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Introduction to Bayesian Analysis

How did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

In modern language, given r ∼ Binomial(θ, n), what is Pr(θ1 < θ < θ2|r, n)?
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Introduction to Bayesian Analysis

Basic idea: Direct expression of uncertainty about
unknown parameters

eg ”There is an 89% probability that the absolute increase in major bleeds is less
than 10 percent with low-dose PLT transfusions” (Tinmouth et al, Transfusion,
2004)

% absolute increase in major bleeds
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Introduction to Bayesian Analysis

Why a direct probability distribution?

1. Tells us what we want: what are plausible values for the parameter of interest?

2. No P-values: just calculate relevant tail areas

3. No (difficult to interpret) confidence intervals: just report, say, central area
that contains 95% of distribution

4. Fits naturally into decision analysis / cost-effectiveness analysis / project
prioritisation

5. There is a procedure for adapting the distribution in the light of additional
evidence: i.e. Bayes theorem allows us to learn from experience
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Introduction to Bayesian Analysis

What are Bayesian methods?

• Bayesian methods have been widely applied in many areas:

– medicine / epidemiology

– genetics

– ecology

– environmental sciences

– social and political sciences

– finance

– archaeology

– .....

• Motivations for adopting Bayesian approach vary:

– natural and coherent way of thinking about science and learning

– pragmatic choice that is suitable for the problem in hand
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Introduction to Bayesian Analysis

Spiegelhalter et al (2004) define a Bayesian approach as

‘the explicit use of external evidence in the design, monitoring, analysis,
interpretation and reporting of a [scientific investigation]’

They argue that a Bayesian approach is:

• more flexible in adapting to each unique situation

• more efficient in using all available evidence

• more useful in providing relevant quantitative summaries

than traditional methods
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Introduction to Bayesian Analysis

Example

A clinical trial is carried out to collect evidence about an unknown ‘treatment
effect’

Conventional analysis

• p-value for H0: treatment effect is zero

• Point estimate and CI as summaries of size of treatment effect

Aim is to learn what this trial tells us about the treatment effect

Bayesian analysis

• Asks: ‘how should this trial change our opinion about the treatment effect?’
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Introduction to Bayesian Analysis

The Bayesian analyst needs to explicitly state

• a reasonable opinion concerning the plausibility of different values of the
treatment effect excluding the evidence from the trial (the prior distribution)

• the support for different values of the treatment effect based solely on data
from the trial (the likelihood),

and to combine these two sources to produce

• a final opinion about the treatment effect (the posterior distribution)

The final combination is done using Bayes theorem, which essentially weights
the likelihood from the trial with the relative plausibilities defined by the prior
distribution

One can view the Bayesian approach as a formalisation of the process of learning
from experience
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Introduction to Bayesian Analysis

Posterior distribution forms basis for all inference — can be summarised to provide

• point and interval estimates of treatment effect

• point and interval estimates of any function of the parameters

• probability that treatment effect exceeds a clinically relevant value

• prediction of treatment effect in a new patient

• prior information for future trials

• inputs for decision making

• ....
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Introduction to Bayesian Analysis

Bayes theorem and its link with Bayesian inference

Axioms of probability

Let A, B be events, and {Ai, i = 1,2,3, ...} be a set of events. The probability of
A, p(A), is a number which satisfies:

Axiom 1: 0 ≤ p(A) ≤ 1 and p(A) = 1 if A is certain.

Axiom 2: If the events Ai are mutually exclusive, p(
⋃

i Ai) =
∑

i p(Ai)

Axiom 3: p(A
⋂

B) = p(B|A)p(A)
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Introduction to Bayesian Analysis

Bayes’ theorem

(provable from axioms)

p(A|B) =
p(B|A)p(A)

p(B)
.

If Ai is a set of mutually exclusive and exhaustive events (i.e. p(
⋃

i Ai) =
∑

i p(Ai) =
1), then

p(Ai|B) =
p(B|Ai)p(Ai)

∑

j p(B|Aj)p(Aj)
.
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Introduction to Bayesian Analysis

Example: use of Bayes theorem in diagnostic testing

• A new HIV test is claimed to have “95% sensitivity and 98% specificity”

• In a population with an HIV prevalence of 1/1000, what is the chance that
patient testing positive actually has HIV?

Let A be the event that patient is truly HIV positive, A be the event that they
are truly HIV negative.

Let B be the event that they test positive.

We want p(A|B).

“95% sensitivity” means that p(B|A) = .95.

“98% specificity” means that p(B|A) = .02.

