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Abstract
We present several estimates of measures of risk amongst the most

well-known, using both high and low frequency data. The aim of the
article is to show which lower frequency measures can be an acceptable
substitute to the high precision measures, when transaction data is
unavailable for a long history. We also study the distribution of the
volatility, focusing more precisely on the slope of the tail of the various
risk measure distributions, in order to define the high watermarks of
market risks. Based on estimates of the tail index of a Generalized
Extreme Value density backed-out from the high frequency CAC40
series in the period 1997-2006, using both Maximum Likelihood and
L-moment Methods, we, finally, find no evidence for the need of a
specification with heavier tails than in the case of the traditional log-
normal hypothesis.
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based Volatility, Extreme Value, High Frequency Data.
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1 Introduction

The measure of risk plays a central role in the theory and practice of finance.
The most used version by professional remains today the so-called Simple
Volatility. However, following for instance Barndorff-Nielsen and Shephard
(2003) or Andersen et al. (2003), volatility should be viewed as a latent
factor (namely, the quadratic variation affecting the Brownian motion in
some representations, for instance) that can only be estimated using its
signature on market prices. It is only when the process is known (and
simulated) as in Andersen and Bollerslev (1997, 1998) that we know what
the true volatility is. As shown by Barndorff-Nielsen and Shephard (2002),
when the underlying process is more sophisticated, or when observed prices
suffer from market microstructure distortion effects (see Brandt and Diebold,
2003), the results are less clear.

The Realized Volatility is considered, since its first use (see Andersen and
Bollerslev, 1998), as the best estimator for the latent factor of risk. The daily
volatility obtained from transaction data is shown to be accurate when con-
trolling for a microstructure effect and thus empirically supports the Clark
(1973) Mixture of Distribution Hypothesis. Among the high-frequency esti-
mators, the one using all the available transactions performs better than the
Realized Volatilities that use a lower sampling rate (see Bollen and Inder,
2002). Oomen (2005) empirically also shows that estimating the volatility
in business-time (transaction time) is more efficient than using the tradi-
tional calendar-time, as it samples the process when it is most informative.
Aı̈t-Sahalia et al. (2005) argue that the most precise estimator, so far, is
the mean of the Realized Volatilities chosen at the optimal frequency but
measured at different phases.

However, when high-frequency data are unavailable, the best estimations
of the unobservable risk factor are obtained through the Range-based (or
Extreme Value) estimators. The price range, defined as the difference be-
tween the highest and lowest market prices over a fixed sampling interval,
is known for a long time as a volatility estimator. Starting with Parkinson
(1980), there is a wealth of literature1 devoted to refinements of this measure
(using various assumptions about the underlying process).

The aim of the present article then is to study the main properties of low
and high-frequency measures of volatility, in order to find if there are glar-
ing discrepancies between the empirical evidence and the usual assumptions

1Relevant literature includes Parkinson (1980), Garman and Klass (1980), Rogers and
Satchell (1991), Kunitomo (1992) and Yang and Zhang (2000).
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that the distribution of volatility is Gaussian. We first recall definitions and
properties of six main estimates of volatility, based on daily and intra-day
data. We then compute them on the French CAC40 index over a ten-year
high frequency sample. We secondly study their distributional properties by
testing their Goodness-of-Fit against the Gaussian hypothesis. We thirdly
focus on extreme volatilities. We fit a General Extreme Value distribution
to the right-hand tail of daily risk measures, in order to get estimated fre-
quencies of high watermarks of extreme market events.

2 From Low to High Frequency Measures of Risk
via Extreme Value Estimators of Volatility

It is well known that the amplitude of price changes is not constant, but
fluctuating with time in a somewhat predictable fashion. The Integrated
Variance (i.e., the variance of the instantaneous returns over a period) can
be approximated through estimators of the Quadratic Variation of prices.
We present hereafter the main measures of daily volatility, computed from
either daily data or intra-day data.

2.1 Measures of Risk and Extreme Value Estimators of Volatil-
ity

The usual indicator of risk is the variance obtained from the series of closing
prices. Since this indicator is not constant over time, a way to diminish its
variations in the computation is to use a rolling window with a fixed range.
The general expression of the daily volatility is calculated with daily data
in the following manner:

σ̂t =

 1
(N − 1)

t∑
n=t−N+1

[
ln
(
Pn
Pn−1

)
− µ̂t

]2
1
2

, (1)

where N is the estimation window expressed in a number of business
days, n = [1, . . . , T ] and t = [N, . . . , T ] are daily dates, {Pn} is a sequence
of closing prices, and µ̂t is given by (with previous notations):

µ̂t =
1
N

t∑
n=t−N+1

[
ln
(
Pn
Pn−1

)]
,

which is an estimation of the mean log-return on the reference period.
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A main critic of this daily estimator concerns the serial dependences.
Indeed, the same return observations are used in the computation of many
successive volatilities, which is all the more true since N is large. Moreover,
Poon and Granger (2002) have noticed that the statistical properties of the
sample mean make it a very inaccurate estimate of the true mean. This
is particularly true for small samples since taking deviations around zero
- or around a very long period mean - instead of the sample mean on a
short window, increases the accuracy of the estimate (even if biased). If we
consider this approach, the simplest measure of Simple Volatility should be
defined by the squared return between only two observation dates (days),
which is written:

σ̂St =

[
nb
τ

ln
(
Pt
Pt−τ

)2
]1/2

, (2)

where nb is the number of business days per year and τ the periodicity (one
day per default), and {Pt} is the series of the price of the asset at time t.

