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Review MQ and GWR

Methods for Small Area Estimation

Small area estimation is based on methods that are more
commonly known as model-based methods

The idea is to use statistical models to link the variable of
interest with covariate information that is also known for units
not in the sample

A class of models suitable for small area estimation is
multilevel (mixed/random effects) models

An alternative approach to small area estimation is based on
quantile/M-quantile models
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Review MQ and GWR

Mixed Effects Models that Include Random Area Effects

Concept

Include random area-specific effects to account for the between area
variation beyond what is explained by the variation in model covariates

Notation: (j =area, i =individual)

Variable of interest: yij

Focus on unit level covariate information: xij

Area level random effect: γj

Random error: εij

yij = xT
ij β + zT

ij γj + εij , i = 1, ..., nj , j = 1, ...d

Estimator of Small Area Mean

m̂j = N−1
j

(∑
i∈sj

yij +
∑
i∈rj

xT
ij β̂ + zT

ij γ̂j

)
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Review MQ and GWR

M-quantile Models

With regression models we model the mean of the variable of
interest (y) given the covariates (x)

A more complete picture is offered, however, by modeling not
only the mean of (y) given (x) but also other quantiles.
Examples include the median, the 25th, 75th percentiles. This
is known as quantile regression

An M-quantile regression model for quantile q

y = xTβ(q) + ε(q)
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Review MQ and GWR

M-quantile Models (Cont’d)

Conventionally q is a-priori chosen.

Estimates of β(q)’s are obtained via Iterative Weighted Least
Squares (IWLS) :

β̂ψ(q) = (xTWx)−1xTWy

W is an n by n diagonal weighting matrix that depends on
both the influence function and the quantile we are modeling
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Review MQ and GWR

Extensions M-quantile Models - Small Area Estimation

Central Idea: Area effects can be described by estimating an
area specific q value (θ̂j) for each area (group) of a
hierarchical dataset (Chambers & Tzavidis 2006)

Estimate the area specific target parameter by fitting an M-
quantile model for each area at θ̂j

yij = xT
ij β̂(θ̂j) + εij(θ̂j)

A mixed effects model uses random effects γj to capture the
dissimilarity between groups. M-quantile models attempt to
capture this dissimilarity via the group-specific M-quantile
coefficients θ̂j
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Review MQ and GWR

Small Area Estimators under the M-quantile Model

Under an M-quantile model the following small area estimator
of the mean has been proposed (Chambers & Tzavidis 2006),

m̂j = N−1
j

[∑
i∈sj

yij +
∑
i∈rj

xT
ij β̂(θ̂j)

]

We refer to this as the ’näıve’ estimator. It has been noticed
that this estimator may be biased particularly when outliers
are present

A bias-corrected small area estimator is derived under the
Chambers-Dunstan distribution function (Tzavidis &
Chambers 2007)

N. Tzavidis & N. Salvati MQGWR Models for SAE



Review MQ and GWR

Small Area Estimators under the M-quantile Model
(Cont’d)

Following Tzavidis & Chambers (2007), the bias-adjusted
estimator is defined as

m̂
MQ/CD
j =

∫ ∞
−∞

tdF̂CD,j =

= N−1
j {

∑
i∈sj

yij +
∑
i∈rj

xT
ij β̂(θ̂j) +

Nj − nj

nj

∑
i∈sj

[yij − xT
ij β̂(θ̂j)]}

An alternative to the CD estimator of the distribution function
that can be used is the Rao-Kovar-Mantel (RKM) estimator

It can be shown that under srs integration of the RKM or the
CD estimators will result in the same estimator for the small
area mean
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Review MQ and GWR

Small Area Estimation by Borrowing Strength over Space

In applications involving economic, environmental and
epidemiological data observations that are spatially close may
be more alike than observations that are further apart

This creates a type of spatial dependency or spatial
association in the data that invalidates the assumption of
independent and identically distributed (iid) observations used
by conventional regression models

One approach to accounting for spatial correlation in the data
is offered by specifying models with spatially correlated errors
(Anselin 1992; Cressie 1993)

Small area literature suggests that prediction of small area
parameters may be improved by borrowing strength over space
(Saei & Chambers 2003; Singh et al. 2005; Petrucci & Salvati
2006; Pratesi & Salvati 2007)
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Review MQ and GWR

