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ABSTRACT 
 
 
 Temperature-dependent sex determination (TSD) is the developmental process in which 

cell fate decisions in the bipotential gonads are influenced by temperature and drive the gonad 

toward one of two distinct organs, an ovary or testis. In species with TSD, temperature establishes 

the gene expression patterns required for cell fate decisions and gonad differentiation. However, 

the precise mechanism that temperature regulates gene expression is unknown. Here we have 

shown that Jarid2, which encodes a Polycomb Repressive Complex 2 (PRC2) accessory protein, 

exhibits temperature-dependent intron retention that results in three distinct transcripts encoding 

distinct proteins with functional similarities and differences in TSD. We found in a long-read 

sequencing assay that the transcripts encoding these proteins exhibited different expression 

patterns in response to a temperature shift from a male- to female-producing temperature. We also 

found that overexpression of these proteins in a bipotential gonad cell culture model yielded both 

similar and differing effects on gene expression, suggesting that they may play unique roles in 

regulating gene expression in TSD. Our results demonstrate that JARID2 is alternately spliced and 

the resulting isoforms are likely involved in establishing the transcriptional profiles required for 

cell fate decisions in TSD. We anticipate that this study will provide a foundation from which to 

further probe the function of JARID2 in the thermal response during TSD.   
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CHAPTER I 
 

MECHANISMS OF TRANSCRIPTIONAL REGULATION DURING SEX 
DETERMINATION 

 
Introduction 

 There are two main types of reproduction observed in eukaryotes: asexual and sexual 

reproduction. The latter relies on the presence of meiosis to produce sperm and eggs and fusion of 

gametes within populations of organisms. In addition to the ability of sperm to fertilize eggs, there 

must be compatibility of the genomes of organisms within a population. It is this compatibility 

combined with the incompatibility of the genomes of other organisms that drives diversification 

and speciation in eukaryotes through the ability of individuals to reproduce with others of a highly 

specific genomic makeup (Lynch & Force, 2000; Muller, 1942; Orr, 1996). 

 In metazoans, sex involves the production of one of two types of haploid gametes (sperm 

and egg) that fuse with the other type to give rise to a diploid zygote. Production of these gametes 

relies on the development of sex-specific reproductive organs (testis and ovary) that occurs during 

a process known as sex determination, which can be simply be described as the process by which 

a bipotential gonad differentiates into an ovary or a testis. Sex determining mechanisms are 

diverse, relying on genetic or environmental signals to coordinate gene expression profiles that 

define the lineage trajectories of cells in the developing gonad. 

 Temperature-dependent sex determination (TSD) is a form of sex determination in which 

the primary stimulus governing the fate of the bipotential gonad is the ambient temperature of the 

embryo during a specific period of development. In this chapter I discuss the transcriptional 

regulation of TSD and the potential role of JARID2 as a thermosensitive regulator of transcription 

in the common snapping turtle, Chelydra serpentina. 
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Sex Determining Mechanisms in Vertebrates 

 The majority of vertebrates reproduce sexually. During sexual reproduction, two haploid 

gametes fuse during syngamy to create a diploid zygote, which gives rise to every cell in the 

developing organism. In contrast to offspring produced by asexual reproduction, those produced 

by sexual reproduction contain a combination of genomic information derived from each parent. 

This, along with recombination between homologous chromosomes during meiosis, produces new 

genetic combinations and increases adaptive capacity. 

In amniotic vertebrates, morphological differences between the sexes begin to manifest 

through differentiation of specific cell types in the gonads. During embryogenesis, paired genital 

ridges form as the result of the proliferation of the coelomic epithelium and the underlying 

mesenchyme of the mesonephros (DeFalco & Capel, 2009). These parallel ridges appear as 

thickenings that lie along the caudal-rostral axis of the embryo. Each genital ridge is a single 

primordium capable of developing into either an ovary or a testis, which is determined by the 

specification of two main lineages of bipotential somatic cells (Karl & Capel, 1998). Supporting 

cell precursors give rise to granulosa cells or Sertoli cells in the ovary or testis, respectively 

(Stevant et al., 2019; Stevant et al., 2018). A second population of bipotential somatic cells, 

steroidogenic progenitors, give rise to theca cells or Leydig cells in the ovary or testis, respectively 

(Stevant et al., 2019; Stevant et al., 2018). Differentiation of these two somatic cell lineages into 

four distinct cell types and the morphogenesis of the ovary or testis is known as sex determination. 

 The determination of supporting cell fate as granulosa or Sertoli cells is controlled by 

complex transcriptional networks that tend to be triggered by a few sex-determining factors early 

in development (Marin & Baker, 1998). The result is highly contrasting profiles of gene expression 

between pre-Sertoli and pre-granulosa cells (Jin et al., 2001; Ranz, Castillo-Davis, Meiklejohn, & 
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Hartl, 2003). Evolutionary variation in sex-determining mechanisms is substantial, even among 

vertebrates, but in all cases definitive gene expression patterns are required for differentiation of 

key cell types in developing gonads. The gene regulatory networks for determination of cell fate 

and gonad fate have been studied most intensively in mammals, which have genotypic sex 

determination (GSD) with distinct sex chromosomes. 

 In placental mammals, sex is determined by the presence or absence of Sry, a gene encoded 

on the Y-chromosome that invokes changes in the regulatory networks that cause supporting cell 

differentiation into Sertoli cells, resulting in a male phenotype (Lin & Capel, 2015). Precursors of 

many of the somatic cells in the bipotential gonad arise from a population of cells expressing 

NR5A1/SF1 (steroidogenic factor 1). At this stage of development, many genes associated with 

determination of sexual fate are expressed at the same level in XX and XY gonads. In XY gonads, 

SRY expression increases briefly and initiates the pathway associated with a male fate. The 

primary SRY target is SOX9, which increases sharply along with FGF9 and PTGDS. FGF9 exerts 

positive feedback to maintain SOX9 expression. These gene products in turn regulate the 

expression of other genes involved in cell differentiation and gonad morphogenesis, including 

inhibition of Wnt signaling (Y. Kim et al., 2006; Lin & Capel, 2015). In XX gonads, WNT4 and 

R-Spondin1 signaling stabilize beta-catenin, leading to determination of ovarian fate (Lin & Capel, 

2015; Tevosian & Manuylov, 2008). Canonical Wnt signaling stabilizes beta-catenin in the 

nucleus where it binds T-cell factor (TCF)/lymphoid enhancer factor (LEF) which leads to the 

transcriptional activation of target genes (Tevosian & Manuylov, 2008). Wnt signaling in XX 

gonads also antagonizes FGF9 and SOX9 expression. Much of what is understood about the 

molecular mechanisms of sex determination comes from the study of mammalian sex 
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determination. Although there are significant similarities in the morphogenetic process of sex 

determination, there are many differences in sex-determining mechanisms amongst vertebrates. 

Sex determination amongst reptiles is especially diverse. The sex of many lizard species is 

determined by sex chromosomes analogous (but not homologous) to those found in mammals and 

birds, while other lizard species lack sex chromosomes and commitment to sexual fate is governed 

by environmental temperature (Rhen, Schroeder, Sakata, Huang, & Crews, 2011; Viets, 1994). 

Many turtle species, including the snapping turtle Chelydra serpentina, and all crocodilians 

undergo temperature-dependent sex determination (TSD), a process in which sexual phenotype is 

determined by the ambient temperature of the embryo during development. 

 In species with TSD, constant temperature incubation of eggs yields predictable offspring 

sex-ratios. There are three typical patterns of temperature dependent sex determination (Ewert, 

Jackson, & Nelson, 1994). In some species, low temperatures produce males and high temperatures 

produce females. In other species, low temperatures produce females and high temperatures 

produce males. Lastly, and in the case of Chelydra serpentina, low and high temperatures produce 

females and intermediate temperatures produce males (Rhen & Lang, 1998). In all species with 

TSD, male-producing temperatures (MPT) are the temperatures that produce 100 percent male 

offspring, female-producing temperatures (FPT) are the temperatures that produce 100 percent 

female offspring, and pivotal temperatures (PvT) are the temperatures that produce an even sex 

ratio with 50 percent male and 50 percent female offspring (Rhen & Lang, 1998). The transitional 

range of temperatures is the range of temperatures between MPTs and FPTs that produce mixed 

sex ratios. 

 Embryos of species with temperature-dependent sex determination exhibit complete 

competence to develop as male or female, with sexual phenotype being primarily dependent on 
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the incubation temperature of the egg (Rhen, Fagerlie, Schroeder, Crossley, & Lang, 2015; Rhen 

& Lang, 1994, 1998; Rhen, Metzger, Schroeder, & Woodward, 2007). Studies have shown that 

there is a degree of heritability that accounts for variation in pivotal temperatures between 

individuals and populations of the same species, but in most cases, there are temperatures that 

produce exclusively one sex or the other sex (Bull, Vogt, & Bulmer, 1982; Rhen & Lang, 1998; 

Rhen et al., 2011). 

 The temperature sensitive period (TSP) is the time during embryonic development when 

embryonic gonads are sexually plastic and a change in temperature is capable of having predictable 

effects on expression of sex determining genes and offspring sex ratios. In Chelydra serpentina, 

the TSP broadly encompasses embryonic stages 13 to 20 (Rhen et al., 2015). However, this species 

is most sensitive to feminization during a 5-day window starting at embryonic stage 17 to 18 (Rhen 

et al., 2015). During this period, the gonads are still capable of responding to the polarizing 

temperature signal. Robust differences in transcriptional patterns manifest between gonads 

exposed to MPT and those exposed to FPT (Rhen et al., 2015; Rhen et al., 2007). A key set of 

genes encode proteins that have proven to be markers for sex determination in Chelydra 

serpentina, including FOXL2, SOX9, AR, DMRT1, and others (Rhen et al., 2007; Rhen & 

Schroeder, 2010). However, these genes do not respond immediately after a change in temperature 

and therefore are likely to be downstream in the regulatory networks that lead to ovarian or 

testicular fate. In order to understand the impact of temperature on the gene regulatory networks 

that govern sex determination, we need to identify and elucidate the function of genes that quickly 

and directly respond to a temperature signal. 
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Epigenetic Regulation of Gene Expression and Cell Fate Decisions 

 Genomic DNA of eukaryotic organisms is organized and condensed into nucleosomes 

consisting of 146 base pairs of DNA wrapped around an octamer of four types of histone proteins 

(H2A, H2B, H3, and H4). Nucleosomes coordinate the structure and accessibility of DNA and are 

subject to a variety of modifications that further determine the organization of chromatin. 

Epigenetic modifications, such as DNA methylation and histone tail post-translational 

modifications, lead to mitotically heritable changes in chromatin structure and accessibility of 

DNA by transcription factors. In order for transcription to occur, the promoter for a particular gene 

must be accessible to transcription factors. Certain epigenetic modifications, such as trimethylation 

of histone H3 at Lysine 27 or methylation on the 5th carbon of cytosine residues in genomic DNA, 

are associated with a heterochromatic state and repressed transcription. Others, such as histone H3 

and H4 acetylation at multiple lysine residues and histone H3 Lysine 4 di- or trimethylation, are 

associated with chromatin accessibility and active transcription. Many histone modifications also 

serve as substrates or binding sites for proteins that directly or indirectly influence chromatin state 

or transcription initiation. Histone acetylation is primarily propagated by histone acetyltransferase 

complexes with specificity that is generally lower than that of histone methyltransferases which 

propagate broad-scale histone methylation as well as methylation at highly specific loci (Bernstein, 

Meissner, & Lander, 2007). Histone modification and chromatin accessibility are also associated 

with chromosomal interactions that together regulate gene expression patterns during development 

(Apostolou et al., 2013). Genes, cell-type specific signaling, and environmental factors govern 

epigenetic modifications and the resulting regulation of transcriptional states and genomic 

topology, which, in turn, are responsible for the establishment and maintenance of cell fate 

decisions.  
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One of the most remarkable features of the development of multicellular organisms is the 

ability of a single cell, the fertilized egg, to give rise to specialized cell-types which leads to tissue 

formation and ultimately organogenesis. The first cell fate decision in the development of the 

mouse embryo provides an example of the importance of epigenetic modifications in cell fate 

commitment. The first decision is the transition from identical cells to a distinction between the 

pluripotent inner cell mass and the extraembryonic trophectoderm. Following zygotic genome 

activation, the transcriptional states of the progenitors of the two lineages are nearly identical but 

once they are separated, inner cells resist differentiation by expressing genes associated with 

pluripotency: SALL4, OCT4, NANOG, and SOX2. Outer cells express CDX2, which 

downregulates pluripotency genes that are expressed in the inner cell mass and leads to 

differentiation of trophectodermal cells (Zernicka-Goetz, Morris, & Bruce, 2009). The coordinated 

expression of these pathways between cell lineages can be explained by differences in epigenetic 

modifications between each cell type progenitor. Single-cell sequencing and lineage-tracing 

methods have found heterogenous expression of epigenetic modifiers in early developmental states 

(2- and 4-cell stages) that result in differential histone modifications between cells destined to 

become pluripotent inner cells or trophectoderm cells (Burton et al., 2013; Torres-Padilla, Parfitt, 

Kouzarides, & Zernicka-Goetz, 2007; Zernicka-Goetz et al., 2009). Differential epigenetic 

activation of transcription factors regulating CDX2 expression correspond to the initial expression 

of CDX2 in trophectoderm-destined cells which is followed by the antagonism of pluripotency 

genes by CDX2 and eventually the loss of lineage plasticity. Regulation of gene expression is 

multifaceted but can generally be correlated with the accessibility of chromatin. In many cases, 

such as the specification of early embryonic cells, chromatin modifiers play a role in setting the 

stage for differential expression of other genes involved in downstream processes (Szutorisz et al., 
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2005; Xu et al., 2011). This phenomenon can be observed in many other cell-fate decisions 

throughout the development of eukaryotic organisms and can explain part of the process of the 

specification of cell lineages and tissues.  

 

Specification of Gonadal Progenitor Cells 

Development of the gonad from a thickened coelomic epithelium to a fully functional ovary or 

testis requires several cell-fate decisions. The first is the transition from gonadal progenitor cells 

to supporting cells or steroidogenic cells. This is followed by the differentiation of supporting cells 

into Sertoli cells in males or granulosa cells in females and the differentiation of steroidogenic 

cells into Leydig cells in males or theca cells in females. In order to understand these events and 

the mechanisms driving them, it is important to define key regulatory elements controlling the 

unique transcriptional profiles of each cell type. 

Commitment of coelomic epithelial cells to develop as gonadal progenitor cells is the earliest 

stage of gonad development and occurs the same way in both sexes. In mammals, the 

insulin/insulin-like growth factor pathway (IGF pathway) acts to promote expression of key genes 

involved in initial gonad formation and lineage restriction such as steroidogenic factor 1 (NR5A1) 

(Luo, Ikeda, & Parker, 1994; Pitetti et al., 2013). Single-cell transcriptomics and traditional 

methods have shown that expression of NR5A1 is monomorphic between genetic females and 

males in mammals and variably dimorphic between male- and female-producing temperatures 

during sex determination in TSD species (Rhen et al., 2007; Stevant et al., 2019) (Fleming, 

Wibbels, Skipper, & Crews, 1999; Stevant et al., 2018; Western, Harry, Marshall Graves, & 

Sinclair, 2000). However, NR5A1 is detected throughout gonad development from genital ridge 

formation to differentiation of the gonad in several species with TSD, mammals, and birds, 
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suggesting that its function in early gonadogenesis is likely conserved. While the role of NR5A1 

in gonad fate determination in TSD should not be discounted, observed differences in expression 

between species are potentially confounded by several factors including the inclusion of 

steroidogenic adrenal tissue and temperature-dependent shifts in cell type proportions when entire 

adrenal-kidney-gonad complexes are analyzed rather than pure gonadal tissue (C. M. Shoemaker 

& Crews, 2009). Nonetheless, NR5A1 is widely expressed through gonadal cell types and its 

expression may be used as a marker for the commitment of coelomic epithelial cells to early 

progenitor cells of the gonad. 

At the beginning of female sex determination there is one population of gonadal progenitor 

cells that is actively proliferating. Included in this population are the cells that will differentiate 

into pre-granulosa cells and those that will differentiate into steroidogenic cells. In mouse, a single-

cell time-course gene expression profiling experiment has shown that the transcriptional profile of 

early progenitor cells is characterized by up-regulation of many genes involved in mitosis, 

mesonephros development, epithelial morphogenesis, and stem-cell development (Stevant et al., 

2019; Stevant et al., 2018). These genes are subsequently down-regulated during commitment to 

supporting cell lineages. There are also very few genes displaying sexually dimorphic expression 

patterns. Because this process is not sex-specific and the same cell lineages exist in species with 

TSD, it is likely that similar gene regulatory networks control commitment to supporting cell 

lineages in mammals and species with TSD.  

 

Differentiation of Steroidogenic Lineages in the Gonad 

Steroidogenic cells in the adult ovary or testis originate from two populations of cells. The 

majority arise from WT1 expressing progenitor cells in the gonadal primordium and a subset arise 
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from mesonephros (Liu, Peng, Matzuk, & Yao, 2015). These cell lineages differ in their origin as 

well as transcriptionally. The functional differences between each steroidogenic lineage remains 

to be investigated. In the ovary, gonad primordium-derived cells are the primary source of theca 

cells that eventually surround primary follicles and express WT1, HSD3B1, and ESR1 (estrogen 

receptor 1). Theca cells derived from mesonephros tend to localize to the basal lamina and express 

STAR, CYP11A1, CYP17A1, and LHCGR at higher levels than gonad-derived theca cells (Liu et 

al., 2015). Similarly, fetal Leydig cells in mammals have been shown to express HSD3B1 and 

STAR (R. S. Ge et al., 2006; Stevant et al., 2018). There is substantial overlap between the 

transcriptomes of differentiating steroidogenic cells in mammals. This becomes especially 

complicated when looking at the differentiation of steroidogenic cells in species with TSD, due to 

the fact that steroidogenic cells in a gonad are capable of development into both theca and Leydig 

cells. In addition, estrogen synthesis and signaling play a central role in ovary determination in 

TSD species and more broadly in non-mammalian vertebrates (Bowden & Paitz, 2018; Crews et 

al., 1994; Pieau & Dorizzi, 2004). This is a major distinction from placental mammals where 

estrogen signaling does not play a role in sex determination during embryogenesis but does play a 

part in the maintenance of ovarian phenotype postnatally (Britt & Findlay, 2002; Couse & Korach, 

1999). Therefore, it is important to examine characteristics that distinguish steroidogenic cells 

from supporting cells during embryogenesis in species with TSD.  

 In the developing mouse ovary, granulosa cells secrete hedgehog ligands which trigger 

activation of GLI1 and expression of target genes involved in hedgehog signaling in thecal 

precursor cells (Wijgerde, Ooms, Hoogerbrugge, & Grootegoed, 2005). Hedgehog signaling is 

also critical for development of both fetal and adult Leydig cells in mouse testis (Clark, Garland, 

& Russell, 2000; Yao, Whoriskey, & Capel, 2002). Little work has been done regarding the role 
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of hedgehog signaling in gonadal differentiation in reptiles, but GLI1 and/or GLI2 expression is 

likely a conserved marker of steroidogenic cell fate (Finco, LaPensee, Krill, & Hammer, 2015).  

 There is significant evidence in mammals that supporting cells differentiate prior to 

steroidogenic lineages in both sexes and that signals from supporting cells control differentiation 

of steroidogenic lineages. In contrast, there is significant evidence that steroid signaling plays a 

larger role in controlling the fate of supporting cells in reptiles. Early work in TSD showed that 

steroidogenic capacity in the gonads exists early in the TSP, suggesting that gonadal cells are 

capable of steroid signaling prior to becoming mature theca or Leydig cells (White & Thomas, 

1992). 

 

Differentiation of Supporting Cell Lineages in the Gonad 

The differentiation of unspecified supporting cells to granulosa cells in the developing ovary 

is controlled by complex gene expression profiles comprised of transient and permanent 

expression of certain genes. Though there are genes like FOXL2 that serve as markers of granulosa 

cell fate, there is less known about the transition from early progenitor cells to specified supporting 

cells to determined supporting cells in both mammals and in reptiles with TSD. Doublesex and 

mab3-related transcription factor 1 (DMRT1) and CYP11A1, both associated with Sertoli cell 

specification, are briefly over expressed in mouse at the onset of pre-granulosa cell differentiation 

(E11.5 and E12.5) (Lei et al., 2007; Stevant et al., 2019; Stevant et al., 2018). DMRT1 is strongly 

expressed during Sertoli cell differentiation in mammals. In several species with TSD, DMRT1 

shows increased expression following a shift from FPT to MPT and decreased expression 

following a shift from MPT to FPT (Rhen et al., 2007; C. Shoemaker, Ramsey, Queen, & Crews, 

2007; Smith, McClive, Western, Reed, & Sinclair, 1999; Torres Maldonado et al., 2002). Though 



 12 

DMRT1 is expressed at a higher level during and after Sertoli cell differentiation, it is possible 

that DMRT1 also plays an earlier role in lineage restriction to a supporting cell fate because 

expression is observed at both female- and male-producing temperatures (Rhen et al., 2007). 

Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) also is transiently over 

expressed in the pre-granulosa cell lineage during differentiation. Lgr4 acts as a membrane 

receptor for RSPO1 and is a key component for RSPO1 potentiation of Wnt signaling. While there 

are many genes that are transiently over expressed during differentiation of supporting cell 

lineages, there are many that follow other patterns of expression (Stevant et al., 2019; Stevant et 

al., 2018). 

A large number of genes are expressed from the time of pre-granulosa cell differentiation and 

are maintained after birth in mammals, including FST, STAR, RUNX1, and FOXL2 (Stevant et 

al., 2019). The continued expression of these genes may indicate their importance in the 

maintenance of cellular identity or functional role in cellular phenotype. FOXL2 exhibits 

temperature-dependent and sexually dimorphic expression and is strongly expressed in mature 

granulosa cells, but there is also evidence in mammals that cells expressing FOXL2 can give rise 

to granulosa cells as well as steroidogenic cells during ovarian development (Stevant et al., 2019; 

Uhlenhaut et al., 2009). In Trachemys scripta and Chelydra serpentina, turtles with TSD, FOXL2 

expression is not dimorphic early in the TSP and becomes strongly divergent between gonads 

incubated at MPT versus FPT (Rhen et al., 2007; C. M. Shoemaker, Queen, & Crews, 2007). 

Furthermore, FOXL2 transcripts are localized to the ovarian cortex during differentiation in 

Trachemys scripta, suggesting a potential role in the differentiation of granulosa cell lineages but 

not excluding the potential role in the differentiation of steroidogenic cell lineages (C. M. 

Shoemaker et al., 2007). In addition to sexually dimorphic expression in red-eared slider turtles 
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and rainbow trout, RUNX1 and FOXL2 have been shown to share cellular localization and 

chromatin occupancy in developing mammalian ovaries, a similar phenotype with knockout of 

each gene, and synergistic masculinization in double knockout studies (Nicol et al., 2019). These 

results suggest that both proteins are essential for specification and maintenance of pre-granulosa 

cell fate in the developing ovary and are conserved across vertebrate lineages (Nicol et al., 2019). 

RUNX proteins are a highly conserved family of transcription factors that regulate gene expression 

in developmental context across the entire range of metazoans (Rennert, Coffman, Mushegian, & 

Robertson, 2003). They have been shown to act as transcriptional activators and repressors 

dependent on certain cellular and developmental contexts, including the recruitment of Gro/TLE 

and Forkhead family proteins (Ono et al., 2007; Wildey & Howe, 2009; Yarmus et al., 2006). In 

contrast with pre-granulosa cell fate, RUNX1 is repressed during Sertoli cell fate commitment 

(Munger, Natarajan, Looger, Ohler, & Capel, 2013; Stevant et al., 2018). 

Other markers of granulosa cell fate include proteins associated with steroidogenesis, HSD3B1 

and CYP19A1, which have both been shown to be expressed at FPT in turtles and in differentiated 

granulosa cells in mammals (Bakhshalizadeh et al., 2017; Estermann et al., 2020). CYP19A1 

encodes the aromatase enzyme, which converts androgens to estrogens and has long been of 

interest in TSD. Expression of CYP19A1 increases in embryos shifted from MPT to FPT in the 

snapping turtle (Rhen et al., 2007) and inhibition of aromatase activity blocks ovarian development 

at a temperature that normally produces a very female-biased sex ratio (Rhen and Lang, 1994). 

Evidence from other TSD reptiles also indicate that gonadal aromatase expression is likely 

responsible for differential estrogen activity during development of gonads at FPT (Pieau & 

Dorizzi, 2004; Ramsey & Crews, 2009). 
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The differentiation of Sertoli cells from gonadal progenitors is similar to the differentiation of 

granulosa cells and involves a common intermediate specification step that restricts cells to a 

supporting cell lineage in mammals. There are parallels and differences in gonadal differentiation 

between mammals and reptiles with TSD, but it is likely that a similar intermediate lineage-

restriction step is required in TSD. In mammals, this step is characterized by up-regulation of about 

200 genes, with only SRY and SOX9 exhibiting sexual dimorphism (Stevant et al., 2019). Notably, 

RUNX1, CYP11A1, and DMRT1 fall into this category in mammals. Several genes up-regulated 

in this intermediate differentiation step remain up-regulated in Sertoli cells following 

differentiation. 

The transcriptomes of Sertoli cells during and after differentiation share similarities with early 

progenitors and steroidogenic lineages with the exception of a set of key genes that are suspected 

of driving a male fate in mammals. These genes include NR0B1 (DAX1), DMRT1, GATA4, 

SOX9, and AMH (Matson et al., 2011; Minkina et al., 2014; Stevant et al., 2018). Interestingly, 

loss of DMRT1 in Sertoli cells increases expression of CYP19A1 and serum levels of estradiol 

and knockout of SOX9 and DMRT1 resulted in transdifferentiation of Sertoli cells into granulosa-

like cells (Matson et al., 2011; Minkina et al., 2014). Minkina et al.  (2014) also found that 

increased retinoic acid signaling produces synergistic effect with depletion of DMRT1 in Sertoli 

cells and that decreased retinoic acid signaling, particularly the loss of RARA, suppresses 

transdifferentiation, suggesting that the feminizing effects of DMRT1 depletion are dependent on 

retinoic acid signaling (Minkina et al., 2014). Interestingly, they also showed that RARA acts 

upstream of feminizing genes FOXL2, LRH1, ESR2, and WNT4 in the absence of DMRT1. 

