

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Missing Covariates with Informative Selection

Alfonso Miranda & Sophia Rabe-Hesketh

ADMIN Node

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

How large are the differences in pupil attainment among ethnic groups at age 16 after allowing for differences in social background variables?

Mother's education is often a *"missing control"* either because no such information is available (administrative records) or because of item non-response (surveys). This missing covariate is likely to be a *"confounder"* in the relationship between achievement and ethnic group, leading to a problem of omitted variable bias.

- Data
- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

- Wilson et al. (2005): NPD/PLASC/Census, 2005. (TPS).
 [Chinese, Indian, Other, White, Bangladeshi, Black African, Pakistani, Black other, Black Caribbean] Large changes when controlling for covariates
- Connolly (2006): Youth Cohort Study of England and Wales, 1999. (TPS & 5A*-C). [Chinese, Indian, White, Black, Pakistani, Bangladeshi]
- Rothon (2007): Youth Cohort Study of England and Wales, 1991-2000. (5A*-C). Controlling for social class: [Indian, White, Black, Pakistani]
- Patacchini and Zenou (2009): National Child Development Study, 1974. (Maths/Reading scores) Relationship between parental involvement and Black African - White gap
- Strand (2008): Longitudinal Study of Young People in England, 2006. (5A*-C & TPS) [Indian, Other, White, Mixed, Bangladeshi, Black African, Pakistani, Black Caribbean]

ロト (同) (ヨ) (ヨ)

3

TPS: Total Point Score for GCSEs (continuous) 5A*-C: At least 5 GCSEs with grades A* to C (binary)

- Data
- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

- National Pupil Data Base (NPD) is an administrative data base containing records for the whole population of pupils (excluding private schools) in England from 2002 onwards, covering both pupil's characteristics and their examination results. Limited information on family income and socioeconomic status.
 - Census data and other datasets with area-level variables can be merged with NPD.
- Longitudinal Survey of Young People in England (LSYPE) is a longitudinal survey of a random sample of Year 9 pupils in 2004 and their parents in England. Interviews are conducted annually. Survey contains detailed information on family income, socioeconomic status, parents' education.
 - LSYPE can be merged with NPD.

- Data
- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

- Two sources of information
 - NPD is *long* but *narrow*. Information for whole population is available but key covariates (e.g., mother's education) are missing.
 - LSYPE is *short* but *wide*. Information only for a random sample but a rich set of controls are available.
- Link NPD and LSYPE: to add covariate information for a subset of pupils in the NPD.
- Problem: Covariate from LSYPE missing for most pupils in NPD

- Data
- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

LSYPE

- Pupils in in Year 9 in England in 2004 (Wave 1), age 16 in 2006 (Wave 3)
 - We exclude pupils from non-maintained schools
- Two-stage design
 - 1. Schools: Oversample top quintile in %FSM, "taking into account number of pupils from different minority groups"
 - 2. Pupils: Oversample major ethnic minority groups to achieve target issued samples of 1000 per group
- NPD and merged data
 - Pupils who took GCSEs (Key stage 4) in 2006,
 - We exclude pupils
 - from non-maintained schools
 - from Wales
 - with Special Educational Needs (SEN): statemented

伺 ト イヨト イヨト

with missing GCSE score

Key variables

Motivation

Data

- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

- ► [y_i]: Main outcome variable, GCSE score available for everyone
- [w_i]: Main explanatory variable of interest, ethnic group, and other covariates available for everyone
- [x_i]: Key covariate, mother's education, is observed only for:
 - Individuals sampled into LSYPE
 - \blacktriangleright Survey & item responders in Wave 1
- [z_i]: Predictors of mother's education, available for everyone
- ▶ [S_i]: Selection indicator
 - $S_i = 1$ if survey & item responder: x_i o
 - $S_i = 0$ if survey & item non-responder: $x_i \overline{o}$
 - $S_i = .$ if not included in survey: $x_i \overline{o}, S_i \overline{o}$
- ▶ [**r**_{*i*}]: Predictors of survey & item response