Global Vs. Local Models for Modeling Spatial Dependency

Regression models with spatially correlated errors are global
models i.e. they assume that the relationship we are modelling
holds everywhere in the study area

Another approach to modelling a spatially non-stationary
process is offered via Geographically Weighted Regression
(GWR) (Brunsdon et al. 1996; Fotheringham et al. 1997)

GWR models attempt to capture the spatial association in the
data by allowing local, rather than global parameters, to be
estimated
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Review MQ and GWR

GWR Models

Assume that we have n observations on (yi , xi ) at a set of
Locations (ui )

A GWR model is defined as follows

yi = xT
i β(ui ) + ε(ui )

GWR models allow for local rather than global parameters to
be estimated and will produce estimated local surfaces of the
relationship between y and x

GWR models work by assuming that observed data near to
location i will have a greater influence on the estimation of
β(ui ) than observations farther from i

Weighted Least Squares (WLS) is used for estimating the
GWR parameters
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Robust GWR

M-quantile Geographically Weighted Models

We first propose a robust GWR model namely an M-quantile
GWR model. This is a locally robust to outliers model

With this model we attempt to model locally the different
quantiles of the conditional distribution accounting at the
same time for the spatial non-stationarity in the data

For estimating the parameters of the M-quantile GWR model
we use an Iterative Weighted Least Squares algorithm
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Robust GWR

Estimation for M-quantile Geographically Weighted Models

An M-quantile GWR model is defined as follows

yi = xT
i β(ui ; q) + ε(ui ; q)

The model parameters β(ui ; q) are estimated by solving

L∑
l=1

w(ul , u)

nl∑
i=1

ψq

{
yil − xT

il β(u; q)

}
xil = 0

Estimates of β(ui ; q)’s are obtained via IWLS:

β̂(ui , vi ; q) = (xTW∗x)−1xTW∗y

W∗ is an n by n diagonal matrix combining the spatial
weights with the weights from the influence function and the
modeled quantile

N. Tzavidis & N. Salvati MQGWR Models for SAE



Employ MQGWR for SAE

M-quantile GWR Models for Small Area Estimation

Achieved via an extension to the algorithm used for estimating
group effects with M-quantile models

Step 1: Estimate an M-quantile coefficient for each unit in the
sample, θ̂ij , using M-quantile GWR models. The θ̂ij ’s are now
estimated accounting for the spatial structure in the data

Step 2: Recognize the hierarchical structure of the data and
estimate a group specific M-quantile coefficient, θ̂j , using the

unit level M-quantile coefficients, θ̂ij

Step 3: Estimate the area specific target parameter by fitting
an M-quantile GWR model for each area at θ̂j

yij = xT
ij β̂(ui ; θ̂j) + εij(ui ; θ̂j)
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Employ MQGWR for SAE

M-quantile GWR Small Area Estimators

Under an M-quantile GWR model a ’näıve’ small area
estimator of the mean is

m̂MQGWR
j = N−1

j {
∑
i∈sj

yij +
∑
i∈rj

xT
ij β̂(ui ; θ̂j)}

A bias-corrected small area estimator derived under the CD or
the RKM estimator m̂

MQGWR/CD
j of the distribution function

is

N−1
j {

∑
i∈sj

yij +
∑
i∈rj

xT
ij β̂(ui ; θ̂j) +

Nj − nj

nj

∑
i∈sj

[yij −xT
ij β̂(ui ; θ̂j)]}
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MSE Estimation

MSE Estimation

MSE estimation of the small area mean is based on the ideas
described in Chambers, Chandra and Tzavidis (2007)

To start with we note that the MQGWR CD estimator can be
expressed as a weighted sum of the sample y-values

m̂
MQGWR/CD
j = N−1

j wT
sj ys

wsj =
Nj

nj
1sj +

∑
i∈rj

HT
ij xi −

Nj − nj

nj

∑
i∈sj

HT
ij xi

Given the linear representation, an approximation to the MSE
can be computed by applying the ideas of robust mean
squared error estimation for linear predictors of population
quantities (Royall and Cumberland, 1978)

