexibly a variety of time trend structures,

the focus is on providing estimates but not detecting areas with unusual behaviours. To

detect excess space-time variability, a recent paper by Abellan and others (2008) speci-

fied a mixture of two normal distributions, one with a larger variance than the other, for

the space-time interaction term. Under this framework, allocation of an interaction term

to the normal with a larger variance indicates excess variability present in the observed
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data. Classification of areas into “stable” and “unstable” risk clusters is then based on

summary statistics of the selection probability (Abellan and others, 2008). However, by

construction, this model may not be particularly sensitive when the departures exhibit

certain structures, for example, higher risks occurring at some consecutive time points.

Besides the model-based methods, detection of areas with unexpected changes based

on test statistics has a far-longer history, e.g., the Knox test (1964) and Mantel’s test

(1967). A test-based method that is close in spirit to the method proposed in this paper is

the space-time permutation scan statistic by Kulldorff and others (2005), a refinement of

the space-time scan statistic of Kulldorff (2001). Readers are referred to a recent paper

by Robertson and others (2010) for a thorough discussion of other test-based meth-

ods. This space-time permutation scan statistic is designed to test for the presence of

excessive space-time interactions. Given a cylindrical volume containing a number of

geographical areas over a specific period of time, the observed number of cases in that

volume is compared to what would have been expected if the cases were independently

distributed over space and time. Designed to detect space-time interactions, this test

automatically adjusts for pure spatial and pure temporal effects so, for example, if all

areas showed a doubling risk at time t compared to t− 1, then no areas would be high-

lighted. However, if this only occurs in one area, the scan statistic is designed to detect

such an area. Implemented in SaTScanTM , this method and its space-only version have

been applied to many problems in disease surveillance. However, the construction of the

cylindrical scanning volume makes it inefficient to detect isolated clusters (i.e., elevated

risk in a single or very small number of areas). Furthermore, inherited from the purely

spatial scan statistic, this space-time extension is conservative in detecting secondary

and subsequent clusters (Haining, 2003, page 257). In the simulation study here, we will
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compare the performance of our proposed detection framework to that of this popular

permutation test approach.

Multiple comparison is one crucial issue to address under any detection model. Due

to the large number of tests performed, some proportion of the declared areas are bound

to arise by pure chance. To tackle this problem, we employ the procedure proposed by

Benjamini and Hochberg (1995), hereafter referred to as the BH algorithm, that pro-

vides a decision rule with a control of the false discovery rate (FDR), defined as the

expected proportion of the declared areas induced by a decision rule that are false posi-

tives. In applying the BH algorithm, a Monte Carlo step is required to approximate the

distributions of the model selection criterion, namely the model weights that will be in-

troduced in Section 2,under the null hypothesis. Various approximation procedures will

be considered in order to reduce the computational burden.

With two substantive questions in mind, we analyse a set of mortality data on Chronic

Obstructive Pulmonary Disease (COPD) in England and Wales (1990-1997) using the

proposed method. COPD is a common chronic condition characterized by slowly pro-

gressive and irreversible decline in lung function. It is responsible for approximately 5%

of deaths in the UK (Hansell and others, 2003). While smoking is the main risk factor,

exposure to high levels of dusts and fumes in industries such as mining are associated

with higher risks of COPD (Coggon and Taylor, 1998; Miller and MacCalman, 2010).

In a spatial analysis of COPD mortality covering 1981-1999, higher rates of COPD mor-

tality were noted in districts in England and Wales containing mining areas (Best and

Hansell, 2009). Industrial Injuries Disablement Benefit was made available for miners

developing COPD from 1992 onwards in the UK (Rudd, 1998; Seaton, 1998). As miners

with other respiratory problems with similar symptoms (e.g., asthma) could potentially
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have benefited from this scheme, our first question was to test whether this policy may

have differentially increased the likelihood of a COPD diagnosis in mining areas. Spatial

variability in COPD mortality has been shown to correlate well with spatial variability

of COPD in hospital admissions and GP contacts (Hansell and others, 2003), so mor-

tality is likely to be a good proxy for COPD morbidity and prevalence. Therefore, one

might expect to see a relative increase in rates of COPD mortality in men living in mining

districts (very few miners are women), occurring against the known national trend of de-

creasing COPD mortality rates in men of all ages since the late 1980s (Lopez and others,

2006) related to changes in UK smoking trends over time. In addition to this, our second

task is to explore the use of this detection method as a tool for disease surveillance to

highlight areas with a potential need for further investigation and/or intervention.

