

UNIVERSIDADE FEDERAL DO PARANÁ BIOFIX Scientific Journal v. 6 n. 2 p. 133-152 2021 DOI: dx.doi.org/10.5380/biofix.v6i2.80323

MODELAGEM HIPSOMÉTRICA DE POVOAMENTOS DE ACÁCIA-NEGRA USANDO LINGUAGEM DE PROGRAMAÇÃO *JULIA*

HIPSOMETRIC MODELING OF BLACK WATTLE STANDS USING JULIA LANGUAGE

João Felipe Cardozo Martins¹, Dimas Agostinho Silva¹, Alexandre Behling¹, Richardson Ribeiro²

¹ Universidade Federal do Paraná, Curitiba, Paraná, Brasil - jmartins.ufpr@gmail.com, dimas.agostinho.silva@gmail.com & alexandre.behling@gmail.com
²Universidade Tecnológica do Paraná, Pato Branco, Paraná, Brasil - prof.richard@gmail.com

RESUMO

A modelagem hipsométrica para indivíduos florestais é recorrente na área florestal, havendo necessidade de reafirmar-se métodos e técnicas para mensurar altura e buscar melhores informações para as variáveis dendrométricas. A espécie acácia-negra (Acacia mearsii De Wild.) é reconhecida no sul do Brasil como uma espécie de alto valor comercial, apresentando a quarta maior área plantada de povoamentos florestais no Rio Grande do Sul, dessa forma, estudos a respeito da espécie são de grande importância para o setor florestal. O presente trabalho visa à obtenção de estimativas hipsométricas individuais para árvores de acácia negra, em que (onde) foram propostos e ajustados 50 modelos hipsométricos, usando a Linguagem de Programação Julia. Empregou-se dados de árvores de acácia-negra com idades entre 1 e 10,75 anos, provenientes de um experimento nas regiões de Cristal, Encruzilhada do Sul e Piratini, estado do Rio Grande do Sul. Os dados foram divididos em 4 grupos, de acordo com sua fase de crescimento (Jovem, Média-Inicial, Média-Avançada e Madura). Utilizou-se de 550 árvores para o ajuste de modelos, além de 30 indivíduos de cada grupo, previamente separados de maneira aleatória, para a validação do modelo de melhor desempenho. Avaliou-se os ajustes pelos seguintes critérios: Viés, Precisão, Acurácia e gráficos de dispersão dos resíduos. O modelo Parabólico foi o que melhor se ajustou aos dados nas classes Jovem, e o modelo Exponencial para as demais classes de idades foram os que apresentaram os melhores desempenhos. Sua validação apresentou resultados satisfatórios para o erro padrão da estimativa e para o teste de Qui-quadrado, teve valores de 2,0239, 1,0364, 118,1416 e 0,6158. Sendo assim, observou-se que os modelos são aptos para uso em outras bases de dados com exceção da classe Média-Avançada e que a linguagem de programação Julia é uma alternativa para processos e softwares de linguagem de programação já consolidados na área florestal.

PALAVRAS-CHAVE: Altura total, Modelos hipsométricos, Plantios florestais, Rio Grande do Sul.

ABSTRACT

Hypsometric modeling for forest individuals is recurrent in the forest area, with the need to reaffirm methods and techniques to measure height and seek better information for dendrometric variables. The black wattle species (Acacia mearsii De Wild.) is recognized in southern Brazil as a species of high commercial value, presenting the fourth largest planted area of forest stands in Rio Grande do Sul, thus, studies on the species are of great importance for the forestry sector. The present work aims to obtain individual hypsometric estimates for black wattle trees, in which (where) 50 hypsometric models were proposed and adjusted, using the Julia Programming Language. Data from black wattle trees aged between 1 and 10.75 years, from an experiment in the regions of Cristal, Encruzilhada do Sul and Piratini, state of Rio Grande do Sul, were used. According to their stage of growth (Young, Middle-Initial, Middle-Advanced and Mature). 550 trees were used to adjust models, in addition to 30 individuals from each group, previously randomly separated, to validate the best performing model. The adjustments were evaluated by the following criteria: Bias, Precision, Accuracy, and residual scatter plots. The Parabolic model was the one that best fit the data in the young classes, and the Exponential model for the other age classes showed the best performance. Its validation presented satisfactory results for the standard error of the estimate and for the Chi-square test, it had values of 2.0239, 1.0364, 118.1416 and 0.6158. Thus, it was observed that the models are suitable for use in other databases except for the Middle-Advanced class and that the Julia programming language is an alternative for programming language software and processes already consolidated in the forestry area.

KEYWORDS: Total height, Hypsometric models, Forest plantations, Rio Grande do Sul.

INTRODUÇÃO

As plantações florestais no Brasil atingiram 9 milhões de hectares em 2019, contudo, apenas 5% desta área são ocupadas por outras espécies que não sejam pinus e eucalipto, como por exemplo a acácia-negra, que corresponde a quarta espécie em área plantada no país (IBÁ, 2020). De origem australiana, a Acacia mearnsii De Wild, pertencente à família Fabaceae e popularmente conhecida como acácia-negra. No Brasil a maior concentração dos plantios comerciais dessa espécie está localizada no estado do Rio Grande do Sul, onde, segundo Vieira & Schumacher (2010) a madeira é utilizada para a produção de celulose e carvão e da casca é extraído o tanino. empregado principalmente na indústria farmacêutica e coureira.

Os atributos comumente avaliados na dinâmica florestal são: o crescimento, a mortalidade e o recrutamento (BARRETO et al., 2016). As estimativas para esses atributos são obtidas, principalmente, a partir de inventários florestais contínuos, com base em parcelas permanentes, monitoradas a médio e longo prazos (FIGUEIREDO et al., 2010). O crescimento da vegetação está relacionado a disponibilidade de recursos naturais e a capacidade de cada espécie em utilizá-los (ABRÃO et al., 2017).

O conjunto de alturas das árvores medidas, com os respectivos diâmetros, é usado para estabelecer uma relação de regressão da altura em função do diâmetro (modelo de relação hipsométrica), a qual é empregada para estimar as alturas das demais árvores da parcela em função dos diâmetros já medidos. Logo, estima-se a variável de difícil acesso em função da mais fácil e de rápida medição, reduzindo-se, portanto, o tempo e os custos de mensuração (BARTOSZECK et al., 2004).

A medição de alturas das árvores em um povoamento florestal é considerada uma atividade onerosa, sendo usual medir a altura de apenas algumas árvores da parcela durante o inventário florestal (STOLLE et al., 2018). Machado & Figueiredo Filho (2009) afirmam que a altura é a segunda variável independente utilizada nos métodos estimativos em funções de afilamento e em outras relações dendrométricas. Nos inventários florestais, as alturas das árvores não medidas dentro da parcela são estimadas por meio de uma relação hipsométrica expressa por uma equação ajustada (MACHADO & FIGUEIREDO FILHO, 2009; SANQUETTA et al., 2014a).

A relação hipsométrica não apresenta um relacionamento biológico bem definido, tal como altura e idade ou diâmetro e idade, havendo grande variabilidade

em altura para um mesmo diâmetro em sítio e idades diferentes (CHAPMAN & MEYER, 1949; AZEVEDO, 1999).

A dificuldade da escolha de um modelo para representar essas relações hipsométricas se deve à não linearidade da relação entre as variáveis envolvidas e as restrições impostas aos parâmetros dos modelos, por razões biológicas (PLÁCIDO et al., 2004; SOARES et al., 2004). Esses dois fatores aliados tornam o ajuste de modelos estatísticos para representar as relações hipsométricas um problema de regressão não linear, com restrições nos parâmetros.

Nesse contexto, considerando que a cubagem rigorosa é um processo de alto custo e que o ajuste de equações hipsométrica auxilia na predição da altura de indivíduos de acácia-negra, pretende-se com este trabalho:

- a. Ajustar os modelos hipsométricos.
- b. Comparar os modelos hipsométricos por meio das estatísticas: Viés, Precisão e Acurácia;
- c. Avaliar os resíduos para o melhor modelo;
- Avaliar os resultados estatísticos obtidos com os dados de validação.
- e. Processar os dados e validar os resultados utilizando a linguagem de programação *Julia*.

MATERIAL E MÉTODOS

Origem dos dados

As áreas estudadas localizam-se no estado do Rio Grande do Sul e são provenientes das regiões de Cristal, Encruzilhada do Sul e Piratini. Segundo a classificação climática de Köppen-Geiger as três regiões possuem clima quente e temperado (Cfa).

Os povoamentos estudados tiveram variação entre 1 e 10,75 anos. A amostragem abrangeu doze povoamentos, de forma que em cada um foram instaladas, aleatoriamente, quatro parcelas circulares de 400 m², onde no interior de cada uma foi posicionada uma subparcela de 78,54 m² com diâmetro de 5 m, a fim de viabilizar a coleta de variáveis de alto custo (biomassa e teores de carbono da biomassa), dessa forma foi amostrada a biomassa do fuste e copa de 670 árvores. Os dados foram agrupados qualitativamente de acordo com a idade dos povoamentos, formando quatro classes conforme observado na Tabela 1.

Os autores optaram por considerar que a maior divisão dos estratos não deveria incluir tamanho de amplitude maior que dois anos, porque, dessa maneira, não seriam evidenciados os efeitos de tais proporções. Tabela 1. Idade qualitativa dos povoamentos de acácia-
negra amostrados no estado do Rio Grande do
Sul, Brasil.

,		
Local	Idade (anos)	Classe
	1,75	Jovem
Cristal	2,75	Média Inicial
Cristal	5,00	Média Avançada
	10,08	Madura
	1,83	Jovem
Encruzilhada	3,08	Média Inicial
Eliciuziillaua	5,75	Média Avançada
	10,75	Madura
	1,00	Jovem
Diratini	2,33	Média Inicial
Fiidlini	5,25	Média Avançada
	9,83	Madura

Estatística descritiva

Para caracterizar os povoamentos de acácia-negra utilizados no ajuste dos modelos, utilizaram-se certos elementos estatísticos, como: média (\bar{x}), variância (S_x^2), desvio padrão (S), erro padrão ($S_{\bar{x}}$) e o intervalo de confiança (IC) para as variáveis dendrométricas: d e h.

Modelos

Foram ajustados 51 modelos hipsométricos, conforme Tabela 2.

Tabela	2.	Modelos	hipso	ométri	icos	testa	dos	para	0	do
		povoamen	to	de	Аса	cia	med	arnsii		em
		povoamen	itos n	o Rio	Gran	de do	Sul.			

Autor	Modelo
Assmann (1)	$h = \beta_0 + \beta_1 \cdot \left(\frac{1}{d}\right)$
Assmann (2)	$h = \beta_0 + \beta_1 \cdot \left(\frac{1}{d^2}\right)$
Azevedo et al. (1999) (1)	$\frac{h}{\ln(d)} = \beta_0 + \beta_1 d^2$
Azevedo et al. (1999) (2)	$\ln(h) = \beta_0 + \beta_1 d^2$
Azevedo et al. (1999) (3)	$\frac{d}{\sqrt{h}} = \beta_0 + \beta_1 d$
Azevedo et al. (1999) (4)	$\sqrt{h} = \beta_0 + \beta_1 \cdot \frac{1}{d} + \beta_2 \cdot d^2$
Azevedo et al. (1999) (5)	$h = \beta_0 + \beta_1 d^2$
Azevedo et al. (2011) (1)	$\frac{d}{\sqrt{h}} = \beta_0 + \beta_1 d^2$
Azevedo et al. (2011) (2)	$\frac{d}{\sqrt{h}} = \beta_0 + \beta_1 \cdot \frac{1}{d} + \beta_2 \cdot d^2$
Azevedo et al. (2011) (3)	$h = \beta_0 + \beta_1 \cdot \frac{1}{d} + \beta_2 \cdot d^2$
Azevedo et al. (2011) (4)	$\ln(h) = \beta_0 + \beta_1 \cdot \frac{1}{d} + \beta_2 \cdot d^2$
Azevedo et al. (2011) (5)	$\sqrt{h} = \beta_0 + \beta_1 \cdot \sqrt{d}$
Azevedo et al. (2011) (6)	$\sqrt{h} = \beta_0 + \beta_1 . \ln(d)$

