Multilevel Latent Variable Modeling

Joint work with:

Anders Skrondal, London School of Economics & Xiaohui Zheng, University of California, Berkeley

Statistical Modelling and Inference Conference to celebrate Murray Aitkin's 70th birthday Brisbane, February, 2010

Outline

- Generalized linear measurement model
 - Two-parameter IRT model
 - Factor model for binary indicators
 - Generalizations
- Unifying measurement and multilevel regression models
- Generalized linear latent and mixed models (GLLAMMs)
- Multilevel MIMIC model
- Maximum (pseudo) likelihood estimation
- Multilevel structural equation model
- Some extensions

• Two-parameter logistic (2-PL) model, for item i, person j:

$$\mathsf{logit}[\mathsf{Pr}(y_{ij} = 1 \mid \eta_j)] = a_i(\theta_j - b_i)$$
$$\equiv \beta_i + \lambda_i \eta_j = \underbrace{\lambda_i}_{a_i} \underbrace{(\eta_j)}_{\theta_j} - \underbrace{-\beta_i/\lambda_i}_{b_i}$$

$$\eta_j \sim \mathcal{N}(0,\psi)$$

- β_i is an intercept for item i
- η_j is the **ability** of person j
- λ_i is a slope or **discrimination parameter** for item *i*
- Two-parameter normal orgive model:

$$\underbrace{\Phi^{-1}}_{\text{probit}} \left[\Pr(y_{ij} = 1 | \eta_j) \right] = \beta_i + \lambda_i \eta_j$$

Latent response formulation

$$y_{ij}^* = \beta_i + \lambda_i \eta_j + \epsilon_{ij}, \qquad \eta_j \sim \mathcal{N}(0,1), \epsilon_{ij} \sim \mathcal{N}(0,1)$$

$$y_{ij} = \begin{cases} 1 & \text{if } y_{ij}^* > 0 \\ 0 & \text{otherwise} \end{cases}$$

- β_i is an intercept for item *i*
- η_j is **common factor** for person j
- λ_i is **factor loading** for indicator *i*
- ϵ_{ij} is **unique factor** for item *i*

[Christofferson, 1975; Muthén, 1978]

Graphical illustration of latent response formulation

Graphical illustration of latent response formulation

Equivalence of IRT and factor models

Factor model for binary indicators (latent response formulation)

$$\begin{aligned} \Pr(y_{ij} = 1 | \eta_j) &= \Pr(y_{ij}^* > 0 | \eta_j) = \Pr(\beta_i + \lambda_i \eta_j + \epsilon_{ij} > 0) \\ &= \Pr(\epsilon_{ij} > -(\beta_i + \lambda_i \eta_j)) \underbrace{=}_{\text{symmetry}} \Pr(\epsilon_{ij} < \beta_i + \lambda_i \eta_j) \\ &= \Phi(\beta_i + \lambda_i \eta_j) \end{aligned}$$

- Normal ogive model (response function formulation)
- Logit IRT model:

$$\Pr(y_{ij} = 1 | \eta_j) = \Pr(\epsilon_{ij} < \beta_i + \lambda_i \eta_j) = \frac{\exp(\beta_i + \lambda_i \eta_j)}{1 + \exp(\beta_i + \lambda_i \eta_j)}$$

- Factor model where unique factors have a logistic distribution
- For ordinal responses, latent response formulation leads Samejima's [1969] graded response model

[Takane & de Leeuw, 1987; Bartholomew, 1987]

Conditional expectation of response

 $\mu_{ij} \equiv \mathsf{E}(y_{ij} = 1 | \eta_j) \quad [= \mathsf{Pr}(y_{ij} = 1 | \eta_j) \text{ for binary responses}]$

Link function $g(\cdot)$ and distribution

$$\begin{split} g(\mu_{ij}) &= \nu_{ij}, \qquad y_{ij} \sim \text{Exponential family}(\mu_{ij}) \\ \Phi^{-1}(\mu_{ij}) &= \beta_i + \lambda_i \eta_j, \qquad y_{ij} \sim \text{Bernoulli}(\mu_{ij}) \\ \text{logit}(\mu_{ij}) &= \beta_i + \lambda_i \eta_j, \qquad y_{ij} \sim \text{Bernoulli}(\mu_{ij}) \\ (\mu_{ij}) &= \beta_i + \lambda_i \eta_j, \qquad y_{ij} \sim \text{N}(\mu_{ij}, \theta_{ii}) \end{split}$$

- Other link functions: log, power, inverse, cumulative logit/probit, multinomial logit
- Other distributions: Poisson, gamma, multinomial

[Bartholomew, 1987; Arminger and Küsters, 1988, 1989;

Mellenbergh, 1994; Rabe-Hesketh et al., 2004]

Path diagram of measurement model

Same diagram regardless of response model

- frame indicates 'level' at which variables vary
 - O encloses latent variables
 - surrounds observed var.
 - $\longrightarrow is regression$
- → is residual variability: additive ϵ_{ij} , Poisson variability, etc.