Retinoic acid signaling is a master cell fate regulator during embryogenesis and is required for 

spermatogonial differentiation and for oocyte entry into meiosis during mouse embryogenesis  
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(Bowles & Koopman, 2007; Raverdeau et al., 2012). In the developing testis, retinoic acid (RA) 

is degraded by CYP26B1 and failure of RA degradation results in a feminizing effect on the testis 

(Bowles et al., 2018). The dependency of Sertoli cell transdifferentiation on retinoic acid signaling 

and DMRT1-depletion could give insight into the regulatory mechanisms governing the expression 

of feminizing genes in TSD. In Sertoli cells, DMRT1 directly represses transcription of feminizing 

genes (FOXL2, ESR2, WNT4, RSPO1, CYP19A1), which are also regulated by retinoic acid 

signaling. Minkina et al. (2014) suggested a model in which DMRT1 could act to repress RA-

dependent transcription of feminizing genes while allowing Sertoli cells to produce the RA 

required for spermatogenesis.  

Retinoic acid functions as a ligand for retinoic acid receptors that bind to retinoic acid response 

elements (RAREs) in the promoter regions of genes that are responsive to RA signaling. 

Interestingly, in the absence of RA, RAREs tend to be bound by polycomb proteins, specifically 

SUZ12, a component of Polycomb Repressive Complex 2, which deposits the repressive 

H3K27me3 mark (Gillespie & Gudas, 2007a, 2007b). Upon RA signaling, polycomb proteins 

dissociate from chromatin and transcription of genes controlled by RARA can be initiated. This 

model of regulation of feminizing genes, could provide insight to the role of JARID2 in TSD.  

 

 

JARID2 as a Candidate Regulator of Differentiation During TSD 

 We have identified a set of genes that respond quickly to a shift in temperature from MPT 

to FPT during the thermosensitive period in the snapping turtle. Among these are a number of 

transcription factors, chromatin remodelers, and players in key signaling pathways, all of which 

may serve roles in commitment to ovarian or testicular fate. One gene that is strongly induced 
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within 24 hours of a thermal shift (MPT to FPT) is the Jumonji family, ARID-domain containing 

protein JARID2. JARID2 has been shown to associate with Polycomb Repressive Complex 2 and 

regulate cell fate determination. JARID2 and Polycomb Repressive Complex 2 play a role in the 

deposition and maintenance of H3K27me3 repressive chromatin domains, which have been shown 

in several cases to play a role in the temperature sensitive regulation of genes involved in TSD (C. 

Ge et al., 2018; Matsumoto, Hannigan, & Crews, 2016). 

 In T. scripta, H3K27me3 levels are elevated at the Dmrt1 promoter at FPT which correlates 

with low occupancy of the lysine-specific demethylase KDM6B. Additionally, siRNA interference 

of KDM6B resulted in decreased KDM6B occupancy at the Dmrt1 promoter and increased levels 

of H3K27me3, which resulted in decreased expression of DMRT1 (C. Ge et al., 2018). 

Furthermore, overexpression of DMRT1 was sufficient to restore the male pathway in the absence 

of KDM6B. The results from this study suggest an integral role for H3K27me3 in the regulation 

of genes involved in TSD and KDM6B plays a role in the regulation of H3K27me3. The sharp 

increase in JARID2 expression in response to a thermal shift and temperature-sensitive H3K27me3 

levels together give reason to further investigate the role of JARID2 in the regulation of gene 

expression during temperature-dependent sex determination.   

 Polycomb group proteins (PcG proteins) are important transcriptional regulators during 

development and embryonic stem cell differentiation (Margueron & Reinberg, 2011). They are 

remarkably well-conserved throughout eukaryotes, from single-celled eukaryotes to vertebrates 

(Shaver, Casas-Mollano, Cerny, & Cerutti, 2010; Whitcomb, Basu, Allis, & Bernstein, 2007). The 

first polycomb group (PcG) gene was initially discovered as a repressor of Hox genes in 

Drosophila (Slifer, 1942). Researchers have since discovered that PcG protein evolution, even 

amongst vertebrates, is quite complex. Many vertebrate lineages have diverged to have 
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functionally distinct copies of certain genes, such as Enhancer of Zeste 1 and 2, Ezh1 and Ezh2 

(Margueron et al., 2008). In some plants, there have been as many as 12 duplication events for 

particular PcG proteins (Hennig & Derkacheva, 2009). It has been proposed that the diversification 

of PcG proteins has led to the evolution of developmental patterns in gene expression that 

ultimately lead to differentiation and tissue specification (Whitcomb et al., 2007). PcG complexes 

vary in content and complexity across organisms, creating challenges in understanding their 

function and importance. However, several core proteins have been identified that are highly 

conserved among multicellular eukaryotes. 

 PcG proteins catalyze the post-translational modification of histone tails which results in 

the formation of heterochromatic domains that may repress expression of nearby genes. These 

chromatin modifications are carried out by two major polycomb group protein complexes, 

Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2). PRC1 

catalyzes mono-ubiquitination of histone H2A (Endoh et al., 2012). Methylation of histone H3 on 

lysine 27 (K27) is performed chiefly by PRC2 (Cao et al., 2002; Kuzmichev, Nishioka, Erdjument-

Bromage, Tempst, & Reinberg, 2002). PRC2 consists of four main subunits: SUZ12, EZH2, EED, 

and RBBP4/RBBP7. EED is responsible for binding di- and tri-methylated H3K27 and 

allosterically activating EZH2, which is responsible for the histone methyltransferase activity of 

PRC2. Together, EED and EZH2 propagate H3K27 methylation (Margueron et al., 2009; 

Margueron et al., 2008; Oksuz et al., 2018). None of the core subunits of PRC2 contain a DNA-

binding domain, yet PRC2 has been shown to localize at specific sites and repress nearby genes, 

with target loci varying temporally and between cell types (Margueron & Reinberg, 2011). The 

coordination of PRC2 activity is essential to differentiation, but the exact mechanism of this 

coordination is largely unknown in higher order vertebrates (Margueron & Reinberg, 2011; Oksuz 
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et al., 2018). It is currently proposed that recruitment of PRC2 occurs via association with 

accessory proteins and long non-coding RNAs (H. Kim, Kang, & Kim, 2009; Margueron & 

Reinberg, 2011; Rinn et al., 2007). 

 PRC2 has been shown to associate with various proteins in transient interactions that play 

varying roles in chromatin remodeling. Among these proteins are JARID2, AEBP2, ATRX, MTF2 

(Grijzenhout et al., 2016; H. Kim et al., 2009; H. Li et al., 2017; Margueron et al., 2008; Peng et 

al., 2009; Sarma et al., 2014). PRC2 is capable of enzymatic activity without associating with an 

accessory protein, but its specific recruitment and enzymatic activity may be enhanced when the 

complex is bound to an accessory protein (Oksuz et al., 2018). JARID2, a Jumonji family ARID-

domain containing protein void of demethylase activity, has been shown to play a role in 

recruitment and modulation of PRC2 enzymatic activity in a fashion that leads to the down-

regulation of certain genes involved in differentiation (Adhikari & Davie, 2018; Adhikari, Mainali, 

& Davie, 2019; da Rocha et al., 2014; Kaneko et al., 2014; G. Li et al., 2010; Oksuz et al., 2018; 

Sanulli et al., 2015). In the absence of JARID2, PRC2 fails to localize to some of its canonical 

targets and propagate H3K27me2/3, which can result in misregulation of genes involved in 

differentiation (Adhikari & Davie, 2018; G. Li et al., 2010; Oksuz et al., 2018). This suggests that 

JARID2-PRC2 is essential to the programming of cell-fate decisions during embryogenesis. 

JARID2, interacts with PRC2 and facilitates the initial interaction between PRC2 and 

chromatin required for de novo deposition of H3K27 methylation at CpG islands (Chen, Jiao, 

Shubbar, Yang, & Liu, 2018; Hojfeldt et al., 2018; Oksuz et al., 2018). JARID2-PRC2 complexes 

localize along the chromatin, forming foci of polycomb activity that result in the propagation of 

H3K27 methylation. Following initial deposition of H3K27me3, PRC2 is capable of self-

propagation and spreading this epigenetic modification along the chromosome (Margueron et al., 
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2009; Oksuz et al., 2018). While sites of JARID2-mediated PRC2 recruitment remain stable in 

certain vertebrate cell types and models, they lack the predictable nature of the Polycomb Response 

Elements (PREs) observed in Drosophila (Bauer, Trupke, & Ringrose, 2016; J. Muller & Kassis, 

2006). Several putative mammalian PREs have been identified but their capacities to recruit PRC2 

seem to be lineage specific and the effects of PRC2 spreading versus de novo deposition are 

difficult to sort out. Advances in single-cell technology will likely make this task easier (Mohn et 

al., 2008; Woo, Kharchenko, Daheron, Park, & Kingston, 2010). While the exact loci that PRC2 

is recruited to varies between model systems, the reliance on accessory proteins, such as JARID2, 

remains constant. 

 One potential link between TSD and PRC2-mediated transcriptional repression is the 

occupancy of PRC2 at genes that may be stimulated by retinoic acid signaling. As previously 

discussed, these genes include FOXL2, ESR2, CYP19A1, WNT4, and RSPO1 in mammals 

(Minkina et al., 2014). It has been shown in mammalian cell lines that PRC2 associates with 

retinoic acid response elements, and that retinoic acid causes PRC2 to dissociate from chromatin. 

Additionally, a decrease in PRC2 translates to a decrease in H3K27me3 upon addition of retinoic 

acid (Gillespie & Gudas, 2007b). The idea that CYP19A1 and FOXL2 expression are regulated by 

the interplay between PRC2 and retinoic acid signaling is an attractive hypothesis in relation to 

TSD research.  

If genes involved with sex determination are regulated by the intersection of DMRT1, 

retinoic acid signaling, and PRC2-mediated transcriptional repression, one would expect to 

observe differential H3K27me3 levels in the promoters of these genes. In T. scripta, a turtle with 

TSD, elevated H3K27me3 levels were observed at the CYP19A1 promoter in a shift from MPT to 

FPT and DMRT1 knockdown resulted in increased expression of FOXL2 and CYP19A1, as well 
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as sex-reversed phenotypes at each temperature (C. Ge et al., 2017; Matsumoto et al., 2016). A 

sharp increase in JARID2 expression due to a shift from MPT to FPT could correlate with 

increased PRC2 occupancy and H3K27me3 levels at genes regulated by retinoic acid signaling 

and DMRT1, which would result in decreased transcription.  

JARID2 has been shown to display temperature-sensitive alternate splicing resulting in the 

retention of introns in JARID2 transcripts in Pogona vitticeps, Alligator missipiensis, and 

Trachemys scripta (Deveson et al., 2017). Intron retention may alter the function of JARID2 or its 

interaction with PRC2. It is also possible that temperature influences expression of different 

isoforms of JARID2 and that these isoforms may cause differential expression of other genes in 

the snapping turtle.  

Conclusion 

TSD is an example of phenotypic plasticity in which many complex regulatory 

mechanisms control the fates of cells that eventually differentiate and contribute to the 

development of an ovary or testis. Many of these decisions rely on complex patterns of gene 

expression which may be partially established and maintained by epigenetic modifications. One 

such modification, H3K27me3, is likely to be responsible for the regulation of several genes 

involved in sex determination. JARID2, which is also implicated in TSD, plays a role in the 

establishment of H3K27me3 in a highly coordinated fashion and could potentially be a mechanism 

of establishing temperature-dependent patterns of gene expression required for gonad 

differentiation and sex determination.  

This chapter has explored the roles of temperature and JARID2 in temperature-dependent 

sex determination. We have summarized the findings of studies that investigate the relationships 

between the regulation of gene expression and the differentiation of gonadal cell types that underlie 
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the development of ovaries and testes. We have discussed the epigenetic regulation of gene 

expression by polycomb-mediated histone modification and its implications in genotypic and 

temperature-dependent sex determination. We propose a model by which JARID2 isoforms may 

differ in function and may regulate the expression of genes involved in sex determination by 

facilitating recruitment of PRC2 to the promoters of those genes. 

  



 22 

References 

Adhikari, A., & Davie, J. (2018). JARID2 and the PRC2 complex regulate skeletal muscle 
differentiation through regulation of canonical Wnt signaling. Epigenetics Chromatin, 
11(1), 46. doi:10.1186/s13072-018-0217-x 

Adhikari, A., Mainali, P., & Davie, J. K. (2019). JARID2 and the PRC2 complex regulates the cell 
cycle in skeletal muscle. J Biol Chem. doi:10.1074/jbc.RA119.010060 

Apostolou, E., Ferrari, F., Walsh, R. M., Bar-Nur, O., Stadtfeld, M., Cheloufi, S., . . . Hochedlinger, 
K. (2013). Genome-wide chromatin interactions of the Nanog locus in pluripotency, 
differentiation, and reprogramming. Cell Stem Cell, 12(6), 699-712. 
doi:10.1016/j.stem.2013.04.013 

Bakhshalizadeh, S., Amidi, F., Alleyassin, A., Soleimani, M., Shirazi, R., & Shabani Nashtaei, M. 
(2017). Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model 
of polycystic ovarian syndrome. Syst Biol Reprod Med, 63(3), 150-161. 
doi:10.1080/19396368.2017.1296046 

Bauer, M., Trupke, J., & Ringrose, L. (2016). The quest for mammalian Polycomb response 
elements: are we there yet? Chromosoma, 125(3), 471-496. doi:10.1007/s00412-015-0539-
4 

Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128(4), 
669-681. doi:10.1016/j.cell.2007.01.033 

Bowden, R. M., & Paitz, R. T. (2018). Temperature fluctuations and maternal estrogens as critical 
factors for understanding temperature-dependent sex determination in nature. J Exp Zool 
A Ecol Integr Physiol, 329(4-5), 177-184. doi:10.1002/jez.2183 

Bowles, J., Feng, C. W., Ineson, J., Miles, K., Spiller, C. M., Harley, V. R., . . . Koopman, P. 
(2018). Retinoic Acid Antagonizes Testis Development in Mice. Cell Rep, 24(5), 1330-
1341. doi:10.1016/j.celrep.2018.06.111 

Bowles, J., & Koopman, P. (2007). Retinoic acid, meiosis and germ cell fate in mammals. 
Development, 134(19), 3401-3411. doi:10.1242/dev.001107 

Britt, K. L., & Findlay, J. K. (2002). Estrogen actions in the ovary revisited. J Endocrinol, 175(2), 
269-276. doi:10.1677/joe.0.1750269 

Bull, J. J., Vogt, R. C., & Bulmer, M. G. (1982). Heritability of Sex Ratio in Turtles with 
Environmental Sex Determination. Evolution, 36(2), 333-341. doi:10.1111/j.1558-
5646.1982.tb05049.x 

Burton, A., Muller, J., Tu, S., Padilla-Longoria, P., Guccione, E., & Torres-Padilla, M. E. (2013). 
Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate 
in the mammalian embryo. Cell Rep, 5(3), 687-701. doi:10.1016/j.celrep.2013.09.044 

Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., . . . Zhang, Y. (2002). 
Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 
298(5595), 1039-1043. doi:10.1126/science.1076997 

Chen, S., Jiao, L., Shubbar, M., Yang, X., & Liu, X. (2018). Unique Structural Platforms of Suz12 
Dictate Distinct Classes of PRC2 for Chromatin Binding. Mol Cell, 69(5), 840-852 e845. 
doi:10.1016/j.molcel.2018.01.039 

Clark, A. M., Garland, K. K., & Russell, L. D. (2000). Desert hedgehog (Dhh) gene is required in 
the mouse testis for formation of adult-type Leydig cells and normal development of 
peritubular cells and seminiferous tubules. Biol Reprod, 63(6), 1825-1838. 
doi:10.1095/biolreprod63.6.1825 



 23 

Couse, J. F., & Korach, K. S. (1999). Estrogen receptor null mice: what have we learned and where 
will they lead us? Endocr Rev, 20(3), 358-417. doi:10.1210/edrv.20.3.0370 

Crews, D., Bergeron, J. M., Bull, J. J., Flores, D., Tousignant, A., Skipper, J. K., & Wibbels, T. 
(1994). Temperature-dependent sex determination in reptiles: proximate mechanisms, 
ultimate outcomes, and practical applications. Dev Genet, 15(3), 297-312. 
doi:10.1002/dvg.1020150310 

da Rocha, S. T., Boeva, V., Escamilla-Del-Arenal, M., Ancelin, K., Granier, C., Matias, N. R., . . 
. Heard, E. (2014). Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to 
the Inactive X Chromosome. Mol Cell, 53(2), 301-316. doi:10.1016/j.molcel.2014.01.002 

DeFalco, T., & Capel, B. (2009). Gonad morphogenesis in vertebrates: divergent means to a 
convergent end. Annu Rev Cell Dev Biol, 25, 457-482. 
doi:10.1146/annurev.cellbio.042308.13350 

Deveson, I. W., Holleley, C. E., Blackburn, J., Marshall Graves, J. A., Mattick, J. S., Waters, P. 
D., & Georges, A. (2017). Differential intron retention in Jumonji chromatin modifier 
genes is implicated in reptile temperature-dependent sex determination. Sci Adv, 3(6), 
e1700731. doi:10.1126/sciadv.1700731 

Endoh, M., Endo, T. A., Endoh, T., Isono, K., Sharif, J., Ohara, O., . . . Koseki, H. (2012). Histone 
H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of 
developmental genes to maintain ES cell identity. PLoS Genet, 8(7), e1002774. 
doi:10.1371/journal.pgen.1002774 

Estermann, M. A., Williams, S., Hirst, C. E., Roly, Z. Y., Serralbo, O., Adhikari, D., . . . Smith, C. 
A. (2020). Insights into Gonadal Sex Differentiation Provided by Single-Cell 
Transcriptomics in the Chicken Embryo. Cell Rep, 31(1), 107491. 
doi:10.1016/j.celrep.2020.03.055 

Ewert, A. M., Jackson, D. R., & Nelson, C. E. (1994). Patterns of Temperature-Dependent Sex 
Determination in Turtles. The Journal Of Experimental Zoology(270), 3-15.  

Finco, I., LaPensee, C. R., Krill, K. T., & Hammer, G. D. (2015). Hedgehog signaling and 
steroidogenesis. Annu Rev Physiol, 77, 105-129. doi:10.1146/annurev-physiol-061214-
111754 

Fleming, A., Wibbels, T., Skipper, J. K., & Crews, D. (1999). Developmental expression of 
steroidogenic factor 1 in a turtle with temperature-dependent sex determination. Gen Comp 
Endocrinol, 116(3), 336-346. doi:10.1006/gcen.1999.7360 

Ge, C., Ye, J., Weber, C., Sun, W., Zhang, H., Zhou, Y., . . . Capel, B. (2018). The histone 
demethylase KDM6B regulates temperature-dependent sex determination in a turtle 
species. Science, 360(6389), 645-648. doi:10.1126/science.aap8328 

Ge, C., Ye, J., Zhang, H., Zhang, Y., Sun, W., Sang, Y., . . . Qian, G. (2017). Dmrt1 induces the 
male pathway in a turtle species with temperature-dependent sex determination. 
Development, 144(12), 2222-2233. doi:10.1242/dev.152033 

Ge, R. S., Dong, Q., Sottas, C. M., Papadopoulos, V., Zirkin, B. R., & Hardy, M. P. (2006). In 
search of rat stem Leydig cells: identification, isolation, and lineage-specific development. 
Proc Natl Acad Sci U S A, 103(8), 2719-2724. doi:10.1073/pnas.0507692103 

Gillespie, R. F., & Gudas, L. J. (2007a). Retinoic acid receptor isotype specificity in F9 
teratocarcinoma stem cells results from the differential recruitment of coregulators to 
retinoic response elements. J Biol Chem, 282(46), 33421-33434. 
doi:10.1074/jbc.M704845200 



 24 

Gillespie, R. F., & Gudas, L. J. (2007b). Retinoid regulated association of transcriptional co-
regulators and the polycomb group protein SUZ12 with the retinoic acid response elements 
of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol, 372(2), 
298-316. doi:10.1016/j.jmb.2007.06.079 

Grijzenhout, A., Godwin, J., Koseki, H., Gdula, M. R., Szumska, D., McGouran, J. F., . . . Cooper, 
S. (2016). Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax 
phenotype in embryonic development and in ESCs. Development, 143(15), 2716-2723. 
doi:10.1242/dev.123935 

Hennig, L., & Derkacheva, M. (2009). Diversity of Polycomb group complexes in plants: same 
rules, different players? Trends Genet, 25(9), 414-423. doi:10.1016/j.tig.2009.07.002 

Hojfeldt, J. W., Laugesen, A., Willumsen, B. M., Damhofer, H., Hedehus, L., Tvardovskiy, A., . . 
. Helin, K. (2018). Accurate H3K27 methylation can be established de novo by SUZ12-
directed PRC2. Nat Struct Mol Biol, 25(3), 225-232. doi:10.1038/s41594-018-0036-6 

Jin, W., Riley, R. M., Wolfinger, R. D., White, K. P., Passador-Gurgel, G., & Gibson, G. (2001). 
The contributions of sex, genotype and age to transcriptional variance in Drosophila 
melanogaster. Nat Genet, 29(4), 389-395. doi:10.1038/ng766 

Kaneko, S., Bonasio, R., Saldana-Meyer, R., Yoshida, T., Son, J., Nishino, K., . . . Reinberg, D. 
(2014). Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to 
chromatin. Mol Cell, 53(2), 290-300. doi:10.1016/j.molcel.2013.11.012 

Karl, J., & Capel, B. (1998). Sertoli cells of the mouse testis originate from the coelomic 
epithelium. Dev Biol, 203(2), 323-333. doi:10.1006/dbio.1998.9068 

Kim, H., Kang, K., & Kim, J. (2009). AEBP2 as a potential targeting protein for Polycomb 
Repression Complex PRC2. Nucleic Acids Res, 37(9), 2940-2950. doi:10.1093/nar/gkp149 

Kim, Y., Kobayashi, A., Sekido, R., DiNapoli, L., Brennan, J., Chaboissier, M. C., . . . Capel, B. 
(2006). Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex 
determination. PLoS Biol, 4(6), e187. doi:10.1371/journal.pbio.0040187 

Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (2002). 
Histone methyltransferase activity associated with a human multiprotein complex 
containing the Enhancer of Zeste protein. Genes Dev, 16(22), 2893-2905. 
doi:10.1101/gad.1035902 

Lei, N., Hornbaker, K. I., Rice, D. A., Karpova, T., Agbor, V. A., & Heckert, L. L. (2007). Sex-
specific differences in mouse DMRT1 expression are both cell type- and stage-dependent 
during gonad development. Biol Reprod, 77(3), 466-475. 
doi:10.1095/biolreprod.106.058784 

Li, G., Margueron, R., Ku, M., Chambon, P., Bernstein, B. E., & Reinberg, D. (2010). Jarid2 and 
PRC2, partners in regulating gene expression. Genes Dev, 24(4), 368-380. 
doi:10.1101/gad.1886410 

Li, H., Liefke, R., Jiang, J., Kurland, J. V., Tian, W., Deng, P., . . . Wang, Z. (2017). Polycomb-
like proteins link the PRC2 complex to CpG islands. Nature, 549(7671), 287-291. 
doi:10.1038/nature23881 

Lin, Y. T., & Capel, B. (2015). Cell fate commitment during mammalian sex determination. Curr 
Opin Genet Dev, 32, 144-152. doi:10.1016/j.gde.2015.03.003 

Liu, C., Peng, J., Matzuk, M. M., & Yao, H. H. (2015). Lineage specification of ovarian theca cells 
requires multicellular interactions via oocyte and granulosa cells. Nat Commun, 6, 6934. 
doi:10.1038/ncomms7934 



 25 

Luo, X., Ikeda, Y., & Parker, K. L. (1994). A cell-specific nuclear receptor is essential for adrenal 
and gonadal development and sexual differentiation. Cell, 77(4), 481-490. 
doi:10.1016/0092-8674(94)90211-9 

Lynch, M., & Force, A. G. (2000). The Origin of Interspecific Genomic Incompatibility via Gene 
Duplication. Am Nat, 156(6), 590-605. doi:10.1086/316992 

Margueron, R., Justin, N., Ohno, K., Sharpe, M. L., Son, J., Drury, W. J., 3rd, . . . Gamblin, S. J. 
(2009). Role of the polycomb protein EED in the propagation of repressive histone marks. 
Nature, 461(7265), 762-767. doi:10.1038/nature08398 

Margueron, R., Li, G., Sarma, K., Blais, A., Zavadil, J., Woodcock, C. L., . . . Reinberg, D. (2008). 
Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell, 
32(4), 503-518. doi:10.1016/j.molcel.2008.11.004 

Margueron, R., & Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature, 
469(7330), 343-349. doi:10.1038/nature09784 

Marin, I., & Baker, B. S. (1998). The evolutionary dynamics of sex determination. Science, 
281(5385), 1990-1994. doi:10.1126/science.281.5385.1990 

Matson, C. K., Murphy, M. W., Sarver, A. L., Griswold, M. D., Bardwell, V. J., & Zarkower, D. 
(2011). DMRT1 prevents female reprogramming in the postnatal mammalian testis. 
Nature, 476(7358), 101-104. doi:10.1038/nature10239 

Matsumoto, Y., Hannigan, B., & Crews, D. (2016). Temperature Shift Alters DNA Methylation 
and Histone Modification Patterns in Gonadal Aromatase (cyp19a1) Gene in Species with 
Temperature-Dependent Sex Determination. PLoS One, 11(11), e0167362. 
doi:10.1371/journal.pone.0167362 

Minkina, A., Matson, C. K., Lindeman, R. E., Ghyselinck, N. B., Bardwell, V. J., & Zarkower, D. 
(2014). DMRT1 protects male gonadal cells from retinoid-dependent sexual 
transdifferentiation. Dev Cell, 29(5), 511-520. doi:10.1016/j.devcel.2014.04.017 