Now Bayes theorem says

p(A|B) =
p(B|A)p(A)

p(B|A)p(A) + p(B|A)p(A)
.

Hence p(A|B) = .95×.001
.95×.001+.02×.999

= .045.

Thus over 95% of those testing positive will, in fact, not have HIV.
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Introduction to Bayesian Analysis

• Our intuition is poor when processing probabilistic evidence

• The vital issue is how should this test result change our belief that patient is

HIV positive?

• The disease prevalence can be thought of as a ‘prior’ probability (p = 0.001)

• Observing a positive result causes us to modify this probability to p = 0.045.
This is our ‘posterior’ probability that patient is HIV positive.

• Bayes theorem applied to observables (as in diagnostic testing) is uncontro-
versial and established

• More controversial is the use of Bayes theorem in general statistical analyses,
where parameters are the unknown quantities, and their prior distribution
needs to be specified — this is Bayesian inference
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Introduction to Bayesian Analysis

Bayesian inference

Makes fundamental distinction between

• Observable quantities x, i.e. the data

• Unknown quantities θ

θ can be statistical parameters, missing data, mismeasured data ...

→ parameters are treated as random variables

→ in the Bayesian framework, we make probability statements about model
parameters

! in the frequentist framework, parameters are fixed non-random quantities
and the probability statements concern the data
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Introduction to Bayesian Analysis

As with any statistical analysis, we start by positing a model which specifies

p(x | θ)

This is the likelihood, which relates all variables into a ’full probability model’

From a Bayesian point of view

• θ is unknown so should have a probability distribution reflecting our uncer-
tainty about it before seeing the data
→ need to specify a prior distribution p(θ)

• x is known so we should condition on it
→ use Bayes theorem to obtain conditional probability distribution for unob-
served quantities of interest given the data:

p(θ | x) =
p(θ) p(x | θ)

∫

p(θ) p(x | θ) dθ
∝ p(θ) p(x | θ)

This is the posterior distribution

The prior distribution p(θ), expresses our uncertainty about θ before seeing the
data.

The posterior distribution p(θ | x), expresses our uncertainty about θ after seeing
the data.
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Introduction to Bayesian Analysis

Bayesian inference with binary data

Example: Inference on proportions using discrete prior

Assume treatment may have response rate θ of .2, .4, .6 or .8., each of equal
prior probability. If we observe a single positive response (x = 1), how is our belief
revised?

Likelihood, p(x | θ) = θx(1 − θ)(1−x)

θ Prior Likelihood Likelihood × prior Posterior

p(θ) p(x = 1 | θ) = θ p(x = 1|θ)p(θ) p(θ|x = 1) =
p(x=1|θ)p(θ)

∑

j
p(x=1|θj)p(θj)

.2 .25 .2 .05 .10

.4 .25 .4 .10 .20

.6 .25 .6 .15 .30

.8 .25 .8 .20 .40
∑

j 1.0 .50 1.0

Note: a single positive response makes it four times as likely that the true response
rate is 80% rather than 20%.
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Introduction to Bayesian Analysis

Inference on proportions using a continuous prior

Suppose we now observe r positive responses out of n patients.

Assuming patients are independent, with common unknown response rate θ, leads
to a binomial likelihood

p(r|n, θ) =





n

r



 θr(1 − θ)n−r ∝ θr(1 − θ)n−r

Also, more reasonable to consider the response rate, θ to be a be a continuous
parameter ⇒ needs to be given a continuous prior distribution.

Suppose that, before taking account of the evidence from our trial, we believe all
values for θ are equally likely (is this plausible?) ⇒ θ ∼ Unif(0,1) i.e. p(θ) = 1

1−0
= 1

Posterior is then

p(θ|r, n) ∝ θr(1 − θ)(n−r) × 1

This has form of the kernel of a Beta(r+1, n-r+1) distribution, where

θ ∼ Beta(a, b) ≡
Γ(a + b)

Γ(a)Γ(b)
θa−1(1 − θ)b−1
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Introduction to Bayesian Analysis

To represent external evidence that some response rates are more plausible than
others, it is mathematically convenient to use a Beta(a, b) prior distribution for θ

p(θ) ∝ θa−1(1 − θ)b−1

Combining this with the binomial likelihood gives a posterior distribution

p(θ | r, n) ∝ p(r | θ, n)p(θ)

∝ θr(1 − θ)n−rθa−1(1 − θ)b−1

= θr+a−1(1 − θ)n−r+b−1

∝ Beta(r + a, n − r + b)
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Introduction to Bayesian Analysis