Unifying measurement models

and multilevel regression models

- One-parameter IRT model is a logistic random intercept model with
 - Items as level-1 units and persons as level-2 units
 - Ability as random intercept
 - Difficulties as regression coefficients of dummy variables for items
- Random-coefficient growth curve model is a two-factor model with fixed factor loadings
- However:
 - Cannot have factor loadings (or discrimination parameters) in multilevel models
 - Cannot have random coefficients of unbalanced covariates in measurement models
- Generalized Linear Latent and Mixed Models (GLLAMMs) overcome these limitations

GLLAMM response model:

Unifying measurement and multilevel models

Units i (level 1) nested in clusters j (level 2), etc. up to level L

$$oldsymbol{
u} \;=\; \mathbf{X}oldsymbol{eta} + \sum_{l=2}^{L}\sum_{m=1}^{M_l}\eta_m^{(l)}\mathbf{Z}_m^{(l)}oldsymbol{\lambda}_m^{(l)}$$

Measurement model:

$$\underbrace{ \begin{bmatrix} \nu_{1j} \\ \nu_{2j} \\ \nu_{3j} \end{bmatrix}}_{\boldsymbol{\nu}_{j}} = \underbrace{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} }_{\mathbf{X}_{j}} \underbrace{ \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{bmatrix}}_{\boldsymbol{\beta}} + \eta_{1j}^{(2)} \underbrace{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} }_{\mathbf{Z}_{1j}^{(2)}} \underbrace{ \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{bmatrix}}_{\boldsymbol{\lambda}_{1}^{(2)}} = \begin{bmatrix} \beta_{1} + \eta_{1j}^{(2)} \lambda_{1} \\ \beta_{2} + \eta_{1j}^{(2)} \lambda_{2} \\ \beta_{3} + \eta_{1j}^{(2)} \lambda_{3} \end{bmatrix}$$

Multilevel regression model:

$$\underbrace{\begin{bmatrix} \nu_{1j} \\ \nu_{2j} \\ \nu_{3j} \end{bmatrix}}_{\boldsymbol{\nu}_{j}} = \underbrace{\begin{bmatrix} 1 & t_{1j} \\ 1 & t_{2j} \\ 1 & t_{3j} \end{bmatrix}}_{\boldsymbol{X}_{j}} \underbrace{\begin{bmatrix} \beta_{1} \\ \beta_{2} \end{bmatrix}}_{\boldsymbol{\beta}} + \eta_{1j}^{(2)} \underbrace{\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}}_{\boldsymbol{I}} + \eta_{1j}^{(2)} \underbrace{\begin{bmatrix} t_{1j} \\ t_{2j} \\ t_{3j} \end{bmatrix}}_{\boldsymbol{I}_{3j}} = \begin{bmatrix} \beta_{1} + \eta_{1j}^{(2)} + (\beta_{2} + \eta_{2j}^{(2)})t_{1j} \\ \beta_{1} + \eta_{1j}^{(2)} + (\beta_{2} + \eta_{2j}^{(2)})t_{2j} \\ \beta_{1} + \eta_{1j}^{(2)} + (\beta_{2} + \eta_{2j}^{(2)})t_{3j} \end{bmatrix}}_{\boldsymbol{X}_{j}}$$

[Rabe-Hesketh et al., 2004]

$$\eta = B\eta + \Gamma w + \zeta$$

- η is the vector of all latent variables
- **B** is a an upper triangular matrix of regression coefficients
- Γ is a matrix of regression coefficients
- w is a vector of observed covariates
- ζ is a vector of disturbances

$$\boldsymbol{\eta} = (\eta_1^{(2)}, \eta_2^{(2)}, \dots, \eta_{M_2}^{(2)}, \dots, \eta_1^{(l)}, \dots, \eta_{M_l}^{(l)}, \dots, \eta_{M_L}^{(l)})$$

$$\boldsymbol{\zeta} = (\zeta_1^{(2)}, \zeta_2^{(2)}, \dots, \zeta_{M_2}^{(2)}, \dots, \zeta_1^{(l)}, \dots, \zeta_{M_l}^{(l)}, \dots, \zeta_{M_L}^{(L)})$$