In this case, there is no hypothesis about the mean return, and also no
serial dependences. Then, we will use it as our instantaneous low frequency
volatility in the rest of the paper. Nevertheless, its time-variation is greatly
noisy, and, therefore, this estimate is not recommended for practical appli-
cations. It is possible to reduce some of the noise, affecting the previous
daily-based estimates, by using an Exponential Moving Average2 (EMA).
The EMA estimator is defined by induction with the following equation:

σ̂EMA
t =

{
ρ(σ̂EMA

t−1 )2 + (1− ρ)
[
ln
(
Pt
Pt−1

)]2} 1
2

, (3)

where ρ is the parameter governing the smoothness3.
Moreover, the counterpart of the simplicity of the previous volatility

measure computations is that they do not take into account the information
given by the path of the price inside the period of reference. For example,
even at the low (daily) frequency, supplementary information is often avail-
able in addition to the closing price, such as the opening price and extremal
prices within the day. Parkinson (1980) proposes, then, an estimator of the

2Sometimes called a RiskMetrics type of measure.
3It has been set to .5 (mild smoothing), corresponding to a half-life of one day or so.
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volatility based on this type of data, given by:

σ̂Pt =

{
1
θN

N∑
n=1

[
ln
(
Hn

Ln

)]2} 1
2

, (4)

where θN = 4N ln(2) is a correction parameter, and:

 Hn = Max
Pt

{Pt | t ∈ [n− 1, n]} is the highest price on day n

Ln = Min
Pt

{Pt | t ∈ [n− 1, n]} is the lowest price on day n.

The efficiency of Parkinson’s (1980) Extreme Value Volatility estimator
comes intuitively from the fact that the range of intra-daily quotes gives
more information regarding the true volatility than two arbitrarily spaced
points in these series (the closing prices), for the low cost of two data points
per day. By this definition, Parkinson’s (1980) estimator implicitly assumes
that log-stock prices follow a geometric Brownian motion with no drift. Tak-
ing this assumption into consideration, Rogers and Satchell (1991) propose
an improvement of the volatility estimator. They add a drift term in the
stochastic process that can be incorporated into a volatility estimator (with
previous notations):

σ̂RSt =

(
1
N

t∑
n=t−N+1

{
ln (Hn/On) [ln (Hn/On)− ln (Cn/On)]

+ ln (Ln/On) [ln (Ln/On)− ln (Cn/On)]
}) 1

2

, (5)

where On is the open price on day n.

At last, Yang and Zhang (2000) propose another improvement by pre-
senting an Extreme Value Volatility estimator that is unbiased, independent
of any drift, and consistent in the presence of opening price jumps. Their
estimator writes (with previous notations):

σ̂Y Zt =

 1
(N − 1)

t∑
n=t−N+1

[
ln (On/Cn−1)− ln (On/Cn−1)

]2
+

κ

(N − 1)

t∑
n=t−N+1

[
ln (Cn/On)− ln (Cn/On)

]2
(6)
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+ (1− κ)
(
σ̂RSt

)2
}1/2

,

with:

κ =
.34[

1.34 + N+1
(N−1)

] ,
and with Cn being the closing price on day n, the notation X̄n standing for
the unconditional mean of the sequence of the variable Xn, and σ̂RSt being
the Rogers-Satchell (1991) estimator (see definition above).

Concerning the previous defined estimators, Alizadeh et al. (2002) un-
derline that range-based estimators have many interesting properties com-
pared to low frequency estimators or even, in some cases, to high-frequency
based volatility estimators (Aı̈t-Sahalia et al., 2005, Marten and van Dijk,
2006). The range is a highly efficient volatility estimator as shown by Brandt
and Diebold (2003) in a multivariate setting. For example, when the market
is characterized by drops and recoveries in the same day, the classical close-
to-close volatility can take low values while the daily range indicates that
the volatility is truly high. Furthermore, the range is robust to microstruc-
ture biases such as the bid-ask bounce. When one measures the ratio of the
variance of the Extreme Value estimators over the Close-to-Close Simple
Volatility, all previous estimators provide very substantial improvements.
For example, Corrado and Miller (2006) report that Parkinson’s (1980) es-
timator allows a theoretical relative efficiency gain comprised between 2.5
and 5.

