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Two-parameter IRT models

Two-parameter logistic (2-PL) model, for item i, person j:

logit[Pr(yij = 1 | ηj)] = ai(θj − bi)

≡ βi + λiηj = λi︸︷︷︸
ai

( ηj︸︷︷︸
θj

−−βi/λi︸ ︷︷ ︸
bi

)

ηj ∼ N(0, ψ)

βi is an intercept for item i

ηj is the ability of person j

λi is a slope or discrimination parameter for item i

Two-parameter normal orgive model:

Φ−1
︸︷︷︸
probit

[Pr(yij = 1|ηj)] = βi + λiηj
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Factor model for binary indicators

Latent response formulation

y∗ij = βi + λiηj + εij , ηj ∼ N(0, 1), εij ∼ N(0, 1)

yij =





1 if y∗ij > 0

0 otherwise

βi is an intercept for item i

ηj is common factor for person j

λi is factor loading for indicator i

εij is unique factor for item i

[Christofferson, 1975; Muthén, 1978]
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Graphical illustration of latent response formulation
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Graphical illustration of latent response formulation
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Equivalence of IRT and factor models

Factor model for binary indicators (latent response formulation)

Pr(yij = 1|ηj) = Pr(y∗ij > 0|ηj) = Pr(βi + λiηj + εij > 0)

= Pr(εij > −(βi + λiηj)) =︸︷︷︸
symmetry

Pr(εij < βi + λiηj)

= Φ(βi + λiηj)

Normal ogive model (response function formulation)

Logit IRT model:

Pr(yij = 1|ηj) = Pr(εij < βi + λiηj) =
exp(βi + λiηj)

1 + exp(βi + λiηj)

Factor model where unique factors have a logistic distribution

For ordinal responses, latent response formulation leads Samejima’s
[1969] graded response model

[Takane & de Leeuw, 1987; Bartholomew, 1987]
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Generalized linear measurement model

Conditional expectation of response

µij ≡ E(yij = 1|ηj) [= Pr(yij = 1|ηj) for binary responses]

Link function g(·) and distribution

g(µij) = νij , yij ∼ Exponential family(µij)

Φ−1(µij) = βi + λiηj , yij ∼ Bernoulli(µij)

logit(µij) = βi + λiηj , yij ∼ Bernoulli(µij)

(µij) = βi + λiηj , yij ∼ N(µij , θii)

Other link functions: log, power, inverse, cumulative logit/probit,
multinomial logit

Other distributions: Poisson, gamma, multinomial

[Bartholomew, 1987; Arminger and Küsters, 1988, 1989;

Mellenbergh, 1994; Rabe-Hesketh et al., 2004]
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Path diagram of measurement model

Same diagram regardless of response model
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� surrounds observed var.

−→ is regression

→ is residual variability:
additive εij , Poisson variability,
etc.
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Unifying measurement models

and multilevel regression models

One-parameter IRT model is a logistic random intercept model with

Items as level-1 units and persons as level-2 units

Ability as random intercept

Difficulties as regression coefficients of dummy variables for items

Random-coefficient growth curve model is a two-factor model with
fixed factor loadings

However:

Cannot have factor loadings (or discrimination parameters) in
multilevel models

Cannot have random coefficients of unbalanced covariates in
measurement models

Generalized Linear Latent and Mixed Models (GLLAMMs) overcome
these limitations

[Meredith & Tisak, 1990; Rijmen et al., 2003; De Boeck & Wilson, 2004] GLLAMM – p.9



GLLAMM response model:

Unifying measurement and multilevel models

Units i (level 1) nested in clusters j (level 2), etc. up to level L

ν = Xβ +

L∑

l=2

Ml∑

m=1

η(l)
m Z

(l)
m λ(l)

m

Measurement model:



ν1j

ν2j

ν3j




︸ ︷︷ ︸
νj

=




1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Xj



β1

β2

β3




︸ ︷︷ ︸
β

+ η
(2)
1j




1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Z

(2)
1j



λ1

λ2

λ3




︸ ︷︷ ︸
λ(2)

1

=




β1 + η
(2)
1j λ1

β2 + η
(2)
1j λ2

β3 + η
(2)
1j λ3




Multilevel regression model:



ν1j

ν2j

ν3j




︸ ︷︷ ︸
νj

=




1 t1j

1 t2j

1 t3j




︸ ︷︷ ︸
Xj

[
β1

β2

]