The structure of the paper goes as follows. In Section 2, we will first describe the

detection framework. The Monte Carlo procedure for approximating the null distribu-

tions and the implementation of the BH algorithm will also be outlined in Section 2.

The COPD mortality data used in our case study will be described in Section 3. In Sec-

tion 4,we will investigate the performance of the proposed model by a simulation study.

Application of the method to the COPD data will be detailed in Section 5.

2. DETECTION BASED ON BAYESIAN MODEL SELECTION

2.1 A general detection framework

Let yi,t and Ei,t be the observed and expected numbers of disease cases, respectively,

in area i at time t. When the disease of interest is rare, a Poisson distribution is often

assumed to model the count data. Specifically, at the first level of the model hierarchy,

we have, yi,t ∼ Poisson(θi,t · Ei,t) with i = 1, ..., N and t = 1, ..., T .
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With the aim of detecting areas with temporal trends that differ from the common

trend, we propose to describe the distribution of relative risk θi,t, by two alternative

models, one that assumes a space-time separability for all areas and one that provides

time trend estimates for each spatial unit individually. To be precise, at the second level

of the hierarchy, θi,t is modelled as

log(θi,t) =

{
α0 + ηi + γt Model 1 for all i, t
ui + ξi,t Model 2 for all i, t.

(2.1)

Model 1 (or the common trend model) combines the effects of space, ηi, and time,

γt, additively (on the log scale), and consequently, the temporal trend pattern is the

same for all areas, an assumption that can over-smooth local trends that display true

departures. Representing the null hypothesis, Model 1 will also be referred to as the null

model. In order to accommodate substantial departures from the common trend pattern,

the alternative Model 2 (or the area-specific trend model) is formulated such that the

temporal trends are estimated independently for each area. Here, ui is the area-specific

intercept and ξi,t depicts the local trend patterns. Using a model choice formulation, a

model indicator zi indicates for each area whether Model 1 (zi = 1) or Model 2 (zi = 0)

is supported by the data. The posterior model weight, wi = P (zi = 1|data), is then

calculated to quantify the evidence for retaining the null hypothesis that the given area

shows no departures from the common trend pattern. A small value of wi indicates that

the trend pattern of area i is unlikely to follow that of the common trend, γt.

To fully specify the above modelling framework, priors are to be assigned to the

model components. For Model 1, we assign a convolution prior for the spatial random

effect term, ηi, and a Gaussian random walk model of order 1 (RW(1)) to the temporal

random effect term γt. Introduced by Besag and others (1991), the spatial convolution
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prior (or the BYM prior) combines a spatially structured random effect term, to which

we assign the conventional conditional autoregressive model (CAR), and a spatially un-

structured random effect term, which follows N(0, σ2
η). More specifically, for the spatial

CAR prior, we impose the neighborhood structure by defining an adjacency matrix W of

size N ×N such that the diagonal entries wi,i = 0 and the off-diagonal entries wi,j = 1

if areas i and j share a common boundary. Otherwise, wi,j = 0. To implement the tem-

poral RW(1) prior, we use its equivalent form of a one-dimensional CAR model (see

e.g. Fahrmeir and Lang (2001)). Similar to the spatial CAR prior, the temporal neigh-

borhood structure is defined though a matrix Q where qh,t = 1 if |h − t| < 2 and

qh,t = 0 otherwise with h and t indexing units of time. A global intercept, α0, is also

included since both the CAR prior on ηi and the RW(1) prior on γt are constrained to

sum-to-zero. Although a BYM+RW(1) setting is assigned here, specification of Model

1 is application-specific, details of which will be provided in Section 5.

For Model 2, the same RW(1) prior structure is used on ξi,t. Because of the sum-to-

zero constraint on the RW(1) prior, the estimated trend patterns are additively adjusted

according to the observed data by an area-specific intercept ui. A vague prior is assigned

to each ui so that no information is borrowed from other areas in estimating terms in the

area-specific trend model, ensuring that each area is treated independently.