Comments

• When the prior and posterior come from the same family of distributions the
prior is said to be conjugate to the likelihood

– Occurs when prior and likelihood have the same ‘kernel’

• A Beta(a, b) distribution has

mean = a/(a + b),

variance = ab/
[

(a + b)2(a + b + 1)
]

Hence posterior mean is E(θ|r, n) = (r + a)/(n + a + b)

• a and b are equivalent to observing a priori a − 1 successes in a + b − 2 trials
→ can be elicited

• With fixed a and b, as r and n increase, E(θ|r, n) → r/n (the MLE), and the
variance tends to zero

– This is a general phenomenon: as n increases, posterior distribution gets
more concentrated and the likelihood dominates the prior

• A Beta(1, 1) is equivalent to Uniform(0, 1)
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Introduction to Bayesian Analysis

Example: Drug

• We consider early investigation of a new drug

• Experience with similar compounds has suggested that response rates be-
tween 0.2 and 0.6 could be feasible

• We interpreted this as a distribution with mean = 0.4, standard deviation 0.1
and showed that a Beta(9.2,13.8) distribution has these properties

• Suppose we now treat n = 20 volunteers with the compound and observe
y = 15 positive responses
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Introduction to Bayesian Analysis

Probability or response

0.0 0.2 0.4 0.6 0.8 1.0

Beta(9.2, 13.8) prior distribution
supporting response rates
between 0.2 and 0.6

Probability or response

0.0 0.2 0.4 0.6 0.8 1.0

Likelihood arising from a
Binomial observation of 15
successes out of 20 cases

Probability or response

0.0 0.2 0.4 0.6 0.8 1.0

Parameters of the Beta
 distribution are updated to
(a+15, b+20-15) = (24.2, 18.8):
mean 24.2/(24.2+18.8) = 0.56
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Introduction to Bayesian Analysis

Probability or response

0.0 0.2 0.4 0.6 0.8 1.0

(a)

0 10 20 30 40

Number of sucesses

0 10 20 30 40

(b)

(a) Beta posterior distribution after having observed 15 successes in 20 trials

(b) predictive Beta-Binomial distribution of the number of successes ỹ40 in the
next 40 trials with mean 22.5 and standard deviation 4.3

Suppose we would consider continuing a development program if the drug man-
aged to achieve at least a further 25 successes out of these 40 future trials

From Beta-binomial distribution, can calculate P (ỹ40 ≥ 25) = 0.329
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Introduction to Bayesian Analysis

Drug (continued): direct use of data when using
Monte-Carlo (MC) methods

Previous slides showed closed-form solution to drug problem

Can also use simulation (Monte Carlo) methods for inference

When using conjugate analysis, we can sample directly from closed-form posterior

As before, assume we have observed 15 successes out of 20 subjects, and wish to
predict whether we will get more than 25 successes in next 40 patients.

The model can be written

θ ∼ Beta[a, b] prior distribution

y ∼ Binomial[θ, m] sampling distribution (likelihood)

θ|y ∼ Beta[a + y, b + m − y] posterior distribution

ypred ∼ Binomial[θ, n] predictive distribution

Pcrit = P (ypred ≥ ncrit) Probability of exceeding critical threshold
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Introduction to Bayesian Analysis

Drug (continued): indirect learning about param-
eters from data using Markov chain Monte-Carlo
(MCMC) methods

More generally, we can specify the prior and likelihood separately.

The model can be written

θ ∼ Beta[a, b] prior distribution

y ∼ Binomial[θ, m] sampling distribution

ypred ∼ Binomial[θ, n] predictive distribution

Pcrit = P (ypred ≥ ncrit) Probability of exceeding critical threshold

# In BUGS syntax:

# Model description ’
model {

theta ~ dbeta(a,b) # prior distribution
y ~ dbin(theta,m) # sampling distribution
y.pred ~ dbin(theta,n) # predictive distribution
P.crit <- step(y.pred-ncrit+0.5) # =1 if y.pred >= ncrit, 0 otherwise

}
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Introduction to Bayesian Analysis

The BUGS program

Bayesian inference Using Gibbs Sampling

• Language for specifying complex Bayesian models

• Constructs object-oriented internal representation of the model

• Simulation from full conditionals using Gibbs sampling

• Current version (WinBUGS 1.4) runs in Windows

• Just Another Gibbs Sampler (JAGS) - C++ Winbugs “clone”.