Moreover, while the extreme estimators are still dealing with traditional
measures, the availability of tick-by-tick data led to a reframing of both
theoretical and empirical literature on volatility. Instead of considering a
constant volatility over a certain period of time (a day for instance), the
continuous time model assumes a continuously varying volatility. The risk
over the considered period is thus no longer a constant value, but the so-
called Integrated Volatility. In a continuous framework, the most common
stochastic equation of the price process is:

d log(Pt) = µt dt+ σtdBt, (7)

with Pt the price at time t, µt the drift term, Bt the standard Brownian
motion and σt the instantaneous volatility. This leads to the Integrated
Volatility over the time interval τ , that is

∫ τ
0 σ

2
t dt. In this case, the empirical

Integrated Volatility is in fact the Realized Volatility defined as:
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σ̂RVt,τ =

 t/τ∑
j=1

ln

(
Pj
Pj−1

)2
 1

2

, (8)

where t is the time interval between two successive observations and {Pj}
the sequence of high frequency (intraday) prices.

The next section is devoted to the study and the comparison of the six
previously defined volatility estimators, namely the Realized, the Parkinson,
the Rogers-Satchell, the Yang-Zhang, the Simple and the EMA Volatility
estimators, by considering their time series and empirical distributions.

2.2 Descriptive Statistics, Correlations and Distribution Di-
agnoses of the Volatility

We represent in Figure 1 the various weekly estimates of daily volatility,
using CAC40 French stock index intraday quotes, resampled at a 30’ fre-
quency in the period 01-01-1997 to 12-31-2006. The peaks of the variance
estimates are approximately synchronous, but the general behavior of the
series differs, both in the range of variances and persistence phenomenon
(see next section). We remark also that Parkinson’s (1980) estimator is the
closest to the Realized Volatility in terms of similarity and general behavior.

Table 1 presents the four first moments of the empirical log-volatilities.
The asymmetry coefficient of skewness is mostly positive (with the exception
of Roger-Satchells volatility, exhibiting many very small values); the mass
of probability on the right side of the distribution appears slightly larger
than on the left side. The kurtosis differs across measures, with the Simple
Volatility and the Rogers-Satchell measures appearing leptokurtic (due in
fact to the existence of many observations close or equal to zero). Overall,
as already seen in Figure 1, estimators using intra-day data are less volatile
(more accurate) than the classical estimator.

Table 2 corresponds to the Pearson and Spearman correlation coeffi-
cients of risk log-estimations. It confirms once again that Parkinson’s (1980)
volatility is very close to the Realized Volatility.

It is generally admitted, since the seminal paper by Cizeau et al. (1997),
that the log-volatility is approximately Gaussian for a daily integrated-
horizon (see Andersen et al., 2001), even if it is still discussed (see Reno
and Rizza, 2003) or can be generalized (Bontemps and Meddahi, 2005).

7
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Table 1: Statistics of the (Log-)Volatilities
Mean Std Skewness Kurtosis Beta
(% ) ( %) (log vol) (log vol)

Realized 16.31 9.82 .24 2.97 1
Parkinson 14.53 9.37 .10 2.98 .95
Rogers-Satchell 15.27 10.41 -1.28 7.29 .93
Yang-Zhang 20.42 12.91 .02 2.97 .87
Simple 16.65 16.16 -1.29 6.13 .80
EMA 19.72 12.27 .04 2.93 .73
Source: Euronext, 30’ sampled intraday CAC40 French stock index quotes from
the period 01-01-1997/12-31-2006. The Beta is computed for every estimator
with respect to the Realized Volatility. Computations by the authors.

Table 2: Pearson’s and Spearman’s Correlations between Risk Measures
Realized Parkinson Rogers- Yang- Simple EMA

Satchell Zhang

Realized 1 .88 .65 .79 .34 .67
Parkinson .87 1 .62 .75 .39 .66
Rogers-
Satchell

.78 .77 1 .71 .09 .32

Yang-Zhang .77 .74 .81 1 .42 .65
Simple .39 .44 .18 .48 1 .62
EMA .66 .64 .42 .64 .71 1
Source: Euronext, 5’ sampled intraday CAC40 French stock index quotes from the pe-
riod 01-01-1997/12-31-2006. This table contains empirical Pearson (upper triangle) and
Spearman (lower triangle) correlation coefficients between risk measures. Computations
by the authors.

8
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Figure 1: Daily Estimates of Annualized Volatilities (Source: Euronext, 30’
sampled intraday CAC40 French stock index quotes from the period 01-01-
1997/12-31-2006. Computations by the authors).

The Probability-to-Probability plots reported on Figure 2 show the em-
pirical cumulative distributions of each volatility versus the Gaussian hy-
pothesis. All of the scale and shape parameters are estimated using the
Maximum Likelihood estimation method (e.g., Law and Kelton, 1991).

