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Abstract: 

Technological improvement in sensors and the use of computer vision algorithms made possible the generation 
of high accuracy mapping products (cm level) using data acquired by low-cost Unmanned Aerial Vehicles (UAV). 
However, the procedure to optimally set the aerial block configuration is not well understood for some users mainly 
due to the popularization of the UAV and its use by non-specialists. This study aims to contribute to this aspect, 
investigating and highlighting the influence of flight parameters, camera calibration and number of Ground Control 
Points (GCP) on generating digital terrain models and orthomosaic. To address this issue, several field experiments 
and data processing were carried out. The quality was assessed by calculating the Root Mean Square Error (RMSE) 
together with a bias evaluation (t-Student test at 90% confidence level). The results suggest that an optimum block 
configuration for accurate and unbiased products is achieved by surveying at rates of 80%/60% (forward and sidelap, 
respectively), with an average Ground Sample Distance (GSD) of around 1 cm at a flight height of 31 m, using a pre-
calibrated camera and 5 GCP at least. 
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1. Introduction

Nowadays, it is possible to find a wide range of commercial sensors and platforms that can be used for 
photogrammetric purposes. The use of low-cost aerial platforms, such as multi-rotor UAV, is presented as a flexible 
alternative to operate in urban and hard to access areas. The UAV can, remotely, vertically take-off and land (VTOL), fly 
at low altitude Above Ground Level (AGL), hover on a waypoint to capture images and follow a pre-programmed flight 
plan. The drawback of this flexibility is the limitation of Maximum Take-off Weight (MTOW), battery discharge profile, 
and low accuracy of low-cost Global Navigation Satellite System (GNSS) receiver/antenna and Inertial Navigation 
System (INS). Since the lightweight aerial platform must access the national aviation system to conduct the survey, 
there are some rules and regulation that must be followed according to each country (Stöcker et al., 2017).

In this work it is considered a low-cost system the ones with the following characteristics: single-frequency 
GNSS receiver/antenna that do not allow a positioning post-processing, i.e the raw satellite observations are not 
store; INS using non-tactical-grade inertial measurement unit based on MEMS (Microelectomechanical System); non-
metric camera without calibration certificate; and a time of flight around 30 minutes per battery or less. Examples 
of these systems in the market are DJI Mavic Pro and DJI Phantom 4 pro. Any other commercial platform that carries 
sensors with higher measurement quality or more precise techniques are considered non-low-cost systems. 

Basically, UAVs applications can be classified as forestry (Dandois, Olano and Ellis, 2015), agriculture (Kitano 
et al., 2019; Oliveira et al., 2018), archaeology and cultural heritage (Tombari and Remondino, 2013), environmental 
survey (Jaud et al., 2019), and civil engineering (Greenwood, Lynch and Zekkos, 2019). Among the reasons for 
this spread in the civil engineering community is due to the possibility of generating digital cartography products 
faster and at a lower cost when compared to conventional surveying, traditional aerial Photogrammetry and orbital 
remote sensing (Colomina and Molina, 2014). 

However, rigorous procedures and quality control is necessary to use low-cost systems for photogrammetric 
purposes, since it incorporates undesirable systematic and random errors from the data acquired by the camera, 
GNSS and INS. Due to the uncertainties from the mentioned sensors, it is not possible to perform a direct image 
orientation, also there are distortions from the camera lens system that must be corrected. In this case, the method 
applied to these platforms is known as indirect image orientation, i.e., the precise position and attitude of the 
perspective center (PC) at the moment of each image acquisition are obtained by applying a photo-triangulation 
procedure using accurate three-dimensional GCPs (Ghilani and Wolf, 2006). It is recommended that the data from 
low-quality GNSS and INS be used only as initial approximation parameters to improve the output accuracy and to 
reduce convergence interactions (Kraus, 2011).

Without knowledge about Photogrammetry, users can generate 3D models and orthomosaics by running 
a standard photogrammetric batch that results in visually acceptable products. However, these products carry 
systematic and random errors derived from the sensors assembled on the platform (UAV), and sometimes due to 
wrong parameters set by the users. Since the goal of Photogrammetry is to derive accurate and reliable 3D metric 
information from a set of overlapping images, it is vital to assess the quality of the resulting products before using 
it. In the process of generating digital cartographic products, there are a variety of configuration elements that must 
be considered, among these: image overlap, flight height, number of GCPs, and camera calibration.

Udin and Ahmad (2014) and Agüera-Vega (2017b) investigated the accuracy of cartographic digital products 
generated at different flight height. The flight height and camera resolution has influence on the average image 
GSD, and consequently, on the number of points to be recognized as tie-points. Increasing the flight height and 
maintaining a fixed focal length will lead to a loss in spatial resolution, on the other hand, less images are needed to 
map the same area. Udin and Ahmad (2014) analyzed the influence of four different flight height to generate DSMs 
and orthomosaics. The experiments used 10 GCPs and the results show that the planimetric accuracy is not affected 
by increasing the height, although, the altimetric accuracy decrease as the height increases. Agüera-Vega (2017b) 
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observed the same pattern as presented on Udin and Ahmad (2014), where the planimetric accuracy is not affected, 
on the other hand, vertical accuracy becomes worst with higher flight height.