Mohn, F., Weber, M., Rebhan, M., Roloff, T. C., Richter, J., Stadler, M. B., . . . Schubeler, D. 
(2008). Lineage-specific polycomb targets and de novo DNA methylation define 
restriction and potential of neuronal progenitors. Mol Cell, 30(6), 755-766. 
doi:10.1016/j.molcel.2008.05.007 

Muller. (1942). Isolating mechanisms, evolution, and temperature. Biol. Symp., 6, 71-125.  
Muller, J., & Kassis, J. A. (2006). Polycomb response elements and targeting of Polycomb group 

proteins in Drosophila. Curr Opin Genet Dev, 16(5), 476-484. 
doi:10.1016/j.gde.2006.08.005 

Munger, S. C., Natarajan, A., Looger, L. L., Ohler, U., & Capel, B. (2013). Fine time course 
expression analysis identifies cascades of activation and repression and maps a putative 
regulator of mammalian sex determination. PLoS Genet, 9(7), e1003630. 
doi:10.1371/journal.pgen.1003630 

Nicol, B., Grimm, S. A., Chalmel, F., Lecluze, E., Pannetier, M., Pailhoux, E., . . . Yao, H. H. 
(2019). RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. 
Nat Commun, 10(1), 5116. doi:10.1038/s41467-019-13060-1 

Oksuz, O., Narendra, V., Lee, C. H., Descostes, N., LeRoy, G., Raviram, R., . . . Reinberg, D. 
(2018). Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Mol Cell, 
70(6), 1149-1162 e1145. doi:10.1016/j.molcel.2018.05.023 

Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., . . . Sakaguchi, S. 
(2007). Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. 
Nature, 446(7136), 685-689. doi:10.1038/nature05673 



 26 

Orr, H. A. (1996). Dobzhansky, Bateson, and the genetics of speciation. Genetics, 144(4), 1331-
1335. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8978022 

Peng, J. C., Valouev, A., Swigut, T., Zhang, J., Zhao, Y., Sidow, A., & Wysocka, J. (2009). 
Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy 
in pluripotent cells. Cell, 139(7), 1290-1302. doi:10.1016/j.cell.2009.12.002 

Pieau, C., & Dorizzi, M. (2004). Oestrogens and temperature-dependent sex determination in 
reptiles: all is in the gonads. J Endocrinol, 181(3), 367-377. doi:10.1677/joe.0.1810367 

Pitetti, J. L., Calvel, P., Romero, Y., Conne, B., Truong, V., Papaioannou, M. D., . . . Nef, S. 
(2013). Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation 
and adrenal development in mice. PLoS Genet, 9(1), e1003160. 
doi:10.1371/journal.pgen.1003160 

Ramsey, M., & Crews, D. (2009). Steroid signaling and temperature-dependent sex determination-
Reviewing the evidence for early action of estrogen during ovarian determination in turtles. 
Semin Cell Dev Biol, 20(3), 283-292. doi:10.1016/j.semcdb.2008.10.004 

Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D., & Hartl, D. L. (2003). Sex-dependent gene 
expression and evolution of the Drosophila transcriptome. Science, 300(5626), 1742-1745. 
doi:10.1126/science.1085881 

Raverdeau, M., Gely-Pernot, A., Feret, B., Dennefeld, C., Benoit, G., Davidson, I., . . . Ghyselinck, 
N. B. (2012). Retinoic acid induces Sertoli cell paracrine signals for spermatogonia 
differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci U 
S A, 109(41), 16582-16587. doi:10.1073/pnas.1214936109 

Rennert, J., Coffman, J. A., Mushegian, A. R., & Robertson, A. J. (2003). The evolution of Runx 
genes I. A comparative study of sequences from phylogenetically diverse model organisms. 
BMC Evol Biol, 3, 4. doi:10.1186/1471-2148-3-4 

Rhen, T., Fagerlie, R., Schroeder, A., Crossley, D. A., 2nd, & Lang, J. W. (2015). Molecular and 
morphological differentiation of testes and ovaries in relation to the thermosensitive period 
of gonad development in the snapping turtle, Chelydra serpentina. Differentiation, 89(1-
2), 31-41. doi:10.1016/j.diff.2014.12.007 

Rhen, T., & Lang, J. W. (1994). Temperature-dependent sex determination in the snapping turtle: 
manipulation of the embryonic sex steroid environment. Gen Comp Endocrinol, 96(2), 
243-254. doi:10.1006/gcen.1994.1179 

Rhen, T., & Lang, J. W. (1998). Among-Family Variation for Environmental Sex Determination 
in Reptiles. Evolution, 52(5), 1514-1520. doi:10.1111/j.1558-5646.1998.tb02034.x 

Rhen, T., Metzger, K., Schroeder, A., & Woodward, R. (2007). Expression of putative sex-
determining genes during the thermosensitive period of gonad development in the snapping 
turtle, Chelydra serpentina. Sex Dev, 1(4), 255-270. doi:10.1159/000104775 

Rhen, T., & Schroeder, A. (2010). Molecular mechanisms of sex determination in reptiles. Sex 
Dev, 4(1-2), 16-28. doi:10.1159/000282495 

Rhen, T., Schroeder, A., Sakata, J. T., Huang, V., & Crews, D. (2011). Segregating variation for 
temperature-dependent sex determination in a lizard. Heredity (Edinb), 106(4), 649-660. 
doi:10.1038/hdy.2010.102 

Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., . . . Chang, H. Y. 
(2007). Functional demarcation of active and silent chromatin domains in human HOX loci 
by noncoding RNAs. Cell, 129(7), 1311-1323. doi:10.1016/j.cell.2007.05.022 



 27 

Sanulli, S., Justin, N., Teissandier, A., Ancelin, K., Portoso, M., Caron, M., . . . Margueron, R. 
(2015). Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition 
during Cell Differentiation. Mol Cell, 57(5), 769-783. doi:10.1016/j.molcel.2014.12.020 

Sarma, K., Cifuentes-Rojas, C., Ergun, A., Del Rosario, A., Jeon, Y., White, F., . . . Lee, J. T. 
(2014). ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell, 159(4), 
869-883. doi:10.1016/j.cell.2014.10.019 

Shaver, S., Casas-Mollano, J. A., Cerny, R. L., & Cerutti, H. (2010). Origin of the polycomb 
repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga 
Chlamydomonas. Epigenetics, 5(4), 301-312. doi:10.4161/epi.5.4.11608 

Shoemaker, C., Ramsey, M., Queen, J., & Crews, D. (2007). Expression of Sox9, Mis, and Dmrt1 
in the gonad of a species with temperature-dependent sex determination. Dev Dyn, 236(4), 
1055-1063. doi:10.1002/dvdy.21096 

Shoemaker, C. M., & Crews, D. (2009). Analyzing the coordinated gene network underlying 
temperature-dependent sex determination in reptiles. Semin Cell Dev Biol, 20(3), 293-303. 
doi:10.1016/j.semcdb.2008.10.010 

Shoemaker, C. M., Queen, J., & Crews, D. (2007). Response of candidate sex-determining genes 
to changes in temperature reveals their involvement in the molecular network underlying 
temperature-dependent sex determination. Mol Endocrinol, 21(11), 2750-2763. 
doi:10.1210/me.2007-0263 

Slifer, E. H. (1942). A mutant stock of Drosophila with extra sex combs. The Journal Of 
Experimental Zoology, 90, 31-40.  

Smith, C. A., McClive, P. J., Western, P. S., Reed, K. J., & Sinclair, A. H. (1999). Conservation 
of a sex-determining gene. Nature, 402(6762), 601-602. doi:10.1038/45130 

Stevant, I., Kuhne, F., Greenfield, A., Chaboissier, M. C., Dermitzakis, E. T., & Nef, S. (2019). 
Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic 
Cells Using Single-Cell Transcriptomics. Cell Rep, 26(12), 3272-3283 e3273. 
doi:10.1016/j.celrep.2019.02.069 

Stevant, I., Neirijnck, Y., Borel, C., Escoffier, J., Smith, L. B., Antonarakis, S. E., . . . Nef, S. 
(2018). Deciphering Cell Lineage Specification during Male Sex Determination with 
Single-Cell RNA Sequencing. Cell Rep, 22(6), 1589-1599. 
doi:10.1016/j.celrep.2018.01.043 

Szutorisz, H., Canzonetta, C., Georgiou, A., Chow, C. M., Tora, L., & Dillon, N. (2005). 
Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at 
the embryonic stem cell stage. Mol Cell Biol, 25(5), 1804-1820. 
doi:10.1128/MCB.25.5.1804-1820.2005 

Tevosian, S. G., & Manuylov, N. L. (2008). To beta or not to beta: canonical beta-catenin signaling 
pathway and ovarian development. Dev Dyn, 237(12), 3672-3680. 
doi:10.1002/dvdy.21784 

Torres Maldonado, L. C., Landa Piedra, A., Moreno Mendoza, N., Marmolejo Valencia, A., Meza 
Martinez, A., & Merchant Larios, H. (2002). Expression profiles of Dax1, Dmrt1, and Sox9 
during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea. 
Gen Comp Endocrinol, 129(1), 20-26. doi:10.1016/s0016-6480(02)00511-7 

Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T., & Zernicka-Goetz, M. (2007). Histone 
arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445(7124), 
214-218. doi:10.1038/nature05458 



 28 

Uhlenhaut, N. H., Jakob, S., Anlag, K., Eisenberger, T., Sekido, R., Kress, J., . . . Treier, M. (2009). 
Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 139(6), 
1130-1142. doi:10.1016/j.cell.2009.11.021 

Viets, B. E. E., M.A.. Talent, L.G.. Craig E Nelson, C.E.. (1994). Sex-Determining Mechanisms 
in Squamate Reptiles. The Journal Of Experimental Zoology(270), 45-56.  

Western, P. S., Harry, J. L., Marshall Graves, J. A., & Sinclair, A. H. (2000). Temperature-
dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 
during gonadogenesis. Gene, 241(2), 223-232. doi:10.1016/s0378-1119(99)00466-7 

Whitcomb, S. J., Basu, A., Allis, C. D., & Bernstein, E. (2007). Polycomb Group proteins: an 
evolutionary perspective. Trends Genet, 23(10), 494-502. doi:10.1016/j.tig.2007.08.006 

White, R. B., & Thomas, P. (1992). Adrenal-kidney and gonadal steroidogenesis during sexual 
differentiation of a reptile with temperature-dependent sex determination. Gen Comp 
Endocrinol, 88(1), 10-19. doi:10.1016/0016-6480(92)90189-q 

Wijgerde, M., Ooms, M., Hoogerbrugge, J. W., & Grootegoed, J. A. (2005). Hedgehog signaling 
in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target 
gene expression in developing theca cells. Endocrinology, 146(8), 3558-3566. 
doi:10.1210/en.2005-0311 

Wildey, G. M., & Howe, P. H. (2009). Runx1 is a co-activator with FOXO3 to mediate 
transforming growth factor beta (TGFbeta)-induced Bim transcription in hepatic cells. J 
Biol Chem, 284(30), 20227-20239. doi:10.1074/jbc.M109.027201 

Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J., & Kingston, R. E. (2010). A region of the 
human HOXD cluster that confers polycomb-group responsiveness. Cell, 140(1), 99-110. 
doi:10.1016/j.cell.2009.12.022 

Xu, C. R., Cole, P. A., Meyers, D. J., Kormish, J., Dent, S., & Zaret, K. S. (2011). Chromatin 
"prepattern" and histone modifiers in a fate choice for liver and pancreas. Science, 
332(6032), 963-966. doi:10.1126/science.1202845 

Yao, H. H., Whoriskey, W., & Capel, B. (2002). Desert Hedgehog/Patched 1 signaling specifies 
fetal Leydig cell fate in testis organogenesis. Genes Dev, 16(11), 1433-1440. 
doi:10.1101/gad.981202 

Yarmus, M., Woolf, E., Bernstein, Y., Fainaru, O., Negreanu, V., Levanon, D., & Groner, Y. 
(2006). Groucho/transducin-like Enhancer-of-split (TLE)-dependent and -independent 
transcriptional regulation by Runx3. Proc Natl Acad Sci U S A, 103(19), 7384-7389. 
doi:10.1073/pnas.0602470103 

Zernicka-Goetz, M., Morris, S. A., & Bruce, A. W. (2009). Making a firm decision: multifaceted 
regulation of cell fate in the early mouse embryo. Nat Rev Genet, 10(7), 467-477. 
doi:10.1038/nrg2564 
 



 29 

CHAPTER II 

JARID2 INTRON-RETENTION REGULATES GENE EXPRESSION IN TSD 

INTRODUCTION 

Temperature-dependent sex determination (TSD) is a developmental phenomenon in 

which the bipotential gonads are driven by temperature towards an ovarian or testicular fate. In its 

most basic sense, the fate of the bipotential gonad relies on cell fate decisions of gonadal progenitor 

cells to first become supporting or steroidogenic lineages. Supporting cells then develop into 

Sertoli or granulosa cells, while steroidogenic progenitors become Leydig or theca cells. These 

cell types ultimately establish the morphology and functionality of the testis or ovary. Cell fate 

decisions are governed by complex gene regulatory networks that are often triggered by a 

particular signal. In mammals, this signal is the expression of sex determining region Y (SRY), a 

gene that confers testicular fate. In many turtles, including the common snapping turtle Chelydra 

serpentina, and all crocodilians, this signal is the ambient temperature of the embryo during a 

precise window of development known as the temperature sensitive period (TSP).  

In species with TSD, the temperature of embryos during the TSP is capable of yielding 

predictable offspring sex ratios. In the case of the snapping turtle, females are produced at the 

extremes of the viable range of incubation temperatures and males are produced at intermediate 

temperatures. Temperatures at which 100 percent of offspring develop testes are known as male-

producing temperatures (MPTs). Conversely, temperatures that induce ovarian development in 

100 percent of offspring are known as female-producing temperatures (FPTs). The exact 

temperatures for masculinization or feminization of embryos depends on the latitude of the 

population of turtles being studied (Ewert, Lang, & Nelson, 2005). In this study, we have used 

snapping turtles from a northern population in which an intermediate temperature of 26.5° C 
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(MPT) produces exclusively males and a high temperature of 31° C (FPT) produces exclusively 

females (Rhen & Lang, 1998). 

In TSD, a temperature signal is responsible for establishing highly contrasting gene 

expression profiles that result in differentiation of supporting cells and steroidogenic cells, and 

ultimately the differentiation of the bipotential gonad into an ovary or testis (Radhakrishnan, 

Literman, Neuwald, Severin, & Valenzuela, 2017; Rhen, Metzger, Schroeder, & Woodward, 2007; 

Yatsu et al., 2016). Much of the work in TSD species has focused on genes that are known to play 

conserved roles in gonadogenesis and sex determination in vertebrates, including FOXL2, 

DMRT1, SOX9, CYP19A1, and AMH (Morrish & Sinclair, 2002; Rhen et al., 2007; Rhen & 

Schroeder, 2010; Shoemaker, Ramsey, Queen, & Crews, 2007). While precise regulation of sex-

determining genes is required to commit the bipotential gonad to a particular fate, the exact 

mechanism by which temperature is transduced into a signal that regulates these genes has 

remained elusive.  

TSD is an example of developmental plasticity in which the environment has a major effect 

on phenotype. The sexual fate of an organism with TSD primarily relies on their response to an 

environmental stimulus, suggesting that differences in gene expression and phenotype are the 

result of epigenetic gene regulation. There are many epigenetic mechanisms for regulation of gene 

expression including DNA methylation, histone post-translational modifications, and regulation 

by non-coding RNA molecules. Though epigenetic regulators work simultaneously to regulate 

gene expression, certain epigenetic modifications are sufficient to explain differences in gene 

expression. 
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  jumonji, AT rich interactive domain 2 (JARID2) is a candidate gene that may play such a 

role in TSD. JARID2 regulates gene expression during development in mouse and fly and has been 

identified as an accessory protein to Polycomb Repressive Complex 2 (PRC2) (Landeira & Fisher, 

2011; G. Li et al., 2010; Peng et al., 2009; Sasai, Kato, Kimura, Takeuchi, & Yamaguchi, 2007). 

PRC2 is responsible for the deposition and maintenance of trimethylation of Histone H3 Lysine 

27 (H3K27me3) which is associated with transcriptional repression, though none of the core 

components of PRC2 are capable of recognizing a specific DNA sequence (G. Li et al., 2010). 

JARID2 functions to recruit PRC2 to specific loci, which results in the repression of key 

developmental genes (Margueron & Reinberg, 2011; Oksuz et al., 2018). Because JARID2 and 

PRC2 play major roles in regulating gene expression, the hypothesis that Jarid2 plays a role in the 

thermal response during TSD is plausible. 

Indeed, JARID2 was down-regulated by a shift from FPT to MPT in American alligators 

Alligator missippiensis, suggesting that higher expression of JARID2 may occur at temperatures 

that produce females whether those temperatures are warmer or cooler (Yatsu et al., 2016). 

Instances of differential expression and intron retention in JARID2 have also been observed during 

sex determination in the Australian bearded dragon (Pogona vitticeps), the American alligator 

(Alligator missippiensis), and the red-eared slider turtle (Trachemys scripta) (Deveson et al., 

2017). Differential intron retention is an important regulatory mechanism that may result in 

reduced protein expression if the transcript is degraded or retained in the nucleus (Wong, Au, 

Ritchie, & Rasko, 2016). It is also possible that intron retention creates messages encoding 

different protein isoforms with novel functions. 

In this study, we describe expression patterns of JARID2 in bipotential gonads of the 

common snapping turtle, Chelydra serpentina, during TSD. We also use long-read direct cDNA 
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sequencing (i.e., Nanopore technology) to identify and describe three distinct isoforms of JARID2 

that arise from intron retention during mRNA processing. We observed that JARID2 expression 

increased dramatically in bipotential gonads of snapping turtles following a shift from a MPT 

(26.5°C) to a FPT (31°C) during the TSP. In addition to exhibiting temperature-sensitive 

expression levels, our data demonstrate that JARID2 mRNA molecules are alternatively spliced in 

a temperature-dependent manner. 

The molecular mechanisms that govern TSD in reptiles have remained elusive for decades 

for a variety of reasons. One major limitation has been a lack of an appropriate system to perform 

functional studies of genes via overexpression or RNA interference-mediated knockdown. Thus, 

a major goal of this study was to develop and validate an in vitro model for manipulation of gene 

expression in embryonic turtle cells during the thermosensitive period for sex determination. A 

second goal of this study was to investigate the function of different JARID2 isoforms by 

overexpressing them in primary culture of gonadal cells isolated from embryos during the TSP. 

Here we describe the effects of temperature on transcriptome-wide patterns of gene expression in 

dissociated primary gonad cell culture and the effects of overexpression of all three JARID2 

isoforms in this system. 

MATERIALS AND METHODS 

Nanopore Direct cDNA Sequencing 

Reliable detection of alternative splicing events in long multi-exonic transcripts is 

complicated when using short-read sequencing technology. We therefore used Nanopore direct 

cDNA sequencing to detect alternatively spliced transcripts and quantify gene expression during 

snapping turtle TSD. We sampled gonads from snapping turtle embryos during a thermal shift 

experiment that allows us to investigate the effects of temperature on the transcriptome of 
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bipotential gonads during the TSP. We incubated snapping turtle eggs at a male-producing 

temperature (MPT) of 26.5oC until embryos reached stage 17 at which point eggs either remained 

at the MPT or were shifted to a female-producing temperature (FPT) of 31oC. We collected 

embryonic gonads 24 hours and 48 hours after the start of the temperature shift. We pooled 20 

gonad pairs per sample balanced across 4 clutches and extracted total RNA using 1 ml of TRIzol 

Reagent (Invitrogen; catalog number:15596026). We then sequenced mRNA-enriched cDNA 

libraries on a GridION instrument according to the Nanopore direct cDNA sequencing protocol.  

 We generated an average of 1.6 million reads per library. The resulting libraries were 

demultiplexed and trimmed with Porechop (v0.2.4, https://github.com/rrwick/Porechop) and 

were aligned to the C. serpentina genome with Minimap2 (H. Li, 2018). Gene-wise read counts 

were obtained with featureCounts (v1.6.4) in long read mode for differential expression analysis 

(Liao, Smyth, & Shi, 2014). Transcript variants/isoforms were predicted and isoform-wise read 

counts were obtained with FLAIR (Tang et al., 2020). We performed differential gene expression 

analysis using DESeq2 between temperature treatments (Love, Huber, & Anders, 2014). We also 

performed differential isoform expression analysis (DESeq2) and differential transcript usage 

analysis (FLAIR, diff_iso_usage.py). Multiple testing corrections for differential expression 

analysis and differential transcript usage analysis were performed using the Benjamini-Hochberg 

method.  

Quantification of JARID2 Splicing with qRT-PCR 

We further investigated the temperature-dependent splicing of JARID2 by performing 

quantitative real-time PCR (qRT-PCR) to quantify levels of intron retention. We designed primers 

across the exon/exon and exon/intron boundaries that would allow us to measure the rates at which 

introns are retained in JARID2 transcripts. We extracted total RNA from 12 samples consisting of 
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embryonic gonads incubated at constant MPT or shifted to FPT and hatchling testes and ovaries 

at 30-days of age (n=3). For each embryonic sample we pooled the gonads from two embryos. 

Each hatchling sample consisted of RNA from a single pair of gonads. RNA extraction was 

performed with the PicoPure RNA Isolation Kit (Life Technologies; catalog number: KIT0204) 

with an on-column DNAse I treatment to degrade residual DNA. Purified total RNA was screened 

for genomic DNA contamination via qPCR prior to cDNA synthesis. We observed no 

amplification from RNA, demonstrating that RNA samples were free of genomic DNA. Pure RNA 

(142 ng/sample) was then reverse transcribed using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems; catalog number 4368814) with Oligo (dT) priming. We 

then performed qPCR to quantify the rates of intron retention between incubation temperatures 

during TSD as well as between sexes of hatchling turtles. We generated standard curves for each 

primer pair to calculate absolute abundance of each exon/exon and exon/intron boundary.  

JARID2 Structure and Function 

We used InterProScan (v5.36-75.0) to analyze the predicted amino acid sequences from 

the JARID2 isoforms to identify the functional domains present in each isoform (Jones et al., 

2014). To understand the evolution of JARID2 in vertebrates and species with TSD, we performed 

proteome-wide phylogenetic analysis based on multiple-sequence alignment and resolved gene 

trees with OrthoFinder (Emms & Kelly, 2019). We did not include the truncated isoforms of 

JARID2 in this analysis. We analyzed the orthogroup containing the canonical protein for JARID2 

as well as orthologs in several turtles, birds, mammals, and crocodilians. 

Molecular Cloning of JARID2 

 We cloned all three JARID2 isoforms into expression vectors to produce JARID2-mCherry 

fusion proteins that could be used to study the subcellular localization and the function of snapping 



 35 

turtle JARID2. Primers were designed to amplify each isoform beginning at the start codon and 

ending at the last amino acid, but not including the stop codon for each isoform (Table 1). We 

constructed mRNA-enriched cDNA libraries from pooled RNA extracted from embryonic gonads 

at various stages of the TSP (Stages 17, 18, 19, and 20) incubated at MPT and FPT. We then 

amplified and purified cDNA for each JARID2 isoform and cloned them into pEF1alpha-N1-

mCherry plasmids (Takara Bio; catalog number: 631969) to create JARID2-mCherry fusion 

proteins driven by the human elongation factor 1 alpha (EF1a) promoter. Prior transient 

transfection experiments with this vector shows that this promoter drives very high expression of 

the mCherry transcript and protein in snapping turtle gonadal cells. We validated the sequence of 

each JARID2-mCherry isoform fusion gene by Sanger sequencing. Sequencing reactions were 

prepared with the BrightDye Terminator Cycle Sequencing Kit (MCLAB; catalog number BDT3-

100) using 300 ng of plasmid as template. We trimmed the resulting reads for quality and used 

CLC Genomics Workbench (Version 11.0; CLC bio, Cambridge, MA) to perform a multiple 

sequence alignment and determine consensus sequences for each isoform. 

Fluorescence Microscopy 

 We analyzed the localization of fluorescently tagged JARID2 isoforms in primary cultures 

of snapping turtle ovarian cells. We euthanized hatchling turtles (<1 year old) and dissected ovaries 

under sterile conditions. We minced the gonads and dissociated tissue in 1% Trypsin-EDTA 

(Gibco; catalog number 15090046) at 30°C until a single cell suspension was achieved. We then 

seeded cells onto a glass coverslip and incubated cells in Leibovitz medium (L-15, no phenol red) 

(Gibco; catalog number 21083027) at 30°C for 48 hours. Cells in different wells were transfected 

with plasmid DNA containing a gene encoding one of three predicted isoforms of the JARID2 

protein in-frame with the mCherry fluorescent protein. The isoforms of the JARID2 protein 
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(described in detail below) are denoted by the predicted amino acid length of the resulting protein. 

We transfected each well with either the mCherry plasmid (control), the JARID2-1231-mCherry 

fusion plasmid, the JARID2-1077-mCherry fusion plasmid, or JARID2-318-mCherry fusion 

plasmid. Following a five-day incubation at 30°C, cells were labeled with Tubulin Tracker Green 

(Invitrogen; catalog number: T34075), NucRed Live 647 (Invitrogen; catalog number: R37106) 

and imaged on a Zeiss 510 META Laser Scanning Microscope. Tubulin Tracker Green is a cell-

permeant tubulin stain with excitation and emission maxima at 494nm and 522nm, respectively. 

