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Resumo 

Estatísticas espaciais para avaliação da floresta amazônica: processamento de inventário espacialmente 
estratificado. Estimativas de biomassa e volume de madeira são fundamentais para uma ampla variedade de 

estudos concentrados em dinâmica florestal. Essas estimativas são normalmente executadas por meio de 

técnicas de inventários florestais, as quais têm por base cômputos estatísticos. O presente trabalho tem por 

objetivo fornecer uma nova metodologia para o processamento de inventários florestais em situações em que 
os dados obtidos são georreferenciados. Especificamente, modelagem geoestatística é utilizada através de co-

krigagem ordinária utilizando área basal, e riqueza de árvores como cofator em uma região de floresta 

Amazônica. A interpolação espacial fornecida permite a geração de estratos florestais disjuntos e, assim, o 

inventário florestal é processado de acordo com os princípios de inventários florestais estratificados. O 
inventário florestal espacialmente estratificado apresentou uma redução de 14.29% em erro relativo quando 

comparado ao inventário florestal com processo de amostragem simples. Somente dois estratos foram utilizados 

seguindo a interpolação espacial, embora é argumentado que teoricamente qualquer número de estratos poderia 

ser utilizado. O procedimento é metodologicamente viável e oferece oportunidade de pesquisa para futuros 
desenvolvimentos e aplicações. Particularmente, a geometria de estratos florestais e o comportamento das 

interpolações espaciais em gradientes verticais das estruturas florestais são de potencial interesse em futuros 

trabalhos. 

Palavras-chave: Floresta tropical, Co-krigagem ordinária, Estatística espacial, Inventários Florestais 
Estratificados 

Abstract 

Biomass and wood volume estimates in forest ecosystems are fundamental to a variety of studies focusing at 

forest dynamics. These estimates are usually carried out through forest inventory techniques which rely upon 
statistical computations. This work aims at providing a new methodological approach to forest inventory 

processing when data is georeferenced. Specifically, geostatistical modelling is performed through ordinary co-

kriging using tree basal area and tree richness as a cofactor in an Amazonian rainforest site. The spatial 

interpolation provided the tools for the creation of two disjoint forest strata, which are processed following the 
principles of Stratified Forest Inventory. The spatially stratified forest inventory processing has shown a 

14.29% decrease in error as directly compared to simple random sampling processing. Only two strata have 

been used following spatial interpolation, albeit it is argued that theoretically any number of them could be 

generated. The procedure is methodologically feasible and offers a framework to future research on its 
development and reach. Particularly, the geometries of forest strata and the behavior of spatial interpolation 

along a gradient of forest vertical structures are of potential interest in future work. 

Keywords: Tropical rainforest, Ordinary cokriging, Spatial statistics, Stratified forest inventories. 
____________________________________________________________________________________________________________________________________ 

INTRODUCTION 

Biomass and wood volume estimates are of utmost importance on a wide range of scientific investigations 

focusing at forest dynamics (BRAZ and MATTOS 2015; ENE et al., 2016; DUFFY et al., 2017). In tropical 

forests, however, researchers are confronted with great variability concerning forest parameters and generating 

good estimators represent a real challenge (PÉLLICO NETTO et al., 2017). To deal with such shortcomings, the 

development of statistical techniques to extract information from these forests have long been of interest for both 

foresters and ecologists and much research is still needed to cogent methodology (GWENZI et al., 2017). 

In this context, applications of spatial statistics in forest research have been explored in a plethora of 

studies over the last decade, which represents a real breakthrough on the field (GALEANA-PIZAÑA et al., 2014; 

PELISSARI et al., 2017; BABCOCK et al., 2018). Particularly, mapping of tree richness and biomass distributions 

have flourished, and results are encouraging to future research (YADAV and NANDY, 2015). Thus, integrating 

spatial statistics to estimates of forest parameters is a promising field of investigation and much remains to be 

explored. 

Forest inventories are procedures that make use of sampling techniques to estimate these parameters. 