Autor	Modelo
Backman modificada	$h = \beta_0 + \beta_1 . ln(d) + \beta_2 . ln^2(d)$
Berkhout	$h = \beta_0 + d^{\beta_1}$
Curtis (1967)	$ln(h) = \beta_0 + \beta_1 \cdot \left(\frac{1}{d}\right)$
Exponencial (1)	$\ln(h) = \beta_0 + \beta_1 \cdot \frac{1}{d} + \beta_2 \cdot i$
Exponencial (2)	$\mathbf{h} = \beta_0. e^{\beta_1.d}$
Exponencial (3)	$\mathbf{h} = \beta_0. e^{\beta_1.d^2}$
Exponencial (4)	$\mathbf{h} = \beta_0. e^{\beta_1 \cdot \frac{1}{d}}$
Finger (1992)	$h = \beta_0 + \beta_1 \left(\frac{1}{d^2}\right)$
Henricksen (1950)	$h = \beta_0 + \beta_1 \cdot ln(d)$
Hiperbólico (1)	$h = \beta_0 + \beta_1 \cdot \frac{1}{d^2} + \beta_2 \cdot i$
Linear Simples	$h = \beta_0 + \beta_1 d$
Naslung (1)	$h-1,30 = \frac{d}{\beta_0 + \beta_1 \cdot d^2}$
Naslung (2)	$\frac{d}{\sqrt{h-1.30}} = \beta_0 + \beta_1.d$
Naslung (Prodan) (1)	$h - 1,30 = \frac{d}{\beta_0 + \beta_1 \cdot d + \beta_2 \cdot d^2}$
Naslung (Prodan) (2)	$h = \frac{d}{\beta_0 + \beta_1 \cdot d + \beta_2 \cdot d^2}$
Não Referenciado	$\frac{1}{\sqrt{h}} = \beta_0 + \beta_1 \cdot \left(\frac{1}{d}\right)$
Parabólico (1)	$h = \beta_0 + \beta_1 d + \beta_2 d^2$
Parabólico (2)	$h = \beta_0 + \beta_1 d + \beta_2 d^2 + \beta_3 i$
Parabólico (3)	$\ln(h) = \beta_0 + \beta_1 \cdot d + \beta_2 \cdot d^2$
Petterson (1)	$\frac{1}{\sqrt[3]{h-1,30}} = \beta_0 + \beta_1 \cdot \left(\frac{1}{d}\right)$
Petterson (2)	$\frac{1}{\sqrt{h}} = \beta_0 + \beta_1 \cdot \left(\frac{1}{d}\right)$
Pollanschutz	$\ln(h - 1,30) = \beta_0 + \beta_1 \cdot \left(\frac{1}{d}\right)$
Potencial (1)	$\ln(h) = \beta_0 + \beta_1 . \ln(d) + \beta_2 . i$
Potencial (2)	$h = \beta_0 + (d^2)^{\beta_1}$
Potencial (3)	$h = \beta_0 + \left(\frac{1}{d}\right)^{\beta_1}$
Prodan (1965) (1)	$\frac{d^2}{h} = \beta_0 + \beta_1 \cdot d + \beta_2 \cdot d^2$
Prodan (1965) (2)	$\frac{d^2}{h-1,30} = \beta_0 + \beta_1 d + \beta_2 d^2$
Sanquetta et al. (2013)	$h = \beta_0 + \beta_1 \cdot \frac{1}{d} + \beta_2 \cdot d$
Schneider (1986) (1)	$h = \beta_0 + \beta_1 \cdot \frac{1}{d}$
Schneider (1986) (2)	$h - 1,30 = \beta_0 + \beta_1.d$
Schumacher (1986) (1)	$h - 1,30 = \beta_0 + \beta_1 d + \beta_2 d^2$
Schumacher (1986) (2)	$\ln(h) = \beta_0 + \beta_1 \cdot \ln(d) + \beta_2 \cdot i$
Schumacher-Hall	$\ln(h) = \beta_0 + \beta_1 . \ln(d) + \beta_2 . \ln(i)$
Semilogarítmico	$h = \beta_0 + \beta_1 . \ln(d) + \beta_2 . i$
Silva (1980)	$ln(h) = \beta_0 + \beta_1 . ln(d) + \beta_2 . \left(\frac{1}{d}\right)$
Stoffels & Soest (1953) (1)	$ln(h) = \beta_0 + \beta_1 . ln(d)$
Stoffels & Soest (1953) (2)	$ln(h) = \beta_0 + \beta_1.log(d)$
Trorey (1932)	$h = \beta_0 + \beta_1 d + \beta_2 d^2$
Em auxou d - diâmatra altura	do noite (and), h - altura total (m)

Em que: d = diâmetro altura do peito (cm); h = altura total (m); ln = logaritmo neperiano; β_0 , β_1 , β_2 e β_3 = parâmetros.

Seleção da melhor equação

Para avaliar a qualidade preditiva dos modelos de altura optou-se pelo uso das estatísticas de viés (1.1 e 1.2), precisão (2.1 e 2.2) e acurácia (3.1 e 3.2).

$$\bar{e} = \frac{\sum_{i=1}^{n} e_i}{n} = \frac{\sum_{i=1}^{n} (h - h_{est})}{n}$$
(1.1)

$$\bar{e}_{\%} = \frac{\bar{e}}{\bar{b}} \ 100 \tag{1.2}$$

$$S_e = \sqrt{\frac{\sum_{i=1}^{n} (h - \bar{e} - h_{est})^2}{n - 1}} = \sqrt{\frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n - 1}}$$
(2.1)

$$S_{e_{\%}} = \frac{S_e}{h} \ 100$$
 (2.2)

$$m_x = \sqrt{(S_e)^2 + (\bar{e})^2}$$
(3.1)
$$m_x = m_x + 100$$
(3.2)

$$m_{x_{\%}} = \frac{m_x}{\bar{h}} \ 100$$
 (3.2)

Em que: \bar{e} é o viés absoluto, $\bar{e}_{\%}$ é o viés relativo, e_i é o erro sistemático para i-*ésima* árvore, h é a altura observada, h_{est} é a altura estimada, \bar{b} é a média da biomassa observada, n é o número de árvores, S_e é a precisão absoluta, $S_{e\%}$ é a precisão relativa, m_x é a acurácia absoluta e $m_{x\%}$ é a acurácia relativa.

Validação dos dados

Ao se avaliar as equações hipsométricas apresentadas são apropriadas para outros indivíduos não inclusos no processo de modelagem, utilizou-se 30 indivíduos da mesma classe de idade, optou-se por esse valor para padronizar e para manter uma quantidade de até 20% de cada classe, para que o número de indivíduos arbóreos seja representativo. Dessa forma, calculou-se o Quiquadrado (χ^2) (4), com nível de significância (α) de 0,05.

$$\chi^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{i})^{2}}{y_{i}}$$
(4)

Em que: y_i = altura real para cada observação; \hat{y}_i = altura estimada para cada observação.

Software

As análises estatísticas foram realizadas utilizando a linguagem de programação científica denominada Julia, na versão 1.5.3, utilizando a plataforma Visual Studio Code. Mais detalhes dessa linguagem de programação podem ser encontrados em https://julialang.org/.

Programação

Para criação dos modelos foram utilizados os seguintes pacotes: CSV, Statistics, Distributions, DataFrames, XLSX e

PyPlot. No Algoritmo 1 tem-se os comandos para carregamento de pacotes e da base de dados.

Algoritmo 1. Instalação	e carregamento dos	pacotes	e da
hase de da	dos		

julia>	using Pkg
Julia>	Pkg.add("CSV")
julia>	Pkg.add("Statistics")
julia>	Pkg.add("Distributions")
julia>	Pkg.add("DataFrames")
julia>	Pkg.add("XLSX")
julia>	Pkg.add("PyPlot")
Julia>	using CSV, Statistics, Distributions, DataFrames,
	XLSX, PyPlot
julia>	dados=CSV.read("C://Usuário//Pasta1//Pasta2//
	PastaN//dados.csv")

No Algoritmo 2 observa-se todos os comandos para elaborar os modelos hipsométricos.

	Algoritmo 2	. Elaboração	o dos modelo	s hipsométricos
--	-------------	--------------	--------------	-----------------

-	
julia>	matrix_um = ones(length(dados.d),1);
julia>	x1 = [matrix_um dados.d];
julia>	b1 = inv(x1'x1)*x1'*(dados.h);
julia>	Linear = b1[1] .+ b1[2].*dados.d;
julia>	x2 = [matrix_um (dados.d).^2];
julia>	b2 = inv(x2'x2)*x2'*((dados.h) ./(log.(dados.d)));
julia>	Azevedo_1999_1 = (b2[1] .+
	b2[2].*((dados.d).^2)).*(log.(dados.d));
julia>	x3 = [matrix_um (log.(dados.d))];
julia>	b3 = inv(x3'x3)*x3'*(dados.h);
julia>	Henricksen = b3[1] .+ b3[2].*(log.(dados.d));
julia>	x4 = [matrix_um (1 ./ (dados.d))];
julia>	b4 = inv(x4'x4)*x4'*(log.(dados.h));
julia>	Curtis = (b4[1] .+ b4[2].*(1 ./ (dados.d)));
julia>	<pre>sse_Curtis = sum((Curtis-(log.(dados.h))).^2);</pre>
julia>	Syx_Curtis = sqrt((sse_Curtis./(length((dados.h))-
	2)));
julia>	FCM_Curtis = exp.((Syx_Curtis.^2).*0.5);
julia>	Curtis = exp.(b4[1] .+ b4[2].*(1 ./
	(dados.d))).*FCM_Curtis;
julia>	x5 = [matrix_um dados.d (dados.d).^2];
julia>	b5 = inv(x5'x5)*x5'*(dados.h);
julia>	Trorey =
	b5[1].+(b5[2].*dados.d).+(b5[3].*((dados.d).^2));
julia>	x6 = [matrix_um (log.(dados.d))];
julia>	b6 = inv(x6'x6)*x6'*(log.(dados.h));
julia>	Stoffels = (b6[1].+(b6[2].*(log.(dados.d))));
julia>	<pre>sse_Stoffels = sum((Stoffels-(log.(dados.h))).^2);</pre>
julia>	Syx_Stoffels =
	<pre>sqrt((sse_Stoffels./(length((dados.h))-2)));</pre>
julia>	<pre>FCM_Stoffels = exp.((Syx_Stoffels.^2).*0.5);</pre>
julia>	Stoffels =
	exp.(b6[1].+(b6[2].*(log.(dados.d)))).*FCM_Stoff
	els;

julia>	x7 = [matrix_um dados.d (dados.d).^2 dados.i];
julia>	b7 = inv(x7'x7)*x7'*(dados.h);
julia>	Parabolico_2 = b7[1].+b7[2].*dados.d .+
	b7[3].*((dados.d).^2) + b7[4].*dados.i;
julia>	x8 = [matrix_um (log.(dados.d)) dados.i];
julia>	b8 = inv(x8'x8)*x8'*(log.(dados.h));
julia>	Potencial i = (b8[1] .+ b8[2].*(log.(dados.d)) .+
•	b8[3].*dados.i);
julia>	sse Potencial i = sum((Potencial i-
	(log.(dados.h))).^2);
julia>	Svx Potencial i =
,	sqrt((sse Potencial i./(length((dados.h))-2)));
julia>	FCM Potencial i =
,	 exp.((Svx Potencial i.^2).*0.5):
iulia>	Potencial $1 = \exp(b8[1] + b8[2] \cdot (\log(dados.d))$
,	.+ b8[3].*dados.i).*FCM Potencial i:
iulia>	$x9 = [matrix um (1./((dados.d).^2)) dados.i]$
iulia>	h9 = inv(x9'x9)*x9'*(dados.h):
julia>	Hiperbolico 1 = $b9[1] + (b9[2]*(1)$
junus	./((dados.d).^2))) .+ (b9[3].*dados i):
iulia>	$x_{10} = [matrix \ \mu m (1 \ / (dados d)) \ dados i]$
julia>	b10 = inv(x10'x10)*x10'*(log (dados h))
iulia>	Exponencial $i = (h10[1] + h10[2] *(1 / (dados d)))$
Junus	+ h10[3]*dados i):
iulias	$s_{i} = s_{i} m/(Exponencial i = s_{i} m/(Ex$
Juliaz	$(\log (dados h))) \land 2)$
iulias	$(\log_1(\log_2(\log_2(\log_2))))$, 2),
Julia>	syx_exponencial_i //longth/(dados h)) 2)));
iulias	FCM exponencial i
Julia>	$= \exp[(S_{VX} = \exp[S_{VX} = \exp[S_{V$
iulias	Exponencial 1 = exp (h10[1] + h10[2]*(1 /
Julia>	(d_2d_0s, d_1)
	h10[3]*dados i) *ECM_exponencial_i:
iulias	$x_{11} = [matrix \ um (log (dados d)) dados i]$
iulias	$h_{11} = (h_{11} h_{11} h_{1$
julia>	Semilogarítmico i $ h11[1]$
Julia>	b11[2] *(log (dadas d)) + b11[2] *dadas i:
iulias	$v_{12} = [matrix um (log (dades d)) dades i)$
julia>	$h_{12} = inv(x_{12}^{1}x_{12}) * x_{12}^{1} * log (dados h)$
julia>	biz = mv(xiz xiz) xiz = nog.(uduos.n); Schumacher i = (b12[1] + b12[2] */log (dadag d))
julia>	$\pm h12[2] *dados i)$
iulias	\rightarrow DIZ[5]. Uduos.i),
julia>	<pre>sse_schumacher_r = sum((schumacher_l- (log (dados b))) A2);</pre>
iulias	(iug.(uduus.ii)).^2);
julia>	syx_scnumacher_i =
iulies	sqrt(sse_schumacher_i./(length((dados.n))-2));
julia>	rcw_schumacher_i =
1 J	exp.((syx_scnumacner_1.^2).*0.5);
julia>	Scnumacner_1986_2 = exp.(b12[1] .+
	b12[2].*(log.(dados.d)) .+
	b12[3].*dados.i).*FCM_Schumacher_i;
julia>	x13 = [matrix_um (log.(dados.d)) (log.(dados.i))];
julia>	b13 = inv(x13'x13)*x13'*(log.(dados.h));
julia>	Schumacherhall_i = (b13[1] .+
	b13[2].*(log.(dados.d)) .+ b13[3].*(log.(dados.i)));
julia>	<pre>sse_Schumacherhall_i = sum((Schumacherhall_i-</pre>