NucRed Live 647 is a cell-permeant DNA stain suitable for live-cell imaging with excitation and 

emission maxima at 638nm and 686nm, respectively. mCherry is a bright, commercially available 

fluorescent protein with excitation and emission maxima at 587nm and 610nm, respectively. To 

visualize mCherry, we used a Helium-Neon laser at 543nm for excitation with main dichroic HFT 

UV/488/543/633, secondary dichroic NFT 545, and a band-pass 585-615nm emission filter. To 

visualize NucRed Live 647, we used a Helium-Neon laser at 633nm for excitation with main 

dichroic HFT UV/488/543/633, secondary dichroic NFT 545, and a long-pass 650nm emission 

filter. To visualize Tubulin Tracker Green, we used an Argon laser at 488nm for excitation with 

main dichroic HFT UV/488/543/633, secondary dichroic NFT 545, and a band-pass 505-550nm 

emission filter. We verified that the fluorophores could be clearly distinguished in this 

configuration by conducting preliminary experiments in which images were captured of cells 

without fluorophores and cells with all combinations of fluorophores and assessed for background 

fluorescence and channel bleed-through.  

In vitro Overexpression of JARID2 isoforms 

 We collected snapping turtle eggs from three nests in northern Minnesota with Department 

of Natural Resources special permit number 29256. We processed eggs, recorded egg mass and 
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diameter, and incubated eggs in moist vermiculite at MPT until Stage 17 (nearing the end of the 

TSP) (Figure 5A) as previously described (Rhen et al., 2007). We euthanized embryos via rapid 

decapitation and microdissected bipotential gonads from the underlying adrenal-kidney tissue. We 

pooled 8 gonads per sample and dissociated gonads in 1% Trypsin-EDTA at room temperature, 

until a single-cell suspension was achieved (roughly 15 minutes). Cells were centrifuged at 125 x 

g for 10 minutes, supernatant was removed, and cells were resuspended in 600 ml of L-15 media 

supplemented with 10% FBS and Antibiotic Antimycotic Solution (Sigma; catalog number: 

A5955). Dissociated cells were seeded in separate wells of 24-well plates in 600 ml of L-15 media 

and incubated at MPT for 48 hours to allow cells to adhere and begin proliferating. After this initial 

incubation, we separated samples into experimental groups and transfected cells with control 

mCherry plasmid or JARID2-mCherry fusion plasmid using Lipofectamine 3000 Transfection 

Reagent (Invitrogen; catalog number: L3000001) according the manufacturer’s instructions. Five 

experimental transfection groups included vehicle control (Lipofectamine reagents, no DNA), 

mCherry (transfected with plasmid expressing only mCherry fluorescent protein), or one of three 

JARID2-mCherry isoforms (transfected with plasmid containing each JARID2 isoform). Cells in 

each transfection group were incubated at MPT or FPT for a fully factorial design. After 5 days, 

we analyzed confluency and transfection efficiency via brightfield and fluorescence microscopy 

and collected cells for RNA extraction. Cells were collected by removing media and gently 

washing once with 500 �l L-15, followed by a 3-minute incubation in 0.25% Trypsin-EDTA/PBS, 

after which cells were sufficiently detached from the well surface. Suspended cells were then 

centrifuged for 5 minutes at 500 x g, the supernatant was removed, and the cells were resuspended 

in PicoPure extraction buffer. RNA was extracted with the PicoPure RNA Isolation Kit (Life 

Technologies; catalog number: KIT0204) and subjected to on-column DNase I treatment to digest 



 38 

genomic DNA and plasmid DNA. RNA quality was assessed by Bioanalyzer and all samples had 

a RIN above 8.7. mRNA-enriched libraries were prepared with the Illumina TruSeq paired-end 

stranded mRNA library preparation kit from 400 ng of total RNA. The resulting libraries were 

sequenced for 150 cycles on a NovaSeq6000 instrument. The sequencing data was trimmed for 

quality and adapter content using Trimmomatic and processed libraries were aligned to the C. 

serpentina genome using HISAT2 (Bolger, Lohse, & Usadel, 2014; Das et al., 2020; Kim, Paggi, 

Park, Bennett, & Salzberg, 2019). Gene-wise counts were obtained using featureCounts in paired-

end mode (Liao et al., 2014).  

 We sequenced 32 samples, 16 at FPT and 15 at MPT. At each temperature, each group 

consisted of 3 samples, with the exception of the JARID2-1231 group which had 4 samples. One 

sample, an mCherry control at MPT, yielded a low number of reads and poor alignment rate and 

was excluded from subsequent analyses. The final number of samples is indicated in (Figure 5C). 

Expression Data Analysis 

We performed differential expression analysis using a combinatorial approach with three 

well-known differential expression softwares, DESeq2, edgeR, and limma, to identify genes that 

display expression differences between treatment groups (Love et al., 2014; Ritchie et al., 2015; 

Robinson, McCarthy, & Smyth, 2010). To ensure that changes in gene expression were the result 

of JARID2 overexpression and not the mCherry protein, we first compared cells transfected with 

the mCherry plasmid and vehicle treated groups with DESeq2. We identified 0 significant genes 

(Benjamini-Hochberg adjusted p-value < 0.05), suggesting that the mCherry-containing plasmid 

had minimal effects on gene expression in turtle cells. We therefore combined the mCherry 

transfected group and the vehicle-treated group into a single control for subsequent analyses. To 

ensure that the overexpression was sufficient, we aligned the reads to the mCherry coding sequence 
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and quantified mCherry between groups (Figure 5D). We then performed comparisons between 

incubation temperatures, plasmid transfection groups (control and JARID2 isoforms), and tested 

for an interaction between temperature and plasmid. We identified a list of genes that were 

differentially expressed with a raw p-value < 0.01 using all three programs (i.e., the results were 

robust to statistical model used by the software). Genes in this list were further analyzed with a 

two-way ANOVA using the FPKM data for each gene. Genes with a p-value < 0.05 for 

temperature, plasmid transfection, and/or the temperature by plasmid interaction from the two-

way ANOVA were called significantly differentially expressed. 

 We performed Gene Ontology (GO) enrichment analysis for genes that were differentially 

expressed using GOATOOLS (find_enrichment.py) and a custom snapping turtle GO annotation 

(Das et al., 2020; Klopfenstein et al., 2018). GOATOOLS offers advantages over other commonly 

used software, because it allows for efficient parsing of the GO hierarchy. This becomes especially 

useful in non-model organisms, where it is common for researchers to use a list of gene symbols 

from their species, adopt GO terms annotated to genes with the same symbol in another species, 

and analyze these annotations against a background set from the other species. We also performed 

de novo motif discovery and enrichment analysis with HOMER2 using proximal promoters (as 

defined as 1kb upstream TSS) from differentially expressed genes (Heinz et al., 2010). Sequences 

for proximal promoters were acquired using the C. serpentina genome annotation and gfftobed 

(https://github.com/jacobbierstedt/gfftobed). We used HOMER2 to compare promoters of focal 

genes to promoter regions of all other snapping turtle protein-coding genes to identify putative 

transcription factor binding sites that are enriched in the focal genes. 
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Figure 1: JARID2 occurs in three distinct transcript variants during the TSP 
A. Genomic tracks showing intron/exon structure of the JARID2 gene (Blue), tracks showing the 
intron/exon structure of the JARID2 transcripts (Green) with retained introns (Red), and splice-
aware total read coverage of Nanopore reads at MPT and FPT. B. Mean expression bar plots for 
each isoform based on full-length Nanopore cDNA reads (error bars indicate mean standard error).  
C. Stacked bar plot showing each isoform’s proportion of total JARID2 transcription. D. 
Schematic diagram showing intron retention of Intron 15 and Intron 6 (not to scale).  
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Figure 1: JARID2 occurs in three distinct transcript variants during the TSP
A. Genomic tracks showing intron/exon structure of the JARID2 gene (Blue), tracks 
showing the intron/exon structure of the JARID2 transcripts (Green) with retained 
introns (Red), and splice-aware total read coverage of Nanopore reads at MPT and 
FPT. B. Mean expression bar plots for each isoform based on full-length Nanopore 
cDNA reads (error bars indicate mean standard error).  C. Stacked bar plot showing 
each isoform’s proportion of total JARID2 transcription. D. Schematic diagram 
showing intron retention of Intron 15 and Intron 6 (not to scale). 
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RESULTS 

JARID2 mRNA is Spliced into Three Main Transcripts 

The full transcriptome-wide analysis of long-read data will be published in a later paper. 

Here we take advantage of long-read sequencing data to directly identify and quantify expression 

of novel JARID2 isoforms. We identified three JARID2 isoforms that had full-length read support 

(Figure 1A-D). When analyzing read counts at the gene level, JARID2 was differentially expressed 

between temperatures with higher expression at the FPT than at the MPT (Benjamini-Hochberg 

adjusted p-value < 1e-6). However, there were also significant differences between temperatures 

at the isoform level. The first isoform of JARID2 contains 18 exons and would be translated into 

a protein comprised of 1231 residues, which we refer to as JARID2-1231 (Figure 1A). The 

JARID2-1231 isoform was differentially expressed with significantly higher expression at the FPT 

than at the MPT (Figure 1B). A second isoform of JARID2 retains intron 15 near the 3’ end of the 

transcript (Figure 1A,D). Intron 15 contains a premature stop codon and this transcript would be 

translated into a protein containing 1077 amino acids, which we call JARID2-1077. The JARID2-

1077 isoform was neither significantly differentially expressed nor was there a statistically 

significant shift in proportions between temperatures, but it tended to make up a higher proportion 

of total transcripts at MPT (Figure 1C). Though not statistically significant, the pattern can also be 

seen in two short-read RNA-seq datasets and qPCR results (below). A third isoform of JARID2 

retains intron 6 with a stop codon that would result in a protein comprised of 318 amino acids, 

which we refer to as JARID2-318 (Figure 1A,D). The JARID2-318 isoform was strongly 

differentially expressed between temperatures and exhibited significantly higher expression at the 

FPT (Figure 1B). It is clear that the total transcriptional output of the JARID2 gene varies between 

temperatures, with higher expression at FPT. In addition, we observe temperature-dependent 
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splicing of JARID2 during the TSP in the snapping turtle with a shift in isoform ratios between 

MPT (JARID2-1077) versus FPT (JARID2-318) (Figure 1C).  

 

 
 

Figure 2: Quantification of JARID2 splicing with qPCR 
Schematic and bar plots showing relative expression of JARID2 fragments spanning intron/exon 
and exon/exon boundaries in embryonic and hatchling gonads at MPT and FPT in embryonic 
samples and in male or female hatchling samples. A. Schematic diagram showing primers designed 
to span splice junctions of JARID2 transcripts. B. Bar plot showing expression for each primer 
pair normalized to expression for a primer pair spanning junction between Exon 1 and Exon 2 of 
JARID2 (ag cDNAX/ag cDNAE1/E2).  
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Schematic and bar plots showing relative expression of JARID2 fragments spanning 
intron/exon and exon/exon boundaries in embryonic and hatchling gonads at MPT and 
FPT in embryonic samples and in male or female hatchling samples. A. Schematic 
diagram showing primers designed to span splice junctions of JARID2 transcripts. B. 
Bar plot showing expression for each primer pair normalized to expression for a 
primer pair spanning junction between Exon 1 and Exon 2 of JARID2 (ag cDNAX/ag 
cDNAE1/E2). 
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Confirmation of JARID2 Intron Retention via qPCR 

qPCR with primers spanning exon-intron and exon-exon boundaries supported results from 

long-read sequencing (Figure 2A). Intron 6 was more highly retained in embryonic gonads at the 

FPT than at the MPT (Figure 2B). We also found that expression calculated from a primer pair 

spanning the Exon 15 and Exon 16 junction was higher at FPT, but primer pairs spanning E15/I15 

and I15/E16 were not significantly different between temperatures (Figure 2B). Differences 

between Nanopore and qPCR could be due to small sample sizes. 

We observe that Intron 6 was retained at higher levels in embryonic gonads during the TSP 

than in hatchling testes and ovaries (Figure 2B). In hatchlings, Intron 6 is not retained preferentially 

in either sex and expression of transcripts containing Intron 6 is lower than transcripts with Exon 

6/Exon 7 splicing (Figure 2B). Conversely, we observe that Intron 15 was retained at higher levels 

than Exon15/Exon 16 spliced transcripts in hatchlings, with no difference between the sexes 

(Figure 2B). This suggests that the JARID2 mRNA with a retained Intron 6 may be important 

during TSD but may not be important for the function of differentiated gonads. 

Structure of JARID2 Isoforms 

We examined the primary sequence of the predicted snapping turtle JARID2 isoforms to 

identify putative functional domains (Figure 3A). The canonical JARID2-1231 isoform contains 

1231 amino acids and four domains, including JmjN (residues 549-582; Pfam: PF02375), 

ARID/Bright DNA binding domain (residues 620-700; Pfam: PF01388), JmjC (residues 904-1019; 

Pfam: PF02373), and C5HC2 zinc finger domain (residues 1127-1177; Pfam: PF02928). These 

four domains are consistent with the structure of JARID2 in other vertebrates. In contrast, the 

JARID2-1077 isoform contains 1077 amino acids and the first three domains but is missing the 
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zinc finger domain. The last domain is lost because of a premature stop codon in intron 15. The 

JARID2-318 transcript encodes a 318 amino acid protein that is truncated by a premature stop 

codon in intron 6 and is missing all four domains: JmjN/C, ARID, JmjC and C5HC2 zinc finger 

domains. However, all three JARID2 isoforms still contain predicted nuclear localization signals 

in the amino terminus of the protein. The common amino terminus also contains key domains that 

interact with core PRC2 proteins, nucleosomes, RNA, as well as a functional domain that 

allosterically enhances PRC2 activity. 

JARID2 Evolution 

To understand the evolutionary relationships between JARID2 proteins, we performed a 

phylogenetic analysis with the proteomes of multiple species (Figure 3B). Notably, we observe 

that JARID2 falls into a separate orthogroup from other Jumonji-family proteins. We also observed 

that snapping turtle JARID2 is most closely related to orthologs in turtles. However, significant 

homology exists between JARID2 in all vertebrates. The amino acid sequence of JARID2 is highly 

conserved amongst turtles, with all turtle species analyzed having greater than 97% amino acid 

identity to snapping turtle with the exception of big-headed turtle JARID2, which only shares 92% 

amino acid identity. JARID2 in crocodilians and birds is highly conserved with identities to 

snapping turtle ranging from 90%-93%. Mammalian and snapping turtle JARID2 are less 

conserved but still display 86%-87% amino acid identity. Zebrafish JARID2 is more divergent and 

only shares 66% amino acid identity with snapping turtle JARID2. 
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Figure 3: JARID2 Functional Domains and Orthogroup Tree 
A. Diagram showing functional domains of JARID2 identified by InterProScan5 from N- to C-
terminus. Black line indicates amino acid sequence and colored rectangles indicate locations of 
Pfam domains. B. Phylogenetic tree of JARID2 orthogroup from OrthoFinder. Colors indicate 
taxonomic groups: Zebrafish (purple), mammals (blue), crocodilians (red), birds (green), turtles 
(yellow). 
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Figure 3: JARID2 Functional Domains and Orthogroup Tree
A. Diagram showing functional domains of JARID2 identified by InterProScan5 from 
N- to C-terminus. Black line indicates amino acid sequence and colored rectangles 
indicate locations of Pfam domains. B. Phylogenetic tree of JARID2 orthogroup from 
OrthoFinder. Colors indicate taxonomic groups: Zebrafish (purple), mammals (blue), 
crocodilians (red), birds (green), turtles (yellow).



 46 

 
JARID2 Isoforms are Localized to the Nuclei of Gonadal Cells in Culture 

Cells expressing the control 

mCherry plasmid showed uniformly 

distributed fluorescence throughout the 

cytoplasm and nucleus, while cells 

expressing all three JARID2-mCherry 

fusion constructs displayed 

fluorescence that was colocalized with 

DNA stain in the nucleus (Figure 4). 

These results indicate that the cloned 

JARID2 isoforms were successfully 

translated and that the fusion proteins 

were properly folded. These findings 

also suggest the presence of one or 

more nuclear localization signals (NLS) 

within the N-terminal region of JARID2 

(the first 301 amino acids that are 

common to all three isoforms). We 

examined JARID2 sequences using an 

online tool to find nuclear localization 

signals (https://rostlab.org/services/nlsdb/). Three motifs in the common amino terminus of all 

three JARID2 isoforms are likely to be NLSs: PSRKRPR (from 104-110), RKRPRL (from 106-

 
Figure 4: JARID2 isoforms are localized to the 
nucleus 
Live-cell confocal fluorescence microscopy images 
showing nuclear localization of JARID2-mCherry 
fusion proteins in gonadal cell cultures. JARID2-
mCherry fusion protein (red); DNA is stained with 
NucRed Live 647 (blue); tubulin is stained with 
Tubulin Tracker Green (green); bottom panels 
show merge. 
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Figure 4: JARID2 isoforms are localized to the nucleus
Live-cell confocal fluorescence microscopy images showing nuclear localization of 
JARID2-mCherry fusion proteins in gonadal cell cultures. JARID2-mCherry fusion 
protein (red); DNA is stained with NucRed Live 647 (blue); tubulin is stained with 
Tubulin Tracker Green (green); bottom panels show merge.
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111), DLSKRK (from 146-151), SKRKPK (from 148-153), and PRKGK (from 210-214). A fourth 

NLS motif, PPKKMK, is found from 456-461 in the two longer JARID2 isoforms. 

 

Temperature Effects on Gene Expression in Gonadal Cells Cultured in vitro 

To test whether dissociated gonadal cells from embryos respond to changes in ambient 

temperature in vitro, we analyzed the effects of a temperature shift in control samples that were 

not transfected or transfected with the mCherry plasmid. A total of 832 genes were differentially 

expressed between cells incubated at the MPT and cells shifted to the FPT. In a previous study, 

we identified 3154 differentially expressed genes between gonads collected from embryos that had 

been incubated at the MPT versus gonads from embryos shifted to the FPT. Of the 832 genes 

differentially expressed in vitro, 402 (~48%) were in common with the in vivo set of differentially 

expressed genes, suggesting a significant transcriptional overlap between bipotential gonads in 

vivo and dissociated gonadal cells in culture (Figure 5B).  

To understand the functional consequences of JARID2 overexpression, it is essential to 

identify genes that respond in the same way to temperature in dissociated gonadal cells in vitro 

and in gonads from embryos in vivo as well as genes that respond differently. Many genes 

associated with sex-determination were expressed at a detectable level but did not exhibit 

differential expression between temperatures. These genes include WT1, NR5A1, SOX9, 

KDM6B, WNT2B, WNT4, ESR1, DAX1, HSD3B1, HSD17B1, and WNT5A. Though these 

genes did not show temperature-dependent expression, it is important to note that they are 

expressed, and that differential expression in vivo may depend on direct cell to cell signaling or 

interactions with extracellular matrix proteins that are disrupted when gonads are dissociated and 

cells are grown in vitro in a monolayer. Nevertheless, numerous genes previously shown to  
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Figure 5: Experimental design and validation 
A. Diagram showing experimental design with 
developmental time on the x-axis and incubation 
temperature on the y-axis. Snapping turtle eggs 
were incubated until approximately 2 days before 
stage 17 at which point embryos were euthanized 
and bipotential gonads were dissected, dissociated, 
and plated in a 24-well plate (grey dashed line). 
Cell cultures were incubated at MPT (26.5° C) for 
two days, at which point they were transfected with 
one of the experimental transfection groups (blue 
dashed line). Cell cultures were incubated at either 
MPT or FPT for 5 days and were collected for RNA 
extraction (red dashed line).  B. Venn Diagram 
showing genes expressed between temperature 
shifts in vitro (red) and in vivo (blue). Substantial 
overlap suggests that dissociated gonads maintain 
much of the ability to respond to temperature, 
though some key components of the temperature 
response may be missing. C. Table showing 
sampling strategy for overexpression experiment. 
Columns indicate transfection treatment groups; 
rows indicate temperature regimes. D. Boxplot 
showing the expression of mRNAs originating 
from the plasmid backbone (counts per million).  
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exhibit differential expression between temperatures in vivo were also differentially 

expressed in vitro. To understand the transcriptional response to temperature in primary cell 

culture, we classified genes into two groups that display higher expression at FPT or MPT, 

respectively (Figure 6A; Figure 7A). 

 

 
 

Figure 6: Genes upregulated at FPT 
A. Parallel line plot showing pattern of genes that are upregulated at FPT by sample. Y-axis is Z-
score standardized FPKM values (n=381). B. Bar plot showing mean expression of several genes 
upregulated at FPT (error bars indicate standard error). C. Plot showing enriched Gene Ontology 
terms for genes upregulated at FPT. Color scale shows Bonferroni adjusted p-values.  
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Figure 6: Genes upregulated at FPT
A. Parallel line plot showing pattern of genes that are upregulated at FPT by sample. 
Y-axis is Z-score standardized FPKM values (n=381). B. Bar plot showing mean 
expression of several genes upregulated at FPT (error bars indicate standard error). C. 
Plot showing enriched Gene Ontology terms for genes upregulated at FPT. Color scale 
shows Bonferroni adjusted p-values. 
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 We identified 381 genes that were upregulated at FPT (Figure 6A). 127 of these genes were 

found to be upregulated in the previous in vivo study at FPT (Table 2). Notably, JARID2 and 

CIRBP fell into this category and were strongly upregulated at FPT. Other genes in this category 

include SERPINH1, NFKB2, VEGFA, CYP27B1, TGFB3, TGFBR2, SPARC, FSTL1, and GLI1 

(Figure 6B). The NFKB2 pathway is involved in the immune and stress response and was shown 

to exhibit female-specific expression in C. picta (Radhakrishnan et al., 2017). Several genes in the 

NFKB2 signaling pathway were upregulated at FPT, including TRAF4, TNIP2, IKBKE, GSTP1, 

RACK1. VEGFA, which has been shown to play a role in the establishment of sex-specific 

vasculature, was upregulated at FPT among other genes associated with vasculogenesis (Bott, 

Clopton, & Cupp, 2008). SPARC, FSTL1, EEF2, and COL1A1 were shown to be associated with 

latitudinal differences in TSD patterns (Roush & Rhen, 2018). GLI1 is a steroidogenic cell marker 

that is a product of Hedgehog signaling and is upregulated at FPT (Huang & Yao, 2010; Wijgerde, 

Ooms, Hoogerbrugge, & Grootegoed, 2005). The most highly enriched GO categories for genes 

that were upregulated at FPT include terms related to extracellular matrix, regulation of translation, 

response to stimulus, and RNA catabolic process (Figure 6C). 

 
A total of 451 genes were upregulated at MPT, with 258 of these genes also upregulated in 

the previous in vivo study at MPT (Table 3; Figure 7A). Interestingly, FST (Follistatin), which is 

associated with expression in granulosa cells in mammals, was upregulated at MPT. Other genes 

in this category include: PARP1, which encodes a protein that interacts with SRY and other SOX-

family transcription factors in mammals (Lai et al., 2012; Y. Li, Oh, & Lau, 2006), HMGB3 was 

identified as a candidate for positive selection in TSD (Roush & Rhen, 2018). UBE3A encodes 

the E6-AP protein that acts as a coactivator for many steroid hormone receptors (Nawaz et al., 
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1999) (Figure 7B). The MAPK cascade was highly enriched at MPT, consistent with the role of 

MAPK in mammalian sex determination and observations in C. picta (Radhakrishnan et al., 2017; 

Warr et al., 2012). The most highly enriched GO categories for genes that were upregulated at 

MPT include terms related to regulation of the cell cycle, Wnt signaling, MAPK cascade, steroid 

hormone receptor binding, and regulation of stem cell differentiation (Figure 7C). 

A number of important genes in TSD were not expressed at either temperature in this study. 

Most notably, FOXL2, AMH, DMRT1, and CYP19A1 expression levels were below a limit of 

accurate detection and quantification (<5 FPKM). We hypothesize that these genes are 

downstream in the sex-determination pathway and are dependent on mechanisms that require 

direct cell-cell signaling, and therefore, are not expressed in the in vitro model. 
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Figure 7: Genes upregulated at MPT 
A. Parallel line plot showing pattern of genes that are upregulated at MPT by sample. Y-axis is Z-
score standardized FPKM values (n=451). B. Bar plot showing mean expression of several genes 
upregulated at MPT (error bars indicate standard error). C. Plot showing enriched Gene Ontology 
terms for genes upregulated at MPT. Color scale shows Bonferroni adjusted p-values.  
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Figure 7: Genes upregulated at MPT
A. Parallel line plot showing pattern of genes that are upregulated at MPT by sample. 
Y-axis is Z-score standardized FPKM values (n=451). B. Bar plot showing mean 
expression of several genes upregulated at MPT (error bars indicate standard error). C. 
Plot showing enriched Gene Ontology terms for genes upregulated at MPT. Color 
scale shows Bonferroni adjusted p-values. 
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Overexpression of JARID2-1231-mCherry in Embryonic Gonadal Cells in vitro 

 Endogenous JARID2 expression responds sharply within 24 hours of a shift in incubation 

temperature, with greater expression in embryonic gonads and gonad cell cultures incubated at 

FPT than at MPT. Here, we overexpressed JARID2 in primary gonad cell cultures to observe its 

effect on expression of other genes across differing thermal regimes. Following incubation at MPT 

until stage 17, cell cultures were transfected with a JARID2 overexpression vector containing one 

of three JARID2 isoforms and then kept at MPT or shifted to FPT. To understand the effects of 

overexpression of each isoform, we compared JARID2 transfected cells to control cells (i.e., non-

transfected and mCherry transfected cells).  

 We identified 30 genes that were differentially expressed between control cells and cells 

overexpressing JARID2-1231 (the canonical full-length isoform). There were 16 genes 

upregulated and 14 genes downregulated by JARID2-1231 (Figure 8A-D). Several interesting 

genes were upregulated by JARID2-1231: DDX11, which is associated with rRNA transcription 

and cell growth (Sun et al., 2015), SCUBE3, which is a TGF-beta ligand associated with cell 

migration and epithelial-mesenchymal transition (Wu et al., 2011); FNTA, which interacts with 

TGF-beta type I receptor (Wang et al., 1996); RGS22 a protein associated with mammalian 

spermatogenesis (Hu et al., 2008); and PDZRN3, shown to negatively regulate osteoblast 

differentiation through inhibition of Wnt signaling (Honda, Yamamoto, Ishii, & Inui, 2010) 

(Figure 8B). Among the 14 genes that were significantly downregulated by JARID2-1231 was 

TGFB3, which is expressed in mammalian testis and ovary at different stages of development 

(Cupp, Kim, & Skinner, 1999; Memon, Anway, Covert, Uzumcu, & Skinner, 2008). Other notable 

genes that were downregulated by JARID2-1231 were MAP3K12, FMO2, COL18A1, and TEX9 

(Figure 8D). 
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Figure 8: JARID2-1231 regulates gene expression in vitro 
A. Parallel line plot showing pattern of genes that are upregulated by overexpression of JARID2-
1231 by sample. Y-axis is Z-score standardized FPKM values (n=16). B. Bar plot showing mean 
expression of several genes upregulated by overexpression of JARID2-1231 (error bars indicate 
standard error). C. Parallel line plot showing pattern of genes that are downregulated by 
overexpression of JARID2-1231 by sample. Y-axis is Z-score standardized FPKM values (n=14). 
D. Bar plot showing mean expression of several genes downregulated by overexpression of 
JARID2-1231 (error bars indicate standard error).  