Dandois, Olano and Ellis (2015), Frey et al. (2018), Torres-Sánches et al. (2018) and Chaudhry, Ahmad and 
Gulzar (2020) studied the influence of image overlap on final product quality. A number of researches focused on 
this issue, although, few studies are applied to map urban environments and most of the studies focus on mapping 
vegetation areas. A Larger number of images at different points of view are needed for scene reconstruction while 
imaging complex environment and objects, such as buildings. This necessity can be an issue, since high overlap 
images results in large processing time to generate digital products - which is not desirable for some applications, 
such as fast-growing construction site management. Also, when surveying at lower overlap rate, even though the 
time of processing decreases dramatically, the generated product could result in occlusions (Oliveira et al., 2018) 
or gaps (Fraser and Congalton, 2018) over the area. Dandois, Olano and Ellis (2015) concluded that an optimum 
flight configuration for determining canopy tree heights is using 95%/80% overlap at a flight height of 80 m above 
canopies. Torres-Sánches et al. (2018) analyzed the accuracy of generating a Digital Surface Model (DSM) and 
reached an optimum overlap rate of 95% of forward overlap and 60% side overlap at a height of 100 m. Frey et al. 
(2018) confirmed that both altitude and image overlap are related to the accuracy of the resulting point cloud (best 
case scenario is 95% image overlap with a GSD smaller than 5.0 cm), in which is similar to the results obtained by 
(Dandois, Olano and Ellis, 2015). Chaudhry, Ahmad and Gulzar (2020) compared the effects of the image overlap 
variations (55-85% forward and sidelap) on the number of tie points, point cloud quality, and planialtimetric 
accuracy over an urban area with heterogeneity of land cover and topographic variations. The authors concluded 
that decreasing the overlap rate will lead to poorer RMSE values for the vertical component are obtained, on the 
other hand, the planimetric accuracy presented similar results. Besides the accuracy, decreasing the overlap rate 
will decrease the processing time. The optimum overlap rate was obtained at 55% forward and 65% sidelap and 
yielded a RMSE of approximate 15 cm for planimetric and altimetric evaluation.

A number research in geoscience applications have studied the effect of varying the number of GCPs on the 
accuracy of cartographic digital products. Rangel, Gonçalves and Pérez (2018) concluded that GCPs placed on the 
external borders improves the planimetric accuracy and GCPs placed on the interior of the surveyed area improves 
the altimetric accuracy. The experiments using more than 20 GCPs shows that increasing the number of GPCs does 
not necessarily represent an improvement in accuracy. Agüera-Veja, Carvajal-Ramírez and Martínez-Carricondo 
(2017) analyzed 3 GCPs combination (3, 5 and 10) over different areas and with different flight height, and a total 
of 60 different photogrammetric processing were conducted. The experiments results show that the flattest terrain 
surveyed at the lowest altitude AGL (50 m) and 10 GCPs reached the highest accuracy, with a RMSE of 0.038 m, 
0.035 m, and 0.035 m, for X, Y, and Z, respectively. Increasing the number of GCPs from 5 to 10 does not presented 
significant improvement as increasing from 3 to 5. Similar aspects were also investigated in Pessoa et al. (2020), 
where different number of GCP as well its distribution was analyzed under 9 different experiments aiming to generate 
DSM from UAV imagery. The authors report a non-substancial increase of accuracy when applying more than 3 to 
12, which yields accuracies of around 2.33 to 3.00 GSD (horizontal) and 5.00 to 6.00 GSD (vertical). Sanz-Ablanedo 
et al. (2018) tested a total of 3465 different GCP combinations. The authors concluded that the GCPs should be 
even distributed in a triangular node grid aiming at the minimization of distance between nearest GCPs. According 
to the authors, 90 to 100 GCPs regularly distributed reaches the accuracy of 2.5×average GSD. Martínez-Carricondo 
et al. (2018) investigated a total of 300 different combinations (5 distribution type, 12 combinations of GCPs and 5 
different replicates). Best results are obtained with 30 GCPs (1.7 GCP per ha) with a stratified distribution (RMSE of 
0.045 m and 0.047 m, planimetric and altimetric, respectively). The authors concluded that higher accuracy can be 
reached using less GCPs if they are placed on the borders and on the center of the area. 