	(log.(dados.h))).^2);
julia>	Syx_Schumacherhall_i =
	sqrt(sse Schumacherhall i./(length((dados.h))-
	2));
julia>	FCM Schumacherhall i =
	exp.(0.5.*(Syx Schumacherhall i.^2));
iulia>	Schumacherhall i = $exp.(b13[1])$.+
,	b13[2].*(log.(dados.d)) .+
	b13[3].*(log.(dados.i)))*FCM_Schumacherhall_i:
iulia>	x14 = [matrix um (log (dados d))]
Junus	(log (abs ((log (ados d)))))]:
iulia>	h14 = inv(x14'x14)*x14'*(dados h)
iulia>	Backman = h14[1] + h14[2] *(log (dados d)) +
Junus	$h_14[3] *(log (abs ((log (dados d)))));$
iulias	$x_{15} = [matrix \ um \ dados \ d \ ((dados \ d) \ 2)]$
iulias	$h_{15} = [m_{11} n_{-11} m_{10} m_{$
julia>	Schumachar 1986 $1 = h15[1] + h15[2] * dadas d$
Julia>	$b_{1}=\frac{1}{2} + \frac{1}{2} $
iulias	((uauos.u), 2) + 1.50, (uauos.u), 2) + 1.50,
julia>	$h_1 = [m_1 m_2 m_1 (1.) (u_1 m_2 m_3 m_3 m_3 m_3 m_3 m_3 m_3 m_3 m_3 m_3$
julia>	D10 = 100(x10 x10) x10 (udu0s.1),
Julia>	(dades d));
iulias	(uauos.u)), $x_17 = [matrix, um dadas d (dadas d) A2];$
julia>	$XI7 = [IIIdIIIX_UIII UdUOS.U (UdUOS.U).^2],$ h17 = inv(v17!*v17)*v17!*(((dodoc d) A2))
Julia>	$D17 = IIIV(X17^{-}X17)^{-}X17^{-}(((dados.d).^{-}2))^{-}$
iulias	$(dados d) \Delta 2$ $(b17[1])$
Julia>	$PTOUGH_I = (UGUOS.U).^2 ./ (DI7[I] .+$
iulias	DI7[2]. uduos.u.+ $DI7[5]$. ((uduos.u).~2)),
julia>	$x_{10} = [111a(11x_u) = uau(0.00, u)],$ $b_{10} = i_{10}(x_{10}) + x_{10}(x_{10}) + x_{1$
julia>	
Julia>	$= \sum_{n=1}^{\infty} (h18[1]) * n (h18[2]) * d a d a a d);$
iulias	exp.(b1o[1]). $exp.(b1o[2])$. $uados.d)$,
julia>	$x_{19} = [113(11x_011)(03005.0).^{2}],$ $b_{10} = i_{10}(x_{10})x_{10}(x_{10})x_{10}(x_{10}).^{2}$
julia>	
Julia>	= = = = = = = = = = = = = = = = = = =
iulias	DI9[I]. $T(DI9[2])$. $T(Uau05.u)$. $(Uau05.u)$. $DI9[I]$. $T(DI9[2])$.
Julia>	(log (dodos h))) (2);
iulias	Sux Experiencial 2
Julia>	syx_exponencial_2 //length/(dades h)) 2));
iulias	Sqrt(SSe_Exponencial_S./(length((uados.h))-2)),
Julia>	even ((Sure Exponencial 2.42)*0 E);
iulias	exp.((Syx_exponencial_S.^2) 0.5),
Julia>	exponencial_s
	popopoial 2
iulias	$\frac{1}{2} = \frac{1}{2} $
julia>	$x_{20} = [matrix_um(1.7)(uauos.u))],$ $h_{20} = i_{20}(x_{20})x_{20}(x_{100})(uauos.u))).$
julia>	$b_{20} = 110(x_{20} x_{20}) x_{20} (10g.(udu0s.11)),$
Julia>	= (DZO[I]).+(DZO[Z].(I .)
iulias	(uduos.u))),
Julid>	log (dados b)) A2).
iulias	Svy Evnonencial 4
julia>	sart(sse Exponencial 4 //longth(/dados h)) 2))
iulias	FCM Exponencial 4
julia>	$= \exp \left((Svy, Exponencial (1.52) + 0.51 \right)$
iulias	$ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$
julia>	$r_{1} = r_{1} r_$

	(dados.d)))).*FCM_Exponencial_4;
julia>	x21 = [matrix_um (log.((dados.d).^2))];
julia>	b21 = inv(x21'x21)*x21'*(log.(dados.h));
julia>	Potencial_2 =
	exp.(b21[1]).*(((dados.d).^2).^b21[2]);
julia>	x22 = [matrix_um (log.(1 ./ (dados.d)))];
, iulia>	b22 = inv(x22'x22)*x22'*(log.(dados.h));
iulia>	Potencial 3 = $\exp(b22[1]).*((1 ./$
J	(dados d)) ^b22[2]):
iulias	$x^{23} = [matrix um (1 / (dados d))]$
iulias	$h_{23} = [h_{11}h_{11}h_{23}h_{12}h_{13}$
Julia>	$1 2 \sqrt{1/2}$
iulias	Petterson = 1.30 + (1 / (b) - 3[1] + b) - 3[2] * (1 / b)
Junus	$(dados d)) ^3)$
iulias	$x^{24} = [matrix \ \mu m \ dados \ d]$
julia>	$h^2 4 = [matrix_um dauos.u],$
julia>	b24 = h(x24 x24) x24 (log.(uau0s.h)),
julia>	Berkhout = b24[1].+ dados.d. b24[2];
julia>	sse_Berkhout = sum((Berkhout-
	(log.(dados.n))).^2);
julia>	Syx_Berknout =
:!: .	Sqrt(SSe_Berkhout./(length((dados.n))-2));
julia>	PCM_Berkhout = exp.((Syx_Berkhout.^2)*0.5);
julia>	$\operatorname{Berknout} = \operatorname{exp.(b24[1].+}$
	dados.d.*b24[2]).*FCM_Berkhout;
julia>	$x25 = [matrix_um dados.d (dados.d).^2];$
julia>	$b25 = inv(x25'x25)*x25'*(((dados.d).^2))$
	./dados.n);
julia>	Naslung_Prodan_2 = $(dados.d).^2$./
	(b25[1].+(b25[2].*dados.d)+(b25[3].*((dados.d).^
	2)));
julia>	x26 = [matrix_um (dados.d).^2];
julia>	$b26 = inv(x26'x26)*x26'*(((dados.d).^2)) ./$
	(dados.h.+1.3));
julia>	Naslung_1 = $(dados.d).^2$./
	((b26[1].+(b26[2].*((dados.d).^2))).+1.3);
julia>	x27 = [matrix_um dados.d (dados.d).^2];
julia>	$b27 = inv(x27'x27)*x27'*(((dados.d).^2) ./$
	(dados.h .+1.3));
julia>	Naslung_Prodan_1 = (dados.d).^2
	./((b27[1].+(b27[2].*dados.d)+(b27[3].*((dados.d
).^2))).+1.3);
julia>	x28 = [matrix_um (1 ./ (dados.d))];
julia>	b28 = inv(x28'x28)*x28'*(dados.h);
julia>	Assmann = b28[1].+ b28[2].*(1 ./ (dados.d));
julia>	x29 = [matrix_um (dados.d).^2];
julia>	b29 = inv(x29'x29)*x29'*(log.(dados.h));
julia>	Azevedo_lnh = (b29[1] .+ b29[2].*((dados.d).^2));
julia>	sse_Azevedo_Inh = sum((Azevedo_Inh-
	(log.(dados.h))).^2);
julia>	Syx_Azevedo_Inh =
	<pre>sqrt(sse_Azevedo_Inh./(length((dados.h))-2));</pre>
julia>	FCM_Azevedo_Inh =
	exp.((Syx_Azevedo_Inh.^2).*0.5);
julia>	Azevedo_1999_2 = exp.(b29[1] .+
	b29[2].*((dados.d).^2)).*FCM_Azevedo_Inh;

julia>	x30 = [matrix_um (sqrt.(dados.d))];
julia>	b30 = inv(x30'x30)*x30'*(sqrt.(dados.h));
julia>	Azevedo_1911_5 = (b30[1] .+
	b30[2].*(sqrt.(dados.d))).^2;
julia>	x31 = [matrix_um (log.(dados.d))];
julia>	b31 = inv(x31'x31)*x31'*(sqrt.((dados.h)));
julia>	Azevedo_1911_6 =(b31[1] .+
	b31[2].*(log.(dados.d))).^2;
julia>	x32 = [matrix_um (1 ./ (dados.d)) (dados.d).^2];
julia>	b32 = inv(x32'x32)*x32'*(dados.h);
julia>	Azevedo 1911 3 = b32[1] .+ b32[2].*(1 ./
	(dados.d)) .+ b32[3].*((dados.d).^2);
julia>	x33 = [matrix_um dados.d];
julia>	b33 = inv(x33'x33)*x33'*(dados.d ./
•	(sqrt.(dados.h)));
julia>	Azevedo 1999 4 = (dados.d ./ (b33[1] .+
	b33[2].*dados.d)).^2;
julia>	x34 = [matrix um (1 ./((dados.d).^2))];
, julia>	b34 = inv(x34'x34)*x34'*(dados.h);
, julia>	Finger = b34[1] .+ b34[2].*(1 ./((dados.d).^2));
, iulia>	x35 = [matrix um (1./(dados.d))];
, julia>	b35 = inv(x35'x35)*x35'*(1 ./ sqrt.(dados.h));
, julia>	nao referenciado 1 = (1./(b35[1].+b35[2].*(1./
	(dados.d)))).^2;
iulia>	$x36 = [matrix um (1./(dados.d)) (dados.d).^2];$
julia>	b36 = inv(x36'x36)*x36'*(log.(dados.h));
iulia>	Azevedo 1911 lnh = $(b36[1] + b36[2] *(1 .)$
,	(dados.d)) + b36[3].*((dados.d).^2)):
iulia>	sse Azevedo 1911 Inh =
,	sum((Azevedo 1911 lnh-(log.(dados.h))).^2):
julia>	Syx Azevedo 1911 Inh =
	sgrt(sse Azevedo 1911 lnh./(length((dados.h))-
	2));
julia>	FCM Azevedo 1911 Inh =
	 exp.((Syx Azevedo 1911 lnh.^2).*0.5);
julia>	Azevedo 1911 4 = exp.(b36[1] .+ b36[2].*(1 ./
	(dados.d)) .+ b36[3].*(1
	./((dados.d).^2))).*FCM Azevedo 1911 lnh;
julia>	x37 = [matrix_um dados.d];
julia>	b37 = inv(x37'x37)*x37'*(-1.30.+dados.h);
julia>	Schneider_1986_2 = b37[1] .+ b37[2].*dados.d
	.+1.30;
julia>	x38 = [matrix_um (1 ./ (dados.d)) dados.d];
julia>	b38 = inv(x38'x38)*x38'*(dados.h);
julia>	Sanquetta 1913 = b38[1].+b38[2].*(1 ./
	(dados.d)).+b38[3].*dados.d;
julia>	x39 = [matrix_um (dados.d).^2];
julia>	b39 = inv(x39'x39)*x39'*(dados.d ./
	(sqrt.(dados.h)));
julia>	Azevedo_1911_1 = (dados.d
	./(b39[1].+b39[2].*((dados.d).^2))).^2;
julia>	x40 = [matrix_um dados.d];
julia>	b40 =
	inv(x40'x40)*x40'*(dados.d./sqrt.((dados.h)));
julia>	Azevedo_1999_3 = (dados.d

	./(b40[1].+b40[2].*dados.d)).^2;
julia>	x41 = [matrix_um dados.d (dados.d).^2];
julia>	b41 = inv(x41'x41)*x41'*(dados.h);
julia>	$Parabolico_1 = b41[1].+b41[2].*dados.d .+$
	b41[3].*((dados.d).^2);
julia>	x42 = [matrix_um (dados.d).^2];
julia>	b42 = inv(x42'x42)*x42'*(dados.h);
julia>	Azevedo_1999_5 =
	b42[1].+b42[2].*((dados.d).^2)
julia>	x43 = [matrix_um (log.(dados.d)) (1 ./ (dados.d))];
julia>	b43 = inv(x43'x43)*x43'*(log.(dados.h));
julia>	Silva = (b43[1] .+ b43[2].*(log.(dados.d)) .+
	b43[3].*(1 ./ (dados.d)));
julia>	<pre>sse_Silva = sum((Silva-(log.(dados.h))).^2);</pre>
julia>	Syx_Silva = sqrt(sse_Silva./(length((dados.h))-2));
julia>	FCM_Silva = exp.((Syx_Silva.^2).*0.5);
julia>	Silva = exp.(b43[1] .+ b43[2].*(log.(dados.d)) .+
	b43[3].*(1 ./ (dados.d))).*FCM_Silva;
julia>	x44 = [matrix_um dados.d (dados.d).^2];
julia>	b44 = inv(x44'x44)*x44'*(log.(dados.h));
julia>	Parabolico_3 = (b44[1] .+ b44[2].*dados.d .+
	b44[3].*((dados.d).^2));
julia>	sse_Parabolico_3 = sum((Parabolico_3-
	(log.(dados.h))).^2);
julia>	Syx_Parabolico_3 =
	<pre>sqrt(sse_Parabolico_3./(length((dados.h))-2));</pre>
julia>	FCM_Parabolico_3 =
	exp.((Syx_Parabolico_3.^2)*0.5);
julia>	Parabolico_3 = exp.(b44[1] .+ b44[2].*dados.d .+
	b44[3].*((dados.d).^2)).*FCM_Parabolico_3;
julia>	x45 = [matrix_um dados.d (dados.d).^2];
julia>	b45 = inv(x45'*x45)*x45'*(((dados.d).^2) ./(-
	1.3.+dados.h));
julia>	Prodan_2 = (((dados.d).^2) ./ (b45[1] .+
	b45[2].*dados.d .+
	b45[3].*((dados.d).^2))).+1.30;
julia>	x46 = [matrix_um (1 ./ (dados.d))];
julia>	b46 = inv(x46'*x46)*x46'*(1 ./sqrt.((dados.h)));
julia>	Petterson_2 = 1 ./(b46[1] .+ b46[2].*(1 ./
	(dados.d))).^2;
julia>	x47 = [matrix_um dados.d];
julia>	b47 = inv(x47'*x47)*x47'*(dados.d./sqrt.(-
	1.3.+(dados.h)));
julia>	Naslung_2 = 1.3 .+(dados.d ./(b47[1] .+
	b47[2].*dados.d)).^2;
julia>	x48 = [matrix_um (1 ./((dados.d).^2))];
julia>	b48 = inv(x48'*x48)*x48'*(dados.h);
julia>	Assmann_2 = b48[1] .+ b48[2].*(1
	./((dados.d).^2));
julia>	x49 = [matrix_um (1 ./ (dados.d))];
julia>	b49 = inv(x49'*x49)*x49'*(log.(-1.3 .+(dados.h)));
julia>	Pollanschutz = exp.((b49[1] .+ b49[2].*(1 ./
	(dados.d)))).+1.30;
julia>	x50 = [matrix_um log10.(dados.d)];
julia>	b50 = inv(x50'*x50)*x50'*(log.(dados.h));

julia>	Stoffels_2 = exp.((b50[1] .+
	b50[2].*(log10.(dados.d))));
julia>	x51 = [matrix_um (1 ./ (dados.d)) (dados.d).^2];
julia>	b51 = inv(x51'x51)*x51'*(dados.d ./
	(sqrt.(dados.h)));
julia>	Azevedo_1911_2 = (dados.d./(b51[1] .+
	b51[2].*(1 ./ (dados.d)) .+
	b51[3].*((dados.d).^2))).^2;

Continuando, o Algoritmo 3 demonstra os processos para elaboração da tabela dos coeficientes (β).