V̂ (m̂
MQGWR/CD
j ) =

∑
k:nk>0

∑
i∈sk

λijk

{
yi − Q̂θ̂j

(xi ;ψ, ui )
}2
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MSE Estimation

Estimation for Out of Sample Areas

There are situations where we are interested in estimating
small area characteristics for domains with no sample
observations
The conventional approach to estimating a small area
characteristic in this case is synthetic estimation:

m̂
MX/SYNTH
j = N−1

j

∑
i∈Uj

xi β̂

m̂
MQ/SYNTH
j = N−1

j

∑
i∈Uj

xi β̂(0.5)

One way of potentially improving the efficiency of synthetic
estimation is by using the MQ GWR model. A synthetic-type
mean predictor for out of sample area j is then

m̂
MQGWR/SYNTH
j = N−1

j

∑
i∈Uj

Q̂0.5(xi ; ui )
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Empirical Investigations

Empirical Investigations - Design-based Simulation (1)

Between 1991 and 1996 researchers from the US
Environmental Protection Agency (EPA) conducted an
environmental health study for the lakes in the North-eastern
states of the US

Dependent variable is Acid Neutralizing Capacity (ANC), an
indicator of the acidification risk of water bodies. 334 lakes
were selected from the population of all northeastern lakes
(21,026). The total number of measurements is 551

Region is divided in 113 (86 in sample and 27 out of sample)
8-digit HUCs; we need to estimate mean lake Acid
Neutralizing Capacity (ANC) for all HUCs

For sampled locations we know the exact spatial coordinates
of the corresponding location. For non-sampled locations the
centroid of the lake is known
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Empirical Investigations

Empirical Investigations - Design-based Simulation (1)
(Cont’d)

We first generated a population dataset that had similar
spatial structure to that of the EMAP sample data

A total of 200 independent random samples were then taken
from each HUC, with sample sizes set to equal or greater than
5. No samples were taken from HUCs that had not been
sampled by EMAP

We compare the following small area estimators (a) EBLUP,
(b) M-quantile CD (MQ), (c) M-quantile GWR (MQGWR)
and (d) M-quantile GWR local intercepts model (MQGWR-LI)

For the M-quantile GWR estimators we investigate the impact
of using different types of geo-referenced information i.e. for
non-sampled locations we use (a) the centroid of the lake and
(b) the centroid of the HUC, which represents aggregated
spatial information
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Empirical Investigations

Empirical Investigations - Design-based Simulation (1)
(Cont’d)

Table: Design-based simulation results using the EMAP data. Results
show medians of Relative Bias (RB) and Relative Root Mean Squared
Error (RMSE) over areas and simulations.

Predictor RB(%) RRMSE(%) RB(%) RRMSE(%)
86 sampled HUCs 27 non-sampled HUCs

EBLUP 8.51 43.41 −36.59 53.76
MQ −1.15 40.29 −69.29 68.65
MQGWR −0.25 26.12 −3.69 17.50
MQGWR LI −0.69 28.52 −23.21 26.82
MQGWR (ag.sp.) −0.08 30.34 −4.92 20.75
MQGWR LI (ag.sp.) −0.55 35.10 −22.18 26.55
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Empirical Investigations

Empirical Investigations - Design-based Simulation
(Cont’d)

Figure: HUC-specific values of actual design-based RMSE (solid line) and average estimated RMSE (dashed line).

Left is MQGWR version and right is the MQGWR-LI version with RMSE estimated using the proposed expression.

24

Figure 1. HUC-specific values of actual design-based RMSE (solid line) and average
estimated RMSE (dashed line). Top left is the EBLUP predictor (2) with RMSE
estimator suggested by Prasad and Rao (1990). Top right is the M-quantile predictor
(5) with RMSE estimator suggested by Tzavidis and Chambers (2007). Bottom left is
MQGWR version of (13) with RMSE estimated using (16) and bottom right is the
MQGWR-LI version of (13) with RMSE also estimated using (16).
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Empirical Investigations

Empirical Investigations - Design-based Simulation (2)

Source: the Living Standard Measurement Study (LSMS,
2002)

Dependent variable is the household per-capita consumption.
The total number of observations is 3600. The target is to
estimate the District average of household per-capita
consumption

Albania is divided in 12 Prefectures, 36 Districts

For sampled households we know the exact spatial coordinates
of their corresponding locations. For non-sampled households
only the centroid of the district is known
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Empirical Investigations

Empirical Investigations - Design-based Simulation (2)
(Cont’d)

Table: Design-based simulation results using the LSMS data. Results
show medians of Relative Bias (RB) and Relative Root Mean Squared
Error (RMSE) over areas and simulations.