︸ ︷︷ ︸
β

+ η
(2)
1j




1

1

1




︸ ︷︷ ︸
Z

(2)
1j

+ η
(2)
1j




t1j

t2j

t3j




︸ ︷︷ ︸
Z

(2)
2j

=




β1 + η
(2)
1j + (β2 + η

(2)
2j )t1j

β1 + η
(2)
1j + (β2 + η

(2)
2j )t2j

β1 + η
(2)
1j + (β2 + η

(2)
2j )t3j




[Rabe-Hesketh et al., 2004]
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GLLAMM structural model

η = Bη + Γw + ζ

η is the vector of all latent variables

B is a an upper triangular matrix of regression coefficients

Γ is a matrix of regression coefficients

w is a vector of observed covariates

ζ is a vector of disturbances

η = (

Level 2︷ ︸︸ ︷
η
(2)
1 , η

(2)
2 , . . . , η

(2)
M2
, . . . ,

Level l︷ ︸︸ ︷
η
(l)
1 , . . . , η

(l)
Ml
, . . . , η

(L)
ML

)

ζ = (ζ
(2)
1 , ζ

(2)
2 , . . . , ζ

(2)
M2
, . . . , ζ

(l)
1 , . . . , ζ

(l)
Ml
, . . . , ζ

(L)
ML

)

Multilevel version of [Muthén, 1984] (will be used later)
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U.S. sample of PISA 2000 data

Three-level data:
(ignore PSUs here)

Berkeley High Schools k –level 3

?

�
��	

@
@@R

MaryPaulPeter Students j –level 2
��� ?AAU

1 2 3
��� ?AAU

1 2 3
��� ?AAU

1 2 3 Items i –level 1

Student-level covariates
[Female]: Student is female (dummy)

[ISEI]: International socioeconomic index

[Highschool]: Highest education level by either parent is high school (dummy)

[College]: Highest education level by either parent is college (dummy)

[English]: Test language (English) spoken at home (dummy)

School-level covariate

[MnISEI]: School mean ISEI
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From measurement model to multilevel MIMIC model

Measurement model

school k

w2 -γ2

ζ(3)

?

student j
w1

6
γ1
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From measurement model to multilevel MIMIC model

Multiple Indicator Multiple Cause (MIMIC) model ≡ IRT with latent regression

school k

w2 -γ2

ζ(3)

?

student j
w1

6
γ1

η(2)&%
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From measurement model to multilevel MIMIC model

Multilevel MIMIC model ≡ IRT with multilevel latent regression

school k

student j
w1

6
γ1

w2 -γ2
η(2)&%
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Multilevel MIMIC model

Response model:
Two-parameter logistic item response model for item i (i=1, . . . , 7):

νijk = βi + λiη
(2)
jk

Structural model:
Two-level linear random intercept model for latent ability of student j
in school k:

η
(2)
jk = w

′
1jkγ1 + w

′
2kγ2 + ζ

(2)
jk + ζ

(3)
k

Disturbances at levels 2 (students j) and 3 (schools k)

ζ
(2)
jk ∼ N(0, ψ(2))

ζ
(3)
k ∼ N(0, ψ(3))
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Maximum likelihood estimation

using adaptive quadrature

Likelihood

n(3)∏

k=1

∫




n
(2)
k∏

j=1

∫



n
(1)
jk∏

i=1

f(yijk|ζ
(2)
jk , ζ

(3)
k )


ϕ(ζ

(2)
jk ) dζ

(2)
jk




ϕ(ζ

(3)
k )dζ

(3)
k

Integrals evaluated by adaptive quadrature

Ordinary quadrature: Random effects distribution is ‘kernel’
replaced by discrete distribution

Adaptive quadrature: Normal distribution approximating the
integrand is ‘kernel’: Need cluster-specific means and standard
deviations, similar to importance sampling

Likelihood maximized by Newton-Raphson

Implemented in Stata program gllamm

[Rabe-Hesketh, Skrondal & Pickles, 2005; Schilling & Bock, 2005; Pinheiro & Chao, 2006]
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Taking into account PSUs and survey weights

Three-stage survey

Stage 1 (Primary sampling units): Geographic areas

Stage 2: Schools k sampled with probabilities πk, wk = 1/πk

Stage 3: Students j sampled with probabilities πj|k, wj|k = 1/πj|k

Log likelihood for three-level model

n(3)∑

k=1

log

∫
exp





n
(2)
k∑

j=1

log

∫
exp




n
(1)
jk∑

i=1

log f(yijk|ζ
(2)
jk
, ζ

(3)
k

)


