Analysing the spatio-temporal distributionof crime in Lancashire

Irene Kaimi, Peter Diggle and Alexandre Rodrigues

Overview

- The MADE project
- Data
- Statistical Formulation
- Results
- Work in progress

The MADE project

Multi Agency Data Exchange

A data warehouse tool for all the datasets which are relevant to crime and disorder and are available throughout Lancashire.

Goal

To help people within Lancashire to make a more informed decision about community safety issues in their neighbourhood.

Objectives

- Develop a statistical model for the spatio-temporal distribution of recorded crimes
- Implement predictive inference as R code
- Develop web-based real- probabilistic mapping of local (in space and time) variations in crime-rate

The MADE Data

Information, for each reported crime:

- location (lower super-output area) *LSOA*: Minimum population 1000, mean population 1500; built from Output Areas
- time (day, hour, minute)
- type of crime:
 - \circ other wounding (19%)
 - o criminal damage (51%)
 - \circ serious acquisitive crime (30%)
- + LSOA population
- + Spatial covariates at LSOA level

The MADE Data

- Data cover whole of Lancashire, divided into 940 LSOA's
- Time-period: 1 April 2003 to 31 March 2009 (412,589 records)

LSOA's in Lancashire

Time series of daily crime counts by category

The three categories show qualitatively different behaviour \Rightarrow analyse separately.

Rates of crimes

Spatial covariates: Deprivation rates

Spatial covariates - Deprivation indices

Blackpool North shore overview - licensed premises

The underlying spatio-temporal point process that generates the number of crimes Y_{it} within LSOA i; i = 1, ..., N at the time point t; t = 1, ..., T has intensity

$$\lambda(\mathbf{x},t) = \mu(\mathbf{x},t)R(\mathbf{x},t), \mathbf{x} \in \mathcal{R}^2, t \in \mathcal{R}$$

- $\mu(\mathbf{x},t)$: deterministic spatio-temporal variation in the mean number of incident crimes per unit time
- $R(\mathbf{x}, t)$: a spatio-temporal stochastic process
 - * models the residual spatio-temporal variation
 - * its covariance function determines the form of dependence between space and time

Assume multiplicative spatial and temporal deterministic variation,

i.e.
$$\mu(\mathbf{x},t) = \lambda(\mathbf{x})\mu(t)$$
 where

- $\mu(t)$ temporal variation in the spatially averaged incidence rate
- $\lambda(\mathbf{x})$ overall purely spatial variation in the intensity of reported crimes Local variations within LSOA's cannot be identified,

 $\Rightarrow \lambda(\mathbf{x}) = \lambda_i$ (constant) for all \mathbf{x} in $LSOA_i$

The process that generates the crimes is assumed to be a spatio-temporal log-Gaussian Cox Process.

Hence,

$$R(\mathbf{x}, t) = \exp\{S(\mathbf{x}, t)\},\$$

- $S(\mathbf{x},t)$ is a stationary spatio-temporal Gaussian process such that $E(\exp\{S(\mathbf{x},t)\})=1$.
- $S(\mathbf{x},t)$ has covariance function $\gamma(u,v) = \sigma^2 \rho(u,v)$ where $\rho(\cdot,\cdot)$ is a spatio-temporal correlation function, and u and v denote spatial and temporal lags, respectively.

Take $t = 1, \dots, M$ days.

Scale $\lambda(\mathbf{x})$ such that $\int_A \lambda(\mathbf{x}) = 1$

 $\rightarrow \mu(t)$ =temporal variation in the mean number of incident crimes per day

 \Rightarrow Data: Y_{it} : number of crimes on day t;

$$t = 1, ..., M$$
, in $LSOA_i$; $i = 1, ..., N$.