A simple eye-ball analysis confirms the diagnosis based on higher mo-
ments: Gaussianity cannot be rejected at traditional significance levels for
the most accurate estimates (namely Realized and Range-based Volatilities).
Nevertheless, the differences in the left hand tails or in the mode and, like-
wise, small local differences in the curve can be diluted in the whole sample.
A specific diagnosis of market volatility is relevant in turbulent periods and
some inaccuracy in low risk periods can be tolerated provided, the estimator
performs better otherwise. However, when studying volatility distributions,
the area of interest is the right-hand tail where the highest volatilities are
located. We have chosen to study more precisely these particular observa-
tions in the next section, by using the Parametric Block Maxima method
for a Generalized Extreme Value (GEV) distribution of extrema.

9
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Figure 2: Goodness-of-Fit of a Gaussian Distribution (Source: Euronext;
5’ resampled intraday CAC40 French stock index quotes from the period
01-01-1997/12-31-2006. Computations by the authors. The P-P Plots show
the cumulative distribution of each volatility - on the x-axis - versus the
Gaussian hypothesis - on the y-axis).

3 Extreme Values of the Daily Risk Estimates

The Generalized Extreme Value distribution (Cf. Jenkinson, 1955) is char-
acterized by three parameters: h ∈ IR, the location parameter, α ∈ IR+,
the scale parameter and ξ ∈ IR known as the shape parameter (which is the
inverse of the tail index). The last one measures the rate of decrease of the
probability in the tails. The GEV distribution is given by:

Hξ(σ) =


Exp

{
−
[
1 + ξ (σ−h)

α

]−ξ−1}
if ξ 6= 0,

Exp
{
−Exp

[
− (σ−h)

α

]}
otherwise,

(9)

for every σ ∈ IR such that [1 + ξ(σ − h)α−1] > 0.
For fat-tailed distributions, the shape parameter will be significantly

positive. We are then interested in the following to test the null hypothesis
H0 of the positivity of shape parameters of the noisy volatility estimators.

Among the multiple methods of estimation for the parameters of a GEV,
the most common one is to use a direct numerical Maximization of the Log-
likelihood. However, a natural challenger is proposed in the case of small
samples (which is by definition the case when studying extreme events) and

10
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proved as one of the best methods for parameter estimations. This comple-
mentary method is based on the computation of the Probability Weighted
Moments (see Greenwood et al., 1979, and Hosking et al., 1985). For the
following empirical applications, we need to use the estimation of sample
counterparts of L-moments for assessing the shape parameter as underlined
hereafter. The L-moments, which are linear functions of the expectations of
order statistics, were introduced by Sillitto (1951). One of the main advan-
tages over conventional moments is that they suffer less from the effects of
sampling variability because they are linear functions of the ordered data.
They have been shown to provide more robust estimators of higher mo-
ments than the traditional sample moments. They can also characterize a
wider range of distributions compared to the usual moments. Formally, the
L-moment of order r is defined as:

λr =
r∑

k=1

p∗k−1,r−1 βk−1, (10)

with:

βk−1 = k−1 E(X[k:k]),

where p∗.,. are the shifted Legendre polynomials coefficients, and βk−1 are
the Probability Weighted Moments of order k = [2, . . . , r].

They can be estimated without bias from the sample Probability Weighted
Moments computed such as:

β̂k−1 =
1
n

n∑
i=1


k−1∏
j=1

[
(i− j)
(n− j)

]
X[i:n]

 , (11)

where X[i:n] is the i-th order statistic of a sample of n realizations (see
Appendix).

When the shape parameter is different from zero, the three first L-
moments, as a function of the characteristic parameters of a GEV distri-
bution, are given by (see Hosking and Wallis, 1997; Embrechts et al., 1997;
and the proof in the Appendix):

λ1 = h− α
ξ + α

ξ Γ(1− ξ)
λ2 = α

ξ

(
2ξ − 1

)
Γ(1− ξ)

λ3 = α
ξ

[
1− 3(2ξ) + 2(3ξ)

]
Γ(1− ξ)

(12)

where h ∈ IR is the location parameter, α ∈ IR+ the scale parameter, ξ ∈ IR∗
the shape parameter and Γ(a) =

∫+∞
0 ta−1e−tdt is the Gamma function

11
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Table 3: Estimates of Shape Parameters of Generalized Extreme Value Dis-
tributions of Daily Log-volatilities Period Maxima via Maximum Likelihood
and Probability Weighted Moment Methods

Method Frequency Realized Parkinson Rogers- Yang- Simple EMA
Satchell Zhang

Maximum Weekly -.17 -.23 -.24 -.22 -.31 -.24

Likelihood Monthly -.24 -.21 -.35 -.24 -.24 -.22
Quarterly -.48 -.31 -.56 -.35 -.31 -.25
Weekly -.17 -.21 -.24 -.24 -.30 -.25

L-
Moments

Monthly -.20 -.24 -.30 -.26 -.23 -.20

Quarterly -.30 -.27 -.48 -.37 -.18 -.14
Source: Euronext, 30’ sampled intraday CAC40 French stock index quotes from the period
01-01-1997/12-31-2006. Computations by the authors.