Putting everything together, the full specification of the proposed framework is as

follows.

Model 1 Model 2

α0 ∼ Uniform(−∞,+∞) ui ∼ N(0, 1000)

ηi ∼ N(vi, σ
2
η) and v1:N ∼ CAR(W, σ2

v) ξi,1:T ∼ CAR(Q, σ2
ξ ) (2.2)

γ1:T ∼ CAR(Q, σ2
γ) σ2

ξ = (σγ · s)2
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A weakly informative half Normal prior N(0, 1) bounded strictly below by 0 is as-

signed to ση, σv and σγ , as suggested by Gelman (2006). Expressing no prior information

on the superiority of the two models, we have zi ∼ Bernoulli(0.5). Definition of s will

be given in Section 2.2.

The proposed detection framework was implemented in WinBUGS (Lunn and others,

2000). The two competing models are fitted separately to the same set of data, inspired

by the idea of pseudoprior (Carlin and Chib, 1995). At each iteration, the model indicator

zi then selects a trend estimate from one of the two models for each area. Model fitting

and model selection are embedded within one WinBUGS program facilitated by the cut

function, which ensures that the estimation of the two models is not affected by the

selection. The model is represented as a directed acyclic graph (DAG) in Figure 1 and

annotated WinBUGS code is given in the Supplementary Material.

2.2 Specification of σ2
ξ , the variance of the area-specific trends

Through a common prior, data from all areas will contribute to the estimation of σ2
ξ .

However, in a situation where there are only a small number of areas with truly un-

usual trends and hence larger variability, this specification can lead to an oversmoothed

setting that does not necessarily accommodate well the detection purpose because the

variance estimate reflects only the small variability of the common trend pattern, which

the majority of areas follow. In Equation 2.2, we set σ2
ξ = (σγ · s)2 where s is a scaling

parameter that we fix a priori at values greater than 1 in line with our prior intention of

capturing by Model 2 abrupt changes in time trend patterns that have a larger variance

than σ2
γ . Selection of s should reflect adequately the uncertainty of the estimated local

trends in addition to providing good fits. For example, when the expected counts Ei,t are

small, a larger value of s is required. The role of s in the model selection procedure is
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further discussed in Section 6.

In the simulation study, we will compare the detection performance with various

settings of s together with a setting where σ2
ξ is estimated (the corresponding s value can

be calculated by
√
σ2
ξ/σ

2
γ). Coupled with the detection rule outlined below, the detection

performance is shown to be robust to different values of s, given it is sufficiently large.

We have also provided a tool in the Supplementary Material to help select s in practice.

2.3 Detection rules with control of FDR

Detection rules are derived from the Benjamini and Hochberg (BH) algorithm (1995)

that controls the false discovery rate. This algorithm operates on the p-values. Since

no closed form is available, the distributions of wi under the null hypothesis are ap-

proximated by Monte Carlo simulations. It should be noted that these null distribu-

tions differ from area to area because of the differences in the Poisson mean, µi,t =

Ei,t · exp{α0 + ηi + γt}, that characterizes the null model. Hence approximating the

null distributions has to be done in principle on area-specific replications (see further

comments at the end of this section).

The Monte Carlo procedure comprises the following 5 steps.

Step 1 Fit the null model (Model 1 in Equation 2.1) to the observed data;

Step 2 Generate Nnull data replicates from the null model using the resulting esti-

mates (e.g., posterior means of the model parameters) from Step 1;

Step 3 For each replicate dataset Dj , j = 1, ..., Nnull, fit the full detection model

(specified by Eq. 2.1 and 2.2) and extract the estimates of the model weights,

ŵij , for each area;

Step 4 The distribution of wi under the null is then formed by ŵi,1:Nnull
;
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Step 5 The p-value for area i, pi, is then calculated as the proportion of values ŵij

less than the estimated posterior model weight wi obtained from applying our

model selection procedure to the real data.

At Step 2, we implicitly assume that only a small proportion of the areas display trends

with substantive departures so that parameters in the null model can be well estimated

using all observed data.

