Math Active Learning Lab: Math 107 Precalculus Notebook

Gwennie Byron
University of North Dakota, gwennie.byron@UND.edu
Department of Mathematics, University of North Dakota

Follow this and additional works at: https://commons.und.edu/oers
Part of the Mathematics Commons

Recommended Citation

Byron, Gwennie and Department of Mathematics, University of North Dakota, "Math Active Learning Lab: Math 107 Precalculus Notebook" (2020). Open Educational Resources. 24.
https://commons.und.edu/oers/24

This Course Material is brought to you for free and open access by UND Scholarly Commons. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

Math 107 Precalculus Notebook

University of North Dakota

Revised August 2020
© 2019
Department of Mathematics
University of North Dakota

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Welcome to the MALL

Welcome to UND's Math Active Learning Lab (MALL)! The MALL is a research-based approach designed to support student engagement with math. The premise of the MALL is that the best way to learn math is by doing math, not by watching someone else do math. This means that most of your time in this course will be spent doing math with the MALL instructors and tutors available to support your learning. The philosophy of the MALL is well described by H. A. Simon's quote
"Learning results from what the student does and thinks and ONLY from what the student does and thinks. The teacher can advance learning only by influencing what the student does to learn."

For many of you, this is your first college math course. Quite possibly, this course and our expectations may be different from your high school mathematics experiences. We cannot stress strongly enough your role in ensuring your success in this class. More than anything else, your choices will determine your success in this course. Our data shows that students who are successful do the following.

- Attend class (focus group) regularly.
- Work in ALEKS and this Notebook at least 3 days each week.
- Study for written and ALEKS exams.
- Seek help when you need it.

We will be asking you to use the ALEKS resources and to work in your notebooks before coming to class. In your weekly focus group, your instructor will support your learning by facilitating small-group assignments and providing mini-lectures on the more challenging topics.

Instead of sitting in a lecture class for hours each week AND then being expected to do practice problems outside of class, part of your "class time" is spent doing homework in ALEKS. This provides instant feedback and links you to resources as needed. Using ALEKS allows us to individualize the student learning path. Students can move quickly through topics they are familiar with and take the time they need to learn more challenging topics. To help you get the most out of ALEKS, we have created this notebook. If ALEKS and the notebook are still leaving you confused about a topic, we expect you to ask an instructor or tutor for help.