Algoritmo 3.	Elaboração da	tabela com os	coeficientes (β).
--------------	---------------	---------------	-------------------

-	
julia>	Nomes =["Linear Simples";"Azevedo et al. (1899)
	(1)";"Henricksen (1851)";"Curtis (1867)";"Trorey
	(1831)";"Stoffels & Soest (1853)";"Parabólico
	(2)";"Potencial (1)";"Hiperbólico
	(1)":"Exponencial (1)":"Semilogarítmico
	(i)":"Schumacher (1986) (2)":"Schumacher-hall
	(i)"·"Backman modificada"·"Schumacher (1886)
	(1)"·"Schneider (1886) (1)"·"Prodan (1865)
	(1)"·"Exponencial (2)"·"Exponencial
	(2)"."Exponencial (4) "."Potencial (2) "."Potencial
	(3), Exponencial (4), Potencial (2), Potencial
	(3), Petterson, Berkhout, Nasiung (Produit)
	(2); Nasiung (1); Nasiung (Prodan) (4) $ $
	(1)";"Assmann (1)";"Azevedo et al. (1899)
	(2)";"Azevedo et al. (1911) (5)";"Azevedo et al.
	(1911) (6)";"Azevedo et al. (1911) (3)";"Azevedo
	et al. (1899) (4)";"Finger (1892)";"Não
	Referenciado (1)";"Azevedo et al. (1911) (4)";
	"Schneider (1886) (2)";"Sanquetta et al.
	(1913)";"Azevedo et al. (1911) (1)";"Azevedo et
	al. (1899) (3)";"Parabólico (1)";"Azevedo et al.
	(1899) (5)";"Silva (1880)";"Parabolico
	(3)";"Prodan (1865) (2)";"Petterson (2)";"Naslung
	(2)";"Assmann (2)";"Pollanschutz";"Stoffels &
	Soest (1851) (2)";"Azevedo et al. (1911) (2)"];
julia>	beta0
	=[b1[1];b2[1];b3[1];b4[1];b5[1];b6[1];b7[1];b8[1]
	;b9[1];b10[1];b11[1];b12[1];b13[1];b14[1];b15[1]
	;b16[1];b17[1];b18[1];b19[1];b20[1];b21[1];b22[
	1];b23[1];b24[1];b25[1];b26[1];b27[1];b28[1];b2
	9[1];b30[1];b31[1];b32[1];b33[1];b34[1];b35[1];b
	36[1];b37[1];b38[1];b39[1];b40[1];b41[1];b42[1];
	b43[1]:b44[1]:b45[1]:b46[1]:b47[1]:b48[1]:b49[1
]:b50[1]:b51[1]]:
iulia>	beta1
J a a	=[h1[2]·h2[2]·h3[2]·h4[2]·h5[2]·h6[2]·h7[2]·h8[2]
	·h9[2]·h10[2]·h11[2]·h12[2]·h13[2]·h14[2]·h15[2]
	·h16[2]·h17[2]·h18[2]·h19[2]·h20[2]·h20[2]·h20[2]
	2]·h23[2]·h24[2]·h25[2]·h26[2]·h27[2]·h28[2]
	0[2]·h20[2]·h21[2]·h22[2],020[2],027[2],020[2],02
	26[2],030[2],031[2],032[2],035[2],034[2],035[2],0 26[2],037[2],030[2],030[2],035[2],005[2],005[2],005[2],005[2],005[2],005[2],005[2],005[2],005[2],00
	50[2],057[2];058[2];059[2];040[2];041[2];042[2];
	045[2];044[2];045[2];046[2];047[2];048[2];049[2
];050[2];051[2]];

julia>	beta2 =["-";"-";"-";b5[3];"-
	";b7[3];b8[3];b9[3];b10[3];b11[3];b12[3];b13[3];
	b14[3];b15[3];"-";b17[3];"-";"-";"-";"-";"-";"-";"-
	";b25[3];"-";b27[3];"-";"-";"-";b32[3];"-";"-";"-
	";b36[3];"-";"-";"-";b41[3];"-
	";b43[3];b44[3];b45[3];"-";"-";"-";"-";b51[3]];
julia>	beta3 =["-";"-";"-";"-";"-";b7[4];"-";"-";"-
	";"_";"_";"_";"_";"_";"_";"_";"_";"_";"
	","_","_","_","_","_","_","_","_","_","
	";"_";"_";"_";"_";"_";"_";"_";"_";"_";"
julia>	nBetas =
	[length(b1);length(b2);length(b3);length(b4);leng
	th(b5);length(b6);length(b7);length(b8);length(b
	9);length(b10);length(b11);length(b12);length(b1
	3);length(b14);length(b15);length(b16);length(b1
	7);length(b18);length(b19);length(b20);length(b2
	1);length(b22);length(b23);length(b24);length(b2
	5);length(b26);length(b27);length(b28);length(b2
	9);length(b30);length(b31);length(b32);length(b3
	3);length(b34);length(b35);length(b36);length(b3
	7);length(b38);length(b39);length(b40);length(b4
	1);length(b42);length(b43);length(b44);length(b4
	5);length(b46);length(b47);length(b48);length(b4
	9);length(b50);length(b51)];
julia>	B = DataFrame(Modelos = Nomes, Número =
	nBetas, $\beta 0$ = beta0, $\beta 1$ = beta1, $\beta 2$ = beta2, $\beta 3$ =
	beta3);
julia>	Betas = sort(B);

O Algoritmo 4 demonstra os processos para elaboração das estatísticas.

	resultados.
julia>	Est = DataFrame(Altura_Observada= dados.h,
	Linear_Simples=Linear,
	Azevedo_et_al_1999_1=Azevedo_1999_1,Henric
	ksen_1948=Henricksen, Curtis_1967=Curtis,
	Trorey_1931=Trorey,
	Stoffels_e_Soest_1951_1=Stoffels,
	Parabolico_2=Parabolico_2,
	Potencial_1=Potencial_1,
	Hiperbolico_1=Hiperbolico_1,
	Exponencial_1=Exponencial_1,
	Semilogarítmico_i=Semilogarítmico_i,Schumache
	r_1986_2=Schumacher_1986_2,Schumacherhall
	_i=Schumacherhall_i,
	Backman_modificada=Backman,
	Schumacher_1986_1=Schumacher_1986_1,
	Schneider_1986_1=Schneider_1986_1,
	Prodan_1965_1=Prodan_1,
	Exponecencial_2=Exponencial_2,
	Exponencial_3=Exponencial_3,
	Exponencia_4=Exponencial_4,
	Potencial_2=Potencial_2,

Algoritmo	4.	I. Estatísticas e tabela para represe				esentar	os		
		res	uitauos.						
julia>	Est	=	DataFran	ne(/	Altura_C)bserv	ada=	dados.	h,

	Potencial_3=Potencial_3, Petterson=Petterson,
	Berkhout=Berkhout, Naslung_Prodan_2=
	Naslung_Prodan_2, Naslung=Naslung_1,
	Naslung_Prodan_1=Naslung_Prodan_1,
	Assmann_1=Assmann,
	Azevedo_et_al_1999_2=Azevedo_1999_2,
	Azevedo_et_al_1911_5=Azevedo_1911_5,
	Azevedo et al 1911 6=Azevedo 1911 6,
	Azevedo et al 1911 3=Azevedo 1911 3,
	Azevedo et al 1999 4=Azevedo 1999 4,
	Finger=Finger,
	Nao Referenciado 1=nao referenciado 1,
	Azevedo et al 1911 4 =
	Azevedo 1911 4,Schneider 1986 2 =
	Schneider 1986 2,Sanguetta et al 1913=Sangu
	etta 1913,
	Azevedo et al 1911 1=Azevedo 1911 1.Azeve
	do et al 1999 3=Azevedo 1999 3.Parabolico
	1=Parabolico 1.Azevedo et al 1999 5=Azevedo
	1999 5.Silva 1980=Silva Parabolico 3=Paraboli
	co 3.Prodan 1965 2=Prodan 2.Petterson 2=Pe
	tterson 2.Naslung 2=Naslung 2.Assmann 2=Ass
	mann 2.Pollanschutz=Pollanschutz.Stoffels e S
	oest 1951 2=Stoffels 2.Azevedo et al 1911 2
	=Azevedo 1911 2):
ulia>	Estimativas = sort(Est)
ulia>	Y = dados.h
ulia>	Yhat = Est[:,2:end]
ulia>	p=size(Yhat,2)
ulia>	ei = [Y-Yhat[:,i] for i in 1:p]
ulia>	ebar = [(sum(Y-Yhat[:,i])/length(Y)) for i in 1:p]
ulia>	ebarp = [(((sum(Y-
	Yhat[:,i])/length(Y))/mean(Y))*100) for i in 1:p]
ulia>	Se = [sqrt((sum(((Y-Yhat[:,i])((sum(Y-
	Yhat[:,i])/length(Y)))).^2))/(length(Y)-1)) for i in
	1:p]
ulia>	Sep = [((sqrt((sum(((Y-Yhat[:,i])((sum(Y-
	Yhat[:,i])/length(Y)))).^2))/(length(Y)-
	1))/mean(Y))*100) for i in 1:p]
ulia>	mx = [sqrt(((sqrt((sum(((Y-Yhat[:,i])((sum(Y-
	Yhat[:,i])/length(Y)))).^2))/(length(Y)-1)))^2)+
	(((sum(Y-Yhat[:,i])/length(Y)))^2)) for i in 1:p]
ulia>	<pre>mxp = [(((sqrt((sqrt((sum(((Y-Yhat[:,i])((sum(Y-</pre>
	Yhat[:,i])/length(Y)))).^2))/(length(Y)-1)))^2)+
	(((sum(Y-
	Yhat[:,i])/length(Y)))^2)))/(mean(Y)))*100) for i in
	1:p]
ulia>	ei = [Y-Yhat[:,i] for i in 1:p]
ulia>	Z= DataFrame(Modelos=Nomes, Viés=ebar,
	ViésP=ebarp, Precisão=Se, PrecisãoP=Sep,
	Acurácia=mx, AcuráciaP=mxp)
ulia>	Estatisticas = sort!(Z, [:AcuráciaP]) #rev=true se
	for do maior para o menor

O Algoritmo 5 foi desenvolvido para exportar os

resultados para arquivo .xls (EXCEL).

|--|

julia>	Exportar estatísticas para o Excel				
julia>	XLSX.openxlsx("C:/Pasta1/Pasta2/PastaN/Estatist				
	icas.xlsx", mode="w") do xf				
	sheet = xf[1]				
	XLSX.rename!(sheet, "VPA")				
	sheet["A1"] = ["Modelos"]				
	sheet["B1"] = ["VIES"]				
	sheet["C1"] = ["VIESP"]				
	sheet["D1"] = ["PRECISÃO"]				
	sheet["E1"] = ["PRECISÃOP"]				
	sheet["F1"] = ["ACURACIA"]				
	sheet["G1"] = ["ACURACIAP"]				
	sheet["A2:G54"] = [Estatisticas.Modelos				
	Estatisticas.Viés Estatisticas.ViésP				
	Estatisticas.Precisão Estatisticas.PrecisãoP				
	Estatisticas. Acurácia Estatisticas. Acurácia P]				
	end				
julia>	#Exportar tabela de parâmetros para o Excel				
julia>	XLSX.openxlsx("C:/				
	Pasta1/Pasta2/PastaN/Betas.xlsx", mode="w")				
	do xf				
	sheet = xf[1]				
	XLSX.rename!(sheet, "VPA")				
	sheet["A1"] = ["Modelos"]				
	sheet["B1"] = ["Número"]				
	sheet["C1"] = [" β 0"]				
	sheet["D1"] = [" β 1"]				
	sheet[" $E1$ "] = [" β 2"]				
	sheet["F1"] = [" β 3"]				
	sneet["A2:F54"] = [Betas.Modelos Betas.Numero				
	setas.pu setas.p1 setas.p2 setas.p3				
	ena				

O Algoritmo 6 apresenta a elaboração dos gráficos de resíduo e dispersão apresentadas para auxiliar nos resultados.

Algoritmo 6	. Desenvolvimento	dos	gráficos	de resí	duo e
	dispersão				

	dispersuo:
julia>	#Gráfico de Resíduo
julia>	Resíduo = dados.h – Nome_do_Modelo;
julia>	plot(dados.d, residuo, "b.")
julia>	xlabel("Diâmetro à altura do peito (cm)")
julia>	ylabel("Resíduo (m)")
julia>	title("TITULO")
julia>	ylim(-20, 20)
julia>	xlim(0, 25)
julia>	plt.plot([0, 25],[0,0],'k')
julia>	
julia>	#Gráfico de Dispersão
julia>	scatter(dados.d, dados.h, facecolor= "none",
	edgecolors="orange", s=20, label="Observado")

julia>	<pre>scatter(dados.d, Nome_do_Modelo, facecolor=</pre>
	"none", edgecolors="blue", s=20, label=
	"Estimado")
julia>	xlabel("Diâmetro à altura do peito (cm)")
julia>	ylabel("Altura (m)")
julia>	legend(prop=Dict("size"=>10))
julia>	title("TITULO")

RESULTADOS E DISCUSSÃO

As estatísticas descritivas obtidas para os dados utilizados no ajuste dos modelos estão descritas na tabela 3. Ao se avaliar a variável altura observou-se um coeficiente de variação (CV%) de 46,18, 16,65, 19,60 e 18,06 para as classes: Jovem, Média Inicial, Média Avançada e Madura, respectivamente. Pode-se observar a redução nos valores das demais idades para a classe Jovem.

De modo geral essa maior variação na classe de idade Jovem se dá pela alta variabilidade dos exemplares, e pela variável que está sendo mensurada, que apresenta uma alta variância no início do crescimento das árvores.