These estimates of the three first L-moments are sufficient to get an es-
timation of all three parameters characterizing a GEV distribution, using
any classical numerical solving method. In order to check that the GEV
provides a good approximation for the distribution of the maxima in our
sample, we apply the Kolmogorov-Smirnov Goodness-of-Fit test to the re-
sulting distributions. This test never rejects the hypothesis that the GEV
fits the data, with the lowest P-value being .16 for the 5%-threshold maxima
of the realized volatility.

The following Table 3 gives estimates of the shape parameter, based on
maxima of the daily log-volatilities, with the Maximum Likelihood and the
L-moment methods. We first notice that the shape parameter estimations
obtained with the two methods are similar most of the time. Moreover, the
shape parameter estimation of the Realized Volatility on a weekly basis (-.17)
and the one of the EMA on a quarterly basis (-.14) are the closest to zero.
We also remark that, with longer windows, estimations are smaller than
with short windows. In other words, the lower the frequency for collecting
the index, the more limited the presence of financial krachs, marked by
extreme volatilities. Finally, and more importantly, whatever the method,
the frequency and the estimate, none of the estimated shape parameters
(and then tail indexes) is positive. This clearly proves that none of the
underlying distributions can be considered as fat-tailed.

12
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The previous shape parameters correspond to real market data series. In
order to reinforce our previous conclusions and following Danielson and de
Vries (1998), we renew the shape parameter estimation exercise using boot-
strapped series of volatilities for assessing some inferences about the shape
parameter estimations. More precisely, after computing the daily volatili-
ties according to each estimator, we draw with replacement volatility series
from these estimates and compute new weekly, monthly and quarterly max-
ima from these virtual samples. These new maxima being uncorrelated by
construction, we can then fit a GEV on these series and draw the empir-
ical distribution of the resulting shape parameters. We present hereafter
in Figure 3 (respectively, in Figure 4), the GEV shape parameters esti-
mated using the Maximum Likelihood method (respectively, the L-Moment
method) based on 500 bootstrapped series of weekly maxima of daily volatil-
ities. This frequency is chosen since the one for which the estimation of the
shape parameter for the Realized Volatility (the benchmark) is the closest
to zero4. Ranging from -.39 (Simple Volatility) to -.12 (Realized Volatility),
it appears that none of the shape parameters of volatility estimators exhibit
a positive value on the rebuilt new artificial extreme volatility series

These last results clearly indicate that the negative values of the shape
parameters observed with the real series are neither exceptional nor due to
the specific characteristics of the volatility time series; the sign remains the
same whether these characteristics are or are not accounted for. To sum up,
the resampling results allow us to assert the significance of the negativeness
of the shape parameter of the log-volatilities: there is no need to use fat-
tailed distributions to account for the extremes of the log-volatilities. The
log-normal approximation proves adequacy, at least for the asset (the CAC40
index), the frequency (30’ quotes) and the sample (1997-2006) considered
and by using our methodology (Maximum Likelihood and L-Moment meth-
ods), with the chosen density (GEV distribution) and the horizon considered
(daily, weekly and quarterly).

To confirm the previous observations, we present in table 4 the shape
parameters estimated on bootstrapped series of volatilities and on series of

4Results taken into account at monthly and quarterly frequencies (not reported here)
lead to the same kind of qualitative conclusions.

13
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Figure 3: Bootstrapped Values of the Maximum Likelihood GEV Shape
Parameters of the Daily Volatility Weekly Maxima (Source: Euronext; 30’
resampled intraday CAC40 French stock index quotes from the period 01-01-
1997/12-31-2006. Computations by the authors. The bootstrapped values
of the shape parameters of the Realized Volatilities are plotted on the x-axis,
the empirical cumulative distribution on the y-axis).

14
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Figure 4: Bootstrapped Values of the L-Moment method GEV Shape Pa-
rameters of the Daily Volatility Weekly Maxima (Source: Euronext; 30’
resampled intraday CAC40 French stock index quotes from the period 01-
01-1997/12-31-2006. Computations by the authors. The bootstrapped val-
ues of the shape parameters of the Realized Volatilities are plotted on the
x-axis, the empirical cumulative distribution on the y-axis).
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volatilities obtained from bootstrapped series of returns. In order to reshuf-
fle the series, we use four methods of bootstrap: the simple one (Efron and
Tibshirani, 1986); the stationary one (Politis and Romano, 1994); the cir-
cular one (Politis and Romano, 1992, and Politis and White, 2004); the
accelerated one (Efron and Tibshirani, 1993, and Gilli and Këllezi, 2006).
We observe that the shape parameters obtained are similar whatever the
bootstrap methods and series, and are also equivalent to the estimates ob-
tained from the original series. This allows us to conclude that the shape
parameters remain undoubtedly strictly negative.

For finally validating furthermore these results, we introduce herein a
final simple reality check: given the sample estimates of the parameters, it is
now possible to compute the probability of observing the historical volatility
peaks under the various measures and hypotheses. The sample spans from
January 1997 to December 2006, with the highest volatilities occurring in
most cases at the terrorist attack on the Twin Towers (September 2001).
Using the shape parameter from the GEV, estimated from the Maximum
Likelihood Method, we now compute the probability of these events and
their associated return-times. Table 5 presents these probabilities5.