Focusing on camera calibration, many studies have been developed to assess the influence of on-the-job 
self-calibration for applying non-metric cameras for mapping purposes. Przybilla et al. (2019) developed a high 
accuracy test field to study 3 different digital cameras and 3 different commercial photogrammetric software (Pix4D, 
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Agisoft PhotoScan, and Inpho UASMaster). The aerial survey was conducted on a regular and cross flight pattern 
arrangement at different heights with an average GSD of 14 mm. The processing was conducted using 5, 12, 22, and 
45 GCPs, and the quality was assessed by analyzing the check-points residuals from the BBA. As a result, different 
cameras and different photogrammetric software presented different accuracies when using 5 GCPs. This result 
indicates distinctive approaches to conduct the on-the-job self-calibration - regarding residuals distribution and 
datum definition. The experiments using 12 GCPs reached a 3D accuracy bellow the GSD on check-points with 
all three software. The authors noted that there is no expressive improvement when the number of GCPs ranges 
between 12 to 22 GCPs, except for the Zenmuse X5S camera and UASMaster. The authors concluded that surveying 
at two different heights increases the accuracy when conducting on-the-job self-calibration, especially for the Z 
component. Bolkas (2019) analyzed DEMs from an urban environment obtained using an on-the-job self-calibration 
and considering different numbers of GCPs and layout configuration. This research was based on two approaches: (1) 
by inserting both EOP and IOP as unknowns and (2) by applying the EOP derived from GNSS-RTK survey and inserting 
the IOP as unknown on the BBA. Based on the first approach, DEM accuracy becomes stable when using 8 to 12 GCPs 
(separation distance of 85 and 65m, respectively). For this experiment, the RMSE is around 1-2 cm for parking lot 
areas and road segments, and 3-5 cm for roof and dome shapes. The standard deviation of approximately 2 cm and 
the variation on distance and number of GCP indicates that the issue is probably related to image orientation rather 
than camera calibration. With respect to the second approach with the EOP derived from the GNSS-RTK survey, 
while the IOP remained as unknown on the BBA, to reach the same RMSE of 1-2 cm on parking lot areas and road 
segments, the required number of GCPs decreases to 4-5 (separation distance 120 m and 105 m, respectively). For 
complex objects above ground, a minimum of 6 GCPs (separation distance of 105 m) is required to reach a RMSE of 
5-7 cm. The author highlighted the impact of weak camera self-calibration when surveying complex environments 
and suggested that a high number of tie-points is required and reducing the separation between GCPs will improve 
the accuracy. Oniga et al. (2020) conducted a cross-flight survey over an area that represents an urban environment, 
with features such as building, parking lot, and green area. The authors analyzed nine different scenarios varying 
the number of GCPs (4, 8, 20, 25, 50, 75, 100, 125 and 150) arranged in two layout configurations: regular grid 
and stratified random. The authors summarized that increasing the number of GCPs results in higher accuracy 
with lower errors and standard deviation on check-points. The errors are approximately five times smaller when 
comparing 4 GCPs to 20 GCPs experiment, regarding the point cloud and mesh for both GCP layout approaches. By 
increasing the number of GCPs from 20 to 150, the RMSE decreases 1 cm in planimetry for both approaches, 4.6 cm 
in altimetry for the stratified distribution, and 5.1 cm in altimetry for the regular grid. 

Considering the investigation of isolated parameters by research in literature, as presented previously, the 
main contribution of this paper is to evaluate how the accuracy of DTMs and orthomosaics is affected by a set of 
parameters: number of GCPs, camera calibration, flying height and image overlap. This research aims to find the most 
economic block configuration, with respect to GCP field survey, and to reduce the volume of imagery acquired by 
the UAV to decrease the processing time to generate unbiased and precise (cm level) digital cartographic products. 
To assess the quality, 24 sets of DTM and orthomaics were generated using different block configurations and then 
compared to surveyed check-points (reference). The check-points are analyzed for bias applying the t-Student test 
at 90% confidence level and for positional accuracy the RMSE value is applied.

This research is structured as follows: First, an overview of the subject is presented along with a review of the 
state-of-the-art in Section 1. Second, the materials and method for evaluation of flight configuration are presented 
in Section 2. Third, the experiments using different configurations and the results are discussed in Section 3. Finally, 
the conclusion of this paper is drawn in Section 4, followed by the acknowledgements.
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2. Materials and method for flight configuration evaluation 

In this research, the commonly UAV photogrammetric pipeline is applied within different configurations 
for generating DTM and orthomosaics. The results are then assessed by accuracy level considering a statistical 
approach. The proposed method to generate an optimum flight configuration is divided in 3 steps (Figure 1): UAV 
data acquisition (Section 2.1), photogrammetric processing under different configurations of number of GCPs, 
camera calibration, flight height, and image overlap (Section 2.2), and quality assessment (Section 2.3).

Figure 1: Outline of the proposed method. 

2.1 UAV data acquisition

In the first step, 4609 images with 90% forward and 80% sidelap, with an average GSD ranging from 0.63 cm to 
1.19 cm, were acquired with the DJI Phantom 4 flying at an altitude AGL of 21 m (from the highest point located on 
the east side of the study area (Figure 2)). The UAV is assembled with a 20MP resolution digital camera attached to 
a gimbal. The UAV was controlled via radio by a mobile phone with android operational system. The flight missions 
were planned and conducted using DroneDeploy online application. In total, 9 flight missions (3 for each subplot – 
Figure 2) were planned with respect to the maximum time of flight per battery (20 minutes). 