Tabela 3. Estatísticas descritivas das variáveis diâmetro à
altura do peito (cm) e altura total (m) por
grupos de equações e classes de idade dos
povoamentos de acácia-negra provenientes do
Rio Grande do Sul, Brasil.

Cruine	Jove	em			
Grupo	d (cm)	h (m)			
\overline{x}	5,09	5,97			
CV%	54,18	43,11			
IC superior	5,45	6,31			
IC inferior	4,72	5,63			
Grupo	Média	Inicial			
	d (cm)	h (m)			
\overline{x}	9,27	11,91			
CV%	24,49	15,19			
IC superior	9,60	12,17			
IC inferior	8,95	11,65			
Grupo	Média Avançada				
Grupo	d (cm)	h (m)			
\overline{x}	11,39	15,13			
CV%	32,30	20,38			
IC superior	11,94	15,59			
IC inferior	10,84	14,67			
Grupo	Madura				
Grupo	d (cm)	h (m)			
\overline{x}	12,98	16,42			
CV%	31,08	18,12			
IC superior	13,54	16,84			
IC inferior	12,41	16,00			

Em que: $\bar{x} = média$; CV% = coeficiente de variação (%); IC inferior = intervalo de confiança inferior; IC superior = intervalo de confiança superior.

.

Ajuste dos modelos hipsométricos

Os coeficientes dos modelos hipsométricos, para a estimativa da altura total (h) estão apresentados na Tabela 4. De modo a melhorar a apresentação do conteúdo, foram disponibilizados os 5 melhores modelos de cada Classe de Idade. Já os resultados com todos os modelos são apresentados no Apêndice.

Tabela 4.	Parâmetros Betas dos modelos ajustados para
	cálculo da altura total de indivíduos de acácia-
	negra.

Modeles		Jovem							
Widdelos	GL	βo	βı	β₂	β 3				
Parabólico (2)	4	-0,8146	0,9971	-0,0326	1,8692				
Schumacher-hall									
(i)	3	0,7195	0,5175	0,5780	-				
Potencial (1)	3	0,2980	0,5209	0,4196	-				
Schneider (1986)									
(2)	2	0,1085	0,8946	0,0087	-				
Prodan (1965) (2)	3	1,5599	0,2542	0,0857	-				
Modelos	-		Média	Inicial					
	GL	βo	β1	β₂	β3				
Parabólico (2)	4	6,3283	1,5472	-0,0523	-1,4550				
Exponencial (1)	3	3,2009	-3,3490	-0,1275	-				
Semilogarítmico (i)	3	4,5708	4,9194	-1,2737	-				
Schumacher-hall									
(i)	3	1,7061	0,4660	-0,2673	-				
Trorey (1932)	3	2,1947	1,4908	-0,0454	-				
Modelos	_	Média Avançada							
Widdelds	GL	βo	βı	β₂	β₃				
Exponencial (1)	3	2,341	-4,1524	0,1471	-				
Semilogarítmico (i)	3	-12,5047	6,8762	2,1564	-				
Parabólico (2)	4	-11,065	1,9049	-0,0564	2,376				
Potencial (1)	3	0,8138	0,5495	0,1102	-				
Schumacher-hall (i)	3	0,424	0,5498	0,5841	-				
Madalas			Mad	ura					
wodelos	GL	βo	β1	β₂	β3				
Exponencial (1)	3	3,0048	-5,5757	0,0254	-				
Parabólico (2)	4	-3,0917	1,7957	-0,0437	0,422				
Prodan (1965) (2)	3	2,1633	0,0489	0,0467	-				
Prodan (1965) (1)	3	1,5904	0,0774	0,043	-				
Naslung (Prodan) (2)	3	1,5904	0,0774	0,043	-				

Em que: d = diâmetro altura do peito (cm); h = altura total (m); GL = Grau de liberdade; $\beta_0, \beta_1, \beta_2 \in \beta_3, =$ parâmetros;

Os resultados do Viés, Precisão e Acurácia para os 5 melhores modelos de cada Classe de Idade foram apresentados na Tabela 5.

As estatísticas resultantes dos ajustes dos modelos expressas na Tabela 5 demostraram que para as duas

classes de idades (Jovem e Média Inicial), o melhor modelo empregado foi o Parabólico 2 (Tabela 2), com os valores de $\bar{e}_{\%}$ 1,96E⁻¹² e -1,96E⁻¹², S_{e%} 8,99 e 7,76, e m_{x%} 8,99 e 7,76, e para as classes restantes o modelo que demonstrou melhores resultados foi o Exponencial 1 (Tabela 2) apresentando, $\bar{e}_{\%}$ -0,01 e -0,01, S_{e%} 7,86 e 7,03, e m_{x%} 7,86 e 7,03, respectivamente.

Da mesma forma, os resultados obtidos na observação da distribuição dos resíduos em relação à altura estimada demonstram que os modelos demonstraram superioridade em seus ajustes, para todas as classes: Jovem, Médio Inicial, Médio Avançada e Madura (Figura 1).

Ao analisar a Tabela 3 e os gráficos da Figuras 1, de modo geral, observou-se que os modelos testados apresentaram ajustes variados com valores de Viés (%) variando entre -0,0280 a 0,52. Contudo, ao avaliar o distribuições comportamento das dos resíduos, juntamente com as estatísticas selecionaram-se os modelos de Parabólico (2) para os classes de idade Jovem e Média Inicial, e os modelos Exponencial (1) para os classes de idade Média Avançada e Madura, pois apresentaram os melhores ajustes. A variação dos valores obtidos foi relativamente baixa, tendo em vista que o Se% que variou entre 7,03% a 10,10%, e o m_{x%} apresentou uma variação similar com valores entre 7,03 a 10,15%.

Caldeira et al. (2002) estudaram povoamentos de acácia-negra com idade entre 2 e 8 anos e as equações hipsométricas apresentaram S_e entre 0,07 a 1,98. Os autores afirmam que a melhor equação foi uma logarítmica com S_e de 0,07, e em sua distribuição de resíduos não apresentou tendências de superestimar ou subestimar as alturas dentro da amplitude de diâmetros observados. Uma das causas da diferença entre os valores residuais da classe de idade Jovem se dá por apresentar dados de parcelas diferentes, sendo assim as características dos grupos se alteraram, valendo-se principalmente do fator idade.

Sanquetta et al. (2014b) apresentaram resultados para indivíduos de acácia-negra aos sete anos de idade provenientes do Rio Grande do Sul, onde, o $S_{e\%}$ variou de 0,98% a 16,21%. O modelo que melhor se ajustou apresentou $S_{e\%}$ de 0,98.

Müller et al. (2014) apresentaram equações para Acacia mangium aos 10 anos de idade, com R^2 variando entre 0,84 e 0,93 e m_x com variação de 2,44 a 3,40. Para os autores as equações de Max & Burkhart e Parresol geraram os melhores modelos com m_x de 2,56 e 2,44, respectivamente.

Tahela 5 Viés	nrecisão e	acurácia nar	a os modelos i	nara cálculo da	altura total de	indivíduos de acácia-negra
I abela J. Vies	, precisao e	aculacia pal	a us mouelus	para calculo ua	altura total ue	inuiviuuus ue acacia-negra

Modelos		Jovem							
widdelos	ē	$\overline{e}_{\%}$	S_e	<i>S</i> _{<i>e</i>%}	m_x	$m_{x\%}$			
Parabólico (2)	1,0294E ⁻¹³	1,96E ⁻¹²	0,4710	8,99	0,4710	8,99			
Schumacher-hall (i)	-0,0035	-0,07	0,4907	9,37	0,4907	9,37			
Potencial (1)	-0,0035	-0,07	0,4907	9,37	0,4907	9,37			
Schumacher (1986) (2)	-0,0035	-0,07	0,4907	9,37	0,4907	9,37			
Prodan (1965) (2)	0,0494	0,94	0,5293	10,10	0,5316	10,15			
Madalaa			Média	Inicial					
Widdelos	ē	$\overline{e}_{\%}$	S_e	$S_{e\%}$	m_x	$m_{x\%}$			
Parabólico (2)	2,3079E ⁻¹³	1,96E ⁻¹²	0,9116	7,76	0,9116	7,76			
Exponencial (1)	0,0009	0,01	0,9289	7,91	0,9289	7,91			
Semilogarítmico (i)	-3,2045E ⁻¹³	-2,73E ⁻¹²	0,9334	7,95	0,9334	7,95			
Schumacher-hall (i)	-0,0081	-0,07	0,9954	8,47	0,9954	8,47			
Trorey (1932)	4,0454E ⁻¹³	3,44E ⁻¹²	0,9962	8,48	0,9962	8,46			
Madalaa	Média Avançada								
widdelos	ē	$\overline{e}_{\%}$	S_e	<i>Se</i> %	m_x	$m_{x\%}$			
Exponencial (1)	-0,0009	-0,01	1,2038	7,86	1,2038	7,86			
Semilogarítmico (i)	9,3231E ⁻¹³	6,0843E ⁻¹²	1,2511	8,16	1,2511	8,16			
Parabólico (2)	9,3681E ⁻¹³	6,1137E ⁻¹²	1,2537	8,18	1,2537	8,18			
Potencial (1)	-0,0280	-0,1830	1,3708	8,95	1,3710	8,95			
Schumacher (1986) (2)	-0,0280	-0,1830	1,3708	8,95	1,3710	8,95			
Madalas			Mad	ura					
widdelos	ē	$\overline{e}_{\%}$	S_e	<i>Se</i> %	m_x	$m_{x\%}$			
Exponencial (1)	-0,0019	-0,01	1,1591	7,03	1,1591	7,03			
Parabólico (2)	9,2465E ⁻¹³	5,61E ⁻¹²	1,1599	7,04	1,1599	7,04			
Prodan (1965) (2)	0,0933	0,57	1,1626	7,05	1,1663	7,08			
Prodan (1965) (1)	0,0850	0,52	1,1673	7,08	1,1704	7,10			
Naslung (Prodan) (2)	0,0850	0,52	1,1673	7,08	1,1704	7,10			

Em que: \bar{e} é o víes absoluto, $\bar{e}_{\%}$ é o viés relativo, S_e é a precisão absoluta, $S_{e\%}$ é a precisão relativa, m_{χ} é a acurácia absoluta e $m_{\chi\%}$ é a acurácia relativa.

Ao analisar o Viés, Ribeiro et al. (2015) apresenta valores de 0,7276 a 2,3453 para 14 modelos hipsométricos de *Eucalyptus* sp. Costa et al. (2014) descrevem valores de \bar{e} -0,0858 a 0,0093 para povoamentos de *Araucaria angustifólia*.

Soares (2015) descreveu valores de \bar{e} -0,020 a 0,254, Se 0,224 a 2,259 e m_{x%} 16,73 a 17,07% para povoamento de Acácia-negra.

Pode-se observar que não houve similaridade entre os trabalhos, variando modelos e resultados. Essa diferença pode ser atribuída à idade entre os povoamentos, condições inerentes ao sítio, bem como procedência (CALDEIRA et al., 2002). Dessa forma compreende-se que as relações hipsométricas são influenciadas pela idade, sítio, densidade e espécie (LOETSCH et al., 1973; FINGER, 1992; SCOLFORO, 1999; HUSCH e BEERS, 2002).

Validação da melhor equação

Obteve-se um valor para o Qui-quadrado (χ^2) calculado para as classes de idade: Jovem (2,0239), Média Inicial

(1,0364), Média Avançada (118,1416) e Madura (0,6158). Não sendo significativos para o valor χ^2 tabelado 30,1435 com grau de liberdade (GL) 19 e 95% para o nível de significância. As Precisão de 12,02%, 6,78%, 67,61% e 4,65%, respectivamente. Nessa questão o único modelo que teve um valor significativo foi para a classe Média Avançada.

A respeito da validação foi possível estabelecer que o modelo de Parabólico (2) e Exponencial (1) apresentaram resultados que permitem o uso dos mesmos para estimar alturas de outras árvores de acácia-negra, exceto para o grupo Média Avançada, os modelos para essa idade não podem ser utilizados em outras bases de dados. Quanto às curvas hipsométricas, observou-se que elas apresentaram comportamentos similares aos apresentados por Sanquetta *et al.* (2014b) para acácia-negra no estado do Rio Grande do Sul.

Curva hipsométrica

Com o intuito de demonstrar a dispersão dos indivíduos coletados em relação às curvas hipsométricas obtidas pelo modelo Parabólico (2) para as idades Jovem e Média Inicial e Exponencial (1) para Média Avançada e Madura, ao se comparar com os dados observados. Optou-se pelo uso do método gráfico para melhor representar essa relação (Figura 2).

Quanto ao uso da Linguagem de Programação Julia, foi possível gerar toda programação. O maior diferencial dessa Linguagem de Programação decorre do fato de apresentar uma escrita que se assemelha as fórmulas matemáticas, facilitando o entendimento e a reprodução dos códigos base. Outro fator a se levar em conta é a capacidade de expandir a lista de modelos que o programador irá utilizar, o que não ocorre em certos programas que já possuem um número limitado de modelos indexado.

A respeito da Tabela 6, onde observou-se os resultados dos reagrupamentos das bases de dados, e se observou o aumento da seletividade no agrupamento dos dados não apresenta uma melhora nos modelos. Uma explicação para esse fator, se dá pela redução no número de variáveis o que diminui a representatividade da base de dados.

Sendo assim, a Linguagem de Programação Julia foi apta a realizar as demandas exigidas no artigo, sendo uma alternativa a *softwares* e Linguagens de Programação utilizadas para a mesma finalidade.

CONCLUSÕES

O modelo que melhor se ajustou para estimar altura total de indivíduos da espécie *Acacia mearnsii*, foi o Parabólico (2) para as idades Jovem e Média Inicial e o Exponencial (1) para as idades Média Avançada e Madura, apresentando \bar{e} de 1,96E⁻¹², 1,96E⁻¹², -0,01 e -0,01 para as Classes de Idades: Jovem, Média Inicial, Média Avançada e Madura, respectivamente. Para $S_{e\%}$ com valores de 8,99, 7,76, 7,86 e 7,03 e $m_{x\%}$ 8,99, 7,76, 7,86 e 7,03, respectivamente.