Though this reality check has a very limited statistical significance, it
allows us to filter the results according to our subjective estimation of the
likelihood of a major event. Even if the shape parameter appears relatively
stable over the choice of the estimators, we obtain important different return-
times, which implies large differences in the other parameters of the GEV.
To illustrate this idea, we give in the following figure the density of each
estimate, obtained for a GEV distribution, and we compare them to the
empirical density functions. It appears the two curves are similar, which is
a good sign regarding the pertinence of probabilities and return-times we
obtained.

Further within the tail, the variability increases and estimates can still
differ by a factor larger than two, so the choice of the measure is not insignif-
icant. Overall, the estimates seem to give return-times which are more in
line with the size of the sample (about ten years), except for the Yang-Zhang
one, which gives return-times slightly larger as the sample length. We also
notice the return-times decrease quickly between the first and the third ex-

5For information, when the return distribution is estimated by the Maximum Like-
lihood Method for a Normal distribution, the three largest probabilities of returns are
3.88 10−6%, 5.67 10−6% and 6.10 10−5% which give respectively the following return-
times: 103,085 years, 70,538 years and 6,567 years.
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Table 4: Comparison of Estimates of Shape Parameters of Generalized Ex-
treme Value Distributions of Daily Log-volatilities Weekly Maxima using
Maximum Likelihood and Bootstrap Methods

Series Methods Statistics Realized Parkinson Rogers-
Satchell

Yang-
Zhang

Simple EMA

Shape
Param.

-.24 -.23 -.22 -.21 -.28 -.25

Simple [5%;95%] [-.27;-.21] [-.27;-.19] [-.27;-.18] [-.26;-.18] [-.32;-.25] [-.28;-.22]
KS P-stat (.51) (.57) (.52) (.54) (.56) (.54)

Shape
Param.

-.15 -.21 -.24 -.19 -.31 -.27

Return Stationary [5%;95%] [-.19;-.10] [-.26;-.17] [-.29;-.18] [-.24;-.14] [-.36;-.26] [-.32;-.22]
KS P-stat (.61) (.60) (.54) (.57) (.48) (.54)

Shape
Param.

-.19 -.21 -.22 -.20 -.29 -.25

Circular [5%;95%] [-.23;-.15] [-.27;-.16] [-.27;-.16] [-.25;-.15] [-.34;-.25] [-.29;-.2]
KS P-stat (.61) (.56) (.52) (.58) (.51) (.55)
Shape
Param.

-.22 -.20 -.22 -.22 -.31 -.24

Accelerated [5%;95%] [-.26;-.18] [-.23;-.16] [-.26;-.17] [-.25;-.17] [-.33;-.28] [-.27;-.20]
KS P-stat (.47) (.45) (.50) (.49) (.53) (.46)

Shape
Param.

-.22 -.19 -.25 -.24 -.32 -.24

Volatility Stationary [5%;95%] [-.26;-.17] [-.24;-.14] [-.29;-.21] [-.29;-.20] [-.36;-.27] [-.29;-.19]
KS P-stat (.58) (.57) (.53) (.52) (.54) (.52)

Shape
Param.

-.22 -.21 -.22 -.22 -.30 -.24

Circular [5%;95%] [-.31;-.11] [-.27;-.15] [-.32;-.11] [-.30;-.12] [-.35;-.25] [-.29;-.19]
KS P-stat (.35) (.51) (.44) (.41) (.51) (.46)

Source: Euronext; 30’ resampled intraday CAC40 French stock index quotes from the period 01-
01-1997/12-31-2006. The shape parameters for the various volatility measures are estimated by the
Method of Maximum Likelihehood of a GEV density with a weekly frequency (the block maxima
length) on 10,000 series obtained with bootstrap methods (simple: Efron and Tibshirani, 2003; sta-
tionary: Politis and Romano, 1994; circular: Politis and Romano, 1992, and Politis and White,
2004; accelerated: Efron and Tibshirani, 1993, and Gilli and Këllezi, 2006) on series of returns or
on series of volatilities. The 90% confidence intervals of shape parameters are reported in brackets,
whilst P-statistics of Goodness-of-Fit Kolmogorov-Smirnov tests (denoted KS P-stat.) are between
parentheses. Computations by the authors.
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Table 5: Probablity of Largest Negative Returns and Largest Daily Volatil-
ities, and Return-Times using Maximum Likelihood GEV Estimates

Weekly Monthly Quarterly
Estimator Crisis Values Prob. Return Prob. Return Prob. Return

Times Times Times

11/09/2001 -7.68% .05% 37.73* .54% 14.81* .78% 33.34*
Returns 15/04/2000 -7.55% 1.22% 1.64 1.33% 6.02 1.91% 13.61*