Besides the imagery, the UAV also provided the position and attitude (EOP) at the moment of image acquisition 
from integrated GNSS antenna/receiver and INS. The EOP were stored as Exchangeable Image File Format (EXIF) 
in images metadata, which is used as an initial approximation for the photo-triangulation process due to their 
uncertainties. The direct EOP from EXIF will be applied to reduce the time for the task of image matching. 

For the process of photo-triangulation and quality assessment, a set of 89 targets were surveyed by a total 
station from 12 pre-established landmarks (standard deviation of ± 1 cm and ± 2 cm, in planimetric and altimetric 
components, respectively) with an average distance of 20 m among targets. Surveyed targets will be used as GCPs 
and check-points. 
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To analyze the influence of applying fixed IOP on the photo-triangulation process, the authors conducted an 
on-the-job self-calibration by using 23 GCPs, 1335 images with 90% forward and 80% sidelap, respectively, at 31 m 
with an average GSD of 0.93 cm. The aim was to determine the following 8 IOP coefficients: calibrated focal length 
(f), principal point displacement (xp and yp), radial symmetric (k1, k2 and k3) and decentering distortion (p1 and p2). 

2.2 Photogrammetric processing

The photogrammetric processing follows the standard photogrammetric pipeline aiming to generate point 
cloud, DEM, DTM, and orthomosaic from a set of 2D images. The different processing tasks, including the camera 
calibration process, were conducted using the Agisoft Metashape software version 1.5.5 due to experiments done 
using different photogrammetric software, in which Agisoft Metashape presented better results (Sona et al., 2014; 
Turner, Lucieer and Wallace, 2014; Jaud et al., 2016). The processing is a four-step procedure: (I) camera alignment: 
in this step, the software estimates the EOP and IOP by finding and matching tie-points through a large set of 
tie-points extracted from 2D images and using known GCP. For the additional parameters, the authors choose 
to optimize the eight IOP coefficients. The alignment parameter was selected at “medium”, which causes image 
downscaling by a factor of 4 (2 times each side). In this step, the authors used direct EOP (from EXIF file) to speed up 
the processing by selecting pair preselection “reference”. For the processing, relative constraint values of 5 m and 15 
m was considered for the EOP (planimetric and altimetric, respectively) and 5 cm for the GCP (both planimetric and 
altimetric). After executing the bundle block adjustment, both EOP and IOP are obtained, and a sparse point cloud 
is generated. (II) the second step is to generate a dense point cloud by computing a depth map for each pixel based 
on image pair and then merging depth maps into the same datum. The resulting point cloud is generated at medium 
configuration and will be used as input for DEM and DTM generation. (III) The DEM is generated automatically, and 
the result of the reconstruction task is used as input for generating georeferenced orthomosaic. (IV) finally, the 
orthomosaic is generated. The resulting GSD were exported with a value of 2.0 cm. The authors chose to decrease 
the generated orthomosaic GSD to standardize the planimetric evaluation due to different average GSD imagery 
obtained during data acquisition through the three areas (Figure 2).

For the DTM generation, the resulting point cloud was loaded into the Trimble Business Center software 
(Trimble Business Center version 5.10, 2018) and then a classification process was conducted aiming the extraction 
of only points that represent the ground level (terrain). The second step was to filter the resulting point cloud to 
create a DTM, that later will be used to assess the product accuracy. This approach was chosen instead of measuring 
the closest point due to the difference in point cloud density and distribution. 

2.3 Evaluation and statistical analysis

A suitable metric for the accuracy evaluation of the generated DTM and orthomosaic is necessary in this 
stage. For this evaluation, two metrics will be used to assess the products quality: the RMSE and the t-Student test 
at 90% confidence level (Förster and Bernhard, 2014). The RMSE measures the quality of the fit between a reference 
data (acquired using total station) and the observed coordinates extracted from the cartographic products (Ghilani 
and Wolf, 2006), as shown in Equation 1.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑛𝑛∑(𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅)2
𝑅𝑅

𝑂𝑂=1
                                                         (1)
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where,

n = number of check-points tested;

Xi  = X, Y or Z coordinates extracted from the cartographic product for the ith check-point.

The t-Student test is applied to the check-points to verify the presence of bias and, therefore, evaluate for 
systematic errors. First, discrepancies are calculated for each component (Equation 2). The second step is to calculate 
the mean (Equation 3) and the standard deviation (Equation 4). 

∆X = X𝑖𝑖 − X𝑖𝑖𝑟𝑟                                                                                      (2)

∆X̅ = 1
𝑛𝑛∑∆X𝑖𝑖

𝑛𝑛

𝑖𝑖=1
                                                                                     3)

𝑆𝑆∆X = √ 1
𝑛𝑛 − 1∑(∆X𝑖𝑖 − ∆X̅)2

𝑛𝑛

𝑖𝑖=1
                                                                       (4)

The next step for the t-test analysis is to verify if the mean can be considered equal to zero (Equation 5) or 
different than zero (Equation 6). 