O procedimento de validação determina que os modelos também apresentem aptidão para serem utilizados com indivíduos que não pertenceram ao ajuste das equações, com exceção da classe Média Avançada.

Confirmando a hipótese proposta no início do trabalho a Linguagem de Programação *Julia* atendeu a todas as demandas propostas pelos autores e é uma alternativa para programadores e Engenheiros Florestais na elaboração de modelos hipsométricos.

Figura 2. Relação hipsométrica obtida a partir dos melhores resultados em relação à altura total (m) e o diâmetro altura do peito (cm) para indivíduos de acácia-negra agrupados nas classes: Jovem, Médio Inicial com o modelo Parabólico (2), e Médio Avançado e Maduro com o modelo Exponencial (1).

AGRADECIMENTOS

Os autores agradecem a empresa TANAC S.A./TANAGRO S.A. pela colaboração e fornecimento dos dados para elaboração do presente trabalho.

Ao Centro de Excelência de Pesquisas em Fixação de Carbono na Biomassa pela disponibilidade de equipamentos especializados que foram de suma importância para a execução do projeto.

REFERÊNCIAS

ABRÃO, S.F. et al. Influência das condições ambientais no crescimento de dois grupos arbóreos em floresta com araucária. **BIOFIC scientific jornal**, v.2, n.2, p.10-15, 2017.

AZEVEDO, C.P. et al. Relação hipsométrica para quatro espécies florestais em plantio homogêneo e em diferentes idades na Amazônia Ocidental. **Boletim de Pesquisa Florestal**, n.39, p.5-29, 1999.

BARTOSZECK, A.C.P.S. et al. Dinâmica da relação hipsométrica em função da idade, do sítio e da densidade inicial de povoamentos de bracatinga da região metropolitana de Curitiba, PR. **Revista Árvore**, n.28. p.517-533, 2004.

BARRETO, T.G. et al. Influência das características químicas do solo na dinâmica de crescimento de um fragmento florestal. **Magistra**, v.28, n.1, p.1-12, 2016.

BEHLING, A. et al. Critical analyses when modeling tree biomass to ensure additivity of its componentes. **Anais da Academia Brasileira de Ciências**, v.90, n.2, p.1760-1774, 2018.

CALDEIRA, M.V.W. et al. Relação hipsométrica para *Acacia mearnsii* com diferentes idades. **Boletim de Pesquisa Florestal**, n45, p.57-68, 2002.

CASTRO, R.V.O. et al. Modelagem do crescimento e da produção de povoamentos de *Eucalyptus* em nível de distribuição diamétrica utilizando índice de local. **Revista Árvore**, v.40, n.1, p.107-116, 2016.

CHAPMAN, H.H.; MEYER, W.H. Forest mensuration. McGraw-Hill Book Company, 1949.

COSTA, E.A. et al. Influência da posição sociológica na relação hipsométrica de *Araucaria angustifólia*. **Revista Brasileira de Ciências Agrárias**, v.9, n.1, p.110-116, 2014.

FIGUEIREDO FILHO, A. et al. Crescimento, mortalidade, ingresso e distribuição diamétrica em Floresta Ombrófila Mista. **Revista** Floresta, v.40, n.4, p.763-776, 2010.

FINGER, C.A.G. Fundamentos de biometria florestal. UFSM, 1992.

GUIMARÃES, D.P. Desenvolvimento de um modelo de distribuição diamétrica de passo invariante para Prognose e projeção da estrutura de povoamentos de eucalipto. 1994. 160p. (Tese de Doutorado). HUSCH, B.; BEERS, T.W. Forest measurements. John Wiley & Son., 2002.

IBÁ – INDÚSTRIA BRASILEIRA DE ÁRVORES. **Relatório IBÁ 2020**. São Paulo, 2020.

LOETSCH, F. et al. **Forest Inventory**. Munchen: BLV Verlagsgesellschaft, v.2, 1973.

MACHADO, S.A.; FIGUEIREDO FILHO, A. **Dendrometria**. Editora UNICENTRO, v.2, 2009.

MÜLLER, M.D. et al. Equações de altura, volume e afilamento para eucalipto e acácia estabelecidos em sistema silvipastoril. **Floresta**, v.44, n.3, p.473-484, 2014.

PLÁCIDO, A.C. et al. A distribuição diamétrica para bracatingais em diferentes idades, sítios e densidades na região metropolitana de Curitiba. **Revista Floresta**, v.34, n.3, p.305-323, 2004.

RIBEIRO, A. et al. Strategies and methodologys for adjustment of hypsometric models of *Eucalyptus* sp. Stands. **Cerne**, v.16, n.1, p.22-31, 2015

SANQUETTA, C.R. Experiência de monitoramento no bioma Mata Atlântica com uso de parcelas permanentes. **Curitiba: Multi-Graphic**. 2008.

SANQUETTA, C.R. et al. **Inventários Florestais: planejamento e** execução. 3 ed. Curitiba: Multi-Graphic Gráfica e Editora, 2014a. SANQUETTA, C.R. et al. Relação hipsométrica em inventários précorte em povoamentos de *Acacia mearnsii*De Wild. **Científica**, v.42, n.1, p.80-90, 2014b.

SCOLFORO, J.R.S. **Biometria florestal**: técnicas de regressão aplicada para estimar: volume, biomassa, relação hipsométrica e múltiplos produtos de madeira. Belo Horizonte: CEMIG; Lavras: UFLA: FAEPE, v.2, 1997.

SOARES, T.S. et al. Uso de diferentes alternativas para viabilizar a relação hipsométrica no povoamento florestal. **Revista Árvore**, v.28, n.6, p.845-854, 2004.

SOARES, G.M. Dinâmica do crescimento em plantios mistos de *Eucalyptus globulus* e *Acacia mearnsii*. 2015. 215p. (Tese de Doutorado).

STOLLE, L. et al. Modelos hipsométricos para um povoamento jovem de *Khaya ivorensis* A. Chev. **BIOFIX Scientific Journal**, v.3, n.2, p.231-236, 2018.

VIEIRA, M.; SCHUMACHER, M.V. Deposição de serapilheira e de macronutrientes em um povoamento de acácia-negra (*Acacia mearnsii* De Wild.) no Rio Grande do Sul. **Ciência Florestal**, v.20, n.2, p.225-233, 2010.

Recebido em 31-03-2021 Aceito em 10-06-2021

APÊNDICE

Tabela 4. Farametros de cada modelo para calculo da altura total de mulviduos de acadia-negra
--

Madalaa			Jove	em	Média Inicial				
wodelos	GL	βo	β1	β₂	β₃	βo	β1	β₂	β₃
Assmann (1)	2	8,4353	-8,0662	-	-	16,2654	-37,9016	-	-
Assmann (2)	2	6,6362	-4,1709	-	-	13,2771	-96,0955	-	-
Azevedo et al. (1999) (1)	2	3,2412	0,0142	-	-	5,3999	0,0000	-	-
Azevedo et al. (1999) (2)	2	1,1547	0,0156	-	-	2,2208	0,0025	-	-
Azevedo et al. (1999) (3)	2	0,6036	0,2710	-	-	0,6029	0,2232	-	-
Azevedo et al. (1999) (4)	2	0,6036	0,2710	-	-	0,6029	0,2232	-	-
Azevedo et al. (1999) (5)	2	3,2614	0,0813	-	-	9,1618	0,0285	-	-
Azevedo et al. (2011) (1)	2	1,1401	0,0254	-	-	1,6462	0,0111	-	-
Azevedo et al. (2011) (2)	3	1,6051	-0,8957	0,0196	-	2,3600	-4,0400	0,0085	-
Azevedo et al. (2011) (3)	3	5,0834	-3,5095	0,0588	-	13,9094	-26,8721	0,0115	-
Azevedo et al. (2011) (4)	3	1,7080	-1,0657	-	-	2,7862	-3,2004	-	-
Azevedo et al. (2011) (5)	2	0,5847	0,8296	-	-	1,7262	0,5635	-	-
Azevedo et al. (2011) (6)	2	1,2327	0,7969	-	-	1,6137	0,8286	-	-
Backman modificada	3	0,2621	4,0444	-0,5068	-	0,3263	4,7583	1,4019	-
Berkhout	2	0,7766	0,1757	-	-	1,9452	0,0550	-	-
Curtis (1967)	2	2,2046	-1,7408	-	-	2,8869	-3,6720	-	-
Exponencial (1)	3	0,7176	-0,8284	0,8110	-	3,2009	-3,3490	-0,1275	-
Exponencial (2)	2	0,7766	0,1757	-	-	1,9452	0,0550	-	-
Exponencial (3)	2	1,1547	0,0156	-	-	2,2208	0,0025	-	-
Exponencial (4)	2	2,2046	-1,7408	-	-	2,8869	-3,6720	-	-
Finger (1992)	2	6,6362	-4,1709	-	-	13,2771	-96,0955	-	-
Henricksen (1950)	2	0,8112	3,5859	-	-	-0,1193	5,4573	-	-
Hiperbólico	3	-2,2123	-1,0439	5,6043	-	19,0060	-84,0683	-2,1420	-
Linear Simples	2	1,4085	0,8946	-	-	6,1720	0,6079	-	-
Naslung (1)	2	0,6763	0,0929	-	-	1,3178	0,0588	-	-
Naslung (2)	2	1,0473	0,2439	-	-	0,7275	0,2272	-	-
Naslung (Prodan) (1)	3	0,0429	0,3228	0,06250	-	0,3197	0,2136	0,0482	-
Naslung (Prodan) (2)	3	0,3018	0,3836	0,06711	-	0,5247	0,2356	0,0516	-
Não Referenciado (1)	2	0,3170	0,4286	-	-	0,2256	0,5827	-	-
Parabólico (1)	3	0,0790	1,6222	-0,0715	-	2,1947	1,4908	-0,0454	-
Parabólico (2)	4	-0,8146	0,9971	-0,0326	1,8692	6,3283	1,5472	-0,0523	-1,4550
Parabólico (3)	3	0,3235	0,4237	-0,0244	-	1,4439	0,1662	-0,0057	-
Petterson	2	0,4504	0,7122	-	-	0,3788	0,6923	-	-
Petterson (2)	2	0,3170	0,4286	-	-	0,2256	0,5827	-	-
Pollanschutz	2	2,1559	-2,7553	-	-	2,8333	-4,2413	-	-
Potencial (1)	3	0,2980	0,5209	0,4196	-	1,7031	0,4673	-0,0977	-
Potencial (2)	2	0,6194	0,3661	-	-	1,3433	0,2543	-	-
Potencial (3)	2	0,6194	-0,7321	-	-	1,3433	-0,5086	-	-
Prodan (1965) (1)	3	0,3018	0,3836	0,0671	-	0,5247	0,2356	0,0516	-
Prodan (1965) (2)	3	1,5599	0,2542	0,0857	-	0,8959	0,2493	0,0560	-
Sanquetta et al. (2013)	3	2,3063	-1,2942	-	-	11,2759	-20,5434	-	-
Schneider (1986) (1)	2	8,4353	-8,0662	-	-	16,2654	-37,9016	-	-
Schneider (1986) (2)	2	0,1085	0,8946	0,0087	-	4,8720	0,6079	0,0005	-
Schumacher (1986) (1)	3	-1,2210	1,6222	-0,0715	-	0,8947	1,4908	-0,0454	-
Schumacher (1986) (2)	3	0,2980	0,5209	0,4196	-	1,7031	0,4673	-0,0977	-
Schumacher-hall (i)	3	0,7195	0,5175	0,5780	-	1,7061	0,4660	-0,2673	-
Semilogarítmico (i)	3	-0,9802	2,4087	2,3393	-	4,5708	4,9194	-1,2737	-
Silva (1980)	3	0,3990	0,8276	0,2717	-	2,2166	0,2236	-2,1272	-
Stoffels & Soest (1953)	2	0,6194	0,7321	-	-	1,3433	0,5086	-	-
Stoffels & Soest (1953) (2)	2	0,6194	1,6857	-	-	1,3433	1,1711	-	-
Trorey (1932)	3	0,0790	1,6222	-0,0715	-	2,1947	1,4908	-0,0454	-