Errors are tacitly included in the inductive nature of inventory estimates and therefore their deflation along with 
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tighter confidence intervals is highly desirable (MOLTO et al., 2013; PÉLLICO NETO et al., 2017; KAUAI et 

al., 2019). This is usually achieved through stratification of sites, wherein a forest landscape is split into smaller 

geographic units which are supposedly more homogeneous, with respect to the parameter of interest, than the 

entire region (WHITE et al., 2013). To do so, the distribution of the sought parameter must be known a priori. In 

the case of forest plantations this is routinely done since these are well-controlled and mapped (SANQUETTA et 

al., 2014), but in tropical forests the task requires greater work since one does not know the distribution of species 

beforehand nor the geographical composition of regions. 

Many parameters traditionally used in wood volume and forest biomass estimates have been shown to be 

spatially dependent in a series of studies (AKHAVAN, 2010; BERRILL and O’HARA, 2016; PELISSARI et al., 

2017). One of such kind is forest basal area, which is widely employed in wood volume modelling (CYSNEIROS 

et al., 2016) and has been shown to mediate forest productivity along with tree richness (VILÀ et al. 2013). If 

biodiversity is a strong driver of forest productivity (FORRESTER and BAUHUS, 2016; DUFFY et al., 2017), 

then it is reasonable to expect coregionalization holds for basal area and tree richness. The present work builds 

upon this observation by investigating the use of geostatistics analysis to compute wood-volume inventory 

confidence intervals. 

Here two hypotheses are considered; I) basal area can be spatially interpolated using species richness as 

a cofactor on geostatistical models (i.e., coregionalization exists), and II) more accurate estimators and smaller 

errors are yielded using the proposed geostatistical modelling. The performance of the procedure is directly tested 

against a simple random sampling simulation for total commercial wood volume in the studied region. 

A simulation was performed over a georeferenced database from a natural tropical forest in the Amazon 

basin and encompasses the two considered hypotheses. The high levels of tree richness in Amazonian rainforests 

(STEEGE et al., 2013) as well as the sparse species distributions (PÉLLICO NETTO et al., 2017) provide an 

opportunity to test the hypotheses herein considered. Finally, we address a potential application to sustainable 

forest management in the Brazilian Amazon. Potential applications emerge in the context of continuous monitoring 

of forest dynamics which can be laborious in Amazonian forest ecosystems, where the high levels of biodiversity 

and complexity require sampling intensities that can make the procedure infeasible (SANQUETTA et al., 2014). 

MATERIALS AND METHODS 

Study site and data 

Simulations were conceived over a Unity of Annual Production (UAP), which consists of a geographic 

region that is part of an ensemble of forests under sustainable management in Brazil. The UAP consists of a tropical 

rainforest and has a surface area of 1,997.575 hectares located on the northern region of the Rondônia State, which 

belongs to the Amazon basin. The major climatic type according to Köppen classification is Aw. The access point 

to the UAP has UTM coordinates 498,195.65 E and 9,055,578.01 N. Figure 1 displays the location map of the 

studied site. 

 
Figure 1. Location map of the studied site. Hashed polygon inside UMF I represents the region subjected to 

investigation. 
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Figura 1. Mapa geográfico da região de estudo. Polígono hachurado dentro da UMF I representa a região sujeita 

à investigação. 

Data come from a census carried out prior to harvesting, wherein the geographic location of every tree 

with diameter at breast height (DBH) equal to or greater than 40 cm had been recorded. Along with the 

geographical information, tree attributes such as height, DBH, rigorous commercial wood volume (measured after 

harvesting) and species identification are registered. In total, 59 species are recorded. 

Simulation setting 

Forest inventory simulation was conceived through Simple Random Sampling (SRP) with 20 m x 100 m 

sample plots and 4% sampling intensity (393 sample plots). SRP has been used for its simplicity, and moreover 

each point has equal chance of being sampled, which guarantees greater geographical coverage to subsequent 

stratification. From these sample plots forest attributes information was extracted; sample plot tree basal areas, 

sample plot commercial wood volumes and sample plot tree richness. As tree richness is a discrete measure, or the 

count of tree species per sample plot, this variable has been made continuous by dividing the number of species in 

a plot by the total number of species found in the entire region and multiplying this ratio by 100. 