At a given FDR level, say α, a maximum integer-valued k is sought such that p(k) 6

k·α
N

with p(1:N) ≡ 0 6 p(1) 6 p(2) 6 · · · 6 p(N) denoting the vector of p-values in an

ascending order and N denoting the number of tests performed (here N = number of

areas). The corresponding areas with p(1:k) are then classified as unusual and, on average,

no more than α · k of these would have been truly usual, i.e., false positives, as ensured

by the BH algorithm.

As demonstrated in Supplementary Material, the number of null simulations required

depends on the number of areas in the study region and the FDR level that one wishes

to control at. For example, with a region of 354 areas, at the 5% FDR level we need at

least 7080 samples in the Monte Carlo procedure to achieve the required precision. If we

estimate one null distribution for each area, this means fitting the full detection model

to 7080 replicate datasets, which is computationally extremely burdensome. However,

since areas with similar Poisson means in the null model tend to have similar null dis-

tributions, we can greatly reduce the computational costs by pooling null samples from

areas with similar values of µi,t to form stratum-specific nulls. For both the simulation

and the COPD analysis, 10 µ-stratum are used. The area-specific nulls can further be ap-

proximated by a global distribution using sample points from all areas. Estimating from

the same number of null simulations, performance of these two approximations will be
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compared to that of the area-specific nulls.

3. Data description

National mortality data on COPD (ICD9 490-496) from 1990-1997 were provided by

the UK Small Area Health Statistics Unit (SAHSU) at Local Authority District (LAD)

level. Analyses were conducted in men aged 45 years and over as our hypothesis related

to rates in men and there are very few COPD cases in younger adults or children. For

the sake of illustration, we only used data from England (354 LADs) in the simulation

study. For the real data analysis in Section 5, we used data from both England and Wales

(374 LADs), excluding the City of London and Isles of Scilly, which have very small

populations and virtually no cases. Expected counts for each LAD were standardized by

5-year age group with the age-specific reference rates calculated over the 8-year period

in England and Wales. Tables 1 summarises the expected counts. Table 1 in Supplemen-

tary Material summarises the standardized mortality ratios (SMR).

4. Simulation study

4.1 Generating the data

Simulated data were generated for 8 time points for LADs in England. Model 1, with

BYM for the spatial component and RW(1) for the temporal component, was first fitted

to the real COPD data and the posterior mean of the fitted model was then used for

generating the simulated data. Data under various departure scenarios were simulated

using either the original set of expected counts from the real COPD data or a reduced

set. The latter is formed by multiplying the original set of expected counts by 1/5 to

examine sensitivity of detection performance to the size of expected counts. Aggregated

at the annual-district level, these reduced expected cases represent a situation where the
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disease of interest is extremely rare, a challenging situation for any detection methods.

Reflecting the amount of information one area possesses, the expected counts and the

overall spatial risk partially influence how difficult it is to detect an area if its temporal

pattern differs from the common pattern. Fifteen areas, approximately 4% of a total

354, were chosen to provide a good contrast. Selection of these areas is detailed in

Supplementary Material.

Denoting γ1:T as the estimated common trend (on the log scale) from Model 1, γ∗1:T

as the time trend with departures for the 15 selected areas and θ (> 0) as the magnitude

of the departure, the following 3 departure patterns were considered.
1. A sudden increase of risk at time points 3 and 4, i.e., γ∗t = γt+ log(θ) for t = {3, 4}

and γ∗t = γt otherwise;
2. Increased risks appear at the first two time points, i.e., γ∗t = γt for t > 3 and

γ∗t = γt + log(θ) for t = {1, 2};
3. The unusual time trend fluctuates around the common trend: γ∗t = γt + log(θ) for

t = {1, 7} and γ∗t = γt − log(θ) for t = 4.
Illustrated in Figure 2, these three departure patterns are representations of those

seen in real analyses (e.g., in Glass (1998)). For each departure pattern, two different

departure magnitudes are used, θ = 1.5 and 2. These two chosen levels of departure

are realistic for epidemiological studies. For the remaining 339 areas, the common trend

γ1:T is assigned. Fifty sets of data, referred to as departure simulations hereafter, were

generated under each of the 12 simulation scenarios (3 departure patterns × 2 magni-

tudes × 2 sets of expected counts).