 ϕ(ζ

(2)
jk

) dζ
(2)
jk




ϕ(ζ

(3)
k

)dζ
(3)
k

Log pseudolikelihood for three-level model

n(3)∑

k=1

wk log

∫
exp





n
(2)
k∑

j=1

wjk log

∫
exp




n
(1)
jk∑

i=1

log f(yijk|ζ
(2)
jk
, ζ

(3)
k

)


 ϕ(ζ

(2)
jk

) dζ
(2)
jk




ϕ(ζ

(3)
k

)dζ
(3)
k
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Taking into account PSUs and survey weights (cont’d)

Conventional standard errors not appropriate with sampling weights

Sandwich estimator of standard errors (Taylor linearization)

Ĉov(ϑ̂) = Î−1Ĵ Î−1

J : Expectation of outer product of gradients, approximated using
PSU contributions to gradients

I: Expected information, approximated by observed information

Sandwich estimator accounts for

Sampling weights

Clustering at levels ‘above’ highest level of multilevel model

Stratification at stage 1

Adaptive quadrature, pseudolikelihood, and sandwich estimator
implemented in gllamm

[Rabe-Hesketh & Skrondal, 2006]
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Estimates for multilevel MIMIC model:

Structural model

Unweighted Weighted
Maximum likelihood Pseudo maximum likelihood

Parameter Est (SE) Est (SER) (SEPSU
R )

γ1: [Female] 0.146 (0.122) 0.107 (0.201) (0.241)

γ2: [ISEI] 0.012 (0.004) 0.021 (0.008) (0.007)

γ3: [Highschool] 0.138 (0.249) 0.056 (0.472) (0.357)

γ4: [College] 0.411 (0.263) 0.101 (0.449) (0.413)

γ5: [English] 0.555 (0.227) 0.568 (0.230) (0.252)

γ6: [MnISEI] 0.039 (0.012) 0.020 (0.014) (0.016)

ψ(2) 1.244 (0.642) 1.201 (0.835) (0.761)

ψ(3) 0.111 (0.136) 0.051 (0.129) (0.111)

ICC=0.08 (ICC=0.14, not controlling for [MnISEI])
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Estimates for multilevel MIMIC model:

Measurement model

Item characteristic curves for two-parameter logistic model

Pr(yijk =1|η
(2)
jk ) =

exp(βi + λiη
(2)
jk )

1 + exp(βi + λiη
(2)
jk )

Unweighted Weighted

0
.2

.4
.6

.8
1

−5 0 5

η
(2)
jk

P
r(
y i

j
k
=

1|
η
(2

)
j
k

)

0
.2

.4
.6

.8
1

−5 0 5

η
(2)
jk
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GLLAMM specification of MIMIC structural model

η = Bη + Γw + ζ


 η

(2)
jk

η
(3)
k




︸ ︷︷ ︸
η

=


 0 1

0 0




︸ ︷︷ ︸
B


 η

(2)
jk

η
(3)
k




︸ ︷︷ ︸
η

+


 γ1 γ2

0 0




︸ ︷︷ ︸
Γ


 w1jk

w2k




︸ ︷︷ ︸
w

+


 ζ

(2)
jk

ζ
(3)
k




︸ ︷︷ ︸
ζ

η
(3)
k = ζ

(3)
k

η
(2)
jk = γ1w1jk + γ2w2k + ζ

(3)
k︸︷︷︸

η
(3)
k

+ζ
(2)
jk
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Path diagram for GLLAMM formulation
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PISA 2000 data: School-level items
for school-level latent covariate

Latent covariate: Teacher excellence

Responses from school principal: ordinal items with three categories
("satisfied", "somewhat satisfied" and "dissatisfied")

Questions about teacher excellence:

1. teacher expectations
2. student-teacher relations
3. teacher turnover
4. teachers meeting individual students’ needs
5. teacher absenteeism
6. teachers’ strictness with students
7. teacher morale
8. teachers’ enthusiasm
9. teachers taking pride in the school

10. teachers valuing academic achievement
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Multilevel structural equation model

with school-level items

Latent student-level response variable η(2)
Rjk

Latent school-level covariate η(3)
Ck

η
(2)
Rjk = bη

(3)
Ck + γ1wRjk + γ2wCjk + ζ

(3)
Rk + ζ

(2)
Rjk, η

(3)
Ck = γ3wCk + ζ

(3)
Ck

school k

student j
wC

��������*
γ2

wR

6 6
γ3 γ1

η
(3)
C��
��

η
(2)
R��
��

� @
@

@@I

�
�

��	

-

-

-

-�
�

���

@
@

@@R

�

�

�

ζ
(3)
C

?