Wood volume statistical inference in the studied site has followed the principles of forest inventory 

processing for SRP. The procedure consists of evaluating the parameter standard error, which according to 

Sanquetta et al. (2014) can be computed as follows: 

𝑆�̅� = √
∑ (𝑥𝑖 − �̅�)²𝑛

𝑖=1

(𝑛2 − 𝑛)
 

where 𝑥𝑖 is the 𝑖𝑡ℎobservation, �̅� is the mean, 𝑛 the number of sample plots and 𝑆�̅� the standard error. Thus, the 

confidence interval (CI) is computed as: 

𝐶𝐼 = �̅� ± 𝑡 
𝑆�̅�

√𝑛
 

where 𝑡 corresponds to the t-student scalar for a given degree of freedom and precision. 

The wood volume confidence interval obtained through this procedure shall serve as a basis to which the 

methodology, developed in the following sections, can be directly compared to. 

Spatial statistics 

For geostatistical analysis, sample plots basal area and tree richness, derived from the initial simulation, 

were used. Inspection of the data showed that both variables presented a non-normal distribution, thus requiring 

the transformation of these observations, which has been done through the computation of their natural logarithms. 

Many mathematical functions are available for semivariogram modelling. Here, considering the nature of 

the distribution of variances as a function of distance, the spherical function has been implemented, which is 

extensively described elsewhere (see MATHERON, 1963). The spherical model was chosen because it produced 

the best fits when compared to the exponential and Gaussian models. 

The geostatistical technique employed for spatial interpolation was ordinary cokriging. According to 

Goovaerts (1998), the 𝑍1 attribute estimator, in the case of only a second attribute 𝑍2, is given by: 

𝑍(1)∗(𝑢) = ∑ 𝜆∝1
(𝑢)𝑍1(𝑢∝1

)

𝑛1(𝑢)

∝1=1

+ ∑ 𝜆∝2
(𝑢)𝑍2(𝑢∝2

)

𝑛2(𝑢)

∝2=1

 

where parameters 𝜆∝1
 and 𝜆∝2

are weights determining the influence of attributes 𝑍𝑛 measured in locations 𝑢𝑛, that 

is, the set {𝑍1(𝑢𝛼1), 𝛼1 = 1, … , 𝑛} represents the 𝑍1 attribute values measured 𝑛1 times at locations 𝑢𝛼1. Thus, a 

linear system of equations may be solved for 𝜆∝1
 and 𝜆∝2

 such that the variance of the error, i.e., 𝑉𝑎𝑟(𝑍(1)∗(𝑢) −

𝑍(𝑢)), is minimized. Pearson’s correlation was computed to determine the correlation of the two attributes. 

The interpolation error was assessed through the Root Mean Square Error (RMSE), calculated as follows.  

𝑅𝑀𝑆𝐸 =  √
∑ [�̂�(𝑢𝑖) − 𝑧(𝑢𝑖)]²𝑛

𝑖=1

𝑛
 

where �̂�(𝑢𝑖) is the estimate, 𝑧(𝑢𝑖) the observation and 𝑛 the number of observations. In addition, the coefficient 

of correlation (adjusted R²) was used. 

This procedure allowed for the generation of two classes, i.e., two strata. Theoretically, any number of 
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classes could be generated by this process, however, for simplicity, the entire region was split into two classes 

according to a limit of basal area defined in such a way that each class has approximately half the total number of 

observations. Borderlines of each class were set by creating intervals over the geostatistical layer created after 

geostatistical interpolation in ArcMapTM 10.5 software by Esri. ArcMapTM is the intellectual property of Esri© and 

is used herein under license. These intervals are constructed such that shapefiles are approximately equal in area. 