4.2 Fitted models

In addition to the setting with a variable σ2
ξ (to be denoted as s-vary), 8 model settings

(s ∈ {1.5, 2, 2.5, 3, 3.5, 4, 5, 10}) and 6 model settings (s ∈ {2, 3, 4, 5, 6, 7}) were con-

sidered for data generated from the original set and the reduced set of expected counts,
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respectively. See Supplementary Material for how to select the range for s in practice.

For comparison, the space-time permutation test in SaTScan was also fitted to the simu-

lated data. The threshold p-value, under which excess is declared, is set at 0.05.

For each combination of model setting and set of expected counts, the distributions

of wi under the null hypothesis are approximated by 200 null simulations, using the

procedures outlined in Section 2.3. It should be noted that these simulations need only

be carried out once for each setting-expected number combination. The p-values are

calculated based on (a) the area-specific null distributions, (b) the stratum-specific null

distributions and (c) the global null distribution, common to all areas.

Model performance is summarized by sensitivity and empirical FDR. To calculate the

empirical FDR, we take the mean of the false proportion rates, FP= V
R

, where V is the

number of declared areas that are truly usual andR is the total number of declared areas.

When R = 0, FP is set to zero. For the sensitivity, we record the percentage of times

(out of 50 departure simulations) that each of the 15 truly unusual areas was correctly

identified. The Receiver Operation Characteristic (ROC) curve, a conventional tool for

comparing different binary classification methods, is not used here because it suppresses

the differences in sensitivity for areas with different levels of expected counts.

4.3 Results for the original expected counts

Under the three departure patterns, Figure 3 demonstrates how good the BH algorithm

is in controlling the empirical FDR at the pre-defined levels. Four model settings are

compared, s-vary, s = 2, s = 5 and s = 10. Based on the stratum-specific null distri-

butions, the latter three settings yielded empirical FDRs that are well controlled below

the desired levels. Consistent positive biases can be seen with s-vary (first columns).

Comparing the solid and the dashed lines, the false proportion rates are less variable for
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the larger departure magnitude. While the global null distribution provided similar good

FDR controls, all empirical estimates based on the area-specific null distributions were

substantially inflated over the controlled levels, suggesting that the individual null distri-

butions based only on 200 simulations are, as expected, not sufficiently precise (results

not shown). In fact, with the current set of data, both the stratum-specific and global

null approximations can dramatically reduce the required number of null simulations

while achieving similar control of FDR as the “gold standard” area-specific nulls with a

sufficiently large number of simulations (see Supplementary Material Figure 1).

With p-value set to 0.05, the empirical estimates of FDR from SaTScan were in gen-

eral greater than 0.2 with highly variable false proportion rates (for example, ˆFDR =

0.19 with a 95% sampling interval (0.00, 0.78) with θ = 2 under pattern 2) under the

departure scenarios considered (results not shown).

For the sake of illustration, sensitivity is evaluated using an FDR nominally con-

trolled at the 0.1 level and stratum-specific null distributions. With departure magni-

tudes θ = 1.5 and 2, respectively, Figures 4 and 5 summarize the ability to detect the 15

truly unusual areas using three model settings (s-vary, s = 2 and s = 5) and SaTScan

(column-wise) under three departure patterns (row-wise). In each plot, the probabilities

of correctly detecting the 5 truly unusual areas, each having a median expected count

at one of the 5 percentiles, are joined by the solid line (low spatial risks), the dashed

line (median spatial risks) and the dotted line (high spatial risks). All lines consistently

show an overall increasing pattern, indicating that the three settings all tend to be more

powerful in detecting changes in areas with larger expected counts, an expected result.

The detection power depends also on the level of spatial risk. Not surprisingly, it is eas-

ier to detect departures when the associated area has a higher risk averaged over time,



16 G. LI et al.

although the impact on power due to the difference in spatial risks is relatively minor

compared to that due to the difference in expected counts.

Results from s = 2 (the second columns in Figures 4 and 5) and s = 5 (the third

columns) are in general comparable yet considerably better than those obtained from

s-vary (the first columns) and SaTScan (the last columns). Compared to SaTScan, our

method is particularly more powerful in detecting areas with sparse data, i.e., those

at the lower percentiles of the expected count distribution and/or with lower averaged

spatial risks. It is interesting to point out that SaTScan achieved slightly higher or similar

probabilities of detecting the two low spatial risk areas with relatively large expected

counts (the right hand tails of the solid lines in the last column of Figures 4 and 5). This

is because these two areas happen to be close together, a situation where the scanning

windows used in SaTScan has the advantage.