���
ζ
(2)
R

ζ
(3)
R

?

-b
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Maximum likelihood estimates of structural model

MIMIC SEM

Parameter Est (SE) Est (SER) (SEPSU
R )

Model for student ability

b: [Teacher excellence] 0.109 (0.058) (0.044)

γ1: [Female] 0.146 (0.122) 0.148 (0.120) (0.156)

γ2: [ISEI] 0.012 (0.004) 0.012 (0.004) (0.004)

γ3: [Highschool] 0.138 (0.249) 0.133 (0.246) (0.232)

γ4: [College] 0.411 (0.263) 0.397 (0.259) (0.238)

γ5: [English] 0.555 (0.227) 0.541 (0.224) (0.222)

γ6: [MnISEI] 0.039 (0.012) 0.038 (0.012) (0.014)

ψ
(2)
R

1.244 (0.642) 1.233 (0.521) (0.606)

ψ
(3)
R

0.111 (0.136) 0.083 (0.085) (0.121)

Model for teacher excellence

γ7: [MnISEI] 0.006 (0.020) (0.019)

ψ
(3)
C

2.192 (0.427) (0.432)

103 of the 146 schools had items on teacher excellence
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Higher-level items in GLLAMM formulation

GLLAMM response model

ν = Xβ +

L∑

l=2

Ml∑

m=1

η(l)
m Z

(l)
m λ(l)

m

ν is vector of linear predictors for responses at different levels

Design matrices Z
(2)
m assign factor loadings to student-level

responses

Design matrices Z
(3)
m assign factor loadings to school-level

responses
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GLLAMM specification of multilevel SEM:

Response model



v1jk...
v7jk

v1k...
v10,k




︸ ︷︷ ︸
ν

=


 I7×7

010×7




︸ ︷︷ ︸
X



β1...
β7




︸ ︷︷ ︸
β

+ η
(2)
Rjk


 I7×7

010×7




︸ ︷︷ ︸
Z

(2)

1k




1

λ
(2)
2

...

λ
(2)
7




︸ ︷︷ ︸
λ(2)

1

+ η
(3)
Ck


 07×1

110×1




︸ ︷︷ ︸
Z

(3)

1k

1︸︷︷︸
λ

(3)
1

+ η
(3)
Rk

[
017×1

]

︸ ︷︷ ︸
Z

(3)

2k

1︸︷︷︸
λ

(3)
2

&
thresholds κi1, κi2, i = 1, . . . , 10

for school-level items

η
(2)
Rjk: student-level latent variable (interpretation ability)

η
(3)
Ck: school-level latent variable (teacher excellence)

η
(3)
Rk: school-level random intercept for interpretation ability
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GLLAMM specification of multilevel SEM:

Structural model

η = Bη + Γw + ζ




η
(2)
Rjk

η
(3)
Ck

η
(3)
Rk




︸ ︷︷ ︸
η

=




0 b 1

0 0 0

0 0 0




︸ ︷︷ ︸
B




η
(2)
Rjk

η
(3)
Ck

η
(3)
Rk




︸ ︷︷ ︸
η

+




γ1 γ2

0 γ3

0 0




︸ ︷︷ ︸
Γ


 wRjk

wCk




︸ ︷︷ ︸
w

+




ζ
(2)
Rjk

ζ
(3)
Ck

ζ
(3)
Rk




︸ ︷︷ ︸
ζ

η
(3)
Rk = ζ

(3)
Rk

η
(3)
Ck = γ3wCk + ζ

(3)
Ck

η
(2)
Rjk = bη

(3)
Ck + γ1wRjk + γ2wCk + ζ

(3)
Rk︸︷︷︸

η
(3)
Rk

+ζ
(2)
Rjk
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Some extensions:

Multidimensional and discrete latent variables

GLLAMM framework allows for multidimensional measurement
models

GLLAMM framework also allows for discrete latent variables

Latent class-type models

Nonparametric maximum likelihood estimation: latent variable
distribution left unspecified

Structural model for discrete latent variables:
Probability that unit j belongs to class c = 1, . . . , C may depend on
covariates vj through a multinomial logit model

πjc =
exp(v′

jα
c)

∑C
d=1 exp(v′

jα
d)

Cannot currently combine continuous and discrete latent variables
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