14/03/2003 -7.00% 3.88% 0.51 4.20% 1.90 5.94% 4.38

12/09/2001 .91 .63% 3.15 2.01% 3.99 5.92% 4.40
Realized 24/07/2002 .71 .68% 2.96 2.12% 3.77 6.27% 4.14

03/04/2000 .70 .88% 2.31 2.69% 2.98 7.99% 3.25
11/09/2001 .91 .64 % 3.11 2.21 % 3.42 4.01 % 6.85

Parkinson 15/03/2003 .71 .93% 2.03 2.32% 3.24 6.59% 3.92
25/07/2002 .70 .97% 1.96 2.81% 2.78 7.52% 3.41
05/04/2000 .70 .68% 2.92 2.39% 3.35 4.16% 6.26

Rogers-Satchell 24/07/2002 .64 1.06% 1.88 3.47% 2.31 7.22% 3.60
21/09/2001 .63 1.10% 1.82 3.57% 2.24 7.50% 3.47
17/04/2000 1.20 .17% 12.08* .57% 14.07* 1.87% 13.93*

Yang-Zhang 05/01/2000 1.00 .51% 3.93 1.67% 4.79 5.65% 4.60
21/09/2001 .90 .89% 2.26 2.79% 2.86 9.09% 2.86
11/09/2001 1.17 .19% 10.39* 1.15% 6.94 4.61% 5.64

Simple 14/03/2003 1.14 .23% 8.55 1.30% 6.14 5.05% 5.15
29/07/2002 1.11 .31% 6.38 1.57% 5.08 5.83% 4.46
14/03/2003 .98 .15% 13.01* .79% 10.13* 3.59% 7.25

EMA 15/10/2002 .85 .50% 4.01 1.84% 4.35 6.58% 3.95
11/09/2001 .84 .54% 3.69 1.96% 4.08 6.89% 3.78

Source: Euronext, 30’ sampled intraday CAC40 French stock index quotes on the period 01-01-
1997/12-31-2006. Return-times are expressed in years and they are marked with an asterisk *
when they are larger than the size of the sample, i.e. 10 years. Computations by the authors.
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Figure 5: Empirical and Estimated Density Functions of the Volatility Esti-
mates (Source: Euronext; 30’ resampled intraday CAC40 French stock index
quotes from the period 01-01-1997/12-31-2006. Are represented in this Fig-
ure, on the y-axis, the empirical cumulative functions of the log-volatilities
(red dots), altogether with their GEV best fits (thin lines). Annualized Daily
Volatilities are represented on the x-axis. Computations by the authors.

treme values. From these estimations of the extreme values - computed with
several methods and for various volatility estimators, we can prudently infer
with reasonable confidence that it is unlikely that a fat-tailed distribution
is needed to fit the high volatilities. Indeed, we have obtained in most cases
negative shape parameters, which corresponds to a reversed Weibull-kind of
distribution. However, range-based and intra-day volatilities are not incom-
patible with the log-normal hypothesis and thus the standard approximation
is not significantly flawed.

4 Conclusion

The Realized Volatility, despite its known shortcomings, remains a bench-
mark to which measures of risk should be compared. We show here that,
among the low-frequency volatility measures, Parkinson’s (1980) volatility
was the closest to the high-frequency benchmark measure. This estimator
should thus be the one used when trying to get long-horizon historical esti-
mates, or to complement series of Realized Volatilities. Generally speaking,
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estimations of the whole distribution of the empirical volatilities cannot help
to easily distinguish between the candidate functional forms. Given the ra-
tionale for estimating these distributions - retrieving possible risk - and the
main differences between them - in the tails - it seems natural to try instead
to use the Extreme Value Theory and concentrate on estimating the asymp-
totic distribution for the extreme measures of risk. The estimations for the
Generalized Extreme Value indicate that the fat-tailed distribution is not
needed to fit the sample volatilities. A log-normal process, as in the tradi-
tional stochastic volatility model, seems sufficient to reproduce the extreme
empirical volatilities observed in the ten year ultra-high frequency studied
sample.

However, we can think about confirming these results in line with others
(see Andersen et al., 2001) with a complementary analysis including ad-
ditional measures (e.g., Kunitomo, 1992; Garman and Klass, 1980), other
samples (containing this time individual stocks), more recent observations
(highlighting recent market turmoils and credit linked events in 2007, 2008
and 2009), different methodologies (Parametric Block Maxima and Paramet-
ric Peaks-over-the-Threshold), complementary estimation methods (other
types of Moment Estimations versus the Maximum Likelihood method),
using various distributions (Generalized Pareto Distribution versus GEV),
other realistic sampling schemes (from one-minute to one-hour quote fre-
quency) and other horizons (30” to a quarter). One may finally think about
a Reality Check Test based on the various estimators, assets and methods of
estimation (see White, 2000), for reinforcing our preliminary results on the
best specification for the probability model for volatility. In particular, the
final conclusion for a thin tail distribution for the volatility is deeply related
to the choice of the estimation period. The recent turmoil on the financial
markets, with its scope and it persistence, should have an important impact
on the distribution of the volatility and then should questions its extreme
behavior.