WinBUGS is freely available from http://www.mrc-bsu.cam.ac.uk/bugs
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Introduction to Bayesian Analysis

Graphical representation of models

Note that adding data to a model is simply extending the graph.
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Introduction to Bayesian Analysis

Data files

Data can be written after the model description, or held in a separate .txt or .odc
file

list( a = 9.2, # parameters of prior distribution
b = 13.8,
y = 15, # number of successes
m = 20, # number of trials
n = 40, # future number of trials
ncrit = 25) # critical value of future successes

Alternatively, in this simple example, we could have put all data and constants
into model description:

model{
theta ~ dbeta(9.2,13.8) # prior distribution
y ~ dbin(theta,20) # sampling distribution
y.pred ~ dbin(theta,40) # predictive distribution
P.crit <- step(y.pred-24.5) # =1 if y.pred >= ncrit, 0 otherwise

y <- 15
}
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Introduction to Bayesian Analysis

The WinBUGS data formats

WinBUGS accepts data files in:

1. Rectangular format (easy to cut and paste from spreadsheets)

n[] r[]
47 0
148 18
...
360 24
END

2. S-Plus format:

list(N=12,n = c(47,148,119,810,211,196,
148,215,207,97,256,360),

r = c(0,18,8,46,8,13,9,31,14,8,29,24))

Generally need a ‘list’ to give size of datasets etc.
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Introduction to Bayesian Analysis

Initial values

• WinBUGS can automatically generate initial values for the MCMC analysis
using gen inits

• Fine if have informative prior information

• If have fairly ‘vague’ priors, better to provide reasonable values in an initial-
values list

Initial values list can be after model description or in a separate file

list(theta=0.1)

1-29



Introduction to Bayesian Analysis

Running WinBUGS for MCMC analysis (single chain)

1. Open Specification tool from Model menu.

2. Program responses are shown on bottom-left of screen.

3. Highlight model by double-click. Click on Check model.

4. Highlight start of data. Click on Load data.

5. Click on Compile.

6. Highlight start of initial values. Click on Load inits.

7. Click on Gen Inits if more initial values needed.

8. Open Update from Model menu.

9. Click on Update to burn in.

10. Open Samples from Inference menu.

11. Type nodes to be monitored into Sample Monitor, and click set after each.

12. Perform more updates.

13. Type * into Sample Monitor, and click stats etc to see results on all monitored
nodes.
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Introduction to Bayesian Analysis

WinBUGS output
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Introduction to Bayesian Analysis

WinBUGS output and exact answers

node mean sd MC error 2.5% median 97.5% start sample
theta 0.5633 0.07458 4.292E-4 0.4139 0.5647 0.7051 1001 30000
y.pred 22.52 4.278 0.02356 14.0 23.0 31.0 1001 30000
P.crit 0.3273 0.4692 0.002631 0.0 0.0 1.0 1001 30000

Exact answers from conjugate analysis

• θ: mean 0.563 and standard deviation 0.075

• Y pred: mean 22.51 and standard deviation 4.31.

• Probability of at least 25: 0.329

MCMC results are within Monte Carlo error of the true values
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Introduction to Bayesian Analysis

Summary

For all these examples, we see that

• the posterior mean is a compromise between the prior mean and the MLE

• the posterior s.d. is less than each of the prior s.d. and the s.e.(MLE)

‘A Bayesian is one who, vaguely expecting a horse and catching a glimpse

of a donkey, strongly concludes he has seen a mule’ (Senn, 1997)

As n → ∞,

• the posterior mean → the MLE

• the posterior s.d. → the s.e.(MLE)

• the posterior does not depend on the prior.

These observations are generally true, when the MLE exists and is unique
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Introduction to Bayesian Analysis

Choosing prior distributions

When the posterior is in the same family as the prior then we have what is
known as conjugacy. This has the advantage that prior parameters can usually
be interpreted as a prior sample. Examples include:

Likelihood Parameter Prior Posterior

Normal mean Normal Normal

Normal precision Gamma Gamma

Binomial success prob. Beta Beta

Poisson rate or mean Gamma Gamma

• Conjugate prior distributions are mathematically convenient, but do not exit
for all likelihoods, and can be restrictive

• Computations for non-conjugate priors are harder, but possible using MCMC.
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Introduction to Bayesian Analysis

Further reading

Berry (1996) (Introductory text on Bayesian methods, with medical slant)

Lee (2004) (Good intro to Bayesian inference; more mathematical than Berry;
3rd edition contains WinBUGS examples)

Bernardo and Smith (1994) (Advanced text on Bayesian theory)
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