Sample loss from cohort studies: patterns, characteristics and adjustments

Ian Plewis, Lisa Calderwood and Sosthenes Ketende

Centre for Longitudinal Studies

Institute of Education University of London

s.ketende@ioe.ac.uk

Research Methods Festival 2010, Oxford, UK

July 5, 2010

This work was part of "**Predicting and preventing non-response in cohort studies**" project, funded by ESRC - Survey Design and measurement initiative.

The research team:-Principal Investigator:

Ian Plewis, Social Statistics, University of Manchester

Co-Investigators

Lisa Calderwood, CLS, Institute of Education, London Rebecca Taylor, NatCen, London

Research Officer

Sosthenes Ketende, CLS, Institute of Education, London

Main objective

What can we learn from modelling the predictors of different kinds of non-response in cohort studies?

For weighting purposes

Is it necessary to update non-response predictors at wave t with values from wave $t\mathchar`-1,$ where $t \geq 3?$

The study

The Millennium Cohort Study (MCS) is the fourth in the series of internationally renowned cohort studies in the UK.

The sample

At wave one, it includes 18,818 babies in 18,552 families born in the UK over a 12-month period during the years 2000 and 2001, and living in selected UK electoral wards at age nine months.

Over-sampling

Areas with high proportions of Black and Asian families, disadvantaged areas and the three smaller UK countries are all over-represented in the sample which is disproportionately stratified and clustered.

Number of waves

The first four waves took place when the cohort members were (approximately) nine months, 3, 5 and 7 years old. Partners were interviewed whenever possible.

Patterns of non-response in MCS, waves 1 to 4

Predicting non-response at wave 2: summary measures of accuracy

Alternative models for predicting non-response

Implications for statistical adjustment

Wave 1 response rate was 72%

	Wave 2, Age 3 years	Wave 3, age 5 yrs	4, age 7 yrs
Wave NR	8.3%	3.3%	n.a
Attrition	9.9%	16.1%	n.a
Total	18%	20%	26%
Refusal	9.1%	12.2%	18.7%
Other NP	9.2%	7.3%	7.4%
Eligible N	18,385	18,944	18,756

Predictors of overall response at wave 2 (Plewis, 2007)

Variable	Wave NR	Attrition	Refusal	Other NP
Moved residence	\checkmark	×	×	\checkmark
UK country	\checkmark			\checkmark
Family income	×			×
Refused income qn.	×	×		×
Ethnic group	\checkmark		×	\checkmark
Tenure	\checkmark		×	\checkmark
Accom. type	\checkmark		\checkmark	\checkmark
Mother's age	\checkmark			\checkmark
Education	\checkmark			\checkmark
Stable address	\checkmark			\checkmark
Cohort member breastfed	\checkmark		\checkmark	\checkmark
Long Standing illness	\checkmark			\checkmark
Partner present				
Partner but no IV				

Ian Plewis,Lisa Calderwood and Sosthenes Ke

We can think of the functions estimated from the logistic regressions as statistical prediction rules or risk scores.

How accurate are these risk scores?

We can think of accuracy in two, not necessarily equivalent ways:

- I Discrimination sensitivity (true positives) and specificity (1-false positives)
- II Prediction

The extent to which risk scores discriminate between respondents and non-respondents is an indication of how effective our statistical adjustments are going to be.

The extent to which risk scores predict whether a case will be a non-respondent in the next wave is an indication of whether any intervention to reduce non-response will be successful.

Discrimination

We can plot the true positive fraction (i.e. sensitivity) against the false positive fraction (i.e. 1 - specificity). This is known as a Receiver Operating Characteristic (ROC) curve.

The area under the ROC is a measure of discrimination (AUC varies from 0.5 to 1). The Gini coefficient;

 $G = 2 \times (AUC - 1)$

is perhaps a more natural measure, as it varies from 0 to 1.

ROC curve

Prediction

we can plot the logit of the quantiles of the risk score distribution against the logit of the quantiles of the proportional ranks and estimate the slope.

This is a logit rank plot (Copas, 1999) and the slope will be close to one if the prediction is good.

	AUC	GINI	Slope - logit rank plot	Prevalence
Overall NR	0.69	0.39	0.45	0.19
Wave NR	0.71	0.43	0.52	0.078
Attrition	0.69	0.39	0.41	0.11
Refusal	0.69	0.37	0.37	0.091
Other NP	0.76	0.52	0.58	0.092

95% confidence limits generally \pm 0.02

Consent to linkage of birth records to administrative health records at wave 1 is highly predictive of non-response at wave two.

	Without Consent		With consent	
	Gini	Slope, logit rank plot	Gini	Slope, logit rank plot
Overll NR	0.39	0.45	0.40	0.47
Wave NR	0.43	0.52	0.43	0.53
Attrition	0.39	0.41	0.41	0.46
Refusal	0.37	0.37	0.39	0.42
Other NP	0.52	0.58	0.52	0.64

Prediction is improved by introducing consent but the effects on discrimination are small.

However, even with consent, our ability to predict different kinds of non-response is not great and therefore targeted interventions might not be worthwhile.

Do variables measured at wave t+1 predict wave non-response at wave t?

 \times

Change in accomodation type Change in tenure Change in partnership status Family income at wave **t+1**

Gini coefficient for wave 2 rises from 0.43 to 0.46.

Option 1

Use wave 1 variables, wave 1 values, wave 1 coefficients

Option 2

Use wave 1 variables, wave 1 values, wave (t-1) coefficients

Option 3

Use wave 1 variables, wave (t-1) values, wave (t-1) coefficients

Option 4

Use wave (t-1) variables, values, coefficients

Results for MCS, wave 4:

Gini = 0.36; n = 17862 Gini = 0.37, n = 17862 Gini = 0.36, n = 12729 i.e. discrimination essentially the same for approaches (a) to (c).

Predictors at waves 2 and 4

Variable	Wave 2	Wave 3
Moved residence	\checkmark	×
Country	\checkmark	\checkmark
Family income	\checkmark	
Refused income qn.	\checkmark	\checkmark
Ethnic group	\checkmark	\checkmark
Tenure	\checkmark	×
Accommodation type	\checkmark	
Mothers age	\checkmark	
Education	\checkmark	
Stable address	\checkmark	
Cohort member breast fed	\checkmark	\checkmark
Longstanding illness	\checkmark	×
Partner present	\checkmark	\checkmark
Partner but no IV		\checkmark
Consent for linkage		×

Ian Plewis,Lisa Calderwood and Sosthenes Ke

Sample loss from cohort studies

Statistical adjustment via Inverse Probability Weighting

Models developed to generate weights at wave 2 might be satisfactory for later waves, i.e. efforts to generate models for weights at each wave that are based on different sets of variables at each wave might be misplaced.

Statistical adjustment via Multiple Imputation

Imputation models can be improved by using wave t+k measures for imputation at wave t.

Statistical adjustment via Selection Modelling

Auxiliary variables or para data can be used as instruments in joint models of selection and outcome (Heckman models, Bayesian models etc.).

Further details of this are available from

Plewis, I; Calderwood, L and Ketende, S.(2009) Sample loss from cohort studies: patterns, characteristics and adjustments. *Statistics Canada International Symposium Series - Proceedings, Symposium 2009: Longitudinal Surveys: from Design to Analysis*