Conditional on the unobserved process $R(\cdot)$,

$$Y_{it}|R(\cdot) \sim Poisson\left(\lambda_i \mu(t) \int_{LSOA_i} R(\mathbf{x}, t) d\mathbf{x}\right)$$

- Poisson number of counts
- Straightforward calculation of the covariance structure

For our log- Gaussian Cox process the second-order intensity function

$$\lambda_2(u,v) = \exp\{\gamma(||x-y||,v)\},$$

where $\gamma(||x-y||,v) = \sigma^2 \rho(u,v)$. Then,

$$\operatorname{Cov}\{Y(i,t),Y(j,t-v)\} = \mu(t)\lambda_{i}\mu(t-v)\lambda_{j}\left[\int_{x,y\in A_{i}\times A_{j}}\exp\{\gamma(||x-y||,v)\}dxdy - |A_{i}||A_{j}|\right],$$
(1)

where A_i represents the i^{th} LSOA and $|A_i|$ is the area of the region A_i . The variance is given by

$$\operatorname{Var}\{Y(i,t)\} = \{\mu(t)\lambda_i\}^2 \left[\int_{x,y \in A_i} \frac{\exp\{\gamma(||x-y||,0)\}dxdy}{|A_i|^2} - 1 \right] + \mu(t)p_i,$$
(2)

where $p_i = \lambda_i A_i$.

Estimation of $\mu(t)$

We first fit a semi-parametric model for $\mu(t)$ of the form

$$\log(\mu_t) = Z_t'\beta + f(t) \tag{3}$$

where Z_t is a vector of covariates at time t and f is a smooth, but otherwise unspecified, function of time. Explanatory variables:

- day-of-week effect, $\delta_{d(t)},\ d(t)=0,1,...,6$ as a seven-level factor,
- sine-cosine terms with periods of twelve and six months to capture seasonal effects and
- low-order polynomial time-trends.

Estimation of $\lambda(\mathbf{x})$

- y_i ; i = 1, ..., N the number of crimes in $LSOA_i$
- $\mathbf{W} = (\mathbf{w}_1, \dots, \mathbf{w}_N)$ the matrix of q spatial covariates.

 $Y_i \sim \text{Poisson}$ with mean $N_i \lambda_i$, and

$$\lambda_i = \exp(\boldsymbol{\beta}_i \mathbf{w}_i), \tag{4}$$

- the β_i 's are parameters to be estimated and
- N_i is the population of the i^{th} LSOA, $\Rightarrow \lambda_i$ the crime-rate in the i^{th} LSOA.

Covariates:

- density of licensed premises
- deprivation rates/scores for six domains

Estimation of $S(\mathbf{x}, t)$

• $\rho(u, v)$ is separable, i.e. $\rho(u, v) = \rho_S(u)\rho_T(v)$,

 $C_{i,j}(t,t-v) = \text{Cov}\{Y(i,t),Y(j,t-v)\}$ the moment-based estimates of σ^2 and θ_S minimise the criterion

$$\sum_{t} \sum_{i} \sum_{j} \left\{ \widehat{C_{i,j}(t,t)} - C_{i,j}(t,t) \right\}^{2}, \tag{5}$$

$$\widehat{C_{i,j}(t,t)} = Y(i,t)Y(j,t) - \mu(t)p_i\mu(t)p_j.$$

• non-separable covariance function $\rho(u,v)$ Minimise with respect to model parameters the expression

$$\sum_{v=1}^{v_0} \sum_{t=v+1}^{T} \sum_{i} \sum_{j} \left\{ \widehat{C_{i,j}(t,t-v)} - \widehat{C_{i,j}(t,t-v)} \right\}^2. \quad (6)$$

Estimation of $S(\mathbf{x},t)$

Making things simpler

- $\int_{x,y\in A_i\times A_i} \exp\{\gamma(||x-y||,v)\}dxdy =$ $\exp\{\gamma(||c_i-c_i,v||)\}A_iA_i,$ where c_i is the centroid of area A_i
- $Cov{Y(i,t), Y(j,t-v)} =$ $\mu(t)p_i\mu(t-v)p_i[\exp{\{\gamma(||c_i-c_i||,v)\}}-1]$
- Denote $Z(i,j,t,v) = \frac{Y(i,t)Y(j,t-v)}{\mu(t)p_i\mu(t)p_j}$
- $E[Z(i, j, t, v)] = \exp{\gamma(||c_i c_i||, v)}$
- Hence,

$$\frac{1}{T-v} \sum_{t=v+1}^{T} Z(i,j,t,v) \to \exp\{\gamma(||c_i - c_j||,v)\}$$
MADE -1

Overall temporal variation $\mu(t)$

Models:

- Semi-parametric:
 - * $\log(\mu_t) = \delta_{d(t)} + f(t)$
 - * $\log(\mu_t) = \delta_{d(t)} + \alpha_1 \cos(\omega t) + \beta_1 \sin(\omega t) + \alpha_2 \cos(2\omega t) + \beta_2 \sin(2\omega t) + f(t)$
- Parametric:
 - * $\log(\mu_t) = \delta_{d(t)} + \alpha_1 \cos(\omega t) + \beta_1 \sin(\omega t) + \alpha_2 \cos(2\omega t) + \beta_2 \sin(2\omega t) + \epsilon_1 t + \epsilon_2 t^2$.