𝐻𝐻0:    ∆X̅ = 0 ,                         Null Hypotheses                              (5)

𝐻𝐻1:    ∆X̅ ≠ 0 ,             Alternative Hypotheses                             (6)

The t-test value is particularly accepted for a small sample size. For  equal or larger than 30, t-test distribution 
remains valid, even if the distribution is not normal (Montgomery, 2009). In this step, it is necessary to calculate t 
(Equation 7) and test it against the confidence interval (Equation 8). The confidence level of 90% is based on the 
Cartographic Accuracy Standard (PEC) (Brasil, 1984) and the Cartographic Accuracy Standard of Digital Mapping 
Products (PEC-PCD) instructions (Brasil, 2016).

𝑡𝑡𝑋𝑋 =
∆�̅�𝑋
𝑆𝑆∆X

√𝑛𝑛                                                                                       (7)

|𝑡𝑡𝑋𝑋| < 𝑡𝑡(𝑛𝑛−1,𝛼𝛼/2)                                                                                    (8)

The population is accepted if t-statistic is lower than t-critical. This hypothesis confirms that the analyzed 
sample does not show bias (Galo and Camargo, 1994).

3. Experiments, results, and discussion

In this section, first the study region is presented, which includes information about the area, delimitation of 
subplots, and the surveyed reference points location. Second, the experimental results are described along with a 
quality assessment and discussion.

The setup for the experiments and the parameters considered for each processing is summarized on Table 1. 
It is important to highlight that each experiment is tested with on-the-job self-calibration (IOP as unknowns in the 
BBA) and with pre-self-calibration (fixed IOP in the BBA).
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Table 1: Summary of parameters for experiments.

Experiment Area Number of GCP / 
Number of check-points Parameters

Camera Calibration Area 2 23 / 0 On-the-job self-calibration
Overlap rate of 90%/80%

GCP Area 2 0, 3, 4, 5, 8 and 10 / 22 On-the-job self-calibration and pre-self-calibration
Overlap rate of 90%/80%

Flight height
Area 1

8 / 16 On-the-job self-calibration and pre-self-calibration
Overlap rate of 90%/80%Area 2 

Area 3

Image overlap Area 2 5 / 22
Pre-self-calibration

Overlap rate of 90%/80%, 80%60%, 70%/60%, 
70%/40%, 60%/60% and 60%/40%

3.1 Study area (test area)

The study area of approximately 11.92 ha is located at the University of Campinas (UNICAMP) (Figure 2), São 
Paulo, Brazil. This area covers the Faculty of Civil Engineering, Architecture and Urban Planning (FEC), the Brazilian 
Agricultural Research Corporation (EMBRAPA), four parking lots and it has predominantly low vegetation, with the 
terrain altitude ranging from 604 m to 645 m. 

Figure 2: Study area and surveyed points distribution.
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The selection of the study area is due to the high slope terrain, which simplified the acquisition of images 
on different flight height. Another reason is based on the location of pre-established landmarks on campus – that 
allowed an easy densification of GCPs and check-points. The study area was divided in three smaller plots due to the 
limited UAV time of flight per battery.

For all experiments presented bellow (in Section 3), it was generated orthomosaics and DTMs for the 
evaluation process. Figure 3 illustrates both generated products.

  
(a) (b) 

 Figure 3: Cartographic Products. (a) Ortomosaic. (b) DTM.

3.2 Experiments considering different number of GCPs and camera calibration

This experiment aims to analyze the influence of two different calibration methods by varying the number 
of GCPs on the photo-triangulation process. The first calibration method uses the GCPs to perform an on-the-job 
self-calibration, in which both IOP and EOP are adjusted (being considered as unknown in the BBA). The second 
method considers a pre-self-calibrated IOP on the photo-triangulation while the EOP remains as unknown in the 
BBA. The pre-self-calibration IOP were obtained through an on-the-job self-calibration by using the data from 
Area 2 and 23 GCPs.

In total, 12 photogrammetric processing were conducted using 0, 3, 4, 5, 8, and 10 GCPs, with an average GSD 
imagery of 0.93 cm at a height of 31.0 m AGL. To standardize the analysis, the quality is assessed by using 22 check-
points. The GCPs and check-points layout configuration is illustrated in Figure 4.
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Table 2 shows the results using on-the-job self-calibration. Table 3 shows the results from the photo-
triangulation with pre-self-calibration. The tables are presented with the following information: number of GCP 
used on the photo-triangulation process, RMSE X, Y and Z (in meters), and B stands for bias (“Y” for biased and 
“N” for unbiased).

Figure 4: GCP and check-points configuration for GCP and camera calibration experiments. 

Table 2: Statistics of photo-triangulation varying the number of GCP with on-the-job self-calibration (IOP as 
unknowns in the BBA).

GCP
RMSE (m)

X B Y B Z B
0 0.457 Y 2.177 Y 10.312 Y
3 0.038 Y 0.027 Y 0.037 Y
4 0.031 Y 0.031 N 0.034 Y
5 0.025 N 0.032 N 0.032 Y
8 0.026 N 0.032 N 0.036 N

10 0.024 N 0.030 N 0.029 N

Table 3: Statistics of photo-triangulation varying the number of GCP with pre-self-calibration (fixed IOP in the BBA).