Multilevel version of [Muthén, 1984] (will be used later)

U.S. sample of PISA 2000 data

Three-level data: (ignore PSUs here)

- Student-level covariates
 - [Female]: Student is female (dummy)
 - [ISEI]: International socioeconomic index
 - [Highschool]: Highest education level by either parent is high school (dummy)
 - [College]: Highest education level by either parent is college (dummy)
 - [English]: Test language (English) spoken at home (dummy)
- School-level covariate
 - [MnISEI]: School mean ISEI

From measurement model to multilevel MIMIC model

Measurement model

From measurement model to multilevel MIMIC model

Multiple Indicator Multiple Cause (MIMIC) model \equiv IRT with latent regression

From measurement model to multilevel MIMIC model

Multilevel MIMIC model \equiv IRT with multilevel latent regression

Response model:

Two-parameter logistic item response model for item i (i = 1, ..., 7):

$$\nu_{ijk} = \beta_i + \lambda_i \eta_{jk}^{(2)}$$

Structural model:

Two-level linear random intercept model for latent ability of student j in school k:

$$\eta_{jk}^{(2)} = \mathbf{w}_{1jk}' \boldsymbol{\gamma}_1 + \mathbf{w}_{2k}' \boldsymbol{\gamma}_2 + \zeta_{jk}^{(2)} + \zeta_k^{(3)}$$

Disturbances at levels 2 (students j) and 3 (schools k)

$$\begin{aligned} \zeta_{jk}^{(2)} &\sim \mathrm{N}(0,\psi^{(2)}) \\ \zeta_{k}^{(3)} &\sim \mathrm{N}(0,\psi^{(3)}) \end{aligned}$$

Maximum likelihood estimation

using adaptive quadrature

Likelihood

$$\prod_{k=1}^{n^{(3)}} \int \left\{ \prod_{j=1}^{n_k^{(2)}} \int \left[\prod_{i=1}^{n_{jk}^{(1)}} f(y_{ijk} | \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \right] \varphi(\zeta_{jk}^{(2)}) \, \mathrm{d}\zeta_{jk}^{(2)} \right\} \varphi(\zeta_k^{(3)}) \, \mathrm{d}\zeta_k^{(3)}$$

- Integrals evaluated by adaptive quadrature
 - Ordinary quadrature: Random effects distribution is 'kernel' replaced by discrete distribution
 - Adaptive quadrature: Normal distribution approximating the integrand is 'kernel': Need cluster-specific means and standard deviations, similar to importance sampling
- Likelihood maximized by Newton-Raphson
- Implemented in Stata program gllamm

Taking into account PSUs and survey weights

Three-stage survey

- Stage 1 (Primary sampling units): Geographic areas
- Stage 2: Schools k sampled with probabilities π_k , $w_k = 1/\pi_k$
- Stage 3: Students *j* sampled with probabilities $\pi_{j|k}$, $w_{j|k} = 1/\pi_{j|k}$ Log likelihood for three-level model

$$\sum_{k=1}^{n^{(3)}} \log \int \exp \left\{ \sum_{j=1}^{n_k^{(2)}} \log \int \exp \left[\sum_{i=1}^{n_{jk}^{(1)}} \log f(y_{ijk} | \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \right] \varphi(\zeta_{jk}^{(2)}) \, \mathrm{d}\zeta_{jk}^{(2)} \right\} \varphi(\zeta_k^{(3)}) \, \mathrm{d}\zeta_k^{(3)}$$

Log pseudolikelihood for three-level model

$$\sum_{k=1}^{n^{(3)}} w_k \log \int \exp \left\{ \sum_{j=1}^{n_k^{(2)}} w_{jk} \log \int \exp \left[\sum_{i=1}^{n_{jk}^{(1)}} \log f(y_{ijk} | \zeta_{jk}^{(2)}, \zeta_k^{(3)}) \right] \varphi(\zeta_{jk}^{(2)}) \, \mathrm{d}\zeta_{jk}^{(2)} \right\} \varphi(\zeta_k^{(3)}) \, \mathrm{d}\zeta_k^{(3)}$$

Taking into account PSUs and survey weights (cont'd)