 
 We also identified genes that displayed a significant interaction between JARID2-1231 and 

temperature; in other words, these genes responded differentially to JARID2-1231 overexpression 

at MPT versus FPT. Notably, RDH16, HOXA5, HOXA9, and BMP3 displayed slight FPT-biased 

expression in control samples but were downregulated by JARID2-1231 at FPT and upregulated 
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Figure 8: JARID2-1231 regulates gene expression in vitro
A. Parallel line plot showing pattern of genes that are upregulated by overexpression 
of JARID2-1231 by sample. Y-axis is Z-score standardized FPKM values (n=16). B. 
Bar plot showing mean expression of several genes upregulated by overexpression of 
JARID2-1231 (error bars indicate standard error). C. Parallel line plot showing pattern 
of genes that are downregulated by overexpression of JARID2-1231 by sample. Y-axis 
is Z-score standardized FPKM values (n=14). D. Bar plot showing mean expression of 
several genes downregulated by overexpression of JARID2-1231 (error bars indicate 
standard error). 
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by JARID2-1231 at MPT. JARID2-1231 overexpression also caused a decrease in temperature 

effects of PARP1. In summary, 45 genes displayed temperature-dependent expression and were 

also regulated by JARDI2-1231 overexpression, while 51 genes displayed a significant JARID2-

1231 by temperature interaction. 

Overexpression of JARID2-1077-mCherry in Embryonic Gonadal Cells in vitro 

JARID2 is expressed at a lower level in embryonic gonads and cell cultures incubated at 

MPT during the thermosensitive period. However, a second isoform of JARID2 (JARID2-1077) 

accounts for a significantly larger proportion of JARID2 expression at MPT. We therefore 

performed differential expression analysis to assess the effects of overexpressing JARID2-1077 in 

primary gonadal cells at MPT and at FPT. We identified 203 genes that showed significant changes 

in expression in response to overexpression of JARID2-1077. A total of 126 genes were 

upregulated (37) or downregulated (89) by overexpression of JARID2-1077 (Figure 9A-E).  The 

remaining 77 genes displayed an interaction between JARID2-1077 and incubation temperature. 

Gene ontology analysis showed enriched terms related to extracellular matrix, collagen, and cell 

adhesion (Figure 9E).  

Overexpression of the JARID2-1077 isoform upregulated 37 genes in cultured gonadal 

cells (Figure 9A). We observed an increase in RUNX1 expression. RUNX1 is a ortholog of the 

runt gene essential for ovarian determination in Drosophila (Chuang, Ito, & Ito, 2013; Duffy & 

Gergen, 1991) and is co-expressed with FOXL2 in gonads from a wide range of vertebrate species 

(Nicol et al., 2019). RUNX1 is also briefly overexpressed in supporting cell lineages during 

differentiation of the mammalian gonad (Stevant et al., 2019; Stevant et al., 2018).  Additionally, 

overexpression of JARID2-1077 upregulated SBNO2, AMIGO2, and KLHL2 (Figure 9B). 
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Figure 9: JARID2-1077 regulates expression of genes involved in steroidogenesis 
A. Parallel line plot showing pattern of genes that are upregulated by overexpression of JARID2-
1077 by sample. Y-axis is Z-score standardized FPKM values (n=37). B. Bar plot showing mean 
expression of several genes upregulated by overexpression of JARID2-1077 (error bars indicate 
standard error). C. Parallel line plot showing pattern of genes that are downregulated by 
overexpression of JARID2-1077 by sample. Y-axis is Z-score standardized FPKM values (n=89). 
D. Bar plot showing mean expression of several genes downregulated by overexpression of 
JARID2-1077 (error bars indicate standard error). E. Plot showing the most highly enriched Gene 
Ontology terms for all genes that were differentially expressed by JARID2-1077 overexpression 
(upregulated, downregulated, and temperature interaction). Color scale shows Bonferroni adjusted 
p-values. 
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Figure 9: JARID2-1077 regulates expression of genes involved in steroidogenesis
A. Parallel line plot showing pattern of genes that are upregulated by overexpression of JARID2-1077 by sample. Y-axis is Z-score standardized 
FPKM values (n=37). B. Bar plot showing mean expression of several genes upregulated by overexpression of JARID2-1077 (error bars 
indicate standard error). C. Parallel line plot showing pattern of genes that are downregulated by overexpression of JARID2-1077 by sample. Y-
axis is Z-score standardized FPKM values (n=89). D. Bar plot showing mean expression of several genes downregulated by overexpression of 
JARID2-1077 (error bars indicate standard error). E. Plot showing the most highly enriched Gene Ontology terms for all genes that were 
differentially expressed by JARID2-1077 overexpression (upregulated, downregulated, and temperature interaction). Color scale shows 
Bonferroni adjusted p-values.
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 Overexpression of JARID2-1077 downregulated 89 genes at both temperatures (MPT or 

FPT) (Figure 9C). The effects of JARID2-1077 were biased towards transcriptional repression, 

rather than activation. Most notably, gonadal progenitor cell marker NR5A1 (SF-1) and 

steroidogenic genes HSD3B1, FDXR, FDX2, and STAR were strongly downregulated by 

JARID2-1077 overexpression at both temperatures (Figure 9D). HSD3B1 and STAR are NR5A1 

(SF-1) targets and play vital roles in the biosynthesis of all sex steroids (Leers-Sucheta, Morohashi, 

Mason, & Melner, 1997; Nakamoto et al., 2012). FDXR and FDX2 are both involved in the 

electron transport chain, though with differing roles in steroidogenesis. Interestingly, it has been 

shown in mammalian adrenocortical and granulosa cell-derived KGN cells that FDXR expression 

is regulated by NR5A1 (SF-1) binding an intronic enhancer. Furthermore, knockdown of NR5A1 

(SF-1) decreased FDXR expression as well as the expression of STAR (Ehrlund et al., 2012; 

Imamichi et al., 2014; Sheftel et al., 2010). The observed effects of JARID2-1077 expression on 

steroidogenic genes suggests that cells overexpressing JARID2-1077 were less likely to 

differentiate into steroidogenic lineages. It could also suggest that steroidogenic cells are not 

producing steroids at this point in development at MPT. BMP2, which coordinates FST expression 

with FOXL2 in mammals (Kashimada et al., 2011), and BMP6, an oocyte-derived BMP ligand 

that regulates FSH action (Otsuka, Moore, & Shimasaki, 2001), were both downregulated by 

JARID2-1077 overexpression at both incubation temperatures. The bone morphogenetic protein 

family are members of the TGF-beta superfamily and have been relatively unstudied in reptiles 

with TSD. Other downregulated genes included WNT2B, GATA5, BAMBI, SMOC1, and FMO2. 

Gene ontology analysis revealed enriched terms related to the extracellular matrix and collagen-

containing extracellular matrix. 
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To investigate the relationship between NR5A1 (SF-1) expression and the expression of 

steroidogenic genes HSD3B1, STAR, FDXR, and FDX2, we analyzed the correlation between the 

expression levels of each. We found strong positive correlations among NR5A1, HSD3B1, FDXR, 

and FDX2. This, along with evidence for the regulatory relationships between these genes in 

mammals, suggests a conserved regulatory relationship in snapping turtles. We hypothesize that 

JARID2-1077 overexpression resulted in lower NR5A1 (SF-1) expression, which could contribute 

to a lack of differentiation and/or reduced steroidogenic capacity of interstitial lineages in gonads 

at MPT.  

To further understand JARID2-1077 regulation of these genes, we performed de novo motif 

finding and enrichment analysis in the promotor regions of genes that were upregulated or 

downregulated (Figure 12E). In upregulated genes, we identified one motif that was significantly 

enriched that showed homology to NKX2 motifs in human. In downregulated genes, we identified 

two motifs that were significantly enriched. These motifs shared homology to known motifs for 

retinoic acid receptor alpha (RARA/NR1B1) and forkhead box transcription factors. This is 

surprising because we observed no change in NR1B1 expression and FOXO6 was the only 

Forkhead family member that was differentially expressed. The function of these genes remains 

poorly understood in TSD. We speculate that a mechanism other than the expression of RARA 

and FOX transcription factors is having a differential impact on the expression of downstream 

genes.  

 A set of 77 genes displayed a significant interaction between JARID2-1077 and 

temperature. ADAMTS1 was downregulated at MPT by the JARID2-1077 isoform and this gene 

has previously been shown to be regulated by progesterone and dihydrotestosterone in human 

endometrial stromal cells (Wen, Zhu, Murakami, Leung, & MacCalman, 2006). Overexpression 
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of JARID2-1077 caused a slight increase in PLCL1 expression at FPT, but a sharp decrease at 

MPT, to the point where expression was reaching the detection limit. PLCL1 is associated with 

gonadal steroid hormones in mice. In PLCL1-KO mice, progesterone levels were significantly 

reduced compared to controls (Matsuda & Hirata, 2017; Tsutsumi et al., 2011). Overexpression of 

JARID2-1077 decreased NEURL1B expression at MPT. NEURL1B is an E3 ubiquitin ligase 

involved in the internalization and degradation of Notch ligands and is required for Notch signaling 

activation in signal-sending cells (Rullinkov et al., 2009; Song et al., 2006).   

 

Overexpression of JARID2-318-mCherry in Embryonic Gonadal Cells in vitro 

 The JARID2-318 isoform is expressed at a higher level at the FPT than at the MPT. We 

identified 582 genes that responded to JARID2-318 overexpression and classified these genes into 

three groups based on expression pattern. A total of 178 genes were upregulated by JARID2-318 

(Figure 10), while 193 genes were downregulated by JARID2-318 (Figure 11). Another 211 genes 

displayed a significant JARID2-318 by temperature interaction. 

 The majority of genes that were upregulated by JARID2-318 overexpression are unique to 

this group. Interestingly, RUNX1 and RUNX2 were significantly upregulated by JARID2-318. 

Similarly upregulated was STIP1 (a.k.a. HOP), an adapter protein that mediates the association 

between chaperone proteins HSP70 and HSP90, which may be implicated in the response to 

temperature in TSD (Hartl, 1996; Kohno et al., 2010; Pratt, 1997). SNAI2 was also upregulated 

by JARID2-318 and is a well-known marker of epithelial-mesenchymal transition, a regulator of 

differentiation, and is a downstream target of SPARC (Fenouille et al., 2012; Nieto, 2002). In 

many cases SNAI2 expression exhibits an inverse relationship with cellular differentiation, with 

high levels of SNAI2 in undifferentiated cells and decreased levels of SNAI2 as differentiation 
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occurs (Mistry, Chen, Wang, Zhang, & Sen, 2014; Vrenken et al., 2020). Upregulation of SNAI2 

could be indicative of reduced differentiation capacity as a result of JARID2-318 overexpression. 

Gene ontology enrichment analysis showed enriched terms for cytoplasmic pattern recognition 

receptor signaling pathway, negative regulation of gene expression, and negative regulation of 

biological process (Figure 10C). 

 

 
 

Figure 10: JARID2-318 upregulates genes associated with pluripotency 
A. Parallel line plot showing pattern of genes that are upregulated by overexpression of JARID2-
318 by sample. Y-axis is Z-score standardized FPKM values (n=178). B. Bar plot showing mean 
expression of several genes upregulated by overexpression of JARID2-318 (error bars indicate 
standard error). C. Plot showing the most highly enriched Gene Ontology terms in genes that were 
upregulated by the overexpression of JARID2-318. Color scale shows Bonferroni adjusted p-
values. 
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Figure 10: JARID2-318 upregulates genes associated with pluripotency
A. Parallel line plot showing pattern of genes that are upregulated by overexpression 
of JARID2-318 by sample. Y-axis is Z-score standardized FPKM values (n=178). B. 
Bar plot showing mean expression of several genes upregulated by overexpression of 
JARID2-318 (error bars indicate standard error). C. Plot showing the most highly 
enriched Gene Ontology terms in genes that were upregulated by the overexpression 
of JARID2-318. Color scale shows Bonferroni adjusted p-values.
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Figure 11: JARID2-318 downregulates several genes involved in the Wnt signaling pathway 
A. Parallel line plot showing pattern of genes that are downregulated by overexpression of 
JARID2-318 by sample. Y-axis is Z-score standardized FPKM values (n=193). B. Bar plot 
showing mean expression of several genes downregulated by overexpression of JARID2-318 
(error bars indicate standard error). C. Plot showing the most highly enriched Gene Ontology terms 
in genes that were downregulated by the overexpression of JARID2-318. Color scale shows 
Bonferroni adjusted p-values.  
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Figure 11: JARID2-318 downregulates several genes involved in the Wnt
signaling pathway
A. Parallel line plot showing pattern of genes that are downregulated by 
overexpression of JARID2-318 by sample. Y-axis is Z-score standardized FPKM 
values (n=193). B. Bar plot showing mean expression of several genes downregulated 
by overexpression of JARID2-318 (error bars indicate standard error). C. Plot showing 
the most highly enriched Gene Ontology terms in genes that were downregulated by 
the overexpression of JARID2-318. Color scale shows Bonferroni adjusted p-values. 
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associated with these terms were WNT5A, FZD4, WNT2B, and BAMBI. WNT5A has been shown 

to be a marker of steroidogenic cell precursors in mammals (Stevant et al., 2019; Stevant et al., 

2018) and Wnt signaling is implicated in sex-determination, though the effects of Wnt signaling 

are likely to differ between GSD and TSD.  

 In addition to genes that were regulated the same way at both FPT and MPT, we identified 

211 genes that displayed a significant interaction between JARID2-318 and temperature. NFKB2 

exhibited temperature dependent expression in control samples, with elevated expression at FPT 

compared to MPT. Overexpression of JARID2-318 increased NFKB2 expression at MPT but 

decreased NFKB2 expression at FPT. The opposite pattern was observed for SMAD5, which 

displayed marginally higher expression at MPT than at FPT. Overexpression of JARID2-318 

significantly decreased SMAD5 expression at MPT, but increased SMAD5 at FPT. SMAD5 is 

involved in BMP receptor signaling and a double knockout study of SMAD1 and SMAD5 in 

female mice decreased fertility and caused metastatic granulosa cell tumors. In male mice, Sertoli-

Leydig tumors developed but fertility was unchanged (Feng & Derynck, 2005; Pangas et al., 2008). 

A decrease in SMAD5 expression could be compensated for by other SMADs because of 

redundancy between SMADs. However, the downregulation of SMAD5 by JARID2-318 in a 

temperature-dependent manner suggests some role for BMP signaling and SMADs in the 

developing turtle gonad. Together these results suggest that the JARID2-318 isoform may play a 

role in regulating gonadal differentiation during TSD.  

 
Overexpression of JARID2 Isoforms Have Common and Unique Effects on Gene 

Expression 

 A primary goal of this study was to elucidate the effects of JARID2 isoforms on gene 

expression in gonadal cells from embryonic turtles and the implications for TSD. In order to do 



 63 

this, we investigated whether the effects of overexpression were unique or common between each 

isoform. Interestingly, we find that many effects were unique to each isoform. We found that genes 

that were upregulated by overexpression were largely unique, with minimal overlap between 

upregulated gene sets of each isoform treatment group. However, there was some overlap, 4 of 16 

differentially expressed genes upregulated by JARID2-1231 were also upregulated by JARID2-

318. These genes were SCUBE3, TRIM7, PDZRN3, and PPP1R16B. We observed a higher 

proportion of overlap between JARID2-1077 upregulated genes and JARID2-318 upregulated 

genes, with 21 genes common between the two groups, including RUNX1, MAP4K4, BASP1.   

 A similar pattern was observed for the downregulated genes (Figure 12A), in which we 

observed substantially more overlap between JARID2-1077 and JARID2-318 gene sets compared 

to JARID2-1231 overlap. This further suggests some functional similarities of the JARID2-318 

and JARID2-1077 proteins, despite their dramatic differences in domain composition. The 

majority of genes that displayed a significant interaction between temperature and isoform 

overexpression were unique to each isoform, which may suggest that the isoforms have differing 

effects in response to temperature.  
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Figure 12: JARID2 isoforms have both unique and shared effects on transcriptional 
regulation 
A. Venn Diagrams comparing differentially expressed gene sets for each isoform. B. Table 
showing motifs enriched in the proximal promoters of genes regulated by JARID2-1077. A motif 
matching NKX2 was enriched in the promoters of genes upregulated by JARID2-1077 and motifs 
matching RARA and Forkhead box were enriched in the promoters downregulated by JARID2-
1077. We did not identify significantly enriched motifs in the promoters of genes regulated by the 
other isoforms.  
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Figure 12: JARID2 isoforms have both unique and shared effects on 
transcriptional regulation
A. Venn Diagrams comparing differentially expressed gene sets for each isoform. B. 
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JARID2-1077. A motif matching NKX2 was enriched in the promoters of genes 
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DISCUSSION 

JARID2 Exists in Three Distinct Variants In TSD 

Here we have identified JARID2 as one of the earliest genes to exhibit temperature driven 

changes in expression in gonads during the critical period for sex determination in the common 

snapping turtle. We also report temperature-dependent expression of three mRNA variants that 

encode distinct proteins: JARID2-1231, JARID2-1077, and JARID2-318. JARID2-1231 encodes 

the canonical JARID2 protein and shows a strong increase in expression in gonads of embryos 

shifted from a MPT to a FPT. One variant retains Intron 15, which contains an early stop codon 

and yields a truncated protein we named JARID2-1077. JARID2-1077 contains most of the 

functional domains found in canonical JARID2-1231. The C-terminal zinc finger is the only 

domain missing from JARID2-1077. The other mRNA variant retains Intron 6 and also contains 

an early stop codon. This variant produces a truncated protein we called JARID2-318. The shortest 

variant lacks the four annotated functional domains of the full-length canonical JARID2-1231: 

JmjN (residues 549-582; Pfam: PF02375), ARID/Bright DNA binding domain (residues 620-700; 

Pfam: PF01388), JmjC (residues 904-1019; Pfam: PF02373), and C5HC2 zinc finger domain 

(residues 1127-1177; Pfam: PF02928).  

However, all three isoforms share the same 301 amino acids at the amino terminus. Located 

within the common amino terminus are three nuclear localization signals, a domain that interacts 

with core PRC2 proteins and nucleosomes, an RNA binding domain, as well as a key functional 

domain that allosterically enhances PRC2 activity (Son et al., 2013). All three JARID2-mCherry 

fusion proteins exhibit similar subcellular localization when transfected into primary ovarian cells. 

This result is consistent with the observation that all isoforms of JARID2 contain nuclear 

localization signals in the amino terminus. This finding also suggests JARID2 isoforms may retain 
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similar capacity to interact with chromatin. However, the isoforms exhibit functional differences 

from each other in terms of their target genes. We speculate that canonical JARID2-1231 retains 

its ability to recruit PRC2 to specific loci and facilitate the de novo deposition of H3K27 

methylation. Li et al. found that the C5HC2 zinc finger, alone or with other domains, is responsible 

for the DNA-binding properties of JARID2 (G. Li et al., 2010). Even in mammalian cell lines, 

there are many questions about how JARID2 recruits PRC2 to specific loci. Our findings 

demonstrate the shorter isoforms are capable of regulating gene expression patterns and suggest 

that DNA binding via the C5HC2 zinc finger is not necessary for JARID2 function. 

PRC2 methyltransferase requires allosteric activation of the SET domain of EZH2 by the 

binding of EED with H3K27me3 (Jiao & Liu, 2015; Margueron et al., 2009). Interestingly, in the 

absence of H3K27me3, JARID2 has been shown to mimic the tail of Histone H3 and act as a 

substrate for PRC2 in which case K116 of JARID2 is methylated and facilitates the de novo 

deposition of H3K27 methylation (Kasinath et al., 2018; Sanulli et al., 2015). JARID2 modulation 

of PRC2 activity depends on this interaction as well as an EZH2-binding domain (aa 229-349) and 

a nucleosome binding domain (aa 350-450) (Son, Shen, Margueron, & Reinberg, 2013) that are 

found in the amino terminus of all three snapping turtle isoforms. 

Given that the physical interaction between PRC2 and JARID2 depends on these common 

domains, our data suggests that JARID2-1077 is likely capable of associating with PRC2 but it 

may fail to recruit PRC2 to a subset of JARID2 genomic targets due to the absence of the C-

terminal zinc finger domain. Whether or not JARID2-318 is capable of associating with PRC2 is 

not known for certain. However, JARID2-318 retains the signals required for nuclear localization 

but appears to be missing part of the domain required for full stimulation of EZH2 catalytic 

activity. It is also missing the entire domain required for nucleosome binding. Interestingly, the 
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JARID2-318 isoform contains 17 unique carboxy terminal residues originating from intronic 

sequence. The structure and function of these amino acids is unknown, but they could contribute 

to the observed differences in expression patterns among the JARID2 isoforms.  

Temperature-dependent expression and splicing of JARID2 provides an interesting 

perspective on the regulation of gene expression and sets the stage for future functional studies of 

the roles of PRC2 and JARID2 as transcriptional regulators in TSD.  

Subcellular Localization of JARID2 Isoforms 

We show here that the cloned JARID2 isoforms fused to mCherry are transcribed from the 

expression vector and proteins are likely folding in a stable conformation. Interestingly, we also 

observed that all three isoforms were found in the nucleus and appear to co-localize with the 

nuclear DNA stain (i.e., chromatin). Although heterogeneity of cell type and variation in the phase 

of the cell cycle in transfected cells impedes finer-scale inferences about sub-nuclear localization, 

we can speculate that all three isoforms are properly folded, localized in the nucleus, and are likely 

interacting with chromatin and/or PRC2 that is associated with chromatin.  

Validation of in vitro Model of TSD 

 These results indicate that primary cell cultures maintain expression patterns consistent 

with gonads in vivo and that dissociated cells are capable of producing a transcriptional response 

to temperature. The processes involved in cell fate determination and cellular differentiation in the 

bipotential gonad in species with TSD is not as clear as in mammals, but it is likely that the same 

basic events occur. In mammals, progenitor cells first become specified as supporting or 

steroidogenic cells. Supporting cells then diverge into Sertoli or granulosa cells, while 

steroidogenic cells become Leydig or theca cells at a later stage of development (Stevant et al., 

2019; Stevant et al., 2018). What remains unclear is the order of these events and the stimuli that 
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trigger them in TSD species. We hypothesize that the cell-cell interactions required for signaling 

between the different cell types of the bipotential gonad are disrupted and, as a result, the cells do 

not exhibit transcriptional patterns that are characteristic of differentiated supporting cells. The 

transcriptional patterns observed in this experiment are likely a composite snapshot of gene 

expression in cells at varying stages of specification, rather than differentiated lineages of 

supporting and steroidogenic cells. These cells retain their thermosensitivity ex vivo but lack cell-

cell interactions that may contribute to determination of cell fate and cellular differentiation. 

One difficulty in TSD research is that many genes exhibit thermosensitive expression 

patterns, and many genes are involved in the differentiation of sex-specific cell lineages. This 

makes it difficult to identify the signals and genes that trigger cell fate determination in the 

bipotential gonad, which is comprised of multiple lineages. In this in vivo model, transcriptional 

profiles are consistent with those of undifferentiated progenitor cells and they largely retain the 

machinery required to respond to temperature, though they lack the cell-cell interactions required 

to differentiate completely into Sertoli and granulosa cells or Leydig and theca cells.  

JARID2-1231 Regulates Genes Involved in Differentiation 

 Hox genes have not previously been implicated in sex determination in mammals or 

reptiles and we have not identified them as thermosensitive in previous transcriptome-wide 

expression profiling experiments. The fact that several Hox genes are differentially expressed 

following JARID2-1231 overexpression suggests a conserved role of canonical isoform of 

JARID2 in the regulation of the Hox gene clusters (G. Li et al., 2010; Oksuz et al., 2018; Rinn et 

al., 2007). Other interesting transcriptional differences were observed. Genes involved in the 

regulation of the cell cycle, cell migration, and epithelial-to-mesenchymal transition (EMT) were 

overrepresented among differentially expressed genes. We also observed interactions between 
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JARID2 and temperature where JARID2 blocked temperature effects on some genes, while others 

exhibit synergism between temperature and JARID2. We hypothesize that JARID2-1231 

overexpression may delay or partially inhibit differentiation of bipotential gonad cells, which 

would likely be associated with increased proliferation and cell migration. An interesting 

observation was that the majority of effects of JARDI2-1231 overexpression were temperature-

dependent. This suggests that JARID2-1231 may be interacting with other temperature-dependent 

factors, such as ncRNAs. Elucidating the function of JARID2-1231 in TSD will require more 

work, but these findings do point to a conserved function of JARID2 in the regulation of gene 

expression and a possible novel function in the temperature-dependent regulation of gene 

expression.  

Overexpression of JARID2-1077 Represses Transcription of Genes Involved in 

Steroidogenesis 

 Overexpression of JARID2-1077 caused more transcriptional changes than JARID2-1231 

overexpression. Interestingly, the net effect of JARID2-1077 overexpression tended to be biased 

towards transcriptional repression, suggesting that the primary regulatory mechanism could be 

PRC2-mediated H3K27me3 deposition. Perhaps the most interesting finding was that JARID2-

1077 strongly repressed several steroidogenic genes, including NR5A1, HSD3B1, FDXR, FDX2, 

and STAR. It is possible that JARID2-1077 is directly influencing expression of one or more of 

these genes through PRC2-mediated histone methylation. This hypothesis will require further 

investigation.  