Stratified inventory processing 

The sample plots scattered over the inventoried region, from SRP, were intersected with the classes 

generated by spatial interpolation. This provided two sampling sets, each of which samples a class with differing 

basal area mean. The scenario corresponds to a Stratified Inventory Processing (SIP) and according to Sanquetta 

et al. (2014), the estimator of the variance is computed as: 

𝑆2
�̅�(𝑠𝑡) = ∑ 𝑊ℎ

2

𝐿

ℎ=1

𝑆ℎ
2

𝑛ℎ
− ∑

𝑊ℎ𝑆ℎ
2

𝑁

𝐿

ℎ=1

 

where 𝑊ℎ
2 is the weight of the ℎ class in the population (i.e. class area over total area), 𝑆ℎ

2 is the variance inside 

class ℎ, 𝑛ℎ the number of samples plots in class ℎ and 𝑁 the potential number of sample plots in the population. 

Thus, the confidence interval is computed as follows: 

𝐼𝐶 = [�̅�𝑠𝑡 − (𝑡 𝑆�̅�(𝑠𝑡)) ≤ 𝑋 ≤  �̅�𝑠𝑡 − (𝑡 𝑆�̅�(𝑠𝑡))] 

For a stratified mean �̅�𝑠𝑡, which is defined to be the mean of each class multiplied by its corresponding 

weight. We refer to SIP attached to the spatial statistics procedure described in the previous section as Spatially 

Stratified Inventory Processing (SSIP), for simplicity. 

Data analysis 

Statistical divergence between classes for both basal area and tree richness, as well as for wood volume, 

was assessed through Multivariate Analysis of Variance (MANOVA). This procedure has been implemented to 

test if significant differences existed between classes, which provides information to whether the proposed 

stratification is relevant. According to MacCulloch (1990), MANOVA is conceived as a linear combination of 

observations 𝑌𝑖, that is: 

𝐿𝑥 = 𝛽1𝑌1 + 𝛽2𝑌2 + ⋯ + 𝛽𝑘𝑌𝑘  

where 𝐿𝑥 is a single combined response variable. Furthermore, confidence intervals for commercial wood volume 

means inside each class were achieved through Bootstrap resampling with 5,000 iterations. This allowed us to spot 

any overlapping between classes, since the objective was to have completely disjoint classes. 

In this work all confidence intervals were conceived at a 95% probability level. Data have been treated in 

R Studio 3.4.1 (R Development Core Team 2017) along with ggplot2 (WICKHAM, 2009) and gstat packages 

(PEBESMA, 2004). Spatial data have been analyzed and treated in ArcMapTM 10.5 throughout the work. 

RESULTS 

The resulting equation from the linear regression between predictions and measurements is approximated 

as 𝑌 = 0.57744 𝑥 + 43.04404. Both the slope and the intersection are statistically significant (p < 0.05). The 

coefficient of correlation R² was 0.61, the RMSE 0.67 and no anisotropy had been identified in the model. 

Pearson’s correlation for basal area and tree richness was 0.72. Semivariogram analyses were conducted, and the 

results indicate similar spatial dependence, for both response variables, at a scale of about 650 m. Semivariograms 

and the stratification process maps are shown in Figures 2 and 3, respectively. The direct variogram has a nugget 

of 1.22 with partial sill of 0.31. 
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Figure 2. Direct and cross variograms. Distances measured in meters. 

Figura 2. Variogramas diretos e cruzados. Distâncias medidas em metros. 
 

 
Figure 3. Stratification process maps. (a) Raw data, wherein each point represents a tree register. (b) Interpolated 

data showing the distribution of basal area throughout the studied region. (c) Generated classes from 

the geostatistical model. Blue represents low basal area values (0.13 – 1.43 m²/plot), whereas red 

represents high values (1.44 – 4.37 m²/plot). 
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Figura 3. Mapas do processo de estratificação. (a) Dados brutos, onde cada ponto representa uma árvore. (b) 

Dados interpolados com a distribuição de área basal ao longo da região de estudo. (c) Classes geradas 

a partir do modelo geoestatístico. Azul representa baixa área basal (0,13 – 1,43 m²/u.a.), e vermelho 

representa altos valores (1,44 – 4,37 m²/u.a.). 