- Conventional standard errors not appropriate with sampling weights
- Sandwich estimator of standard errors (Taylor linearization)

$$\widehat{\operatorname{Cov}}(\widehat{\boldsymbol{\vartheta}}) \; = \; \widehat{\mathcal{I}}^{-1} \widehat{\mathcal{J}} \widehat{\mathcal{I}}^{-1}$$

- J: Expectation of outer product of gradients, approximated using PSU contributions to gradients
- \mathcal{I} : Expected information, approximated by observed information
- Sandwich estimator accounts for
 - Sampling weights
 - Clustering at levels 'above' highest level of multilevel model
 - Stratification at stage 1
- Adaptive quadrature, pseudolikelihood, and sandwich estimator implemented in gllamm

[Rabe-Hesketh & Skrondal, 2006]

Estimates for multilevel MIMIC model:

Structural model

	Unweighted Maximum likelihood		Weighted Pseudo maximum likelihood			
Parameter	Est	(SE)	Est	(SE_{R})	(SE $_{ m R}^{ m PSU}$)	
γ_1 : [Female]	0.146	(0.122)	0.107	(0.201)	(0.241)	
γ_2 : [ISEI]	0.012	(0.004)	0.021	(0.008)	(0.007)	
γ_3 : [Highschool]	0.138	(0.249)	0.056	(0.472)	(0.357)	
γ_4 : [College]	0.411	(0.263)	0.101	(0.449)	(0.413)	
γ_5 : [English]	0.555	(0.227)	0.568	(0.230)	(0.252)	
γ_6 : [MnISEI]	0.039	(0.012)	0.020	(0.014)	(0.016)	
$\psi^{(2)}$	1.244	(0.642)	1.201	(0.835)	(0.761)	
$\psi^{(3)}$	0.111	(0.136)	0.051	(0.129)	(0.111)	
ICC=0.08 (ICC	C=0.14, no	t controlling for	r [MnISEI])		

Estimates for multilevel MIMIC model:

Measurement model

Item characteristic curves for two-parameter logistic model

$$\Pr(y_{ijk} = 1 | \eta_{jk}^{(2)}) = \frac{\exp(\beta_i + \lambda_i \eta_{jk}^{(2)})}{1 + \exp(\beta_i + \lambda_i \eta_{jk}^{(2)})}$$

Weighted

GLLAMM specification of MIMIC structural model

$$\eta = \mathrm{B}\eta + \mathrm{\Gamma}\mathrm{w} + \zeta$$

Path diagram for GLLAMM formulation

PISA 2000 data: School-level items for school-level latent covariate

- Latent covariate: Teacher excellence
- Responses from school principal: ordinal items with three categories ("satisfied", "somewhat satisfied" and "dissatisfied")
- Questions about teacher excellence:
 - 1. teacher expectations
 - 2. student-teacher relations
 - 3. teacher turnover
 - 4. teachers meeting individual students' needs
 - 5. teacher absenteeism
 - 6. teachers' strictness with students
 - 7. teacher morale
 - 8. teachers' enthusiasm
 - 9. teachers taking pride in the school
 - 10. teachers valuing academic achievement

Multilevel structural equation model

with school-level items

Latent student-level response variable $\eta_{Rjk}^{(2)}$ Latent school-level covariate $\eta_{Ck}^{(3)}$

$$\eta_{Rjk}^{(2)} = b\eta_{Ck}^{(3)} + \gamma_1 w_{Rjk} + \gamma_2 w_{Cjk} + \zeta_{Rk}^{(3)} + \zeta_{Rjk}^{(2)}, \qquad \eta_{Ck}^{(3)} = \gamma_3 w_{Ck} + \zeta_{Ck}^{(3)}$$

Maximum likelihood estimates of structural model

	MIMIC		SEM					
Parameter	Est	(SE)	Est	(SE_{R})	(SE $_{ m R}^{ m PSU}$)			
Model for student ability								
b: [Teacher excellence]			0.109	(0.058)	(0.044)			
γ_1 : [Female]	0.146	(0.122)	0.148	(0.120)	(0.156)			
γ_2 : [ISEI]	0.012	(0.004)	0.012	(0.004)	(0.004)			
γ_3 : [Highschool]	0.138	(0.249)	0.133	(0.246)	(0.232)			
γ_4 : [College]	0.411	(0.263)	0.397	(0.259)	(0.238)			
γ_5 : [English]	0.555	(0.227)	0.541	(0.224)	(0.222)			
γ_6 : [MnISEI]	0.039	(0.012)	0.038	(0.012)	(0.014)			
$\psi_R^{(2)}$	1.244	(0.642)	1.233	(0.521)	(0.606)			
$\psi_R^{(3)}$	0.111	(0.136)	0.083	(0.085)	(0.121)			
Model for teacher excellence								
γ_7 : [MnISEI]			0.006	(0.020)	(0.019)			
$\psi_C^{(3)}$			2.192	(0.427)	(0.432)			