Overall temporal variation $\mu(t)$

- Strong and significant day of week effects,
 Thursday (lowest) Sunday (highest)
- Log-linear time trend significant; log-quadratic time trends gives unequivocal significant improvement in model fit for all three crime categories
- sine and cosine terms significant; different seasonal pattern for each crime category

Overall temporal variation $\mu(t)$

Average weekly fit of GLM (black line) and GAM (red line) compared with the actual number of cases

Overall spatial variation $\lambda(\mathbf{x})$

- The effect of density of licensed premises is statistically significant for all three types of crime (p value << 0.0001).
- Deprivation indices/rates effects vary in size and significance for the three categories of crime

Spatial regression - Results

Other wounding

- Not significant: Income and housing barriers effects
- Significant: Employment, health, living environment, education
- Employment deprivation rate effect high (2.8). Rate of other wounding crime in a LSOA in Blackburn (employment deprivation = 50%) is 4.1 times the rate in a LSOA in Lancaster (employment deprivation = 1%)

Spatial regression - Results

Criminal damage

- Not significant: Employment
- Significant: Income, health, barriers to housing and benefits, education, living environment,

Spatial regression - Results

Serious acquisitive crime

- Not significant: Employment, barriers to housing, income
- Significant: Health, living environment, education
- Size of health and disability deprivation index effect: 0.64
- e.g. index of health deprivation in a LSOA in Ribble Valley is −1.24, whereas index of deprivation in a LSOA in Blackburn is 3.23
 ⇒ rate of serious acquisitive crime in the LSOA in Blackburn is exp(0.64 × 4.47) = 17.5 times greater than the rate in the LSOA in Ribble Valley.

Individual districts

- 14 local authority districts
- Both urban and rural districts
- Wide range of socio-economic conditions
- The pattern of crime varies considerably over the 14 districts
- The geographical region covered by each district is different
- Different geographical shape of each district, number of LSOA's forming the district, and sizes affect the form of the spatial dependence between LSOA's within the same district.

Lancaster - Preston - Blackpool

- Different seasonal pattern
- The intercept term of the model is different in each case
- Different form for the quadratic time function in each case.
- The weekday effects only marginally distinct
- The significance of the density of licensed premises is consistently high for the three districts
- The rates and scores of the six domains of deprivation have variable statistical significance and size of effects.
- : Effects of temporal and spatial covariates and spatio-temporal correlation are not the same throughout the county of Lancashire

Spatio-temporal interaction

Match theoretical and empirical descriptors of the spatial covariance structure of the point process model to find its form

Spatio-temporal interaction

$$\gamma(0,v) \propto \exp(-v/\phi_T)$$

$$\gamma(u,0) \propto \exp(-u/\phi_S)$$

Spatial Covariance

Temporal Covariance

$$\gamma(u,v) = \sigma^2 \exp(-u/\phi_S) \exp(-v/\phi_T)$$

Separable model

- $\gamma(u,v) = \sigma^2 \exp(-u/\phi_S) \exp(-v/\phi_T)$
- Minimise $\sum_{t} \sum_{i} \sum_{j} \left\{ \widehat{C_{i,j}(t,t)} C_{i,j}(t,t) \right\}^{2}$,
- Consider pair (i, j) such as $||c_i c_j|| < 3000$ meters

Highest correlation 33, 26, 30, 6

Work in progress

Prediction

- Use a Markov Chain Monte Carlo algorithm to generate a sample from the predictive distribution of the spatio-temporal surface $S(\mathbf{x}, t)$ conditional on the observed spatio-temporal pattern of crimes up to and including time t.
- Find space-time clusters of crimes, by evaluating the predictive probability $\Pr(R(\mathbf{x},t) > c|\text{data})$, where c is a threshold value above which an alarm is triggered.
- Plot the exceedance probabilities as a colour-coded map to highlight LSOA's in which these probabilities are high.