Predictor RB(%) RRMSE(%) RB(%) RRMSE(%)
26 sampled Districts 10 non-sampled Districts

EBLUP 1.42 10.37 6.83 16.65
MQ 0.20 10.94 1.09 14.92
MQGWR (ag.sp.) 1.05 11.80 1.54 15.79
MQGWR LI (ag.sp.) 0.30 11.44 1.30 15.01
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Empirical Investigations

Empirical Investigations - Design-based Simulation (2)
(Cont’d)

Figure: District-specific values of actual design-based RMSE (solid line) and average estimated RMSE (dashed

line). Left is MQGWR version and right is the MQGWR-LI version with RMSE estimated using the proposed

expression.
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Empirical Investigations

Case Study: Modelling Ecological Data in the
North-eastern US

The figure displays the region of interest and the locations of the
sampled lakes
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Empirical Investigations

A Case Study (Cont’d)

Direct estimates are not reliable (small or zero sample sizes)
→ small area estimation techniques should be employed

Auxiliary information is available at frame level from remote
sensing: LATITUDE, LONGITUDE, ELEVATION

Potential problem as under conventional models errors are
assumed to be normally distributed

Brunsdon, Fotheringham and Charlton (1999) applied an
ANOVA test to the data and rejected the null hypothesis of
stationarity of model parameters based on measuring their
variability over space
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Empirical Investigations

Case Study (Cont’d)

Figure: Maps of estimated average ANC for all 113 HUCs. The left map shows estimates computed using

MQGWR and the right map shows estimates computed using the M-quantile model.
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Empirical Investigations

A Case Study: Modelling LSMS data in Albania

Target parameter is the average household per-capita
consumption at District level

Auxiliary information is available at District level from Census
(2001): household size, the presence of facilities in the
dwelling (TV, parabolic dish antenna, refrigerator, air
conditioning, personal computer), ownership of dwelling,
ownership of land and ownership of car

Potential problem as under conventional models errors are
assumed to be normally distributed
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Empirical Investigations

Case Study (Cont’d)

Figure: Maps of estimated average household per-capita consumption for all 36 Districts. The left map shows

estimates computed using MQGWR and the right map shows estimates computed using the M-quantile model.
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SAMPLE project

Small Area Methods for Poverty and Living condition Estimates
EU-FP7- SSH-2007-1- Grant Agreement 217565

Total money in the grant: 874, 000 Euros

Starting date: 1st March 2008

Partners: University of Pisa (Coordinator), University of
Siena, University of Manchester, Universidad Carlos III de
Madrid , Universidad Miguel Hernandez de Helce, Warsaw
School of Economics, Province of Pisa, Simurg Ricerche,
Glowny Urzad Statystyczny

Web-site: www.sample-project.it
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SAMPLE project: the goal

The aim of the SAMPLE project is

to identify and develop new indicators and models that will
help the understanding of inequality and poverty with special
attention to social exclusion and deprivation

to develop models and implement procedures for estimating
these indicators and their corresponding accuracy measures at
the level of small area (NUTS3 and LAU 1 and 2 level).
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SAMPLE project: structure of the project

The project is structured in six parts corresponding to six main
areas of research or development. Each part consists of a group of
tasks (called Work Package - WP) and will be carried out by a set
of participant entities.

WP 1 New indicators and models for inequality and poverty with
attention to social exclusion, vulnerability and deprivation
(CRIDIRE / WSE / GUS / PP / UNIPI-DSMAE / SR)

WP 2 Small area estimation of poverty and inequality indicators
(UNIPI-DSMAE / CCSR / UC3M / UMH)

WP 3 Integration of EU-SILC data with administrative data (PP /
SR / UNIPI-DSMAE)

WP 4 Standardisation and application development - Software for
living conditions estimates (SR)

WP 5 Management (UNIPI-DSMAE / ALL)

WP 6 Information, dissemination of results (SR / ALL)
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