Besides the expected number and the level of spatial risks, the detection power also

somewhat depends on the pattern of departure. Departure patterns 2 and 3 appear to

be easier to detect than departures with pattern 1. This is probably because departures

under pattern 1 occurred at the middle of the observation period, whereas patterns 2 and

3 have departures at the beginning and/or end of the period. Thus there will be more

smoothing of pattern 1 by the information borrowing from the previous and next time

points imposed by the RW(1) prior than for either pattern 2 or 3. Such a difference is less

marked as expected counts, spatial risks and/or departure magnitudes become higher.

4.4 Results for the reduced expected counts

When data are generated from the reduced expected numbers, neither SaTScan nor our

model could pick up areas with departures of θ = 1.5 (results not shown) at such a

high level of sparsity. With θ = 2, departures of patterns 2 and 3 can be detected by
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our method (Figure 6). The performance is particularly satisfactory, with sensitivity at

0.6 or more, for detecting areas with relatively large expected counts. Departures with

pattern 1, on the other hand, can rarely be identified. SaTScan also failed to capture any

areas with any types of departure with the detection probability barely going above 0.2.

In terms of controlling the FDR, despite some positive biases under departure pattern 1

(first row of Figure 7), when s is fixed at 3 or above, the detection rules from the BH

algorithm with either stratum-specific null distributions or the global null distribution

controlled the empirical FDR reasonably well at the predefined levels (Figure 7). Com-

pared to the scenarios using the original expected counts, a slightly larger s is required to

achieve good performance because of greater uncertainty inherent in the sparse data (see

further discussion in Section 6). In addition, the 95% sampling intervals are generally

wider than those from data generated using the original set of expected counts.

5. Application: Chronic obstructive pulmonary disease (COPD)

Motivated by the interrogation discussed at the beginning of this paper, we analyze the

COPD data using our detection model to formally examine the evidence of the policy

impact and to explore the ability of our method to perform disease surveillance.

Various space-time separable models with different specifications for the spatial and

temporal components, for example CAR + RW(1) and BYM + RW(1), were fitted to the

COPD data. The model with BYM for the spatial component and RW(1) for the temporal

component produced the smallest Deviance Information Criterion (DIC, Spiegelhalter

and others (2002)) and hence was used as the specification for the common trend model

in Equation 2.1. The scaling parameter s was fixed at a number of values, namely, s ∈

{1.5, 2, 2.5, 3, 3.5, 4, 5, 10} and also s-vary. Setting of s = 1.5 was chosen by the tool

provided in the Supplementary Material. Shown to be sufficient in the Simulation Study,
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200 null simulations were carried out to generate stratum-specific null distributions (with

10 strata).

The analyses did not find evidence to support our hypothesis that the introduction of

Industrial Injuries Disablement Benefit for miners developing COPD in 1992 increased

the likelihood of COPD diagnosis and therefore COPD mortality in mining areas. At

the FDR level of 0.05, settings with s = 1.5 and 2 both identified four local author-

ity districts (Figure 8 (a)), amongst which only two (Rotherham and Carmarthenshire)

were in mining areas (out of a total 40 mining districts). The reason for this may be

that a very large number of mines closed from the mid 1980s in the UK, which would

have dramatically reduced the impact of mining dust exposures on COPD development

(and subsequently mortality) in an area. Working conditions improved and dust control

measures were noted to have reduced relationships between dust exposures and lung

function in some areas by the 1990s (Seaton, 1998). Additionally, in some mining areas,

doctors writing death certificates may have continued to put pneumoconiosis (another

compensable illness) on the death certificate for miners dying of a respiratory disease,

instead of COPD (Seaton, 1998). Further, while the local trend increased in Carmarthen-

shire, it decreased in Rotherham (Figure 2 in Supplementary Material). These departures

of time trend patterns may be the result of several other changes occurred over this time

period, in addition to any potential impact of the policy.