Data Explo data

Des sta The Est Res Dis

Table: Selection Variable S_i

xploiting Ita linkage	Category	Symbol	Value	Freq.	%NPD	%LSYPE
escriptive atistics	Not LSYPE sampled	$x_i\overline{o}, S_i\overline{o}$	missing	545,130	96.69	0
ne model	oampioa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.0,200	50.00	Ū.
timation	LSYPE sampled,					
esults	respondent	x_i o, $S_i = 1$	1	$13,372^{\dagger}$	2.37	71.59
iscussion	LSYPE sampled, non-respondent	$x_i \overline{o}, S_i = 0$	0	5,307	0.94	28.41
	·		-			
	Total			563,809	100	100

[†] For 493 of these cases, x_i is missing although $S_i = 1$ because mother was reported to be "not a member of the household" but survey was otherwise completed.

э

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Table: Capped GCSE new style point score y_i

Category	Symbol	Mean	Std. Dev.	Min	Max
Not LSYPE sampled	$x_i \overline{o}, S_i \overline{o}$	298.40	101.87	0	540
LSYPE sampled, respondent	x_i o, $S_i = 1$	302.46	98.54	0	502
LSYPE sampled, no respondent	$x_i\overline{o}, S_i=0$	290.10	103.35	0	483

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

個 と く き と く き と

æ

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Table: Mothers' education, ordinal x_i

Category	Freq.	%	Cum.	<u>ӯ</u>
1. No qualification	3,451	26.80	276.80	271.28
2. Other qualifications	1,215	9.43	36.23	278.60
3. GCSE grades A-C or equiv	3,869	30.04	66.27	302.82
4. GCE A level or equiv	1,586	12.31	78.59	323.21
5. Higher education no degree	1,539	11.95	90.53	333.54
6. Degree or equivalent	1,219	9.47	100	366.76
Total	12,877	100		

Is the ordering for 1. and 2. correct/important?

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

э

- ∢ ≣ ▶

Table: Ethnic group

Motivation							
Data	Category	Freq.	%	\bar{y}	S	i	xi
Exploiting data linkage					10% <i>S</i> io	$\frac{S_i=1}{S_i \circ}$	%(≥3)
Descriptive statistics	White british White other	461,070 13,168	81.78 2.34	298.47 306.93	20.46 0.53	73.65 67.45	73.48 53.61
The model	Mixed Indian	12,596 13,061	2.23 2.32	294.99 334.88	1.91 2.10	70.34 72.76	67.99 46.67
Estimation	Pakistani	13,083	2.32	288.33	2.14	68.69	20.67
Results	Bangladeshi	5,516	0.98	297.92	1.65	68.14	10.54
Discussion	Other asian Caribbean African Other black	3,909 8,062 9,703 2,481	0.69 1.43 1.72 0.44	317.65 271.64 285.22 272.69	0.20 1.49 1.50 0.13	71.30 62.98 63.83 62.16	50.62 79.76 53.36 70.73
	Chinese Any other Refused No data	2,028 4,931 6,545 7,656	0.36 0.87 1.16 1.36	361.65 285.57 297.44 277.90	0.09 0.23 0.27 0.43	50.94 67.44 68.39 74.79	32.00 32.53 82.18 67.26
	Total	563,809					
					• • • • • • •	→ Ξ → →	臣▶ 臣 >

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

Informative Selection

Motivation

Data

- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

- Survey/item response is likely to be endogenous or informative or non-ignorable: Related to both achievement y_i [Rubin, 1967; Heckman, 1979] and mother's education x_i [Lipsitz et al., 1999]
 - Example 1: Mothers of high performers are more likely to be interested in child's education and co-operate with the school and the survey
 - \Rightarrow Positive correlation between y_i and S_i ?
 - Example 2: Highly educated mothers are more likely to have tight schedules and therefore less willing/available to participate in the survey
 - \Rightarrow Negative correlation between x_i and S_i ?
- After controlling for LSYPE design variables (that determined sampling probabilities), missingness of S_i is ignorable