MANOVA identified significant statistical divergence (p < 0.05) between classes for the three tested 

variables (i.e. basal area, tree richness and commercial wood volume) with 0.027 computed for Pillai’s trace. The 

decomposition of the MANOVA into pairwise analyses has also shown statistically significance for all groups (p 

< 0.05). 

Bootstrap resampling simulation yielded the wood volume density plot means shown in Figure 4. Class 

1 wood volume mean was inspected to be 58.180 m³. ha-1 with a confidence interval, at 95% probability, ranging 

from 52.800 to 64.030 m³. ha-1. On the other hand, class 2 wood volume mean was 72.425 m³. ha-1 with its 

confidence interval ranging from 65.180 to 80.075 m³. ha-1. Thus, the two classes come out to be disjoint with 

respect to the confidence intervals at a 95% probability level. Data descriptive statistics is shown in Table 1 and 

wood volume density plots are shown in Figure 5. 

 

 
Figure 4. Wood-volume mean density plots generated from Bootstrap resampling. 

Figura 4. Gráficos de densidade média de volume de madeira gerados por reamostram Bootstrap. 

Table 1. Descriptive statistics of forest inventory simulations. Data for classes 1 and 2 are generated after 

intersecting sample plots with their corresponding class polygons. Standard deviations are indicated in 

parenthesis by ±. 

Tabela 1. Estatísticas descritivas das simulações de inventário florestal. Dados para as classes 1 e 2 são gerados 

após a intersecção das unidades amostrais com os polígonos correspondentes. Desvios-padrão estão 

indicados em parênteses por ±. 

Forest inventory 

simulation 

Number of 

sampled species 

Number of 

sample plots 

Average basal 

área (m²/plot) 

Average Tree 

richness 

Average wood 

volume 

(m³/plot) 

Class 1 59 226 0.94 (± 0.23) 4.49 (± 1.03) 11.64 (± 4.10) 

Class 2 59 167 1.15 (± 0.31) 5.56 (± 1.13) 14.49 (± 6.01) 

No classes 59 393 1.03 (± 0.55) 4.62 (± 2.87) 12.88 (± 9.98) 
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Figure 5. Wood-volume density plots without classes (i.e., prior to interpolation) and for each class created after 

geostatistical modelling. 

Figura 5. Gráficos de densidade de volume de madeira sem classes (i.e. antes da interpolação), e para cada classe 

gerada após interpolação. 

The relative processing error obtained from SSIP was 6.23% and the confidence interval ranged from 

119,884.424 to 135,807.063 m³. Diversely, SRS yielded an error of 7.12% with the confidence interval ranging 

from 119,448.307 to 137,789.352 m³, thereupon reporting 14.29% increase in error as compared to SSIP. However, 

both estimators have overestimated total commercial wood volume stock, which has been observed to be 

111,548.600 m³. 

DISCUSSION 

The two most common and well-supported hypotheses to explain diversity effects on the functioning of 

ecosystems are the sampling and niche complementarity effects (FORRESTER and BAUHUS, 2016). The latter 

postulates that higher species diversity induces greater functional traits abundance which optimizes ecosystem 

resources partitioning, thereupon increasing ecosystem functioning. The sampling effect or selection effect 

(MENSAH et al., 2018), on the other hand, draws the attention to the fact that the probability of dominant species 

occurrence increases with increasing diversity levels, driving ecosystem productivity. These hypotheses have been 

considered in depth (LIANG et al., 2015; LIANG et al., 2016; DUFFY et al., 2017) for explaining the positive 

diversity-productivity relationship, which is supported to some extent by the present work given the inspected 

coregionalization of basal area and tree richness. 