The other two unusual districts with a statistically significant local increasing trend

(against a national decreasing trend) were in inner London (Lewisham and Tower Ham-

lets in Figure 2 in Supplementary Material). They are very deprived areas with high

levels of in-migration and large ethnic minority populations especially from Africa and

the Indian subcontinent and therefore might not show similar trends to the rest of the UK.
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In fact, Tower Hamlets has been commissioning Local Enhanced Services since 2008

in order to optimise patient management and to reduce COPD (TowerHamlets-Council,

2009; NHS-TowerHamlets, 2009), but the rising trend in COPD could potentially have

been recognised earlier in the 1990s through using this type of surveillance statistic.

Rotherham and Carmarthenshire are consistently identified by settings with s 6 5

whereas Lewisham and Tower Hamlets were only detected by s = 1.5 and s = 2. With

s = 10, only Rotherham was identified. In practice, results using a variety of settings

should be explored. In addition, we note that stratum-specific and global nulls yielded

similar results while the number of detected areas hardly changed with FDR=0.1 or 0.15

(not shown).

Two circular clusters of large numbers of areas were detected by SaTScan, as shown

in Figure 8 (b), both of which were in mining areas. The one in the north of England,

containing 46 LADs, expressed an excess risk of 1.05 during 1990-1992 while the one

in Wales and the south-west with 19 LADs showed an increased risk of 1.12 between

1995 and 1996. Although the second smaller cluster may appear to be consistent with

our hypothesis of the impact of government policy on mortality data, these results should

be interpreted with great care since, as shown by our simulation study, a considerable

number of these detected areas would be false discoveries. In addition, SaTScan missed

out completely on identifying the two LADs in inner London.

6. Conclusion and discussion

The proposed detection framework has demonstrated its superior performance in detect-

ing various realistic departure scenarios in the simulation study and its usefulness in

terms of both assessing policy impact and performing surveillance in the COPD appli-

cation, while tightly controlling the false discovery rate.
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We formulated the detection problem in the Bayesian model selection framework

instead of the conventional mixture modelling approach, which, due to the complexity

of the two competing models, has problems achieving convergence. We utilized the

posterior model weights wi|data to choose between two models. The Bayes factor (BF)

would be an alternative for the selection criterion. The crucial, and often challenging,

task is to calibrate a criterion in order to transform the resultant measure into a classifier

of, in our case, being “usual”or “unusual”. In the case of BF, there are methods, such

as Jeffrey’s interpretation (Jeffreys, 1961) and a simulation-based method by Vlachos

and Gelfand (2003) to tackle this task. Here, we set out to control for the FDR, an

important quantity in the detection context. Coupled with the BH algorithm, calibration

of the model weights is achieved through a Monte Carlo procedure, which is equally

applicable to the case where BF is used.

Under our detection approach, departures are easier to detect when the target area has

large expected counts and/or high overall spatial risks. In the simulation, the reduced set

of expected counts presents a minimal level of information beyond which this method

is not likely to perform well. Below this level, one may have to aggregate the data over

either a longer period of time or at a higher geographical level or both. Note that the

power of our detection method is not affected by the geographical distribution of the

unusual areas since all areas are treated independently under the area-specific model.

This feature also helps to target individual areas, making the test more specific, rather

than clusters of areas, which SaTScan usually identifies.

In order to meaningfully define the common trend, the proposed method assumes

that the proportion of unusual areas is small, perhaps no more than 10%. This is also

implicitly assumed in approximating the null distributions (Step 2 of the MC procedure).



Detection via Bayesian model choice 21

Suitable applications of this method would be in monitoring early disease outbreaks,

detecting elevation of crime rates and assessing impact of a small-scaled implementation

of a policy.

The choice of FDR is important when considering the use of our model to assist

in surveillance of chronic disease. This was explored in the COPD application which

showed a consistent detection pattern of 4 LADs at the FDR levels of 5%, 10% and

15%. Although 5% seems to be commonly used in epidemiological studies (e.g., Har-

ris and others (1998); Charlesworth and others (2010)), choice of the FDR threshold

should reflect practical and application-specific considerations. For example, if subse-

quent investigation of the identified areas is costly, one may apply a stringent rule such

as FDR=0.05, making the detection more specific. On the other hand, if the disease un-

der monitoring has a high incidence rate, one might want a more sensitive test (by using

a higher FDR level) to have better detection of true positives. Perhaps a more advisable

approach is to present results at various FDR levels (for example, Ventrucci and others

(2010)). Subject-specific experts can then be sought to interpret the findings.