GCP
RMSE (m)

X B Y B Z B
0 0.517 Y 2.210 Y 9.556 Y
3 0.041 Y 0.040 Y 0.428 Y
4 0.031 Y 0.037 N 0.371 Y
5 0.025 N 0.032 N 0.045 Y
8 0.026 N 0.033 N 0.030 N

10 0.024 N 0.029 N 0.034 N
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According to Table 2 and Table 3, applying direct EOP acquired by low-cost sensors and zero GCP generates 
products with high RMSE values, especially for the Z component in both cases (RMSE around 10 m). According to 
Table 2 (on-the-job self-calibration), comparing the experiment using 4 GCPs with the one using 5, placing one GCP 
on the center of the area indeed increases the altimetric accuracy, with the RMSE value decreasing from 0.371 m to 
0.045 m, in which was also observed in (Martínez-Carricondo et al., 2018). Although both approaches presented the 
same RMSE values for the planimetric evaluation when using 5 GCP, applying a set of calibrated IOP on the photo-
triangulation will decrease the number of GCP required to generate a DTM without bias.

Comparing the overall results for both experiments, it can be seen that increasing the number of GCPs does 
not improve the precision when the number of GCPs ranges from 5 to 10 (pre-self-calibration) and 8 to 10 (on-the-
job self-calibration), which was also observed in Pessoa et al. (2020). According to ASPRS (2014), the generated 
products can be considered as Class II for horizontal and Class III for vertical accuracy with a scale of 1:100. Increasing 
the number of GCP does reduce the bias on observations. An important aspect regarding the accuracy of generated 
products is not only the number of GCPs but its distribution and relative distance between then (Martínez-
Carricondo et al., 2018), especially regarding the estimation of the sensor attitude. As noted, when comparing 
both experiments, it is recommended to calibrate the camera before proceeding to the survey. Camera calibration 
procedure will reduce the labor when surveying the GCPs, as fewer points are required to indirect georeferencing 
the imagery. To understand the calibration parameters when increasing the number of GCPs, the authors conceived 
the Table 4 comparing the IOP parameters obtained on the experiments of on-the-job self-calibration.

Table 4: Results of IOP for photo-triangulation with on-the-job self-calibration (IOP as unknowns in the BBA).

IOP
Number of GCP

0 4 5 8 10 23

f (mm) 8.598 8.578 8.586 8.586 8.585 8.585

cx
 (mm) -0.044 -0.044 -0.044 -0.044 -0.044 -0.044

cy
 (mm) 0.014 0.014 0.014 0.014 0.014 0.014

k1 * 105 (mm-2) 3.056 3.130 4.107 4.199 4.198 4.260

k2 * 106 (mm-4) -3.364 -3.369 -3.380 -3.384 -3.382 -3.382

k3 * 108 (mm-6) 4.808 4.813 4.830 4.836 4.832 4.833

p1 * 105 (mm-1) -2.289 -2.281 -2.278 -2.275 -2.275 -2.276

p2 * 105 (mm-1) -3.491 -3.482 -3.489 -3.491 -3.493 -3.498

Table 4 shows that the focal length (f) and the principal point displacement (cx and cy) are well determined when 
applying only computer vision algorithms with zero GCP. This statement is based with respect to the experiments of 
0 GCP, 10 GCPs and 23 GCPs, that shows a variation of 0.013 mm on the focal length and presented similar results 
for the principal point displacement. The comparison has shown that a considerable number of GCPs is required to 
model the radial distortion k1 when applying on-the-job self-calibration. Since off-the-shelf cameras express a large 
amount of distortion (mainly k1) (Brown, 1971), it is important to highlight that k1 is the IOP coefficient that has more 
influence on image coordinates residuals when measuring coordinates on image-plane.
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3.3 Experiments considering different flight height and camera calibration

For this experiment, six photogrammetric processing were carried out by applying photo-triangulation with 
pre-self-calibration and on-the-job self-calibration. The experiments were carried out under three different flight 
height with image overlap of 90%/80% (forward and sidelap, respectively). With respect to the first survey at 21 
m (Area 1) with an average GSD of 0.63 cm, the second survey consisted of a survey at flight height of 31 m (Area 
2) with an average GSD of 0.93 cm, and the last survey was run at 40 m (Area 3) with an average GSD of 1.19 cm. 
To perform the photo-triangulation, a set of 8 GCPs were used. The number of GCP is due to the experiments of 
variation of number of GCP, in which a minimum of 8 GCPs were necessary to provide an accurate product using on-
the-job self-calibration. The statistical analysis is based on 16 well distributed check-points to assess the products 
accuracy and t-student test. The GCP and check-points configuration is illustrated on Figure 5a, and the profile of the 
test area is illustrated of Figure 5b.

(a) GCP and check-points configuration. (b) Profile of the test area.

Figure 5: Surveyed areas for height variation experiment.