Model for achievement: y

Motivation

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

$$y_{i} = \begin{cases} \sum_{g=1}^{G} \beta_{g} \mathbb{1}(x_{i} = a_{g}) + \mathbf{w}_{i}' \beta_{G+1} + \epsilon_{yi} & \text{if } x_{i} \text{ is observed} \\ \eta_{1i} + \mathbf{w}_{i}' \beta_{G+1} + \epsilon_{yi} & \text{otherwise} \end{cases}$$
(1)

- I(x_i = a_g) is a dummy variable for gth value a_g of x_i with regression coefficient β_g
- w_i are other explanatory variables, including ethnic group, with regression coefficients β_{G+1}
- η_{1i} is a discrete latent variable [Little and Schluchter, 1985]

$$\eta_{1i}=eta_{m g}$$
 in "latent class" $m g$

Data

- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

Exclusion restriction 1

Summer vs. winter born enters model for y_i and not models for x_i and S_i.

According to English law, children must have started school by the beginning of the term (January, April, or September) following their fifth birthday but no minimum age is specified.

- Children born in the summer enter school in the January or April, 1 to 2 terms before their fifth birthday
- Children born in the autumn start in September, close to their fifth birthday (see, for instance, Dearden, Crawford, Meghir 2007).

同 ト イ ヨ ト イ ヨ ト

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Ordinal probit model with latent response x^{*}_i,

$$x_i^* = \mathbf{z}_i' \boldsymbol{\gamma} + \epsilon_{xi},$$
 (2)

直 ト イヨ ト イヨ ト

- $x_i = a_g$ if $\kappa_{g-1} \le x_i^* < \kappa_g$, $\{g = 1, \dots, G\}$ and κ_g are threshold or cut-point parameters with $\kappa_0 = -\infty$ and $\kappa_G = \infty$.
- \mathbf{z}_i are explanatory variables with regression coefficients γ
- Latent variable η_{1i} is discrete with the conditional probabilities that η_{1i} = β_g set equal to the conditional probabilities that x_i = a_g.

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Binary probit model with latent response S^{*}_i

$$S_i^* = \mathbf{r}_i' \alpha + \epsilon_{si}$$
 (3)

< ∃ →

•
$$S_i = 1(S_i^* > 0).$$

• \mathbf{r}_i are explanatory variables with regression coefficients α .

Exclusion restriction 2

Motivation

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Company that did LSYPE field work in Wave 1 enters model for S_i but not models for x_i and y_i .

3 companies and 4 goups: (a) British Market Research Bureau; (b) Ipsos MORI; (c) GfK NOP; (d) joint work BMRB-Mori or NOP-Mori. Companies may differ in their ability, effort, or incentives to track down and interview individuals

Table: Company doing LSYPE field work

Category	Freq.	%	%S=1
BMRB	8,061	43.16	73.63
NOP	8,316	44.52	71.90
Mori	2,183	11.69	64.64
BMRB-Mori or NOP-Mori	119	0.64	39.50
Total	18,679	100	

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Table: Variables in all equations

Variable	Description	Reason
FSM dummy	Taking free school meal (No)	SES proxy from NPD
Deprived school dummy	Top quintile of %FSM (No)	Design variable
Ethnicity dummies	8 ethnicities (White)	Variable of main inter- est; design variable
School-type by gender dummies	4 groups: mixed/boys, mixed/girl, boys/boy, (girls/girl)	Predictor of selection
Geographic region dummies	9 regions (East Midlands)	Predictor of selection

Note. Category in brackets is the reference group.