  There is a lot of evidence that steroid hormone synthesis plays a key role in TSD: 

aromatase expression, estrogen synthesis, and estrogen signaling is involved in ovary 

determination at FPT (Crews, 1996; Ramsey & Crews, 2009). In mammals, estrogens do not play 
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a key role in ovary determination during embryogenesis, but they do help maintain ovarian identity 

after birth. Female mice that are genetically deficient in estrogen receptors a and b undergo a 

significant degree of postnatal sex reversal (Couse et al., 1999). In particular, adult females have 

ovaries that transdifferentiate seminiferous tubules, complete with Sertoli-like cells expressing 

SOX9 and AMH. Female mice that lack functional aromatase, the enzyme that converts androgens 

into estrogens, display the same phenotype. Ovaries in these females contain seminiferous tubules 

and Sertoli-like cells that express SOX9 (Britt et al., 2002). Interestingly, estrogen replacement 

blocks SOX9 expression, inhibits transdifferentiation of granulosa cells into Sertoli-like cells, and 

prevents development of seminiferous tubules in aromatase knockout females. 

A large body of evidence in mammals shows that differentiation of steroidogenic cells 

requires signaling from differentiated supporting cells (Liu, Peng, Matzuk, & Yao, 2015; Stevant 

et al., 2019; Wijgerde et al., 2005; Yao, Whoriskey, & Capel, 2002). Additionally, steroidogenic 

cells in mammals do not display sexually dimorphic transcriptional patterns until well after the 

sex-determining period (Stevant et al., 2019). This is likely a key difference between reptiles with 

TSD and mammals with genotypic sex-determination. Though many of the same genes appear to 

be involved in sex determination, the timing of differentiation of sex-specific supporting cells 

versus sex-specific steroidogenic cells likely differs between mammals and non-mammalian 

vertebrates in which steroids play a role in sex determination. In support of this idea, thecal and 

granulosa cells differentiate earlier during gonad development in birds (Estermann et al., 2020), a 

group in which aromatase expression and estrogen synthesis are critical for ovary determination 

(Elbrecht & Smith, 1992). 

 Our results suggest that JARID2-1077 could play a key role in suppressing steroidogenesis 

and ovary determination. JARID2-1077 makes up a much larger proportion of JARID2 transcripts 
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at MPT in all assays we have conducted thus far (qPCR, Nanopore, in vivo RNA-seq, and in vitro 

RNA-seq). However, JARID2-1077 overexpression produced effects that were consistent between 

both thermal regimes, suggesting that JARID2-1077 functions the same way at MPT and FPT.  

Because JARID2-1077 expression is higher and it makes up a larger percentage of JARID2 

transcripts at MPT, we hypothesize that JARID2-1077 plays a key role in inhibiting 

steroidogenesis within the steroidogenic lineage in the bipotential gonad. In turn, lower steroid 

levels permit testis determination.  

 Steroid signaling plays a key role in the determination of ovarian fate during TSD and 

aromatase has been identified as a key player in snapping turtles (Ramsey & Crews, 2009; Rhen 

et al., 2007). Interestingly, aromatase expression was not detectable in this study and we are left 

to speculate as to why. One possibility is that cell-cell signaling mechanisms required for induction 

of aromatase are disrupted upon dissociation of the gonad. A more likely possibility is that 

aromatase expression is extremely low, even within intact gonads (Rhen et al., 2007; Rhen and 

Schroeder, 2010). 

 We found that many genes downregulated by JARID2-1077 contained retinoic acid 

response elements (RAREs) within their proximal promoters. This is interesting because many 

RAREs tend to be sites of PRC2 recruitment and exposure to retinoic acid causes PRC2 to 

dissociate from chromatin (Gillespie & Gudas, 2007; Kashyap & Gudas, 2010). The aromatase 

(CYP19A1) promoter has been shown to be regulated by retinoic acid receptors and repressed by 

DMRT1, even in the presence of retinoic acid, which could allow Sertoli cells to produce the 

retinoic acid required for spermatogenesis (Matson et al., 2011; Minkina et al., 2014). If JARID2-

1077 plays a role in recruiting PRC2 to RAREs, one would expect PRC2 occupancy at RAREs to 



 72 

increase and transcription to decrease. Whether or not this happens is not clear and will require 

more work, specifically analyzing PRC2 occupancy and H3K27me3 levels.  

 

JARID2-318 Regulates Expression of Genes Associated with Pluripotency and Wnt 

Signaling 

Most JARID2 transcripts at FPT retain intron 6 and encode a truncated protein JARID2-

318. This isoform is missing many of the functional domains of JARID2 but is still localized in 

the nucleus and may retain the ability to associate with PRC2. Interestingly, JARID2-318 

overexpression had the largest effect on transcription among the three isoforms, but this could be 

due in part to smaller size of the plasmid causing an increase in transfection efficiency and copy 

number. Nonetheless, it is clear that JARID2-318 is capable of regulating gene transcription. 

 Overexpression of JARID2-318 caused upregulation of several genes associated with 

pluripotency, including SNAI2, and a decrease in several genes involved in differentiation, 

including BMP6. JARID2-318 also downregulated several members of the Wnt signaling pathway. 

Like other isoforms, temperature and JARID2-318 interacted to regulate many genes, notably the 

SMAD5/BMP receptor signaling pathway and the NFKB2 signaling pathway. Together these 

results suggest JARID2-318 may play a role in the maintenance of pluripotency. The mechanism 

by which JARID2-318 regulates these genes is unclear. 

 The lack of DNA-binding domains in JARID2-318 suggests this isoform may regulate gene 

expression via protein-protein interactions with PRC2. It is unclear whether such an interaction 

would directly alter PRC2 activity or whether the JARID2-318 isoform would compete with other 

JARID2 isoforms and block their stimulatory effect on PRC2. For instance, the repressive effect 

of the JARID2-1077 isoform on steroidogenic genes might be swamped out by much higher 
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expression of the JARID2-318 isoform at FPT. In support of this hypothesized mechanism, we do 

see a substantial number of genes that are positively regulated by overexpression of JARID2-318 

which is unlike the bias towards repression with JARID2-1077. If the primary effect of JARID2-

1077 is via PRC2-mediated H3K27 methylation, we would expect to see a stronger bias towards 

transcriptional repression. A major caveat is that we do not know which genes are direct JARID2 

targets and which are indirect.  

 Another possible mechanism for JARID2-318 inhibition of PRC2-mediated repression is 

through inhibition of PRC2 recruitment to chromatin because JARID2-318 may be deficient in its 

ability to bind nucleosomes. This is an attractive possibility given that CYP19A1 and FOXL2 are 

highly temperature-sensitive and expressed at an extremely low level at MPT. The precise role of 

different JARID2 isoforms and PRC2 in the regulation of gene expression during TSD will require 

much more investigation. 

CONCLUSION 

 We have identified three JARID2 isoforms that may be implicated in TSD and taken the 

first steps toward elucidating their unique and overlapping functions. Though the story of JARID2 

in TSD is complex, it is clear that all three isoforms regulate transcription in embryonic gonadal 

cells in vitro, likely through PRC2-mediated repression and potentially other mechanisms. These 

results establish a promising foundation for further experiments to elucidate the molecular function 

of JARID2. 
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Table 1: Primers for qPCR and cloning 

Experiment Amplicon Direction Sequence 
qPCR JARID2-E1 Forward TGAGTAAAGAAAGACCCAAGAGGAA 

qPCR JARID2-E2 Reverse ACCACCCTCTCCTCTGACCAT 

qPCR JARID2-E6 Forward AGATCGGCTCAGGACTTAAGGA 

qPCR JARID2-E7 Reverse CATTTGCACCTGGAGATGACA 

qPCR JARID2-E6 Forward GCTAACAACCACCACACTCTTCATA 

qPCR JARID2-I6 Reverse CATGTGCCCAAATGAGAGTACAA 

qPCR JARID2-I6 Forward TCCTTCTGCTTCCTCCACAA 

qPCR JARID2-E7 Forward AGAGCCACTGCTGGGAAGAA 

qPCR JARID2-E7 Reverse TTCACAGGAGGCATTTTCAGTTT 

qPCR JARID2-E15 Forward GGAAAATGGACCGACTCTCA 

qPCR JARID2-E16 Reverse ATAGCGGGCTGAAGAATGGA 

qPCR JARID2-E15 Forward AAAATGGACCGACTCTCACTACAAT 

qPCR JARID2-I15 Reverse GAAACACAGGGTACATGAAACAGACT 

qPCR JARID2-I15 Forward TCTCCTGAGTGTAGCTTTGCAG 

qPCR JARID2-E16 Reverse ATAGCGGGCTGAAGAATGGA 

qPCR JARID2-E18 Forward CCAGCACATCACTATGCATCTGT 

qPCR JARID2-E18 Reverse CAGGCAGTCTTTTTTTCCATCTC 

Cloning All JARID2 Forward TCAGGTGTCGTGACGCTAGCTTTGGATACCAGAATGAGTAAAG 

Cloning JARID2-1231 Reverse GGATCCCGGGCCCGCGGTACACTTGAAGCACTTTTGGATG 

Cloning JARID2-1077 Reverse GGATCCCGGGCCCGCGGTACCCTGAGCTCTCCAAGAAGTG 

Cloning JARID2-318 Reverse GGATCCCGGGCCCGCGGTACGCACTTTATGAGCACATGC 
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Table 2: Genes upregulated at FPT in vivo and in vitro  
 
Gene ID Gene Product log2FC p-value Adj. p-

value 
CS000009596 NFKB2 nuclear factor kappa B subunit 

2 
-0.77 1.21E-06 2.04E-04 

CS000004172 SERPINH1 serpin peptidase inhibitor%2C 
clade H (heat shock protein 
47)%2C member 1%2C 
(collagen binding protein 1) 

-1.47 4.29E-07 9.34E-05 

CS000012493 NA* serpin peptidase inhibitor%2C 
clade H (heat shock protein 
47)%2C member 1%2C 
(collagen binding protein 1) 

-1.43 6.56E-07 1.34E-04 

CS000012872 PLA2G6 phospholipase A2 group VI -0.59 8.99E-05 4.53E-03 
CS000005183 NA* chromosome 12 orf 57 -0.65 8.28E-05 4.26E-03 
CS000008789 TCN2 transcobalamin 2 -1.19 6.73E-10 8.81E-07 
CS000022298 NA* arylsulfatase A -0.92 8.04E-11 1.45E-07 
CS000008138 SERF2 small EDRK-rich factor 2 -1.04 2.23E-09 1.76E-06 
CS000004171 NA* ribosomal protein S3 -0.87 9.79E-05 4.72E-03 
CS000019557 ILVBL ilvB acetolactate synthase like -0.63 9.79E-07 1.72E-04 
CS000012912 PIM3 Pim-3 proto-oncogene%2C 

serine/threonine kinase 
-0.64 2.32E-06 3.33E-04 

CS000004700 GGA2 golgi associated%2C gamma 
adaptin ear containing%2C 
ARF binding protein 2 

-0.63 2.29E-04 8.45E-03 

CS000007864 KLF10 Kruppel like factor 10 -0.89 4.16E-04 1.28E-02 
CS000011685 sall2 spalt like transcription factor 2 -0.85 2.43E-08 1.10E-05 
CS000004432 RPL12 ribosomal protein L12 -0.59 1.89E-05 1.47E-03 
CS000021495 CYP3A80 cytochrome P450%2C family 

3%2C subfamily A%2C 
polypeptide 80 

-0.82 1.22E-05 1.08E-03 

CS000006436 CIRBP cold inducible RNA binding 
protein 

-0.43 9.68E-05 4.69E-03 

CS000000139 glb1l galactosidase beta 1 like -1.15 3.80E-11 8.00E-08 
CS000001540 CTSK cathepsin K -1.14 4.58E-06 5.62E-04 
CS000020212 CX3CL1 C-X3-C motif chemokine 

ligand 1 
-2.04 5.26E-05 NA 

CS000025342 NA* ATP binding cassette 
subfamily F member 3 

-0.49 3.43E-05 2.30E-03 

CS000025328 EEF2 eukaryotic translation 
elongation factor 2 

-0.62 3.58E-06 4.71E-04 

CS000007827 SEMA3B semaphorin 3B -1.04 4.16E-08 1.55E-05 
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Gene ID Gene Product log2FC p-value Adj. p-
value 

CS000018177 COL26A1 collagen type XXVI alpha 1 
chain 

-1.11 6.37E-06 7.32E-04 

CS000022208 NA* low molecular weight 
neuronal intermediate 
filament-like 

-0.90 7.25E-05 3.90E-03 

CS000000127 Bcs1l BCS1 homolog%2C 
ubiquinol-cytochrome c 
reductase complex chaperone 

-0.71 7.30E-04 1.81E-02 

CS000000860 TRAF4 TNF receptor associated 
factor 4 

-0.98 1.25E-06 2.05E-04 

CS000011246 SLC3A2 solute carrier family 3 
member 2 

-0.68 9.49E-05 4.63E-03 

CS000013408 SLC8A2 solute carrier family 8 
member A2 

-1.49 2.19E-04 8.21E-03 

CS000025045 ppdpf pancreatic progenitor cell 
differentiation and 
proliferation factor 

-0.84 4.64E-06 5.64E-04 

CS000018491 TRIM35 tripartite motif containing 35 -0.52 4.97E-05 2.93E-03 
CS000013633 AKR7A2 aldo-keto reductase family 7 

member A2 
-0.44 4.10E-03 5.75E-02 

CS000005722 PLPPR2 phospholipid phosphatase 
related 2 

-1.51 1.21E-03 NA 

CS000006303 RPS28 ribosomal protein S28 -0.59 1.52E-04 6.31E-03 
CS000005186 P3H3 prolyl 3-hydroxylase 3 -0.65 6.44E-07 1.34E-04 
CS000017504 UNC5A unc-5 netrin receptor A -1.42 1.42E-05 1.20E-03 
CS000001969 PDE4C phosphodiesterase 4C -0.75 1.24E-04 5.49E-03 
CS000004391 ccdc83 coiled-coil domain containing 

83 
-1.11 8.79E-05 4.48E-03 

CS000008417 TLE3 transducin like enhancer of 
split 3 

-0.59 1.16E-05 1.04E-03 

CS000006525 NOP10 NOP10 ribonucleoprotein -0.73 5.76E-04 1.57E-02 
CS000019873 GLTSCR2 glioma tumor suppressor 

candidate region gene 2 
-0.59 1.94E-04 7.61E-03 

CS000010756 PPP1R10 protein phosphatase 1 
regulatory subunit 10 

-0.43 1.31E-03 2.64E-02 

CS000009675 PBXIP1 PBX homeobox interacting 
protein 1 

-0.99 3.89E-08 1.51E-05 

CS000011487 PHF1 PHD finger protein 1 -0.59 6.71E-04 1.73E-02 
CS000024891 EDF1 endothelial differentiation 

related factor 1 
-0.50 1.34E-03 2.68E-02 

CS000013297 PCDH10 protocadherin 10 -1.51 5.14E-04 1.46E-02 
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Gene ID Gene Product log2FC p-value Adj. p-
value 

CS000022997 NA* transmembrane protein 176A-
like 

-0.77 2.13E-07 5.97E-05 

CS000001204 CTF1 cardiotrophin 1 -0.73 5.96E-05 3.38E-03 
CS000003895 NA* immunoglobulin superfamily 

member 1-like 
-1.51 5.63E-03 NA 

CS000001227 C2 complement C2 -1.11 1.19E-05 1.06E-03 
CS000007073 NA* chromosome 15 orf 39 -0.53 6.16E-05 3.44E-03 
CS000002371 KHK ketohexokinase -1.13 4.28E-04 1.31E-02 
CS000008517 TCEA3 transcription elongation factor 

A3 
-0.81 6.42E-06 7.32E-04 

CS000014160 CLU clusterin -0.68 1.51E-08 7.33E-06 
CS000018234 RPL3 ribosomal protein L3 -0.41 1.49E-03 2.88E-02 
CS000005212 FAM167B family with sequence 

similarity 167 member B 
-1.56 2.56E-03 NA 

CS000014737 CHCHD6 coiled-coil-helix-coiled-coil-
helix domain containing 6 

-0.70 2.46E-03 4.12E-02 

CS000012900 NEU1 neuraminidase 1 -0.68 1.60E-08 7.49E-06 
CS000004733 EIF4A2 eukaryotic translation 

initiation factor 4A2 
-0.59 3.78E-03 5.42E-02 

CS000019123 NA* flap structure-specific 
endonuclease 1 

-0.85 6.67E-06 7.34E-04 

CS000024087 NA* collagen%2C type XIV%2C 
alpha 1 

-1.09 1.41E-03 2.76E-02 

CS000025371 NA* Heat Shock Protein 90 Beta 
Family Member 1-like 

-0.43 4.03E-06 5.20E-04 

CS000013073 CCNI cyclin I -0.62 6.02E-04 1.60E-02 
CS000022683 APBB3 amyloid beta precursor protein 

binding family B member 3 
-0.83 8.83E-04 2.03E-02 

CS000024902 FSTL1 follistatin like 1 -0.58 2.03E-04 7.81E-03 
CS000009688 SDHC succinate dehydrogenase 

complex subunit C 
-0.41 4.13E-03 5.77E-02 

CS000010306 RPL35 ribosomal protein L35 -0.38 6.79E-04 1.74E-02 
CS000002311 MMP19 matrix metallopeptidase 19 -0.80 7.96E-04 1.90E-02 
CS000001777 FBXO18 F-box protein%2C 

helicase%2C 18 
-0.48 4.87E-03 6.26E-02 

CS000016608 ripk3 receptor interacting 
serine/threonine kinase 3 

-0.50 7.89E-05 4.12E-03 

CS000011278 GPR137 G protein-coupled receptor 
137 

-0.59 4.21E-04 1.29E-02 

CS000017494 FAXDC2 fatty acid hydroxylase domain 
containing 2 

-0.72 3.87E-03 5.51E-02 



 78 

Gene ID Gene Product log2FC p-value Adj. p-
value 

CS000000887 Rilp Rab interacting lysosomal 
protein 

-0.54 1.23E-03 2.52E-02 

CS000007505 CACNA1S calcium voltage-gated channel 
subunit alpha1 S 

-0.95 1.05E-03 2.26E-02 

CS000018849 NA* globoside alpha-1%2C3-N-
acetylgalactosaminyltransferas
e 1 

-1.00 4.58E-03 6.04E-02 

CS000001908 WIPF3 WAS/WASL interacting 
protein family member 3 

-1.13 1.31E-05 1.12E-03 

CS000016831 STMN3 stathmin 3 -1.06 1.57E-03 2.99E-02 
CS000002865 MFAP4 microfibrillar associated 

protein 4 
-1.61 6.22E-05 3.45E-03 

CS000011966 BCO2 beta-carotene oxygenase 2 -0.62 8.32E-03 8.64E-02 
CS000025205 NA* collagen%2C type VI%2C 

alpha 2 
-1.41 5.85E-04 1.57E-02 

CS000025061 COL1A1 collagen type I alpha 1 chain -1.08 3.69E-05 2.44E-03 
CS000003712 SPARC secreted protein acidic and 

cysteine rich 
-0.88 1.06E-04 4.93E-03 

CS000025386 COL1A2 collagen type I alpha 2 chain -1.20 2.76E-03 4.49E-02 
CS000011375 NA* reticulon 2 (Z-band associated 

protein) 
-1.86 1.14E-03 2.37E-02 

CS000019019 NRK Nik related kinase -0.71 6.87E-04 1.74E-02 
CS000015423 EEF1D eukaryotic translation 

elongation factor 1 delta 
-0.34 2.25E-03 3.91E-02 

CS000013630 TMCO4 transmembrane and coiled-
coil domains 4 

-0.64 3.14E-03 4.87E-02 

CS000001278 NA* ribosomal protein S15a -0.48 8.06E-04 1.91E-02 
CS000021156 RPL10A ribosomal protein L10a -0.44 9.44E-04 2.12E-02 
CS000015866 NA* eukaryotic translation 

elongation factor 1 beta 2 L 
homeolog 

-0.46 9.48E-03 9.30E-02 

CS000013847 CTSB cathepsin B -0.54 5.31E-05 3.05E-03 
CS000025195 EIF3F eukaryotic translation 

initiation factor 3 subunit F 
-0.35 3.97E-03 5.62E-02 

CS000010442 NA* collagen type V alpha 1 chain -0.56 4.66E-03 6.10E-02 
CS000004164 AGAP3 ArfGAP with GTPase 

domain%2C ankyrin repeat 
and PH domain 3 

-0.51 1.64E-03 3.08E-02 

CS000005297 NA* elongation factor 1-alpha 1-
like 

-1.07 4.81E-04 1.41E-02 

CS000004280 LRRC15 leucine rich repeat containing 
15 

-0.76 3.29E-04 1.08E-02 
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Gene ID Gene Product log2FC p-value Adj. p-
value 

CS000005087 CARTPT cocaine- and amphetamine-
regulated transcript protein 

-1.85 1.43E-03 NA 

CS000005979 KEAP1 kelch like ECH associated 
protein 1 

-0.52 7.39E-03 8.07E-02 

CS000025395 NA* zinc finger protein 251 -0.54 4.32E-03 5.90E-02 
CS000003753 NSD1 nuclear receptor binding SET 

domain protein 1 
-0.26 9.65E-03 9.37E-02 

CS000019510 TSC22D3 TSC22 domain family 
member 3 

-0.46 6.10E-03 7.17E-02 

CS000013443 RPLP1 ribosomal protein lateral stalk 
subunit P1 

-0.39 1.69E-03 3.15E-02 

CS000001419 NA* inositol-trisphosphate 3-kinase 
B-like 

-0.66 8.16E-04 1.92E-02 

CS000011226 SNX32 sorting nexin 32 -0.57 1.50E-03 2.89E-02 
CS000004853 COL3A1 collagen type III alpha 1 chain -1.28 1.34E-03 2.68E-02 
CS000018200 NA* eukaryotic translation 

elongation factor 1 beta 2 L 
homeolog 

-0.55 4.69E-03 6.11E-02 

CS000010746 RPLP0 ribosomal protein lateral stalk 
subunit P0 

-0.37 4.73E-03 6.15E-02 

CS000012398 LGALS12 galectin 12 -0.76 1.26E-06 2.05E-04 
CS000025312 MSMB microseminoprotein beta -2.16 9.50E-05 4.63E-03 
CS000003599 RPL26L1 ribosomal protein L26 like 1 -0.41 2.42E-03 4.08E-02 
CS000011236 EFEMP2 EGF containing fibulin like 

extracellular matrix protein 2 
-0.44 3.41E-03 5.13E-02 

CS000018034 RPS8 ribosomal protein S8 -0.33 3.27E-03 4.98E-02 
CS000025151 JARID2 jumonji and AT-rich 

interaction domain containing 
2 

-1.30 5.48E-17 6.93E-13 

CS000019960 PLOD1 procollagen-lysine%2C2-
oxoglutarate 5-dioxygenase 1 

-0.47 3.76E-03 5.41E-02 

CS000001089 BOC BOC cell adhesion 
associated%2C oncogene 
regulated 

-0.36 8.33E-03 8.65E-02 

CS000002523 PXDNL peroxidasin like -1.27 5.03E-03 6.40E-02 
CS000017139 RPL7A ribosomal protein L7a -0.35 4.63E-03 6.08E-02 
CS000007450 MNT MAX network transcriptional 

repressor 
-0.53 9.18E-04 2.08E-02 
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Gene ID Gene Product log2FC p-value Adj. p-
value 

CS000020596 SORCS2 sortilin related VPS10 domain 
containing receptor 2 

-0.93 8.26E-03 8.63E-02 

CS000022179 NACA nascent polypeptide-
associated complex subunit 
alpha 

-0.37 1.80E-03 3.31E-02 

CS000005263 NA* PR/SET domain 1 -1.58 2.16E-03 NA 
CS000018747 DGKA diacylglycerol kinase alpha -0.65 3.19E-03 4.92E-02 
CS000008590 PTRF polymerase I and transcript 

release factor 
-0.53 3.08E-03 4.81E-02 

CS000022768 RACK1 receptor for activated C kinase 
1 

-0.42 2.85E-03 4.58E-02 

CS000003254 TTLL3 tubulin tyrosine ligase like 3 -0.75 1.09E-03 2.32E-02 
CS000025382 PABPC1 polyadenylate-binding protein 

1 
-0.43 4.33E-03 5.90E-02 

 *Gene symbol or product name not defined  
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Table 3: Genes upregulated at MPT in vivo and in vitro 