BIOFIX Scientific Journal v. 6 n. 2 p. 133-152 2021 Martins, J. F. C. *et al.*

Madalas	C	Média Avançada				Madura			
Modelos	GL	βo	β1	β₂	β₃	βο	βı	β2	β₃
Assmann (1)	2	20,4172	-50,2357	-	-	23,2962	-78,8975	-	-
Assmann (2)	2	16,9412	-125,9117	-	-	19,0623	-301,3981	-	-
Azevedo et al. (1999) (1)	2	6,2551	0,0013	-	-	6,2544	0,0016	-	-
Azevedo et al. (1999) (2)	2	2,3769	0,0023	-	-	2,5118	0,0015	-	-
Azevedo et al. (1999) (3)	2	0,6195	0,1976	-	-	0,7169	0,1878	-	-
Azevedo et al. (1999) (4)	2	0.6195	0.1976	-	-	0.7169	0.1878	-	-
Azevedo et al. (1999) (5)	2	10.8753	0.0315	-	-	12.3568	0.0227	-	-
Azevedo et al. (2011) (1)	2	1.6054	0.0089	-	-	1.8693	0.007	-	-
Azevedo et al. (2011) (2)	3	2,2743	-3.811	0.0069	-	2.6355	-5.6838	0.0055	-
Azevedo et al. (2011) (3)	3	17.0909	-35.4126	0.0129	-	21.234	-65.8594	0.0051	-
Azevedo et al. (2011) (4)	3	3 0428	-3 794	-	-	3 2484	-5 4647	-	_
Azevedo et al. (2011) (5)	2	1 7447	0.6459	-	-	1 8895	0.606	-	-
A_{2}	2	1 5691	0.98	_	_	1 4302	1 0411	-	_
Backman modificada	2	-0.4032	5 578	2 9/17	-	-1 1259	1 7117	14 6285	
Berkhout	2	2 0704	0.0550	2,547	-	2 2167	0.0439	-	_
Curtis (1967)	2	2,0704	-// 1808	_	-	2,2107	-5 5675	_	
Evnonencial (1)	2	2 2/1	-/ 152/	0 1/171		3,2047	-5 5757	0.0254	
Exponencial (1)	2	2,341	0.0550	0,1471		2 2167	-3,3737	0,0254	
Exponencial (2)	2	2,0704	0,0339	-	-	2,2107	0,0435		
Exponencial (3)	2	2,3703	4 1909	_		2,5110	5 5675	-	
Exponencial (4)	2	16 0412	125 012	-	-	10.0622	201 2021	-	-
Honrickson (1952)	2	1 2424	-125,912	-	-	2 5 2 5 7	-301,3961	-	-
Hinorhólico (1)	2	1 2020	126 0916	-	-	-5,5557	201 6126	-	-
	3	1,2989	-120,0810	2,928	-	10,0883	-301,0130	0,2903	-
Linear Simples	2	0,9889	0,733	-	-	8,0494	0,0524	-	-
Nasiung (1)	2	1,3764	0,0472	-	-	1,7632	0,0435	-	-
Nasiung (2)	2	0,7285	0,1995	-	-	0,8244	0,1897	-	-
Nasiung (Prodan) (1)	3	-0,0207	0,2804	0,0345	-	1,2016	0,0909	0,0402	-
Nasiung (Prodan) (2)	3	0,143	0,3	0,0364	-	1,5904	0,0774	0,043	-
Nao Referenciado (1)	2	0,1971	0,6246	-	-	0,185	0,7523	-	-
Parabolico (3)	3	1,5247	0,1/1	-0,0054	-	1,6107	0,1459	-0,0039	-
Parabolico (1)	3	2,4463	1,6917	-0,045	-	1,0735	1,8268	-0,0451	-
Parabolico (2)	4	-11,065	1,9049	-0,0564	2,376	-3,0917	1,7957	-0,0437	0,422
Petterson	2	0,3451	0,7438	-	-	0,3312	0,8894	-	-
Petterson (2)	2	0,1971	0,6246	-	-	0,185	0,7523	-	-
Pollanschutz	2	3,0938	-4,7582	-	-	3,2302	-6,1633	-	-
Potencial (1)	3	0,8138	0,5495	0,1102	-	1,0163	0,5513	0,0375	-
Potencial (2)	2	1,3841	0,2787	-	-	1,4066	0,2745	-	-
Potencial (3)	2	1,3841	-0,5573	-	-	1,4066	-0,549	-	-
Prodan (1965) (1)	3	0,143	0,3	0,0364	-	1,5904	0,0774	0,043	-
Prodan (1965) (2)	3	0,4532	0,3083	0,0391	-	2,1633	0,0489	0,0467	-
Sanquetta et al. (2013)	3	13,8637	-27,8213	-	-	18,5524	-56,1848	-	-
Schneider (1986) (1)	2	20,4172	-50,2357	-	-	23,2962	-78,8975	-	-
Schneider (1986) (2)	2	5,6889	0,733	0,0003	-	6,7494	0,6524	4,06E-05	-
Schumacher (1986) (1)	3	1,1463	1,6917	-0,045	-	-0,2265	1,8268	-0,0451	-
Schumacher (1986) (2)	3	0,8138	0,5495	0,1102	-	1,0163	0,5513	0,0375	-
Schumacher-hall (i)	3	0,424	0,5498	0,5841	-	0,5038	0,5514	0,3854	-
Semilogarítmico (i)	3	-12,5047	6,8762	2,1564	-	-9,3592	8,0148	0,5595	-
Silva (1980)	3	2,6367	0,1595	-3,0505	-	2,8923	0,1113	-4,4878	-
Stoffels & Soest (1953)	2	1,3841	0,5573	-	-	1,4066	0,549	-	-
Stoffels & Soest (1953) (2)	2	1,3841	1,2832	-	-	1,4066	1,264	-	-
Trorey (1932)	3	2,4463	1,6917	-0,045	-	1,0735	1,8268	-0,0451	-

Em que: d = diâmetro altura do peito (cm); h = altura total (m); GL = Grau de liberdade; β_0 , β_1 , β_2 e β_3 , = parâmetros;

|--|

Modelo	Jovem								
Modelo	ē	$\overline{\pmb{e}}_{\%}$	S _e	$S_{e\%}$	m_x	$m_{x\%}$			
Assmann (1)	1.87275E-15	3.57426E-14	1.57640276	30.0866927	1.57640276	30.0866927			
Assmann (2)	0.535375973	10.21800569	1.908486313	36.42472768	1.982157269	37.83078676			
Azevedo et al. (1999) (1)	0.513643215	9.803221583	0.94944931	18.12087009	1.079482906	20.60264756			
Azevedo et al. (1999) (2)	-0.106034567	-2.023740073	1.766241091	33.70988323	1.769421069	33.77057523			
Azevedo et al. (1999) (3)	0.014253958	0.272046239	0.594393013	11.34438507	0.594563898	11.34764653			
Azevedo et al. (1999) (4)	0.014253958	0.272046239	0.594393013	11.34438507	0.594563898	11.34764653			
Azevedo et al. (1999) (5)	-1.26686E-15	-2.41788E-14	1.039205063	19.83391821	1.039205063	19.83391821			
Azevedo et al. (2011) (1)	-0.193395072	-3.691073281	0.984981701	18.79902935	1.003788127	19.15796248			
Azevedo et al. (2011) (2)	-0.089470031	-1.707594916	0.917448771	17.51011857	0.921801027	17.59318427			
Azevedo et al. (2011) (3)	7.4669E-15	1.42511E-13	0.855538622	16.3285223	0.855538622	16.3285223			
Azevedo et al. (2011) (4)	1.583318909	30.21869201	1.944119182	37.10480464	2.507289007	47.85327443			
Azevedo et al. (2011) (5)	0.01527717	0.291574923	0.643819673	12.28772567	0.644000903	12.29118456			
Azevedo et al. (2011) (6)	0.019909473	0.379985503	0.611504808	11.67097504	0.611828831	11.67715922			
Backman modificada	1.19801E-15	2.28648E-14	0.749640206	14.30738077	0.749640206	14.30738077			
Berkhout	-0.059159775	-1.129103557	1.136433871	21.68959452	1.137972681	21.71896372			
Curtis (1967)	0.091419751	1.744806614	1.161744853	22.17267141	1.165336293	22.24121641			
Exponencial (1)	0.007135175	0.136179555	0.606057175	11.56700335	0.606099176	11.56780495			
Exponencial (2)	0.011787967	0.224981173	1.121246485	21.39973319	1.121308449	21.4009158			
Exponencial (3)	-0.106034567	-2.023740073	1.766241091	33.70988323	1.769421069	33.77057523			
Exponencial (4)	0.091419751	1,744806614	1,161744853	22,17267141	1,165336293	22,24121641			
Finger (1992)	-4.13106F-16	-7.88441F-15	2.201559649	42.01822676	2.201559649	42.01822676			
Henricksen (1950)	-4.27565E-15	-8.16036F-14	0.764849232	14.59765512	0.764849232	14.59765512			
Hiperbólico (1)	-9.31555E-15	-1.77793F-13	0.730886328	13.94945056	0.730886328	13.94945056			
Hiperbólico (2)	-3.362114326	-64,16818288	3.032905022	57.88500485	4.527949383	86.41891853			
Linear Simples	-3 75927F-15	-7 17481F-14	0 67342717	12 8528044	0 67342717	12 8528044			
Não Referenciado (1)	0 414946907	7 919537065	1 121705132	21 40848676	1 195994707	22 8263526			
Naslung (1)	0 796797721	15 20741322	0.639135168	12 19831878	1 021459921	19 49524039			
Naslung (2)	0.051865278	0 98988325	0 554434934	10 58175862	0 55685555	10 62795767			
Naslung (Prodan) (1)	0.834980823	15 93616307	0.638722476	12 19044228	1 051265607	20.06410168			
Naslung (Prodan) (2)	0.050990937	0 97319587	0 582798818	11 12310216	0 585025246	11 16559501			
Parabólico (1)	-2 3251F-14	-4 43761F-13	0 543736796	10 37757755	0 543736796	10 37757755			
Parabólico (2)	1 02936E-13	1 9646F-12	0.470977773	8 988923318	0.470977773	8 988923318			
Parabólico (3)	-0.002540507	-0.0/18/187253	0 5/837631	10/6612575	0.5/8382195	10 466 23807			
Petterson	0.372633197	7 111951823	0.838822953	16.00949267	0.917866791	17 51809677			
Petterson (2)	0.372033137	7 919537065	1 121705132	21 /08/8676	1 19599/707	22 8263526			
Pollanschutz	0 33962513	6 481970974	1.028973837	19 63864846	1.193573895	20 68072681			
Potencial (1)	-0.003/196756	-0.066737906	0.490709497	9 365516365	0.490721956	9 365754146			
Potencial (2)	0.003430730	0.779108972	0.430705457	11 698/8512	0.430721330	11 7244004			
Potencial (2)	0.040821686	0.779108972	0.612946209	11 698/8512	0.614304049	11 7244004			
Proden(1965)(1)	0.050990937	0.97319587	0.582798818	11 12310216	0.585025246	11 16559501			
Prodan (1965) (2)	0.049364837	0.9/2160679	0.5202750010	10 102/8502	0.53162018	10 1/632380			
$\frac{1}{2}$	0.049304837	1 702055 12	0.525525274	12 52//9600	0.55102018	12 52448600			
Schnoider (1986) (1)	1 970755 15	2 574265 14	1 57640276	20.0966027	1 57640276	20.0866027			
Schneider (1986) (1)	1.07273L-13	7 0770/E 1/	0.67240270	12 9529044	0.67240270	12 9529044			
Schumacher $(1960)(2)$	-4.12702E-13	-7.07704E-14	0.07542717	10.27757755	0.07542717	10.27757755			
Schumacher (1986) (1)	-1.75005E-14	-3.33133E-13	0.343/30/90	10.37737735	0.343/30/30	10.37737733			
Schumacher (1986) (2)	-0.003496/56	-0.000/3/900	0.490709497	9.305510305	0.490721956	9.305/54140			
Schumacher-hall (I)			0.490/0949/	9.305516365	0.490/21956	9.305/54146			
Semilogaritmico (I)	4.22/45E-15	8.00838E-14	0.532258062	10.1584983	0.532258062	10.1584983			
SIIVA (1980)	2.064229648	39.39/19256	2.4255/2/5	40.29366545	3.185034883	60.7885042			
Storreis & Soest (1953)	0.010369538	0.197909513	0.612372495	11.68/53542	0.612460285	11.68921094			
stomels & Soest (1953) (2)	0.040821686	0.779108972	0.612946209	11.69848512	0.614304049	11.7244004			

	Média Inicial							
Modelo	ē	$\overline{e}_{\%}$	S_e	<i>Se</i> %	m_x	$m_{x\%}$		
Trorey (1932)	-2.3251E-14	-4.43761E-13	0.543736796	10.37757755	0.543736796	10.37757755		
Assmann (1)	8.24E-15	7.02E-14	1.083912	9.227143	1.083912	9.227143		
Assmann (2)	9.925772	84.49627	2.646564	22.52971	10.27255	87.44831		
Azevedo et al. (1999) (1)	0.004007	0.034107	1.00227	8.532141	1.002278	8.53221		
Azevedo et al. (1999) (2)	-0.01657	-0.14108	1.339511	11.40301	1.339614	11.40388		
Azevedo et al. (1999) (3)	0.060573	0.515647	0.999529	8.508808	1.001363	8.524418		
Azevedo et al. (1999) (4)	0.060573	0.515647	0.999529	8.508808	1.001363	8.524418		
Azevedo et al. (1999) (5)	3.07E-15	2.61E-14	1.235564	10.51813	1.235564	10.51813		
Azevedo et al. (2011) (1)	-0.00812	-0.06911	1.277464	10.87481	1.277489	10.87503		
Azevedo et al. (2011) (2)	0.055276	0.470557	1.04673	8.910618	1.048188	8.923034		
Azevedo et al. (2011) (3)	2.8E-14	2.39E-13	1.019934	8.682511	1.019934	8.682511		
Azevedo et al. (2011) (4)	0.54265	4.619479	1.064024	9.057841	1.19441	10.1678		
Azevedo et al. (2011) (5)	0.023612	0.201001	1.058776	9.013165	1.059039	9.015406		
Azevedo et al. (2011) (6)	0.021342	0.181679	1.0123	8.617527	1.012525	8.619442		
Backman modificada	8.53E-13	7.26E-12	1.001638	8.526757	1.001638	8.526757		
Berkhout	-0.01334	-0.1136	1.182107	10.06306	1.182182	10.0637		
Curtis (1967)	0.003372	0.028708	1.01458	8.636931	1.014585	8.636978		
Exponencial (1)	0.00087	0.007405	0.928923	7.907753	0.928924	7.907757		
Exponencial (2)	0.049284	0.419543	1.180476	10.04917	1.181504	10.05793		
Exponencial (3)	-0.01657	-0.14108	1.339511	11.40301	1.339614	11.40388		
Exponencial (4)	0.003372	0.028708	1.01458	8.636931	1.014585	8.636978		
Finger (1992)	-1.3E-15	-1.1E-14	1.304455	11.10458	1.304455	11.10458		
Henricksen (1950)	1.27E-14	1.08E-13	1.002103	8.53072	1.002103	8.53072		
Hiperbólico (1)	-4.2E-14	-3.6E-13	1.132898	9.644152	1.132898	9.644152		
Hiperbólico (2)	-5.51074	-46.9119	3.463172	29.48135	6.508593	55.40645		
Linear Simples	6.1E-15	5.19E-14	1.089382	9.27371	1.089382	9.27371		
Não Referenciado (1)	0.066777	0.568462	1.000743	8.519137	1.002968	8.538082		
Naslung (1)	1.076132	9.160915	1.163228	9.902343	1.584664	13.48995		
Naslung (2)	0.069403	0.590812	0.998869	8.503187	1.001277	8.523688		
Naslung (Prodan) (1)	1.081372	9.205524	1.128757	9.608899	1.563156	13.30686		
Naslung (Prodan) (2)	0.08317	0.708013	1.001377	8.524542	1.004825	8.553893		
Parabólico (1)	4.05E-13	3.44E-12	0.996177	8.480271	0.996177	8.480271		
Parabólico (2)	2.31E-13	1.96E-12	0.911557	7.759916	0.911557	7.759916		
Parabólico (3)	-0.00372	-0.03166	1.007781	8.579053	1.007788	8.579112		
Petterson	0.0657	0.559292	0.999976	8.512612	1.002132	8.530966		
Petterson (2)	0.066777	0.568462	1.000743	8.519137	1.002968	8.538082		
Pollanschutz	0.052614	0.447891	1.009147	8.590685	1.010518	8.602352		
Potencial (1)	-0.00799	-0.06798	0.997232	8.489255	0.997264	8.489527		
Potencial (2)	0.039293	0.334492	1.036902	8.826959	1.037647	8.833294		
Potencial (3)	0.039293	0.334492	1.036902	8.826959	1.037647	8.833294		
Prodan (1965) (1)	0.08317	0.708013	1.001377	8.524542	1.004825	8.553893		
Prodan (1965) (2)	0.091584	0.77964	0.999793	8.511053	1.003979	8.546687		
Sanquetta et al. (2013)	8.24E-14	7.02E-13	1.009125	8.590498	1.009125	8.590498		
Schneider (1986) (1)	8.24E-15	7.02E-14	1.083912	9.227143	1.083912	9.227143		
Schneider (1986) (2)	1.05E-14	8.95E-14	1.089382	9.27371	1.089382	9.27371		
Schumacher (1986) (1)	3.46E-13	2.94E-12	0.996177	8.480271	0.996177	8.480271		
Schumacher (1986) (2)	-0.00799	-0.06798	0.997232	8.489255	0.997264	8.489527		
Schumacher-hall (i)	-0.00806	-0.06864	0.995351	8.473241	0.995384	8.473519		
Semilogarítmico (i)	-3.2E-13	-2.7E-12	0.933406	7.945918	0.933406	7.945918		
Silva (1980)	-9.73708	-82.89	2.13483	18.17342	9.968361	84.85883		
Stoffels & Soest (1953)	-0.00653	-0.05559	1.037566	8.832607	1.037586	8.832782		
Stoffels & Soest (1953) (2)	0.039293	0.334492	1.036902	8.826959	1.037647	8.833294		
Trorey (1932)	4.05E-13	3.44E-12	0.996177	8.480271	0.996177	8.480271		