э

- ∢ ≣ ▶

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Shared latent variables η_{2i} and η_{3i} to make selection endogenous:

$$\begin{aligned} \epsilon_{yi} &= \eta_{2i} + u_{yi} \\ \epsilon_{xi} &= \lambda_3 \eta_{3i} + u_{xi} \\ \epsilon_{Si} &= \lambda_2 \eta_{2i} + \eta_{3i} + u_{Si} \end{aligned} \tag{4}$$

A B M A B M

э

[Heckman, 1979; Wu and Carroll, 1988]

- $\eta_{2i}, \eta_{3i}, u_{xi}, u_{Si}$ i.i.d. N(0, 1)
- $u_{yi} \sim N(0, \sigma^2)$

$$\operatorname{Cor}(\epsilon_{yi}, \epsilon_{Si}) = \frac{\lambda_2}{\sqrt{(1+\sigma^2)(\lambda_2^2+2)}}$$
$$\operatorname{Cor}(\epsilon_{xi}, \epsilon_{Si}) = \frac{\lambda_3}{\sqrt{(\lambda_3^2+1)(\lambda_2^2+2)}}$$

Log-likelihood

+

Log-likelihood[†]:

- Motivation
- Data
- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

$$\begin{split} & \sum_{i, \ x_{i} o, \ S_{i}=1} \left\{ \iint P_{S}(1|\eta_{2i}, \eta_{3i}) P_{x}(x_{i}|\eta_{3i}) \phi_{x_{i} o}\left(y_{i}|x_{i}, \eta_{2i}\right) d\eta_{2i} d\eta_{3i} \right\} \\ &+ \sum_{i, \ x_{i} \overline{o}, \ S_{i}=0} \left\{ \iint P_{S}(0|\eta_{2i}, \eta_{3i}) \left[\sum_{g=1}^{G} P_{\eta_{1}}(\beta_{g}|\eta_{3i}) \phi_{x_{i}\overline{o}}\left(y_{i}|\beta_{g}, \eta_{2i}\right) \right] d\eta_{2i} d\eta_{3i} \right\} \\ &+ \sum_{i, \ x_{i} \overline{o}, \ S_{i} \overline{o}} \left\{ \iint \left[\sum_{g=1}^{G} P_{\eta_{1}}(\beta_{g}|\eta_{3i}) \phi_{x_{i}\overline{o}}\left(y_{i}|\beta_{g}, \eta_{2i}\right) \right] d\eta_{2i} d\eta_{3i} \right\} \end{split}$$

Probabilities/densities

	y _i	x_i or η_{1i}	S_i
XiO	$\phi_{x_i \circ}(y_i x_i, \eta_{2i})$	$P_x(x_i \eta_{3i})$	$P_S(1 \eta_{2i},\eta_{3i})$
xiō	$\phi_{x_i \overline{o}}(y_i \beta_g, \eta_{2i})$	$P_{\eta_1}(eta_g \eta_{3i})$	$P_S(0 \eta_{2i},\eta_{3i})$

[†] For 493 responders with mother *"not a member of the household"*, add fourth term, identical to second term but with $P_S(1|\eta_{2i},\eta_{3i})$ instead of $P_S(0|\eta_{2i},\eta_{3i})$ 500

Estimation

Motivation

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

- Maximum Simulated Likelihood
- Analytical first derivatives and OPG approx. of the Hessian
- Halton sequences cover the (0,1) interval better and require fewer draws to achieve high precision than random samples from uniform distribution
- Program written in Stata/Mata
- Really fast!
 - Stata 10/MP + 12 processors + 100 Halton draws + 563,658 obs = 7hrs
 - Stata 10/MP + 12 processors + 800 Halton draws + 563,658 obs = 25hrs

- 4 同 6 4 日 6 4 日 6

	Model	for	yi,	exclusion	restriction	1
--	-------	-----	-----	-----------	-------------	---

Variable	Est	(SE)
winterbn	.06	(.003)

 Model for S_i, exclusion restriction 2 (BMRB is reference group)

Company	Est	(SE)
NOP	06	(.021)
MORI	17	(.033)
BMRB-Mori or NOP-Mori	72	(.111)