A practical application of these results will be to plug the appropriate es-
timates and distributions of volatilities in the Index of Market Shocks (IMS,
see Maillet and Michel, 2003 and 2005) in order to get a clear ranking of the
historical crises and an accurate estimation of the return-times of extreme
scenarii, to ultimately precisely define the high watermarks of market risks.
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Appendix

Let {Xj}, with j = [1, . . . , n], be a sequence of n independent and identically
distributed non-degenerated random variables with a cumulative continuous
distribution function F (x) and with a quantile function Q(u) = F−1(u).

We recall that the r-th L-moment is defined, for every r = [1, . . . , n], by:

λr =
1
r

r−1∑
j=0

(−1)j
(
r−1
j

)
E(X[r−j:r]). (13)

where X[i:r] is the i-th order statistic of a sample of r random variables.
Now since:

E(X[i:r]) =
r!

(i− 1)! (r − i)!

∫ 1

0
Q(u)ui−1(1− u)r−idu, (14)

we obtain:

λr =
1
r

∫ 1

0
Q(u)

r−1∑
j=0

(−1)j
(
r−1
j

) r!
(r − j − 1)!j!

ur−j−1(1− u)j
 du. (15)

It is often useful to express the r-th L-moment as a linear function of the
Probability Weighted Moments, i.e.:

λr =
r∑

k=1

p∗k−1,r−1 βk−1, (16)

where p∗.,. are the Legendre polynomials coefficients, and βk = k−1E(X[k:k])
are the Probability Weighted Moments of order k = [1, . . . , r].

They can be estimated without bias by the following estimations:

β̂k−1 =
1
n

n∑
i=1


k−1∏
j=1

[
(i− j)
(n− j)

]
X̂[i:n]

 , (17)
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where X̂[i:n] is the i-th order statistic of a sample of n realizations.
The three first sample L-moments can then be written in the following

manner:

λ1 =
1
n

n∑
i=1

X̂[i:n]

λ2 =
1

n(n− 1)

n∑
i=1

(2i− 1− n)X̂[i:n]

λ3 =
1

n(n− 1)(n− 2)

n∑
i=1

[6(i− 1)(i− 2)− 6(i− 1)(n− 2)

+(n− 1)(n− 2)]X̂[i:n]

(18)

Based on these previous definitions, we can now give a specific result on
the L-moments for a GEV distribution.

Proposition 1 (see Hosking and Wallis, 1997, and Embrechts et al., 1997).
The three first L-moments, as a function of the three characteristic param-
eters of a GEV distribution, are given by:

λ1 = h− α
ξ + α

ξ Γ(1− ξ)
λ2 = α

ξ

(
2ξ − 1

)
Γ(1− ξ)

λ3 = α
ξ

[
1− 3(2ξ) + 2(3ξ)

]
Γ(1− ξ)

(19)

where λr is the r-th L-moment, h ∈ IR the location parameter, α ∈ IR+ the
scale parameter, ξ ∈ IR∗ the shape parameter and Γ(a) =

∫+∞
0 ta−1e−tdt is

the Gamma function.

Proof. We get the following intermediate result, for every k ∈ N :

∫ 1

0
uk[− ln(u)]−ξdu =

∫ +∞

0
x−ξe−(k+1)xdx

=
1

(1 + k)1−ξ

∫ +∞

0
y−ξe−ydy (20)

=
1

(1 + k)1−ξ
Γ(1− ξ),

thanks to simple changes of variable.
Given the quantile function of the GEV distribution such as:

Q(u) = h− α

ξ
+
α

ξ
[− ln(u)]−ξ, (21)
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we can then compute the first L-moment:

λ1 =
∫ 1

0
Q(u)du

=
∫ 1

0
(h− α

ξ
)du+

α

ξ

∫ 1

0
[− ln(u)]−ξdu. (22)

Using result (20), we obtain the final expression for the first L-moment so
that:

λ1 = h− α

ξ
+
α

ξ
Γ(1− ξ). (23)

Similarly, the second L-moment is given by:

λ2 =
∫ 1

0

{
h− α

ξ
+
α

ξ
[− ln(u)]−ξ

}
[2u− 1]du

=
∫ 1

0
2u
α

ξ
[− ln(u)]−ξdu−

∫ 1

0

α

ξ
[− ln(u)]−ξdu (24)

and applying result (20) once again is leading to the following expression of
the second L-moment:

λ2 =
α

ξ

(
2ξ − 1

)
Γ(1− ξ). (25)

Finally, the straightforward expression of the third L-moment is:

λ3 =
∫ 1

0

{
h− α

ξ
+
α

ξ
[− ln(u)]−ξ

}
[1− 6u+ 6u2]du (26)

which is leading, still using the intermediate result (20), to the expression
of the third L-moment:

λ3 =
α

ξ

[
1− 3(2ξ) + 2(3ξ)

]
Γ(1− ξ). (27)
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