BIOFIX Scientific Journal v. 6 n. 2 p. 133-152 2021 Martins, J. F. C. *et al.*

	Média Avançada							
IVIOCEIO	ē	$\overline{e}_{\%}$	S _e	<i>Se</i> %	m_x	$m_{x\%}$		
Assmann (1)	1,92729E-15	1,25776E-14	1,5492	10,11	1,5492	10,11		
Assmann (2)	11,14969482	72,76347579	4,1478	27,07	11,8962	77,64		
Azevedo et al. (1999) (1)	0,020200986	0,131832664	1,4229	9,29	1,4231	9,29		
Azevedo et al. (1999) (2)	-0,058340135	-0,380730692	2,0179	13,17	2,0187	13,17		
Azevedo et al. (1999) (3)	0,09929908	0,648030852	1,4078	9,19	1,4113	9,21		
Azevedo et al. (1999) (4)	0,09929908	0,648030852	1,4078	9,19	1,4113	9,21		
Azevedo et al. (1999) (5)	-2,42653E-15	-1,58356E-14	1,8204	11,88	1,8204	11,88		
Azevedo et al. (2011) (1)	-0,039872313	-0,260208743	1,8637	12,16	1,8642	12,17		
Azevedo et al. (2011) (2)	0,0868952	0,5670825	1,5564	10,16	1,5588	10,17		
Azevedo et al. (2011) (3)	5,04114E-14	3,28987E-13	1,4231	9,29	1,4231	9,29		
Azevedo et al. (2011) (4)	0,760930478	4,965871019	1,4757	9,63	1,6603	10,84		
Azevedo et al. (2011) (5)	0,03997311	0,260866551	1,5220	9,93	1,5225	9,94		
Azevedo et al. (2011) (6)	0,034216992	0,223301829	1,4340	9,36	1,4344	9,36		
Backman modificada	-2,77715E-14	-1,81238E-13	1,4070	9,18	1,4070	9,18		
Berkhout	-0,046388237	-0,302731994	1,7583	11,47	1,7589	11,48		
Curtis (1967)	0,002316303	0,015116313	1,4219	9,28	1,4219	9,28		
Exponencial (1)	-0,000862784	-0,005630571	1,2038	7,86	1,2038	7,86		
Exponencial (2)	0,084974627	0,554548737	1,7526	11,44	1,7547	11,45		
Exponencial (3)	-0,058340135	-0,380730692	2,0179	13,17	2,0187	13,17		
Exponencial (4)	0,002316303	0,015116313	1,4219	9,28	1,4219	9,28		
Finger (1992)	1,92729E-15	1,25776E-14	1,9353	12,63	1,9353	12,63		
Henricksen (1950)	1,15289E-14	7,52382E-14	1,4093	9,20	1,4093	9,20		
Hiperbólico (1)	-5,71755E-13	-3,7313E-12	1,7216	11,24	1,7216	11,24		
Linear Simples	-1,23648E-14	-8,06936E-14	1,5719	10,26	1,5719	10,26		
Não Referenciado (1)	0,092325021	0,602517786	1,4081	9,19	1,4111	9,21		
Naslung (1)	1,362619471	8,892524009	1,6355	10,67	2,1287	13,89		
Naslung (2)	0,114054125	0,744323027	1,4098	9,20	1,4144	9,23		
Naslung (Prodan) (1)	1,379491635	9,002632609	1,5797	10,31	2,0973	13,69		
Naslung (Prodan) (2)	0,130356018	0,850710008	1,4111	9,21	1,4171	9,25		
Parabólico (1)	-3,8937E-13	-2,54105E-12	1,4315	9,34	1,4315	9,34		
Parabólico (2)	9,36813E-13	6,11369E-12	1,2537	8,18	1,2537	8,18		
Parabolico (3)	-0,018271459	-0,119240471	1,5002	9,79	1,5003	9,79		
Petterson	0,08807519	0,57478317	1,4089	9,19	1,4117	9,21		
Petterson (2)	0,092325021	0,602517786	1,4081	9,19	1,4111	9,21		
Pollanschutz	0,078630858	0,513148978	1,4153	9,24	1,4174	9,25		
Potencial (1)	-0,028045775	-0,183028152	1,3708	8,95	1,3710	8,95		
Potencial (2)	0,059109799	0,385753555	1,4923	9,74	1,4935	9,75		
Potencial (3)	0,059109799	0,385753555	1,4923	9,74	1,4935	9,75		
Prodan (1965) (1)	0,130356018	0,850710008	1,4111	9,21	1,4171	9,25		
Prodan (1965) (2)	0,148147376	0,966817313	1,4109	9,21	1,4186	9,26		
Sanquetta et al. (2013)	1,88781E-14	1,232E-13	1,4129	9,22	1,4129	9,22		
Schneider (1986) (1)	1,92729E-15	1,25776E-14	1,5492	10,11	1,5492	10,11		
Schneider (1986) (2)	-1,38045E-14	-9,00889E-14	1,5719	10,26	1,5719	10,26		
Schumacher (1986) (1)	-3,50047E-13	-2,28442E-12	1,4315	9,34	1,4315	9,34		
Schumacher (1986) (2)	-0,028045775	-0,183028152	1,3708	8,95	1,3710	8,95		
Schumacher-hall (i)	-0,027991836	-0,182676147	1,3734	8,96	1,3737	8,96		
Semilogarítmico (i)	9,32309E-13	6,08429E-12	1,2511	8,16	1,2511	8,16		
Silva (1980)	5,922860276	38,65288755	1,8927	12,35	6,2179	40,58		
Stoffels & Soest (1953)	-0,025033288	-0,16336851	1,4946	9,75	1,4948	9,76		
Stoffels & Soest (1953) (2)	0,059109799	0,385753555	1,4923	9,74	1,4935	9,75		
Trorey (1932)	-3,8937E-13	-2,54105E-12	1,4315	9,34	1,4315	9,34		
Assmann (1)	3,36985E-15	2,04E-14	1,2642	7,67	1,2642	7,67		
Assmann (2)	23,4547	142,32	7,5197	45,63	24,6307	149,45		

BIOFIX Scientific Journal v. 6 n. 2 p. 133-152 2021 Martins, J. F. C. *et al.*

Modelo	Madura							
	ē	$\overline{e}_{\%}$	S _e	<i>Se</i> %	m_x	$m_{x\%}$		
Azevedo et al, (1999) (1)	0,0304	0,18	1,2948	7,86	1,2951	7,86		
Azevedo et al, (1999) (2)	-0,0394	-0,24	1,9817	12,02	1,9821	12,03		
Azevedo et al, (1999) (3)	0,0725	0,44	1,1865	7,20	1,1887	7,21		
Azevedo et al, (1999) (4)	0,0725	0,44	1,1865	7,20	1,1887	7,21		
Azevedo et al, (1999) (5)	4,40432E-15	2,67E-14	1,7535	10,64	1,7535	10,64		
Azevedo et al, (2011) (1)	-0,0359	-0,22	1,5052	9,13	1,5056	9,14		
Azevedo et al, (2011) (2)	0,0621	0,38	1,1894	7,22	1,1910	7,23		
Azevedo et al, (2011) (3)	-3,2586E-14	-1,98E-13	1,2276	7,45	1,2276	7,45		
Azevedo et al, (2011) (4)	0,1278	0,78	1,1794	7,16	1,1863	7,20		
Azevedo et al, (2011) (5)	0,0308	0,19	1,3861	8,41	1,3864	8,41		
Azevedo et al, (2011) (6)	0,0254	0,15	1,2609	7,65	1,2611	7,65		
Backman modificada	-8,5653E-13	-5,20E-12	1,1957	7,26	1,1957	7,26		
Berkhout	-0,0317	-0,19	1,6701	10,13	1,6704	10,14		
Curtis (1967)	-0,0022	-0,01	1,1759	7,13	1,1759	7,13		
Exponencial (1)	-0,0019	-0,01	1,1591	7,03	1,1591	7,03		
Exponencial (2)	0,0664	0,40	1,6661	10,11	1,6674	10,12		
Exponencial (3)	-0,0394	-0,24	1,9817	12,02	1,9821	12,03		
Exponencial (4)	-0,0022	-0,01	1,1759	7,13	1,1759	7,13		
Finger (1992)	4,04382E-15	2,45E-14	1,6244	9,86	1,6244	9,86		
Henricksen (1950)	-2,0062E-14	-1,22E-13	1,2150	7,37	1,2150	7,37		
Hiperbólico (1)	-2,5789E-12	-1,56E-11	1,6204	9,83	1,6204	9,83		
Linear Simples	8,26006E-15	5,01E-14	1,4493	8,79	1,4493	8,79		
Não Referenciado (1)	0,0684	0,42	1,1894	7,22	1,1913	7,23		
Naslung (1)	1,1010	6,68	1,3145	7,98	1,7147	10,40		
Naslung (2)	0,0838	0,51	1,1928	7,24	1,1957	7,26		
Naslung (Prodan) (1)	1,1030	6,69	1,2984	7,88	1,7037	10,34		
Naslung (Prodan) (2)	0,0850	0,52	1,1673	7,08	1,1704	7,10		
Parabólico (1)	1,02036E-14	6,19E-14	1,1713	7,11	1,1713	7,11		
Parabólico (2)	9,24646E-13	5,61E-12	1,1599	7,04	1,1599	7,04		
Parabólico (3)	-0,0100	-0,06	1,2199	7,40	1,2200	7,40		
Petterson (1)	0,0674	0,41	1,1867	7,20	1,1886	7,21		
Petterson (2)	0,0684	0,42	1,1894	7,22	1,1913	7,23		
Pollanschutz	0,0551	0,33	1,1749	7,13	1,1762	7,14		
Potencial (1)	-0,0179	-0,11	1,3098	7,95	1,3099	7,95		
Potencial (2)	0,0439	0,27	1,3417	8,14	1,3424	8,15		
Potencial (3)	0,0439	0,27	1,3417	8,14	1,3424	8,15		
Prodan (1965) (1)	0,0850	0,52	1,1673	7,08	1,1704	7,10		
Prodan (1965) (2)	0,0933	0,57	1,1626	7,05	1,1663	7,08		
Sanquetta et al, (2013)	-3,1/86E-13	-1,93E-12	1,2138	7,36	1,2138	7,36		
Schneider (1986) (1)	3,36985E-15	2,04E-14	1,2642	7,67	1,2642	7,67		
Schneider (1986) (2)	1,08306E-14	6,57E-14	1,4493	8,79	1,4493	8,79		
Schumacher (1986) (1)	-4,9372E-15	-3,00E-14	1,1/13	7,11	1,1/13	7,11		
Schumacher (1986) (2)	-0,0179	-0,11	1,3098	7,95	1,3099	7,95		
Schumacher-hall (i)	-0,0179	-0,11	1,3098	7,95	1,3100	7,95		
Semilogaritmico (i)	-3,3900E-13	-2,06E-12	1,1949	7,25	1,1949	7,25		
Silva (1980)	5,0211	30,47	1,5169	9,20	5,2452	31,83		
Stoffels & Soest (1953)	-0,0186	-0,11	1,3435	8,15	1,3436	8,15		
Stoffels & Soest (1953) (2)	0,0439	0,27	1,3417	8,14	1,3424	8,15		
(1932)	1.02036E-14	6.19E-14	1.1/13	/.11	1.1/13	/.11		

Index (1334)Index (1334)Index (1334)Index (1334)Index (1334)Em que: \bar{e} é o víes absoluto, $\bar{e}_{\%}$ é o víes relativo, S_e é a precisão absoluta, $S_{e\%}$ é a precisão relativa, m_x é a acurácia absoluta e $m_{x\%}$ é a acurácia relativa.