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Where did 2009 go?

• Key objective: short-term forecasting

– spatial scale: district-level

– time-scale: weekly

– forecast lead-time: 1, 2, ... weeks

• Funding applications:

– Menigitis Research Foundation: uncuccessful

– Medical Researxh Council: pending

– ... ?

• PhD recruitment: Michelle Stanton, Lydiane Agier



Outline

• Ethiopian data: weekly time-series at woreda-level,
July 2002 – June 2008:

– number of incident cases

– land-surface temperature

– rainfall

• Exploratory analyis:

– temporal: country-wide incidence

– spatial: woreda-level incidence

– spatio-temporal: animation



• Proposed modelling framework:

– multiplicative decomposition of incidence into
temporal and spatio-temporal components

– regression adjustments for time-lagged
environmental variables

– stochastic model to mimic short-term spread of
epidemic amongst neighbouring woredas



Ethiopian data: temporal structure

Time series at weekly intervals in each of 567 woredas:

• incident counts, July 20002 to June 2008

• average land surface temperature (LST)

• total rainfall (TR)

• LST and TR mapped onto woredas,
using the IRI Data Library



Ethiopian data: weekly national incidence
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Incidence on log-scale
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Land surface temperature
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Total rainfall
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Cross-correlation: incidence vs LST
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Cross-correlation: incidence vs TR
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Regression model for country-wide incidence

INCIDENCE = SEASONAL × RESIDUAL
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Regression model for country-wide incidence

INCIDENCE = SEASONAL × RESIDUAL
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Regression model for country-wide incidence

INCIDENCE = SEASONAL × RAINFALL × RESIDUAL
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Correlated residuals

0 50 100 150 200 250 300

−
6

−
4

−
2

0
2

4
6

week

re
si

du
al

s



Correlated residuals
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Correlated residuals
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A dynamic seasonal model

Yt = log incidence in week t

= At + Bt cos(2πt/52) + Ct sin(2πt/52)residual

Regression coefficients modelled stochastically:

At = At−1 + ǫA

t

Bt = Bt−1 + ǫB

t

Ct = Ct−1 + ǫC

t

Can treat environmental variables similarly, but beware of over-
elaboration



Seasonal variation in black smoke

Static model:
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Seasonal variation in black smoke

Dynamic model:
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Ethiopian data: spatial structure
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Ethiopian data: spatio-temporal structure

Animation of incident counts



Ethiopian data: spatio-temporal structure

Animation of incident counts shows familiar epidemic
structure:

• long, quiescent periods punctuated by localised outbreaks

• local spread over short time-periods



Dynamic spatio-temporal seasonal model

Rt(x) = risk in week t

log Rt(x) = At(x) + Bt(x) cos(2πt/52) + Ct(x) sin(2πt/52)

Regression coefficients modelled as random fields, for example:

A0 = A0(x) At(x) =

∫
At−1(x − u)w(u)du + ǫA

t
(x)

Conditionally independent Poisson counts:

Yt(x) =incidence in week t
Nt(x) = population in woreda x

Yt(x)|Rt(x) ∼ Poisson{Nt(x)Rt(x)}



Take-home messages

1. Spatial scale:

• analyse at finest available spatial resolution

• interpret at policy-relevant scale

2. Information synthesis:

• environmental covariates:

– spatially sparse ground-truth (eg met-stations)

– and spatially dense surrogates (eg satellite data)

– and physically based models

• GIS layers (eg transport routes)

• social context (eg major population movements)



Take-home messages

3. Correlation is your friend:

• what is happening here and now

• can help to predict what will happen somewhere else

4. An honest answer to any prediction problem is
a probability distribution

• sensitivity (true positive)

• specificity (false positive)

• timeliness (forecast horizon)

5. Open-source software implementation
for access and portability

Examples: www.lancs.ac.uk/staff/diggle