Basal area coupled with tree richness as a cofactor in geostatistical modelling provided us with the tools 

to forest stratification. As White et al. (2013) points out, sample plots must reflect forest attributes variability and 

therefore stratified forest inventory procedures represent a feasible solution to ecosystem assessment. In this 

context, remote sensing techniques have been extensively implemented to stratify natural forest sites (WHITE et 

al., 2013). However, we argue that scale and cost of such technologies may result in an application bottleneck, 

since sample plots must be set up regardless of prior strata for an ecosystem not previously sampled. This issue 

may be circumvented through the methodology here deployed. 

The disjoint classes obtained allowed for a clearer analysis of the procedure potential for it would not 

have been easy an evaluation on a greater number of them. Nevertheless, an infinite series of classes could be 

derived once the interpolation is set, giving rise to a wide range of different class geometries. Moreover, the 

methodology has been applied to a specific forest vertical structure (i.e., DBH ≥ 40cm). Applying geostatistics to 

modelling of basal area and species richness on larger DBH intervals may provide more accurate tools to biomass 

or wood volume estimates in tropical forest ecosystems, since some species have different distribution patterns 
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(PÉLLICO NETO et al., 2017) and these are indirectly considered in the models. 

For a direct comparison of procedures, nonetheless, SSIP showed superior performance as compared to 

SRS, with a 14.29% relative error reduction for the same probability level. However, this result must be confirmed 

in future research by running many pairwise simulations for both SSIP and SRS, with the former being computed 

as described earlier. The scope of this work rests solely on the method formulation along with a direct comparison, 

and conclusions about its higher performance are not imperative without further investigation. 

One important application of the proposed methodology concerns natural forest management in the 

Brazilian territory. After harvesting activities, prescribed by sustainable management plans, forest sites under 

management must undergo monitoring throughout the stablished cut cycle (SANQUETTA et al., 2014). To reduce 

sampling intensities in this process, it might be feasible to stratify forest sites and to allot sample plots strategically 

to forest dynamics monitoring. This might be achieved by using census data that comprise forest vertical structures 

spanning a larger DBH interval, which is the case for Brazilian tropical forests under management. 

It is often required from ecological studies the assessment of mortality rates, wood volume growth rates, 

as well as potential damage in forest ecosystems caused by sustainable management activities. These analyses are 

carried out by continuous forest sampling (SANQUETTA et al., 2014), which in the case of Amazon ecosystems 

must be implemented with such a sampling intensity that, from an operational point of view, can make the 

procedure infeasible. To circumvent such shortcomings, a higher sampling intensity, or even a census as in the 

case of sustainable forest management in Brazil, can be used to create permanent strata, as proposed in the present 

work, to sample continuously the ecosystems in such a way that workload is decreased in subsequent forest 

evaluations. It remains to be studied, however, whether the variances of measured parameters within generated 

strata are conserved through continuous measurements in time.  

The Brazilian Agricultural Research Corporation (EMBRAPA) has published guidelines for the setup of 

permanent sample plots to continuously measure natural forests in Amazon (SILVA et al., 2005). These guidelines 

provide recommendations for sample plot sizes and shapes which are more suitable to efficiently capture 

phytosociological parameters in the assessment of forest dynamics, after sustainable management plans have been 

carried out. The method developed and proposed in the present work might be suitable within this context, 

potentially deflating estimate errors or reducing sampling intensity.  

CONCLUSIONS 

Basal area and tree richness have proven to be feasible variables for spatial interpolation through ordinary 

cokriging. 

• Forest site stratification can be done prior to inventory processing allowing for more homogeneous geographic 

units and therefore potentially deflating errors. 

• Stratified forest inventory showed augmented performance as compared to simple random sampling 

procedure. 

• We address forest vertical structures and classes’ geometries as important subjects of future investigation. 

• The proposed methodology for inventory processing in different classes of diameters must be assessed in 

order to explore a wider range of applications. 

• Lastly, the spatially stratified inventory processing having as its basis methodologies other than SRS must be 

studied in order to assess the quality of generated estimators. 
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