103 of the 146 schools had items on teacher excellence

Higher-level items in GLLAMM formulation

GLLAMM response model

$$oldsymbol{
u} \;=\; \mathbf{X}oldsymbol{eta} + \sum_{l=2}^{L}\sum_{m=1}^{M_l}\eta_m^{(l)}\mathbf{Z}_m^{(l)}oldsymbol{\lambda}_m^{(l)}$$

- ν is vector of linear predictors for responses at different levels
- Design matrices Z_m⁽²⁾ assign factor loadings to student-level responses
- Design matrices $\mathbf{Z}_m^{(3)}$ assign factor loadings to school-level responses

GLLAMM specification of multilevel SEM:

Response model

GLLAMM specification of multilevel SEM:

Structural model

$$\eta \;=\; \mathrm{B}\eta + \Gamma\mathrm{w} + \zeta$$

Some extensions:

Multidimensional and discrete latent variables

- GLLAMM framework allows for multidimensional measurement models
- GLLAMM framework also allows for discrete latent variables
 - Latent class-type models
 - Nonparametric maximum likelihood estimation: latent variable distribution left unspecified
- Structural model for discrete latent variables: Probability that unit j belongs to class c = 1, ..., C may depend on covariates v_j through a multinomial logit model

$$\pi_{jc} = \frac{\exp(\mathbf{v}_j' \boldsymbol{\alpha}^c)}{\sum_{d=1}^{C} \exp(\mathbf{v}_j' \boldsymbol{\alpha}^d)}$$

Cannot currently combine continuous and discrete latent variables

References

- Arminger, G. and Küsters, U. (1988). Latent trait models with indicators of mixed measurement levels", In R. Langeheine and J. Rost (Eds). Latent Trait and Latent Class Models. New York: Plenum Press, pp. 51-73.
- Arminger, G. and Küsters, U. (1989). Construction principles for latent trait models. In C. C. Clogg (Ed). Sociological Methodology 1989. Oxford: Blackwell, pp. 369-393.
- Bartholomew, D. J. (1987). Latent Variable Models and Factor Analysis. Oxford: Oxford University Press.
- Christoffersson, A. (1975). Factor analysis of dichotomized variables. *Psychometrika* 40, 5-32.
- De Boeck, P. and Wilson, M. (2004). Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach. New York: Springer.
- Fox, J. P. and Glas, C. A. W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. *Psychometrika* 68, 169-191.
- Mellenbergh, G. J. (1994). Generalized linear item response theory. *Psychological Bulletin* 115, 300-307.
- Meredith, W. and Tisak, J. (1990). Latent curve analysis. *Psychometrika* 55, 107-122.
 - Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika 43, 551-560.

References (cont'd)

- Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators. *Psychometrika* 49, 115Ű132.
- Pinheiro, J. C. and Chao, E. C. (2006). Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. *Journal of Computational and Graphical Statistics* 15, 58-81.
- Rijmen, F., Tuerlinckx, F., De Boeck, P., Kuppens, P. (2003). A nonlinear mixed model framework for item response theory. *Psychological Methods* 8, 185-205.
- Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004). Generalized multilevel structural equation modeling. *Psychometrika* 69, 167-190.
- Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. *Journal* of *Econometrics* 128, 301-323.
- Rabe-Hesketh, S. and Skrondal, A. (2006). Multilevel modeling of complex survey data. Journal of the Royal Statistical Society, Series A 169, 805-827.
- Rabe-Hesketh, S., Skrondal, A. and Zheng, X. (2007). Multilevel structural equation modeling. In S.-Y. Lee (Ed.). Handbook of Handbook of Latent Variable and Related Models. Amsterdam: Elsevier, pp. 209-227.

References (cont'd)

- Samejima, F. (1969). Estimation of Latent Trait Ability using a Response Pattern of Graded Scores. Bowling Green, OH: Psychometric Monograph 17, Psychometric Society.
 - Schilling S., Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. *Psychometrika* 70, 533-555.

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

- Takane, Y. and de Leeuw, J. (1987). On the relationship between item response theory and factor-analysis of discretized variables. *Psychometrika* 52, 393-408.
 - For gllamm software and more publications, see: http://www.gllamm.org