Proceeding to the statistical analysis, Table 5 shows the results from the experiments at different flight heights 
by applying on-the-job self-calibration and Table 6 shows the results from the experiments at different flight heights 
by applying pre-self-calibration on the photo-triangulation process.

Table 5: Statistics of photo-triangulation at different height with on-the-job self-calibration (IOP as 
unknowns in the BBA).

Height (m)
RMSE (m)

X B Y B Z B
21 0.008 N 0.008 N 0.029 N
31 0.024 N 0.032 N 0.033 N
40 0.026 N 0.021 Y 0.056 N

                                              (a)                                                                                                          (b)
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Table 6: Statistics of photo-triangulation at different height with pre-self-calibration (fixed IOP in the BBA)

Height (m)
RMSE (m)

X B Y B Z B
21 0.006 N 0.006 N 0.050 Y
31 0.024 N 0.033 N 0.027 N
40 0.026 N 0.021 N 0.027 N

The altimetric component is related to the focal length, the air-base and flight height ratio between two 
consecutive images (Kraus, 2011). From this affirmation, increasing the flight height indeed decreases the altimetric 
accuracy of a 3D point, in which confirms the literature cited at Section “Introduction” (Section 1). The results for the 
experiment of 40 m reached a RMSE of 0.026 m, 0.021 and 0.056 m, for X, Y, and Z, respectively, and unbiased DTM.  

Proceeding to the analysis of height variation by applying pre-self-calibration (Table 6). Results from 31 m 
and 40 m show similar accuracy for both planimetric (RMSE ranging between 0.021 m and 0.033 m) and altimetric 
accuracy with a RMSE of 0.027 for both altitudes. Decreasing the flying height to 21 meters, it is noted that worst 
altimetric accuracy was obtained (altimetric RMSE of 0.050 m). This poorer accuracy might be related to the IOP that 
was acquired on Area 2 (at flight height of 31 m) and was inserted as fixed on the BBA on the processing at 21 m.  
Nevertheless, Area 1 has homogeneous features, such as bare ground and vegetation, which can cause problems of 
image matching, and the Area 2 also has homogeneous features, such as four parking lots.

Another important fact is that comparing the 31 m and 40 m with on-the-job self-calibration, it is observed 
that raising the flight height does not affect the precision when analyzing the planimetric component. The drawback 
of surveying at low altitude is that more images are going to be used as input, resulting in a time-consuming task, 
which is not desirable for some applications. 

3.4 Experiments considering different image overlap rate 

The influence of image overlap was studied by considering different forward and sidelap rates in the input 
imagery. For this experiment, the survey was carried out fixing the acquisition rate at 90%/80%, forward and sidelap, 
respectively. The process of decreasing the forward overlap was conducted extracting one image from the forward 
sequence, decreasing the rate from 90% until 60% (each image extraction decreases in 10% the forward overlap). 
The same process was applied to the sidelap, while on the forward overlap decreased in 10% when extracting one 
image, the sidelap decreases 20%. The process was repeated until the rate of 40% was reached. 

For the photo-triangulation, as the GCP experiment achieved better results using the minimum number of 5 
GCPs with pre-self-calibration, the experiments were set with 4 GCPs on the borders and 1 on the center of the area 
and 22 check-points to assess the quality. Table 7 presents the evaluation.
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Table 7: Statistics of photo-triangulation at different overlap rates with pre-self-calibration (fixed IOP in the BBA).

Overlap (%) RMSE (m)
Forward Side X B Y B Z B

90 80 0.025 N 0.032 N 0.032 N
80 60 0.025 N 0.032 N 0.038 N
70 60 0.028 N 0.032 N 0.060 Y
70 40 0.027 N 0.033 Y 0.083 Y
60 60 0.026 N 0.033 N 0.043 Y
60 40 0.031 N 0.032 N 0.055 Y

Although better results are obtained at higher overlap rates, as shown in the experiment of 90%/80%, the 
experiment using 80%/60% overlap rate achieved similar accuracy and unbiased results. Another aspect is regarding 
to the type of product, in the case of orthomosaics, decreasing the overlap rate does not affect the planimetric 
precision, similar results are obtained with 90%/80% and 60%/60%. In the case of a DTM, it is required a minimum 
of 5 GCPs with pre-self-calibrated IOP and the overlap rate should be at least 80%/60% (forward and sidelap, 
respectively). According to ASPRS (2014), the generated products can be considered as Class II for horizontal and 
Class III for vertical accuracy with a scale of 1:100. The loss of altimetric accuracy is related to the air-base and flight 
height ratio, together with less correspondence points. 

Besides planimetric and altimetric accuracy, it is important to analyze the time consumption for generating 
dense point cloud and orthomosaic at different overlap rates. For this analysis, the authors conceived a comparison 
in Table 8, with the following information: overlap rate (forward and sidelap), number of tie-points, number of point 
cloud elements, and full processing time.

Table 8: Image overlap processing information with pre-self-calibration (fixed IOP in the BBA).