Gene ID Gene Product 
Log2Fold 
Change p-value Adj. p-value 

CS000019025 HMGB3 high mobility group 
box 3 

0.89 2.06E-09 1.74E-06 

CS000008170 GCA grancalcin 0.78 2.73E-08 1.17E-05 
CS000020229 HEATR3 HEAT repeat 

containing 3 
0.75 8.55E-08 2.84E-05 

CS000017806 PSMA5 proteasome subunit 
alpha 5 

0.72 2.28E-05 1.65E-03 

CS000000445 ADPGK ADP dependent 
glucokinase 

0.49 1.15E-05 1.04E-03 

CS000006157 PSMC1 proteasome 26S 
subunit%2C ATPase 
1 

0.52 1.87E-07 5.51E-05 

CS000025408 PSMA3 proteasome subunit 
alpha 3 

0.59 8.26E-06 8.22E-04 

CS000010993 PSMD12 proteasome 26S 
subunit%2C non-
ATPase 12 

0.65 1.39E-09 1.46E-06 

CS000017548 FLVCR1 feline leukemia virus 
subgroup C cellular 
receptor 1 

0.86 1.36E-06 2.10E-04 

CS000009378 TSN translin 0.67 1.50E-08 7.33E-06 
CS000005964 VRK1 vaccinia related 

kinase 1 
1.03 1.16E-08 6.50E-06 

CS000023950 FUBP1 far upstream element 
binding protein 1 

0.54 1.03E-08 6.50E-06 

CS000022177 PTGES3 prostaglandin E 
synthase 3 

0.71 4.20E-12 2.65E-08 

CS000017371 PBRM1 polybromo 1 0.55 2.12E-07 5.97E-05 
CS000025411 NA* high mobility group 

box 1 
0.87 1.08E-11 4.54E-08 

CS000005920 TSSC4 tumor suppressing 
subtransferable 
candidate 4 

0.43 6.47E-04 1.68E-02 

CS000001991 AP1M1 adaptor related protein 
complex 1 mu 1 
subunit 

0.64 1.44E-06 2.20E-04 

CS000025467 PSMA4 proteasome subunit 
alpha type-4 

0.54 1.04E-04 4.92E-03 

CS000012933 DLD dihydrolipoamide 
dehydrogenase 

0.47 4.17E-05 2.62E-03 

CS000008806 COPS5 COP9 signalosome 
subunit 5 

0.49 8.16E-05 4.21E-03 



 82 

Gene ID Gene Product 
Log2Fold 
Change p-value Adj. p-value 

CS000003143 CHTF8 chromosome 
transmission fidelity 
factor 8 

1.34 5.36E-04 1.49E-02 

CS000005748 RBBP7 RB binding protein 
7%2C chromatin 
remodeling factor 

0.54 1.50E-05 1.24E-03 

CS000025318 NA* proteasome subunit 
alpha 2 

0.53 3.91E-05 2.52E-03 

CS000006807 SMC3 structural maintenance 
of chromosomes 3 

0.44 8.81E-06 8.57E-04 

CS000008290 ACTL6A actin like 6A 0.64 4.34E-05 2.67E-03 
CS000002223 TRA2B transformer 2 beta 

homolog 
0.75 7.04E-04 1.77E-02 

CS000022883 UCHL5 ubiquitin C-terminal 
hydrolase L5 

0.62 6.79E-05 3.70E-03 

CS000013717 HNRNPD heterogeneous nuclear 
ribonucleoprotein D 

0.47 2.56E-05 1.82E-03 

CS000006500 RIOK1 RIO kinase 1 0.60 9.22E-07 1.67E-04 
CS000003677 HNRNPA

B 
heterogeneous nuclear 
ribonucleoprotein A/B 

0.64 7.76E-07 1.49E-04 

CS000012259 TCP1 t-complex 1 0.62 1.46E-08 7.33E-06 
CS000001171 HNRNPU heterogeneous nuclear 

ribonucleoprotein U 
0.41 1.99E-05 1.52E-03 

CS000014244 OPA1 OPA1%2C 
mitochondrial 
dynamin like GTPase 

0.41 3.41E-04 1.11E-02 

CS000002720 RANBP1 RAN binding protein 
1 

0.92 2.89E-11 8.00E-08 

CS000000341 CDK5RAP
2 

CDK5 regulatory 
subunit associated 
protein 2 

0.75 4.02E-07 9.08E-05 

CS000006284 POLD3 DNA polymerase 
delta 3%2C accessory 
subunit 

0.67 1.02E-04 4.84E-03 

CS000007101 CENPF centromere protein F 0.86 6.96E-06 7.40E-04 
CS000006734 IFRD1 interferon related 

developmental 
regulator 1 

0.43 4.44E-05 2.71E-03 

CS000000505 CCAR1 cell division cycle and 
apoptosis regulator 1 

0.39 4.36E-05 2.67E-03 

CS000024754 MIS18BP1 MIS18 binding 
protein 1 

1.06 6.79E-06 7.37E-04 
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CS000025383 YWHAZ tyrosine 3-
monooxygenase/trypt
ophan 5-
monooxygenase 
activation protein zeta 

0.47 8.98E-10 1.03E-06 

CS000009401 MAP3K7 mitogen-activated 
protein kinase kinase 
kinase 7 

0.40 5.24E-04 1.46E-02 

CS000004541 IMPA1 inositol 
monophosphatase 1 

0.65 4.31E-05 2.67E-03 

CS000011006 ATAD5 ATPase family%2C 
AAA domain 
containing 5 

0.97 1.52E-09 1.48E-06 

CS000006786 SFPQ splicing factor proline 
and glutamine rich 

0.55 2.15E-04 8.07E-03 

CS000005278 HMGN2 high mobility group 
nucleosomal binding 
domain 2 

0.76 4.14E-06 5.28E-04 

CS000005207 KHDRBS1 KH RNA binding 
domain 
containing%2C signal 
transduction 
associated 1 

0.53 2.74E-07 6.94E-05 

CS000017078 RABGAP1 RAB GTPase 
activating protein 1 

0.34 1.09E-03 2.32E-02 

CS000016180 TPP2 tripeptidyl peptidase 2 0.49 3.44E-05 2.30E-03 
CS000020659 MPHOSPH

6 
M-phase 
phosphoprotein 6 

0.57 1.58E-04 6.53E-03 

CS000008760 CENPE centromere protein E 1.31 3.44E-06 4.58E-04 
CS000012370 HNRNPM heterogeneous nuclear 

ribonucleoprotein M 
0.57 1.93E-04 7.57E-03 

CS000002594 DPM1 dolichyl-phosphate 
mannosyltransferase 
subunit 1%2C 
catalytic 

0.53 2.85E-03 4.58E-02 

CS000008906 MMADHC methylmalonic 
aciduria and 
homocystinuria%2C 
cblD type 

0.48 1.75E-04 7.06E-03 

CS000020800 SMC6 structural maintenance 
of chromosomes 6 

0.55 4.64E-04 1.39E-02 

CS000011589 VDAC2 voltage dependent 
anion channel 2 

0.36 5.21E-04 1.46E-02 
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CS000009277 NUP43 nucleoporin 43 0.64 1.45E-05 1.21E-03 
CS000004597 EIF4G2 eukaryotic translation 

initiation factor 4 
gamma 2 

0.38 2.66E-05 1.88E-03 

CS000015176 GMPS guanine 
monophosphate 
synthase 

0.64 2.81E-06 3.82E-04 

CS000002842 CWF19L1 CWF19-like 1%2C 
cell cycle control 

0.58 9.00E-04 2.05E-02 

CS000007472 DDX52 DExD-box helicase 
52 

0.58 7.63E-04 1.85E-02 

CS000010356 DCAF7 DDB1 and CUL4 
associated factor 7 

0.38 2.63E-03 4.33E-02 

CS000023273 DCTD dCMP deaminase 0.81 4.22E-05 2.64E-03 
CS000007279 NUP133 nucleoporin 133 0.47 6.00E-05 3.39E-03 
CS000008307 EIF5A2 eukaryotic translation 

initiation factor 5A2 
0.67 2.20E-05 1.61E-03 

CS000014860 TDG thymine DNA 
glycosylase 

0.58 3.87E-05 2.52E-03 

CS000021519 TXNDC5 thioredoxin domain 
containing 5 

0.44 7.78E-06 7.87E-04 

CS000005144 RIOK2 RIO kinase 2 0.52 1.86E-04 7.37E-03 
CS000005331 LARP7 La ribonucleoprotein 

domain family 
member 7 

0.67 1.08E-04 5.01E-03 

CS000004058 MRS2 MRS2%2C 
magnesium 
transporter 

0.53 7.45E-04 1.84E-02 

CS000025206 NA* proteasome 
(prosome%2C 
macropain) 
subunit%2C alpha 
type 6 

0.41 4.54E-03 6.03E-02 

CS000009028 THOC1 THO complex 1 0.56 1.98E-04 7.67E-03 
CS000009859 SRSF2 serine and arginine 

rich splicing factor 2 
0.63 1.31E-03 2.64E-02 

CS000006185 NA* protein Spindly-like 0.78 3.73E-03 5.39E-02 
CS000002153 NOP14 NOP14 nucleolar 

protein 
0.46 5.24E-04 1.46E-02 

CS000009766 DUSP11 dual specificity 
phosphatase 11 

0.49 1.88E-03 3.41E-02 
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CS000019999 AIDA axin interactor%2C 
dorsalization 
associated 

0.44 1.01E-03 2.22E-02 

CS000024895 STRAP serine/threonine 
kinase receptor 
associated protein 

0.38 7.79E-04 1.87E-02 

CS000010787 NUP93 nucleoporin 93 0.49 7.17E-04 1.79E-02 
CS000019431 CENPK centromere protein K 1.91 1.89E-05 1.47E-03 
CS000011802 NA chromosome 1 orf 112 0.57 9.05E-03 9.08E-02 
CS000006182 PRDX1 peroxiredoxin 1 0.67 7.29E-05 3.90E-03 
CS000013122 KIF20B kinesin family 

member 20B 
1.28 1.14E-07 3.69E-05 

CS000011529 CDR2 cerebellar 
degeneration-related 
protein 2%2C 62kDa 

0.67 3.08E-03 4.81E-02 

CS000008403 AAGAB alpha- and gamma-
adaptin binding 
protein 

0.36 4.09E-03 5.75E-02 

CS000010528 BCCIP BRCA2 and 
CDKN1A interacting 
protein 

0.45 4.93E-04 1.43E-02 

CS000005931 TNNI2 troponin I2%2C fast 
skeletal type 

2.04 1.35E-03 2.68E-02 

CS000013871 PLA2G7 phospholipase A2 
group VII 

0.78 4.55E-03 6.04E-02 

CS000014262 PSMD1 proteasome 26S 
subunit%2C non-
ATPase 1 

0.43 4.60E-03 6.06E-02 

CS000019414 depdc1b DEP domain 
containing 1B 

1.65 3.11E-05 2.12E-03 

CS000025048 PSMA7 proteasome subunit 
alpha 7 

0.41 4.41E-04 1.33E-02 

CS000014230 CNOT6L CCR4-NOT 
transcription complex 
subunit 6 like 

0.47 1.12E-03 2.36E-02 

CS000003633 RAD50 RAD50 double strand 
break repair protein 

0.53 5.81E-04 1.57E-02 

CS000013455 TMX1 thioredoxin related 
transmembrane 
protein 1 

0.42 2.37E-04 8.65E-03 

CS000015346 DEPDC1 DEP domain 
containing 1 

1.30 4.10E-05 2.60E-03 
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CS000009895 SLC25A19 solute carrier family 
25 member 19 

0.50 4.03E-03 5.68E-02 

CS000023966 BCL10 B-cell 
CLL/lymphoma 10 

0.69 7.54E-04 1.85E-02 

CS000024849 CALM2 calmodulin 2 0.52 8.55E-06 8.44E-04 
CS000015905 FANCL Fanconi anemia 

complementation 
group L 

0.73 3.70E-04 1.18E-02 

CS000003861 PSMD6 proteasome 26S 
subunit%2C non-
ATPase 6 

0.48 1.20E-04 5.37E-03 

CS000004892 BZW1 basic leucine zipper 
and W2 domains 1 

0.35 1.31E-03 2.64E-02 

CS000019794 VRK3 vaccinia related 
kinase 3 

0.63 8.96E-03 9.03E-02 

CS000004367 ZUFSP zinc finger with 
UFM1 specific 
peptidase domain 

0.70 6.82E-04 1.74E-02 

CS000009233 ARFGAP3 ADP ribosylation 
factor GTPase 
activating protein 3 

0.41 8.92E-04 2.04E-02 

CS000007775 CENPP centromere protein P 1.44 6.82E-05 3.70E-03 
CS000004131 RNMT RNA guanine-7 

methyltransferase 
0.51 1.35E-03 2.68E-02 

CS000005158 WDR36 WD repeat domain 36 0.61 3.75E-09 2.73E-06 
CS000003054 GPI glucose-6-phosphate 

isomerase 
0.35 1.67E-04 6.82E-03 

CS000009030 YES1 YES proto-oncogene 
1%2C Src family 
tyrosine kinase 

0.46 2.60E-03 4.31E-02 

CS000009276 PPIL4 peptidylprolyl 
isomerase like 4 

0.56 3.45E-03 5.15E-02 

CS000009972 GPATCH1
1 

G-patch domain 
containing 11 

0.64 2.11E-03 3.70E-02 

CS000002599 NA* TMEM189-UBE2V1 
readthrough 

0.40 3.25E-04 1.07E-02 

CS000020269 UBE3A ubiquitin protein 
ligase E3A 

0.40 1.31E-03 2.64E-02 

CS000025115 DEK DEK proto-oncogene 0.63 1.31E-06 2.05E-04 
CS000017772 API5 apoptosis inhibitor 5 0.38 4.77E-04 1.41E-02 
CS000008948 NA* kynurenine/alpha-

aminoadipate 
aminotransferase%2C 
mitochondrial 

0.72 1.92E-03 3.47E-02 
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CS000000210 ZMPSTE2
4 

zinc metallopeptidase 
STE24 

0.77 1.12E-03 2.36E-02 

CS000007520 SRSF3 serine and arginine 
rich splicing factor 3 

0.50 7.87E-06 7.90E-04 

CS000020286 PPP2CB protein phosphatase 2 
catalytic subunit beta 

0.37 3.44E-04 1.12E-02 

CS000016023 NA NA 1.19 4.53E-03 6.03E-02 
CS000008188 STK39 serine/threonine 

kinase 39 
0.58 1.18E-04 5.31E-03 

CS000008044 mcm4.S minichromosome 
maintenance complex 
component 4 S 
homeolog 

0.81 2.44E-04 8.83E-03 

CS000005905 DDX11 DEAD/H-box helicase 
11 

0.94 8.65E-03 8.86E-02 

CS000008261 NUP35 nucleoporin 35 0.53 3.62E-03 5.30E-02 
CS000005071 BTBD1 BTB domain 

containing 1 
0.41 6.59E-03 7.51E-02 

CS000018930 DNA2 DNA replication 
helicase/nuclease 2 

1.18 1.27E-05 1.10E-03 

CS000009804 PPP2R2A protein phosphatase 2 
regulatory subunit 
Balpha 

0.49 5.60E-04 1.53E-02 

CS000025463 HNRNPK heterogeneous nuclear 
ribonucleoprotein K 

0.29 2.10E-04 8.04E-03 

CS000023764 NOL10 nucleolar protein 10 0.47 6.17E-03 7.22E-02 
CS000004009 SYNCRIP synaptotagmin 

binding cytoplasmic 
RNA interacting 
protein 

0.51 1.56E-07 4.70E-05 

CS000001154 LYAR Ly1 antibody reactive 0.62 6.63E-06 7.34E-04 
CS000003885 PPP4R2 protein phosphatase 4 

regulatory subunit 2 
0.51 4.30E-04 1.31E-02 

CS000002260 KIAA1143 KIAA1143 0.68 2.06E-03 3.66E-02 
CS000021460 SKA3 spindle and 

kinetochore associated 
complex subunit 3 

0.87 3.29E-05 2.22E-03 

CS000008448 HACD3 3-hydroxyacyl-CoA 
dehydratase 3 

0.42 2.86E-03 4.58E-02 

CS000004767 PUM3 pumilio RNA binding 
family member 3 

0.51 3.90E-04 1.22E-02 
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CS000000624 SLC25A24 solute carrier family 
25 member 24 

0.37 3.69E-03 5.37E-02 

CS000009494 FAM122A family with sequence 
similarity 122A 

0.37 6.28E-03 7.29E-02 

CS000017265 NA* ferritin light chain-
like 

0.49 2.22E-04 8.28E-03 

CS000000598 WDR62 WD repeat domain 62 1.22 2.15E-05 1.59E-03 
CS000002709 RAN RAN%2C member 

RAS oncogene family 
0.56 1.28E-04 5.58E-03 

CS000005502 AKT1 AKT serine/threonine 
kinase 1 

0.45 6.48E-04 1.68E-02 

CS000008212 HAT1 histone 
acetyltransferase 1 

0.63 2.15E-04 8.07E-03 

CS000008703 CDC45 cell division cycle 45 1.38 3.97E-05 2.54E-03 
CS000023592 SSB Sjogren syndrome 

antigen B 
0.60 6.35E-04 1.67E-02 

CS000013060 GRSF1 G-rich RNA sequence 
binding factor 1 

0.41 4.78E-04 1.41E-02 

CS000014303 dis3 DIS3 homolog%2C 
exosome 
endoribonuclease and 
3'-5' exoribonuclease 

0.53 5.52E-04 1.52E-02 

CS000012145 CELF1 CUGBP%2C Elav-
like family member 1 

0.43 1.34E-03 2.68E-02 

CS000005487 EXO1 exonuclease 1 1.59 4.20E-04 1.29E-02 
CS000013316 KIAA0368 KIAA0368 0.26 4.87E-03 6.26E-02 
CS000009495 HPRT1 hypoxanthine 

phosphoribosyltransfe
rase 1 

0.47 1.31E-03 2.64E-02 

CS000018171 MDH2 malate dehydrogenase 
2 

0.47 1.02E-03 2.22E-02 

CS000006040 MCM8 minichromosome 
maintenance 8 
homologous 
recombination repair 
factor 

0.72 3.89E-04 1.22E-02 

CS000005713 GET4 golgi to ER traffic 
protein 4 

0.62 1.22E-03 2.51E-02 

CS000010443 WDR5 WD repeat domain 5 0.43 3.65E-03 5.32E-02 
CS000016221 SEPT10 septin 10 0.47 6.22E-04 1.64E-02 
CS000004927 NA* NADH ubiquinone 

oxidoreductase core 
subunit S1 

0.50 1.51E-03 2.89E-02 
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CS000023675 CTR9 CTR9 homolog%2C 
Paf1/RNA polymerase 
II complex component 

0.39 3.02E-04 1.01E-02 

CS000018740 PSMA1 proteasome subunit 
alpha 1 

0.31 3.65E-03 5.32E-02 

CS000009392 BORA bora%2C aurora 
kinase A activator 

0.95 1.44E-07 4.53E-05 

CS000011391 NA* ATP synthase subunit 
O%2C mitochondrial 

0.45 4.16E-03 5.79E-02 

CS000011812 TXNL1 thioredoxin like 1 0.45 4.55E-03 6.04E-02 
CS000011005 NA* NA* 1.18 1.31E-03 2.64E-02 
CS000004866 MYO1B myosin IB 0.44 2.30E-03 3.95E-02 
CS000007922 CHEK1 checkpoint kinase 1 0.66 1.59E-03 3.01E-02 
CS000016809 MAPRE1 microtubule 

associated protein 
RP/EB family 
member 1 

0.40 2.29E-04 8.45E-03 

CS000003414 BARD1 BRCA1 associated 
RING domain 1 

0.70 5.55E-04 1.52E-02 

CS000007755 NA* haloacid 
dehalogenase-like 
hydrolase domain-
containing 5 

0.84 1.47E-04 6.16E-03 

CS000011009 ZNF207 zinc finger protein 
207 

0.33 6.42E-03 7.38E-02 

CS000016810 DNMT3B DNA 
methyltransferase 3 
beta 

0.63 9.09E-04 2.07E-02 

CS000002171 TACC3 transforming acidic 
coiled-coil containing 
protein 3 

0.87 1.48E-06 2.22E-04 

CS000009784 NFU1 NFU1 iron-sulfur 
cluster scaffold 

0.45 8.17E-04 1.92E-02 

CS000006259 ATG4C autophagy related 4C 
cysteine peptidase 

0.56 8.04E-03 8.49E-02 

CS000002771 RSC1A1 regulator of solute 
carriers 1 

0.40 8.07E-03 8.50E-02 

CS000009493 FAM122B family with sequence 
similarity 122B 

0.38 1.23E-03 2.52E-02 

CS000002216 DBR1 debranching RNA 
lariats 1 

0.41 9.59E-03 9.33E-02 

CS000008538 KLHDC2 kelch domain 
containing 2 

0.36 5.99E-03 7.11E-02 
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CS000003654 DDX46 DEAD-box helicase 
46 

0.40 7.73E-04 1.86E-02 

CS000001383 iars2 isoleucyl-tRNA 
synthetase 2%2C 
mitochondrial 

0.34 3.08E-03 4.81E-02 

CS000009335 DARS aspartyl-tRNA 
synthetase 

0.32 5.41E-03 6.74E-02 

CS000007980 ANLN anillin actin binding 
protein 

1.35 4.10E-03 5.75E-02 

CS000008165 PSMD14 proteasome 26S 
subunit%2C non-
ATPase 14 

0.48 3.65E-03 5.32E-02 

CS000023220 mta3 metastasis associated 
1 family member 3 

0.42 8.72E-03 8.88E-02 

CS000016841 MRGBP MRG domain binding 
protein 

0.56 7.18E-04 1.79E-02 

CS000011143 THUMPD3 THUMP domain 
containing 3 

0.63 1.27E-04 5.58E-03 

CS000012861 UBE2N ubiquitin conjugating 
enzyme E2 N 

0.40 3.03E-03 4.75E-02 

CS000014612 CKAP2 cytoskeleton 
associated protein 2 

1.09 7.15E-06 7.48E-04 

CS000011491 mcph1 microcephalin 1 0.99 7.66E-05 4.05E-03 
CS000008344 SMC4 structural maintenance 

of chromosomes 4 
0.94 2.31E-03 3.95E-02 

CS000013889 PARPBP PARP1 binding 
protein 

1.01 6.47E-03 7.44E-02 

CS000020092 NA* hippocampus 
abundant transcript-
like protein 1 

0.38 2.88E-03 4.61E-02 

CS000012542 TICRR TOPBP1 interacting 
checkpoint and 
replication regulator 

1.03 1.14E-03 2.38E-02 

CS000005017 NOL9 nucleolar protein 9 0.43 2.91E-03 4.64E-02 
CS000003992 TTK TTK protein kinase 0.92 1.14E-05 1.04E-03 
CS000002656 KIF18A kinesin family 

member 18A 
0.80 2.07E-03 3.67E-02 

CS000020038 NA* mitochondrial 
intermediate peptidase 

0.43 5.46E-03 6.76E-02 

CS000004394 CCDC90B coiled-coil domain 
containing 90B 

0.45 5.27E-04 1.47E-02 

CS000004403 SHCBP1 SHC binding and 
spindle associated 1 

2.10 5.75E-03 6.96E-02 
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CS000013480 TMPO thymopoietin 0.47 6.87E-04 1.74E-02 
CS000024002 TSNAX translin associated 

factor X 
0.45 5.50E-03 6.77E-02 

CS000018426 GSPT1 G1 to S phase 
transition 1 

0.34 3.13E-03 4.87E-02 

CS000008065 GNPDA2 glucosamine-6-
phosphate deaminase 
2 

0.54 6.69E-03 7.58E-02 

CS000000564 HNRNPL heterogeneous nuclear 
ribonucleoprotein L 

0.49 6.01E-03 7.11E-02 

CS000009438 MCTS1 MCTS1%2C re-
initiation and release 
factor 

0.45 8.06E-04 1.91E-02 

CS000000195 SLC20A2 solute carrier family 
20 member 2 

0.50 5.43E-04 1.51E-02 

CS000010685 YWHAB tyrosine 3-
monooxygenase/trypt
ophan 5-
monooxygenase 
activation protein beta 

0.32 6.44E-04 1.68E-02 

CS000017690 NA* DLG associated 
protein 5 

1.21 5.49E-04 1.52E-02 

CS000016391 PSME3 proteasome activator 
subunit 3 

0.50 4.32E-03 5.89E-02 

CS000012748 GAS2L3 growth arrest specific 
2 like 3 

0.56 6.72E-03 7.59E-02 

CS000002305 RFC3 replication factor C 
subunit 3 

0.63 2.34E-03 3.99E-02 

CS000025460 HMGB2 high mobility group 
box 2 

0.48 1.03E-03 2.24E-02 

CS000003473 H2AFZ H2A histone family 
member Z 

0.72 1.62E-03 3.05E-02 

CS000000674 PUS7 pseudouridylate 
synthase 7 (putative) 

0.72 3.85E-04 1.22E-02 

CS000006806 SMNDC1 survival motor neuron 
domain containing 1 

0.49 1.44E-03 2.79E-02 

CS000018631 SLK STE20 like kinase 0.42 6.63E-04 1.71E-02 
CS000007603 lemd1 LEM domain 

containing 1 
1.10 4.69E-03 6.11E-02 

CS000025207 BRMS1L breast cancer 
metastasis-suppressor 
1-like 

0.66 7.62E-03 8.23E-02 
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CS000022400 ARSK arylsulfatase family 
member K 

0.66 1.23E-03 2.52E-02 

CS000012758 ZC3H13 zinc finger CCCH-
type containing 13 

0.34 4.82E-03 6.23E-02 

CS000004561 COMMD2 COMM domain 
containing 2 

0.42 8.47E-03 8.75E-02 

CS000006591 NA* NA* 0.51 8.79E-03 8.92E-02 
CS000009408 MMS22L MMS22 like%2C 

DNA repair protein 
0.76 4.87E-04 1.42E-02 

CS000008776 MTFR2 mitochondrial fission 
regulator 2 

0.84 1.69E-04 6.88E-03 

CS000011998 SLC35A3 solute carrier family 
35 member A3 

0.52 6.76E-03 7.62E-02 

CS000000412 PGM2 phosphoglucomutase 
2 

0.33 2.71E-03 4.45E-02 

CS000007490 RPS6KB1 ribosomal protein S6 
kinase B1 

0.39 7.91E-04 1.90E-02 

CS000004268 gnai3 G protein subunit 
alpha i3 

0.30 3.87E-03 5.51E-02 

CS000005588 NA* tetratricopeptide 
repeat domain 39A 

0.71 3.66E-04 1.18E-02 

CS000008876 PAK1IP1 PAK1 interacting 
protein 1 

0.56 8.76E-04 2.01E-02 

CS000001800 NUF2 NUF2%2C NDC80 
kinetochore complex 
component 

0.97 3.79E-03 5.43E-02 

CS000001707 GNL2 G protein nucleolar 2 0.46 7.23E-04 1.80E-02 
CS000013130 lipA lipase A%2C 

lysosomal acid type 
0.37 4.48E-03 6.00E-02 

CS000020721 NIN ninein 0.40 7.46E-03 8.12E-02 
CS000003570 HMMR hyaluronan mediated 

motility receptor 
1.10 7.61E-04 1.85E-02 

CS000008301 ECT2 epithelial cell 
transforming 2 

1.02 6.57E-04 1.70E-02 

CS000020039 NA* mitochondrial 
intermediate peptidase 

0.48 9.10E-03 9.09E-02 

CS000013319 SMC2 structural maintenance 
of chromosomes 2 

0.91 3.85E-05 2.52E-03 

CS000003108 GINS2 GINS complex 
subunit 2 

0.71 7.17E-04 1.79E-02 

CS000008352 GFM1 G elongation factor 
mitochondrial 1 

0.35 7.58E-03 8.21E-02 

CS000000370 SET SET nuclear proto-
oncogene 

0.38 2.92E-03 4.64E-02 
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Gene ID 