The FDR control depends on the precision of the MC procedure. Since the variabil-

ity in expected counts is relatively small, both stratum-specific nulls and the global null

approximate well the area-specific null distributions (supported by Figure 3 in the Sup-

plementary Material) and hence worked well with the current dataset. However, if the

expected counts in some parts of the region are some orders of magnitude higher than

others, for example in a study region comprising rural- and urban-only small areas, the

global null distribution may not be appropriate, though the stratum-specific approach

can still be applied. Finer stratifications of areas (e.g., >10 strata) may be required and

a sensitivity of results on different stratifications is recommended.
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In the simulation study, we only considered two departure magnitudes, namely θ =

1.5 and 2. Departure magnitudes above 2, though easily detected using the proposed

framework, rarely occur in practice. As an additional check, we also considered a depar-

ture pattern where the temporal patterns of the common trend and the area-specific trend

are the same but they only differ by the overall level (i.e., one is above the other). As

expected, areas with this unusual trend were not captured by the proposed framework.

This is because, under our model construction, such a shift in overall level is captured

by the spatial term, ηi in the common trend model, so all areas are therefore considered

to be usual in trend pattern.

Under our detection framework, the role of s in the specification of σ2
ξ is twofold.

It not only controls the smoothness of the estimated local trends but also reflects the

uncertainty of the trend estimates, two aspects that influence the model selection pro-

cedure. As s increases, the goodness of fit (GOF) improves as the fitted local trends

becomes more flexible in depicting the observed data and hence in terms of model se-

lection, the area-specific trend model is preferred. However, beyond a point where the

GOF improvement ceases, the uncertainty dominates, leading to favour the less variable

estimates from the common trend model.

Since it is difficult to learn from data, we chose to fix s > 1 to express a priori our

goal of detection.The extensive simulation study has shown that with s between 2 and 10,

our detection method achieved robust performance. Fixing s to values beyond 10 may

not be justifiable since departures with such a large variability can easily be identified

by just plotting the raw data. In practice, if one wishes to report findings from only one

setting, the posterior predictive criteria as discussed in Section 1 of the Supplementary

Material can be used. However, it is recommended to carry out sensitivity analyses of
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the detection outcomes on various model settings.

Public health surveillance systems are commonly used to monitor infectious diseases

e.g. notifications of intestinal infections, where the aim is to identify statistically signif-

icant departures from background levels so that public health measures can be initiated.

However, similar routine monitoring systems are uncommon for chronic disease. As

demonstrated, detection methods such as that proposed in this paper have potentially

high policy relevance for national or regional chronic disease surveillance to help iden-

tify departures from common trends that may require explanation and investigation and

targeted interventions. For example, our analyses showed that COPD mortality trends

rose in three districts when the national trend was a decrease. Such findings could be

used to improve local health care facilities for COPD prevention and management. This

is indeed the case in Tower Hamlets but various schemes were only initiated in 2008

(TowerHamlets-Council, 2009; NHS-TowerHamlets, 2009).

The proposed detection framework can be readily adapted to monitor infectious dis-

eases, where areas with departures are likely to form local clusters. Spatial dependence

of the model choice can be induced through a Gaussian random field (e.g., in Fernandez

and Green (2002)) such that choice of model depends not only on the data but also on

the hypothesised spatial structure of the alternative, potentially achieving higher power.

The time window over which changes are detected also needs to be considered. The

detection method has been applied to data with 8 time points. For a longer time span

(e.g., > 10 time points), the model indicator zi currently used is perhaps too restrictive.

The detection framework may need to be extended so that the model indicator is specific

to both area and time point, namely, zi,t. Furthermore, more than one departure may

occur during a long time period. To help pinpoint the periods with departure, we are
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currently developing a sequential fitting of the detection framework where data are fed

one time point at a time. This sequential framework can also be useful to initiate public

health measures promptly.
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Fig. 1. A graphical representation of the detection framework using a directed acyclic graph (DAG). Nodes in gray

appear in Equation 2.1 and the bold equal sign denotes the application of the cut function in WinBUGS.
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