Overlap (%)
Number of images

Number of points
Full processing time

Forward Side Tie points Point Cloud
90 80 1335 1.795.827 62.385.746 26 h 8 min
80 60 360 509.816 57.284.618 2 h 33 min
70 60 353 414.915 52.137.894 1 h 3 min
70 40 179 233.482 50.370.437 1 h 2 min
60 60 183 207.276 46.228.425 44 min
60 40 132 145.032 42.172.112 42 min

Table 8 highlights that higher overlap rates result in more processing time due to the high volume of data 
being processed. The result of using more images as input is a higher number of homologous points being visible 
from more images, and consequently, more tie-points are generated and used in the photo-triangulation process.

In some applications that requires continuous and rapidly documentation of a site, reducing the overlap rate 
from 90%/80% to 80%/60% decreases the processing time in approximately 10 times, from 26 hours to 2 hours and 
25 minutes, and generates similar results, as shown in Table 6. The drawback of using lower overlap rates is loss in 
altimetric accuracy and, sometimes, a missing data on final product (Figure 6).
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It can be noticed that at high overlap rate of 90%/80% (Figure 6a) the objects above ground does not show 
misalignments or errors. At 80%/60% (Figure 6b) and lower overlap rates, such as 70%/60% (Figure 6c), 70%/40% 
(Figure 6d) and 60%/60% (Figure 6e), the generated orthomosaics shows less quality of details (noise) and the 
borders of objects above ground (construction) are not aligned. Considering the sloping terrain and lower overlap 
rate of the experiment with 60%/40% (Figure 6f), the generated orthomosaic resulted in a lack of information on 
reconstruction. According to Oliveira et al. (2018), to generate a true orthophoto (orthomosaic free from occlusion 
and double mapping with a uniform scale), a procedure to detect and compensate the occlusions by using adjacent 
images from the flight mission and an accurate DSM followed by a color adjustment is required. 

4. Conclusion

The dataset acquired by the UAV allowed the generation of high accuracy products (cm level) and it 
demonstrated the influence of different block configurations. Although the camera calibration is necessary for a 
non-metric digital camera, the results show that the FC6310 camera can be used for generating digital cartographic 
products even when applying photo-triangulation with additional parameters (IOP), since there are required only 
a few GCPs. In this research, it was concluded that the difference between using calibrated IOP and conducting on-
the-job self-calibration is the necessity of surveying few more GCPs.

In summary, after analyzing the results, the authors reached several conclusions when conducting 
photogrammetric processing under different block configurations: (1) Number of GCP: 5 GCPs for indirect image 
orientation with pre-self-calibration and 8 GCPs for on-the-job self-calibration. It guides to the conclusion that 

Figure 6: Overlap influence on orthomosaic generation.
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by using a pre-calibrated IOP, higher is the chance of generating high accuracy and unbiased products; (2) Image 
Overlap: 80% and 60%, forward and sidelap, respectively, are enough when compared to 90%/80%, decreasing the 
required processing time significantly (90.24% faster); (3) Flight height: the variation of height acquisition did not 
present significant difference when flying at low AGL. The features presented in the area must be considered due 
to the process of image matching, which facilitates the image orientation procedure, and consequently, to obtain 
a better accuracy on final product. It is worth mentioning that a fixed IOP (mainly focal length) obtained from a 
certain height can influence the altimetric quality in different heights, as presented in section 3.3 – which can be a 
drawback; and (4) Camera calibration: in general, calibrating the camera before the flight showed better results due 
to the reduction of field survey for collecting GCPs.

The mentioned conclusions and remarks can be a useful guide for specialists and non-specialists that have 
being working with cartographic product generation based on UAV technology. One of the contributions of this 
paper is the possibility of providing an easy-to-understand list of impacts that the flight configuration and data 
processing can cause in the final products. This understanding can avoid extra field work, time of processing, and 
the use of bad quality orthomosaics and DTMs

It is important to highlight that these experiments do not guarantee exactly the same results when different 
sensors, processing the data using another photogrammetric software or surveying areas with different aspects 
(in regard to the area size, slope and features above ground). However, the impact of the elements used in the 
experiments on final product will be similar. Since the study area does not represent the same aspects of a complex 
urban environment, with high density of construction and tall buildings, or terrains with steep slopes (canyons), the 
users of this methodology for these types of areas need to consider some possible problems, such as: the presence 
of shadows and occlusions. Also, camera calibration parameters of off-the-shelf digital cameras varies from one 
camera to another due to different quality of materials and assembly. This process must be analyzed very carefully 
since a slight error in focal length can result in errors in the Z component of DTM and DEM. 

This study presented the influence of 4 parameters when generating DTM and orthomosaic and how it 
affects the resulting digital cartographic products when using different configurations of camera calibration, number 
and layout of GCPs, image overlap rate and flight height. However, this influence can be considered similar for 
other UAVs and photogrammetric software but with variations in magnitude. For future research, the authors 
recommend the validation of the proposed optimum block configuration, applying the same platform, software, 
and photogrammetric pipeline in areas with different characteristics. Also, the authors recommend further quality 
analyses, such as linear features, quality indicators (completeness) and correction index.
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