Correlations, both highly significant:

$$\widehat{\operatorname{Cor}}(\epsilon_{yi}, \epsilon_{Si}) = 0.16 \widehat{\operatorname{Cor}}(\epsilon_{xi}, \epsilon_{Si}) = -0.22$$

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

Motivation

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

Results for standardised capped GCSE new style point score

		NPD		Me	Merged		YPE
Motivation	Category	Est	(SE)	Est	(SE)	Est	(SE)
Data	Mixed (white)	.02	(.009)	.02	(.009)	.01	(.035)
Exploiting	Indian	.34	(.009)	.41	(.009)	.43	(.033)
data linkage	Pakistani	.09	(.009)	.21	(.010)	.31	(.035)
Descriptive statistics	Bangladeshi	.27	(.013)	.34	(.014)	.54	(.042)
The model	Caribbean	22	(.011)	14	(.010)	28	(.043)
Estimation	African	.00	(.010)	.09	(.010)	.11	(.044)
Results	Other	.13	(.009)	.23	(.010)	.22	(.060)
Discussion	Refused	01	(.012)	02	(.017)	09	(.089)
Discussion	No data	23	(.011)	16	(.015)	11	(.070)
	No qual.			.38	(.010)	39	(.033)
	Other qual.			-1.43	(.010)	24	(.036)
	GCSE A-C			.46	(.010)	.00	(.030)
	GCE A level			.48	(.013)	.18	(.035)
	Some higher ed.			.51	(.010)	.28	(.035)
	Degree			.57	(.013)	.58	(.037)

ADMIN NODE · INSTITUTE OF EDUCATION · UNIVERSITY OF LONDON

Discussion

Motivation

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

 Ethnic gap estimates increase after controlling for mother's education

 \Rightarrow Cannot ignore mother's education

Selection is informative

 \Rightarrow Cannot use listwise deletion, with LSYPE data only \Rightarrow Cannot use multiple imputation, with merged data

Standard errors smaller for merged data than for LSYPE ⇒ Should not apply model only to pupils sampled into LSYPE (excluding S_iō)

Next steps

Motivation

Data

Exploiting data linkage

Descriptive statistics

The model

Estimation

Results

Discussion

- Same model, but only for pupils sampled into LSYPE (exclude S_io)
- Include super output area census variables
 - Better control for background in model for y
 - Better predict mother's education x
 - Better predict sample selection S
 - Population density, IDACI, qualifications, country of birth, unemployment, income support, ?
- Candidates for extra school variables from PLASC
 - % FSM, pupil/teacher ratio, ?
- Cluster standard errors at school level?

References

- Motivation
- Data
- Exploiting data linkage
- Descriptive statistics
- The model
- Estimation
- Results
- Discussion

- Connolly, P., 2006. Summary statistics, educational achievement gaps and the ecological fallacy. Oxford Review of Education 32, 235–252.
- Heckman, J. J., 1979. Sample selection bias as a specification error. Econometrica 47, 153–161.
- Lipsitz, S. R., Ibrahim, J. G., Chen, M.-H., H. Peterson, H., 1999. Non-ignorable missing covariates in generalized linear models. Statistics in Medicine 18, 2435–2448.
- Little, R. J. A., Schluchter, M., 1985. Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika 72, 497–512.
- Patacchini, E., Zenou, Y., 2009. On the sources of the black-white test score gap in europe. Economics Letters 102, 49–52.
- Rothon, C., 2007. Can achievement differentials be explained by social class alone? Ethnicities 7, 306–322.
- Rubin, D. B., 1976. Inference and missing data. Biometrika 63, 581–592.
- Strand, S., 2008. Minority ethnic pupils in the Longitudinal Study of Young People in England: Extension report on performance in public examinations at age 16, Tech. rep. DCSF-RR029
- Wilson, D., Burgess, S., Briggs, A., 2005. The dynamics of school attainment of England's ethnic minorities, Tech. rep. CMPO 05/130, University of Bristol.
- Wu, M. C., Carroll, R. J., 1988. Estimation and comparison of change in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175–188.