 
 
Gene 

 
 
Product 

 
Log2Fold 
Change 

 
 
p-value 

 
 
Adj. p-value 

CS000005330 ZGRF1 zinc finger GRF-type 
containing 1 

1.01 8.47E-03 8.75E-02 

CS000019729 SOS1 SOS Ras/Rac guanine 
nucleotide exchange 
factor 1 

0.32 8.28E-03 8.63E-02 

CS000010296 FBXW2 F-box and WD repeat 
domain containing 2 

0.42 1.97E-03 3.52E-02 

CS000006872 BUB3 BUB3%2C mitotic 
checkpoint protein 

0.52 2.34E-03 3.99E-02 

CS000017689 DLGAP5 DLG associated 
protein 5 

1.27 5.20E-04 1.46E-02 

CS000008421 CTDSPL2 CTD small 
phosphatase like 2 

0.44 9.39E-03 9.26E-02 

CS000017977 DDX18 DEAD-box helicase 
18 

0.54 1.60E-05 1.30E-03 

CS000009999 HAUS1 HAUS augmin like 
complex subunit 1 

0.50 6.58E-03 7.51E-02 

CS000005775 TRIP13 thyroid hormone 
receptor interactor 13 

0.84 1.68E-03 3.14E-02 

CS000005953 DDX24 DEAD-box helicase 
24 

0.47 6.81E-04 1.74E-02 

CS000013221 DHX29 DExH-box helicase 
29 

0.38 4.65E-03 6.09E-02 

CS000004226 NUP58 nucleoporin 58 0.57 9.31E-04 2.10E-02 
CS000022817 NA* protein regulator of 

cytokinesis 1 
0.97 4.31E-03 5.89E-02 

CS000007153 METAP2 methionyl 
aminopeptidase 2 

0.36 7.99E-03 8.46E-02 

CS000003399 COPS8 COP9 signalosome 
subunit 8 

0.34 7.13E-03 7.86E-02 

CS000008383 EIF2A eukaryotic translation 
initiation factor 2A 

0.38 9.51E-03 9.30E-02 

CS000003859 THOC7 THO complex 7 0.47 1.05E-03 2.27E-02 
CS000000456 RPAP3 RNA polymerase II 

associated protein 3 
0.44 2.06E-03 3.66E-02 

*Gene symbol or product name not defined 

  



 94 

 
REFERENCES 

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170 

Bott, R. C., Clopton, D. T., & Cupp, A. S. (2008). A proposed role for VEGF isoforms in sex-
specific vasculature development in the gonad. Reprod Domest Anim, 43 Suppl 2, 310-316. 
doi:10.1111/j.1439-0531.2008.01179.x 

Britt, K. L., Kerr, J., O'Donnell, L., Jones, M. E., Drummond, A. E., Davis, S. R., . . . Findlay, J. 
K. (2002). Estrogen regulates development of the somatic cell phenotype in the eutherian 
ovary. FASEB J, 16(11), 1389-1397. doi:10.1096/fj.01-0992com 

Chuang, L. S., Ito, K., & Ito, Y. (2013). RUNX family: Regulation and diversification of roles 
through interacting proteins. Int J Cancer, 132(6), 1260-1271. doi:10.1002/ijc.27964 

Couse, J. F., Hewitt, S. C., Bunch, D. O., Sar, M., Walker, V. R., Davis, B. J., & Korach, K. S. 
(1999). Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and 
beta. Science, 286(5448), 2328-2331. doi:10.1126/science.286.5448.2328 

Crews, D. (1996). Temperature-dependent sex determination: the interplay of steroid hormones 
and temperature. Zoolog Sci, 13(1), 1-13. doi:10.2108/zsj.13.1 

Cupp, A. S., Kim, G., & Skinner, M. K. (1999). Expression and action of transforming growth 
factor beta (TGFbeta1, TGFbeta2, and TGFbeta3) during embryonic rat testis 
development. Biol Reprod, 60(6), 1304-1313. doi:10.1095/biolreprod60.6.1304 

Das, D., Singh, S. K., Bierstedt, J., Erickson, A., Galli, G. L. J., Crossley, D. A., & Rhen, T. (2020). 
Draft Genome of the Common Snapping Turtle, Chelydra serpentina, a Model for 
Phenotypic Plasticity in Reptiles. G3 (Bethesda). doi:10.1534/g3.120.401440 

Deveson, I. W., Holleley, C. E., Blackburn, J., Marshall Graves, J. A., Mattick, J. S., Waters, P. 
D., & Georges, A. (2017). Differential intron retention in Jumonji chromatin modifier 
genes is implicated in reptile temperature-dependent sex determination. Sci Adv, 3(6), 
e1700731. doi:10.1126/sciadv.1700731 

Duffy, J. B., & Gergen, J. P. (1991). The Drosophila segmentation gene runt acts as a position-
specific numerator element necessary for the uniform expression of the sex-determining 
gene Sex-lethal. Genes Dev, 5(12A), 2176-2187. doi:10.1101/gad.5.12a.2176 

Ehrlund, A., Jonsson, P., Vedin, L. L., Williams, C., Gustafsson, J. A., & Treuter, E. (2012). 
Knockdown of SF-1 and RNF31 affects components of steroidogenesis, TGFbeta, and 
Wnt/beta-catenin signaling in adrenocortical carcinoma cells. PLoS One, 7(3), e32080. 
doi:10.1371/journal.pone.0032080 

Elbrecht, A., & Smith, R. G. (1992). Aromatase enzyme activity and sex determination in 
chickens. Science, 255(5043), 467-470. doi:10.1126/science.1734525 

Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative 
genomics. Genome Biol, 20(1), 238. doi:10.1186/s13059-019-1832-y 

Estermann, M. A., Williams, S., Hirst, C. E., Roly, Z. Y., Serralbo, O., Adhikari, D., . . . Smith, C. 
A. (2020). Insights into Gonadal Sex Differentiation Provided by Single-Cell 
Transcriptomics in the Chicken Embryo. Cell Rep, 31(1), 107491. 
doi:10.1016/j.celrep.2020.03.055 

Ewert, M. A., Lang, J. W., & Nelson, C. E. (2005). Geographic variation in the pattern of 
temperature‐dependent sex determination in the American snapping turtle (Chelydra 
serpentina). Journal of Zoology(265), 81-95. doi:10.1017/S0952836904006120 



 95 

Feng, X. H., & Derynck, R. (2005). Specificity and versatility in tgf-beta signaling through Smads. 
Annu Rev Cell Dev Biol, 21, 659-693. doi:10.1146/annurev.cellbio.21.022404.142018 

Fenouille, N., Tichet, M., Dufies, M., Pottier, A., Mogha, A., Soo, J. K., . . . Tartare-Deckert, S. 
(2012). The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is 
a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One, 
7(7), e40378. doi:10.1371/journal.pone.0040378 

Gillespie, R. F., & Gudas, L. J. (2007). Retinoid regulated association of transcriptional co-
regulators and the polycomb group protein SUZ12 with the retinoic acid response elements 
of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol, 372(2), 
298-316. doi:10.1016/j.jmb.2007.06.079 

Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381(6583), 571-579. 
doi:10.1038/381571a0 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., . . . Glass, C. K. (2010). 
Simple combinations of lineage-determining transcription factors prime cis-regulatory 
elements required for macrophage and B cell identities. Mol Cell, 38(4), 576-589. 
doi:10.1016/j.molcel.2010.05.004 

Honda, T., Yamamoto, H., Ishii, A., & Inui, M. (2010). PDZRN3 negatively regulates BMP-2-
induced osteoblast differentiation through inhibition of Wnt signaling. Mol Biol Cell, 
21(18), 3269-3277. doi:10.1091/mbc.E10-02-0117 

Hu, Y., Xing, J., Chen, L., Guo, X., Du, Y., Zhao, C., . . . Sha, J. (2008). RGS22, a novel testis-
specific regulator of G-protein signaling involved in human and mouse spermiogenesis 
along with GNA12/13 subunits. Biol Reprod, 79(6), 1021-1029. 
doi:10.1095/biolreprod.107.067504 

Huang, C. C., & Yao, H. H. (2010). Diverse functions of Hedgehog signaling in formation and 
physiology of steroidogenic organs. Mol Reprod Dev, 77(6), 489-496. 
doi:10.1002/mrd.21174 

Imamichi, Y., Mizutani, T., Ju, Y., Matsumura, T., Kawabe, S., Kanno, M., . . . Miyamoto, K. 
(2014). Transcriptional regulation of human ferredoxin reductase through an intronic 
enhancer in steroidogenic cells. Biochim Biophys Acta, 1839(1), 33-42. 
doi:10.1016/j.bbagrm.2013.11.005 

Jiao, L., & Liu, X. (2015). Structural basis of histone H3K27 trimethylation by an active polycomb 
repressive complex 2. Science, 350(6258), aac4383. doi:10.1126/science.aac4383 

Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., . . . Hunter, S. (2014). 
InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-
1240. doi:10.1093/bioinformatics/btu031 

Kashimada, K., Pelosi, E., Chen, H., Schlessinger, D., Wilhelm, D., & Koopman, P. (2011). 
FOXL2 and BMP2 act cooperatively to regulate follistatin gene expression during ovarian 
development. Endocrinology, 152(1), 272-280. doi:10.1210/en.2010-0636 

Kashyap, V., & Gudas, L. J. (2010). Epigenetic regulatory mechanisms distinguish retinoic acid-
mediated transcriptional responses in stem cells and fibroblasts. J Biol Chem, 285(19), 
14534-14548. doi:10.1074/jbc.M110.115345 

Kasinath, V., Faini, M., Poepsel, S., Reif, D., Feng, X. A., Stjepanovic, G., . . . Nogales, E. (2018). 
Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science, 359(6378), 
940-944. doi:10.1126/science.aar5700 



 96 

Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome 
alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 37(8), 907-
915. doi:10.1038/s41587-019-0201-4 

Klopfenstein, D. V., Zhang, L., Pedersen, B. S., Ramirez, F., Warwick Vesztrocy, A., Naldi, A., . 
. . Tang, H. (2018). GOATOOLS: A Python library for Gene Ontology analyses. Sci Rep, 
8(1), 10872. doi:10.1038/s41598-018-28948-z 

Kohno, S., Katsu, Y., Urushitani, H., Ohta, Y., Iguchi, T., & Guillette, L. J., Jr. (2010). Potential 
contributions of heat shock proteins to temperature-dependent sex determination in the 
American alligator. Sex Dev, 4(1-2), 73-87. doi:10.1159/000260374 

Lai, Y. S., Chang, C. W., Pawlik, K. M., Zhou, D., Renfrow, M. B., & Townes, T. M. (2012). SRY 
(sex determining region Y)-box2 (Sox2)/poly ADP-ribose polymerase 1 (Parp1) 
complexes regulate pluripotency. Proc Natl Acad Sci U S A, 109(10), 3772-3777. 
doi:10.1073/pnas.1108595109 

Landeira, D., & Fisher, A. G. (2011). Inactive yet indispensable: the tale of Jarid2. Trends Cell 
Biol, 21(2), 74-80. doi:10.1016/j.tcb.2010.10.004 

Leers-Sucheta, S., Morohashi, K., Mason, J. I., & Melner, M. H. (1997). Synergistic activation of 
the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase promoter 
by the transcription factor steroidogenic factor-1/adrenal 4-binding protein and phorbol 
ester. J Biol Chem, 272(12), 7960-7967. doi:10.1074/jbc.272.12.7960 

Li, G., Margueron, R., Ku, M., Chambon, P., Bernstein, B. E., & Reinberg, D. (2010). Jarid2 and 
PRC2, partners in regulating gene expression. Genes Dev, 24(4), 368-380. 
doi:10.1101/gad.1886410 

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 
3094-3100. doi:10.1093/bioinformatics/bty191 

Li, Y., Oh, H. J., & Lau, Y. F. (2006). The poly(ADP-ribose) polymerase 1 interacts with Sry and 
modulates its biological functions. Mol Cell Endocrinol, 257-258, 35-46. 
doi:10.1016/j.mce.2006.06.008 

Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for 
assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. 
doi:10.1093/bioinformatics/btt656 

Liu, C., Peng, J., Matzuk, M. M., & Yao, H. H. (2015). Lineage specification of ovarian theca cells 
requires multicellular interactions via oocyte and granulosa cells. Nat Commun, 6, 6934. 
doi:10.1038/ncomms7934 

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol, 15(12), 550. doi:10.1186/s13059-014-
0550-8 

Margueron, R., Justin, N., Ohno, K., Sharpe, M. L., Son, J., Drury, W. J., 3rd, . . . Gamblin, S. J. 
(2009). Role of the polycomb protein EED in the propagation of repressive histone marks. 
Nature, 461(7265), 762-767. doi:10.1038/nature08398 

Margueron, R., & Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature, 
469(7330), 343-349. doi:10.1038/nature09784 

Matson, C. K., Murphy, M. W., Sarver, A. L., Griswold, M. D., Bardwell, V. J., & Zarkower, D. 
(2011). DMRT1 prevents female reprogramming in the postnatal mammalian testis. 
Nature, 476(7358), 101-104. doi:10.1038/nature10239 



 97 

Matsuda, M., & Hirata, M. (2017). Phospholipase C-related but catalytically inactive proteins 
regulate ovarian follicle development. J Biol Chem, 292(20), 8369-8380. 
doi:10.1074/jbc.M116.759928 

Memon, M. A., Anway, M. D., Covert, T. R., Uzumcu, M., & Skinner, M. K. (2008). Transforming 
growth factor beta (TGFbeta1, TGFbeta2 and TGFbeta3) null-mutant phenotypes in 
embryonic gonadal development. Mol Cell Endocrinol, 294(1-2), 70-80. 
doi:10.1016/j.mce.2008.08.017 

Minkina, A., Matson, C. K., Lindeman, R. E., Ghyselinck, N. B., Bardwell, V. J., & Zarkower, D. 
(2014). DMRT1 protects male gonadal cells from retinoid-dependent sexual 
transdifferentiation. Dev Cell, 29(5), 511-520. doi:10.1016/j.devcel.2014.04.017 

Mistry, D. S., Chen, Y., Wang, Y., Zhang, K., & Sen, G. L. (2014). SNAI2 controls the 
undifferentiated state of human epidermal progenitor cells. Stem Cells, 32(12), 3209-3218. 
doi:10.1002/stem.1809 

Morrish, B. C., & Sinclair, A. H. (2002). Vertebrate sex determination: many means to an end. 
Reproduction, 124(4), 447-457. doi:10.1530/rep.0.1240447 

Nakamoto, M., Fukasawa, M., Tanaka, S., Shimamori, K., Suzuki, A., Matsuda, M., . . . Shibata, 
N. (2012). Expression of 3beta-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-
1 during gonadal development in medaka (Oryzias latipes). Gen Comp Endocrinol, 176(2), 
222-230. doi:10.1016/j.ygcen.2012.01.019 

Nawaz, Z., Lonard, D. M., Smith, C. L., Lev-Lehman, E., Tsai, S. Y., Tsai, M. J., & O'Malley, B. 
W. (1999). The Angelman syndrome-associated protein, E6-AP, is a coactivator for the 
nuclear hormone receptor superfamily. Mol Cell Biol, 19(2), 1182-1189. 
doi:10.1128/mcb.19.2.1182 

Nicol, B., Grimm, S. A., Chalmel, F., Lecluze, E., Pannetier, M., Pailhoux, E., . . . Yao, H. H. 
(2019). RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. 
Nat Commun, 10(1), 5116. doi:10.1038/s41467-019-13060-1 

Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell 
Biol, 3(3), 155-166. doi:10.1038/nrm757 

Oksuz, O., Narendra, V., Lee, C. H., Descostes, N., LeRoy, G., Raviram, R., . . . Reinberg, D. 
(2018). Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Mol Cell, 
70(6), 1149-1162 e1145. doi:10.1016/j.molcel.2018.05.023 

Otsuka, F., Moore, R. K., & Shimasaki, S. (2001). Biological function and cellular mechanism of 
bone morphogenetic protein-6 in the ovary. J Biol Chem, 276(35), 32889-32895. 
doi:10.1074/jbc.M103212200 

Pangas, S. A., Li, X., Umans, L., Zwijsen, A., Huylebroeck, D., Gutierrez, C., . . . Matzuk, M. M. 
(2008). Conditional deletion of Smad1 and Smad5 in somatic cells of male and female 
gonads leads to metastatic tumor development in mice. Mol Cell Biol, 28(1), 248-257. 
doi:10.1128/MCB.01404-07 

Peng, J. C., Valouev, A., Swigut, T., Zhang, J., Zhao, Y., Sidow, A., & Wysocka, J. (2009). 
Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy 
in pluripotent cells. Cell, 139(7), 1290-1302. doi:10.1016/j.cell.2009.12.002 

Pratt, W. B. (1997). The role of the hsp90-based chaperone system in signal transduction by 
nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol, 
37, 297-326. doi:10.1146/annurev.pharmtox.37.1.297 

Radhakrishnan, S., Literman, R., Neuwald, J., Severin, A., & Valenzuela, N. (2017). 
Transcriptomic responses to environmental temperature by turtles with temperature-



 98 

dependent and genotypic sex determination assessed by RNAseq inform the genetic 
architecture of embryonic gonadal development. PLoS One, 12(3), e0172044. 
doi:10.1371/journal.pone.0172044 

Ramsey, M., & Crews, D. (2009). Steroid signaling and temperature-dependent sex determination-
Reviewing the evidence for early action of estrogen during ovarian determination in turtles. 
Semin Cell Dev Biol, 20(3), 283-292. doi:10.1016/j.semcdb.2008.10.004 

Rhen, T., & Lang, J. W. (1998). Among-Family Variation for Environmental Sex Determination 
in Reptiles. Evolution, 52(5), 1514-1520. doi:10.1111/j.1558-5646.1998.tb02034.x 

Rhen, T., Metzger, K., Schroeder, A., & Woodward, R. (2007). Expression of putative sex-
determining genes during the thermosensitive period of gonad development in the snapping 
turtle, Chelydra serpentina. Sex Dev, 1(4), 255-270. doi:10.1159/000104775 

Rhen, T., & Schroeder, A. (2010). Molecular mechanisms of sex determination in reptiles. Sex 
Dev, 4(1-2), 16-28. doi:10.1159/000282495 

Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., . . . Chang, H. Y. 
(2007). Functional demarcation of active and silent chromatin domains in human HOX loci 
by noncoding RNAs. Cell, 129(7), 1311-1323. doi:10.1016/j.cell.2007.05.022 

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma 
powers differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res, 43(7), e47. doi:10.1093/nar/gkv007 

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-
140. doi:10.1093/bioinformatics/btp616 

Roush, D., & Rhen, T. (2018). Developmental plasticity in reptiles: Critical evaluation of the 
evidence for genetic and maternal effects on temperature-dependent sex determination. J 
Exp Zool A Ecol Integr Physiol, 329(6-7), 287-297. doi:10.1002/jez.2194 

Rullinkov, G., Tamme, R., Sarapuu, A., Lauren, J., Sepp, M., Palm, K., & Timmusk, T. (2009). 
Neuralized-2: expression in human and rodents and interaction with Delta-like ligands. 
Biochem Biophys Res Commun, 389(3), 420-425. doi:10.1016/j.bbrc.2009.08.147 

Sanulli, S., Justin, N., Teissandier, A., Ancelin, K., Portoso, M., Caron, M., . . . Margueron, R. 
(2015). Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition 
during Cell Differentiation. Mol Cell, 57(5), 769-783. doi:10.1016/j.molcel.2014.12.020 

Sasai, N., Kato, Y., Kimura, G., Takeuchi, T., & Yamaguchi, M. (2007). The Drosophila jumonji 
gene encodes a JmjC-containing nuclear protein that is required for metamorphosis. FEBS 
J, 274(23), 6139-6151. doi:10.1111/j.1742-4658.2007.06135.x 

Sheftel, A. D., Stehling, O., Pierik, A. J., Elsasser, H. P., Muhlenhoff, U., Webert, H., . . . Lill, R. 
(2010). Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles 
in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A, 107(26), 
11775-11780. doi:10.1073/pnas.1004250107 

Shoemaker, C., Ramsey, M., Queen, J., & Crews, D. (2007). Expression of Sox9, Mis, and Dmrt1 
in the gonad of a species with temperature-dependent sex determination. Dev Dyn, 236(4), 
1055-1063. doi:10.1002/dvdy.21096 

Son, J., Shen, S. S., Margueron, R., & Reinberg, D. (2013). Nucleosome-binding activities within 
JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes Dev, 27(24), 2663-
2677. doi:10.1101/gad.225888.113 



 99 

Song, R., Koo, B. K., Yoon, K. J., Yoon, M. J., Yoo, K. W., Kim, H. T., . . . Kong, Y. Y. (2006). 
Neuralized-2 regulates a Notch ligand in cooperation with Mind bomb-1. J Biol Chem, 
281(47), 36391-36400. doi:10.1074/jbc.M606601200 

Stevant, I., Kuhne, F., Greenfield, A., Chaboissier, M. C., Dermitzakis, E. T., & Nef, S. (2019). 
Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic 
Cells Using Single-Cell Transcriptomics. Cell Rep, 26(12), 3272-3283 e3273. 
doi:10.1016/j.celrep.2019.02.069 

Stevant, I., Neirijnck, Y., Borel, C., Escoffier, J., Smith, L. B., Antonarakis, S. E., . . . Nef, S. 
(2018). Deciphering Cell Lineage Specification during Male Sex Determination with 
Single-Cell RNA Sequencing. Cell Rep, 22(6), 1589-1599. 
doi:10.1016/j.celrep.2018.01.043 

Sun, X., Chen, H., Deng, Z., Hu, B., Luo, H., Zeng, X., . . . Ma, L. (2015). The Warsaw breakage 
syndrome-related protein DDX11 is required for ribosomal RNA synthesis and embryonic 
development. Hum Mol Genet, 24(17), 4901-4915. doi:10.1093/hmg/ddv213 

Tang, A. D., Soulette, C. M., van Baren, M. J., Hart, K., Hrabeta-Robinson, E., Wu, C. J., & 
Brooks, A. N. (2020). Full-length transcript characterization of SF3B1 mutation in chronic 
lymphocytic leukemia reveals downregulation of retained introns. Nat Commun, 11(1), 
1438. doi:10.1038/s41467-020-15171-6 

Tsutsumi, K., Matsuda, M., Kotani, M., Mizokami, A., Murakami, A., Takahashi, I., . . . Hirata, 
M. (2011). Involvement of PRIP, phospholipase C-related, but catalytically inactive 
protein, in bone formation. J Biol Chem, 286(35), 31032-31042. 
doi:10.1074/jbc.M111.235903 

Vrenken, K. S., Vervoort, B. M. T., van Ingen Schenau, D. S., Derks, Y. H. W., van Emst, L., 
Grytsenko, P. G., . . . van Leeuwen, F. N. (2020). The transcriptional repressor SNAI2 
impairs neuroblastoma differentiation and inhibits response to retinoic acid therapy. 
Biochim Biophys Acta Mol Basis Dis, 1866(3), 165644. doi:10.1016/j.bbadis.2019.165644 

Wang, T., Danielson, P. D., Li, B. Y., Shah, P. C., Kim, S. D., & Donahoe, P. K. (1996). The 
p21(RAS) farnesyltransferase alpha subunit in TGF-beta and activin signaling. Science, 
271(5252), 1120-1122. doi:10.1126/science.271.5252.1120 

Warr, N., Carre, G. A., Siggers, P., Faleato, J. V., Brixey, R., Pope, M., . . . Greenfield, A. (2012). 
Gadd45gamma and Map3k4 interactions regulate mouse testis determination via p38 
MAPK-mediated control of Sry expression. Dev Cell, 23(5), 1020-1031. 
doi:10.1016/j.devcel.2012.09.016 

Wen, J., Zhu, H., Murakami, S., Leung, P. C., & MacCalman, C. D. (2006). Regulation of A 
Disintegrin And Metalloproteinase with ThromboSpondin repeats-1 expression in human 
endometrial stromal cells by gonadal steroids involves progestins, androgens, and 
estrogens. J Clin Endocrinol Metab, 91(12), 4825-4835. doi:10.1210/jc.2006-1567 

Wijgerde, M., Ooms, M., Hoogerbrugge, J. W., & Grootegoed, J. A. (2005). Hedgehog signaling 
in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target 
gene expression in developing theca cells. Endocrinology, 146(8), 3558-3566. 
doi:10.1210/en.2005-0311 

Wong, J. J., Au, A. Y., Ritchie, W., & Rasko, J. E. (2016). Intron retention in mRNA: No longer 
nonsense: Known and putative roles of intron retention in normal and disease biology. 
Bioessays, 38(1), 41-49. doi:10.1002/bies.201500117 

Wu, Y. Y., Peck, K., Chang, Y. L., Pan, S. H., Cheng, Y. F., Lin, J. C., . . . Yang, P. C. (2011). 
SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-



 100 

mesenchymal transition in lung cancer. Oncogene, 30(34), 3682-3693. 
doi:10.1038/onc.2011.85 

Yao, H. H., Whoriskey, W., & Capel, B. (2002). Desert Hedgehog/Patched 1 signaling specifies 
fetal Leydig cell fate in testis organogenesis. Genes Dev, 16(11), 1433-1440. 
doi:10.1101/gad.981202 

Yatsu, R., Miyagawa, S., Kohno, S., Parrott, B. B., Yamaguchi, K., Ogino, Y., . . . Iguchi, T. 
(2016). RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis 
temperature-dependent sex determination and differentiation. BMC Genomics, 17, 77. 
doi:10.1186/s12864-016-2396-9 

 

 


	Intron Retention Of JARID2 Regulates Gene Expression During Temperature-Dependent Sex Determination
	Recommended Citation

	Microsoft Word - JACOB_BIERSTEDT_THESIS_05042021.docx