MALL Staff

Contents

How to use ALEKS 11
Working in ALEKS with the Notebook 11
The Learning Carousel 11
Hamburger Menu 12
Technical Support 13
Syllabus 14
Time Management 20
Achieving Your Potential 23
Test Analysis 24
Module 1 27
Translating a sentence into a multi-step equation 29
Converting between radical form and exponent form 29
Set-builder and interval notation 30
Union and intersection of intervals 31
Rewriting an algebraic expression without a negative exponent 32
Power, product, and quotient rules with negative exponents 33
Special products of radical expressions: Conjugates and squaring 34
Rational exponents: Unit fraction exponents and bases involving signs 34
\square Rational exponents: Non-unit fraction exponent with a whole number base 35
\square Rational exponents: Negative exponents and fractional bases 36
Squaring a binomial: Univariate 36
Complex fraction made of sums involving rational expressions: Problem type 3 37
Complex fraction made of sums involving rational expressions: Problem type 4 38
Complex fraction made of sums involving rational expressions: Problem type 5 39
Factoring a product of a quadratic trinomial and a monomial 39
Rationalizing a denominator using conjugates: Variable in denominator 40
Complex fraction with negative exponents: Problem type 1 40
Complex fraction with negative exponents: Problem type 2 41
Finding the x and y intercepts of a line given the equation: Advanced 41
Writing the equation of the line through two given points 42
\square Writing an equation in slope-intercept form given the slope and a point 43
Graping a line given its slope and y-intercept 44
Graphing a line given its equation in standard form 45
Graphing a line by first finding its x and y-intercepts 45
Finding intercepts of a nonlinear function given its graph 46
\square Finding the x and y intercepts of the graph of a nonlinear equation 47
Writing the equations of vertical and horizontal lines through a given point 48
\square Identifying parallel and perpendicular lines from equations 48
Using i to rewrite square roots of negative numbers 49
Writing equations of lines parallel and perpendicular to a given line through a point 50
Writing and evaluating a function that models a real-world situation: Advanced 51\square Interpreting the parameters of a linear function that models a real-world situation: Advanced52
Module 2 55
\square Solving a quadratic equation needing simplification 57
\square Finding the roots of a quadratic equation with leading coefficient greater than 1 57
Finding the roots of a quadratic equation of the form $a x^{2}+b x=0$ 58
Writing a quadratic equation given the roots and the leading coefficient 58
Introduction to solving an absolute value equation 59
\square Solving an absolute value equation: Problem type 2 60
\square Solving an absolute value equation: Problem type 4 61
Solving a quadratic equation using the square root property: Exact answers, advanced 62
\square Completing the square 62
\square Solving a quadratic equation by completing the square: Exact answers 63
Applying the quadratic formula: Exact answers 64
Solving a quadratic equation with complex roots 65
Restriction on a variable in a denominator: Quadratic 65
$\square S$ Solving a word problem using a quadratic equation with rational roots 66
\square Solving a word problem using a quadratic equation with irrational roots 67
Solving a rational equation that simplifies to linear: Unlike binomial denominators 68
Solving an absolute value inequality: Problem type 3 69
\square Solving an absolute value inequality: Problem type 5 70
\square Solving for a variable in terms of other variables in a rational equation: Problem type 2 71
\square Solving an equation using the odd-root property: Problem type 2 72
\square Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numerators 72
Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators 73
Solving a rational equation that simplifies to quadratic: Proportional form, advanced 74
\square Solving a radical equation that simplifies to a linear equation: One radical, advanced 75
\square Solving a radical equation that simplifies to a quadratic equation: One radical, advanced 76
\square Word problem involving radical equations: Advanced 77
Solving an equation with exponent $\frac{1}{a}$: Problem type 1 78
\square F Finding the average rate of change of a function 79
\square Word problem involving average rate of change 79
\square Finding the average rate of change of a function given its graph 80
Finding the initial amount and rate of change given a graph of a linear function 81
Module 3 83
\square Evaluating a function: Absolute value, rational, radical 85
\square Evaluating a piecewise-defined function 85
Evaluating a cube root function 86
Variable expressions as inputs of functions: Problem type 2 86
Variable expressions as inputs of functions: Problem type 3 87
\square Domain of a rational function: Excluded values 87
Domain of a rational function: Interval notation 88
\square Domain of a square root function: Advanced 88
Finding the domain of a fractional function involving radicals 89
Domain and range from the graph of a piecewise function 90
Domain and range of a linear function that models a real-world situation 90
Domain and range from the graph of a continuous function 91
\square Identifying functions from relations 92
Vertical line test 93
Determining whether an equation defines a function: Basic 94
Finding inputs and outputs of a two-step function that models a real-world situation: Function notation 94
Finding inputs and outputs of a function from its graph 95
Graphing a parabola of the form $y=a x^{2}+c$ 96
\square Graphing a cubic function of the form $y=a x^{3}$ 97
\square Graphing a square root function: Problem type 2 97
Transforming the graph of a function by reflecting over an axis 99
\square Transforming the graph of a function by shrinking or stretching 100
\square Transforming the graph of a function using more than one transformation 101
\square Transforming the graph of a quadratic, cubic, square root, or absolute value function 102
Matching parent graphs with their equations 103
How the leading coefficient affects the graph of a parabola 104
Translating the graph of an absolute value function: Two steps 104
Writing an equation for a function after a vertical and horizontal translation 105
Module 4-Review Module 108
Module 5 109
Identifying the center and radius to graph a circle given its equation in standard form 111
\square Identifying the center and radius of a circle given in general form: Basic 112
\square Writing an equation of a circle given its center and a point on the circle 113
\square Finding where a function is increasing, decreasing, or constant given the graph: Interval notation 113
\square Finding where a function is increasing, decreasing, or constant given the graph 114
Finding values and intervals where the graph of a function is zero, positive, or negative 114
Finding local maxima and minima of a function given the graph 115
\square Finding the absolute maximum and minimum of a function given the graph 116
Even and odd functions: Problem type 1 117
Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin 118
\square Testing an equation for symmetry about the axes and origin 119
Introduction to the composition of two functions 120
\square Composition of two functions: Basic 121
Expressing a function as a composition of two functions 121
\square Composition of a function with itself 122
Composition of two functions: Advanced 123
\square Word problem involving composition of two functions 124
Quotient of two functions: Basic 125
Sum, difference, and product of two functions 125
\square Combining functions to write a new function that models a real-world situation 126
Combining functions: Advanced 127
Graphing a piecewise-defined function: Problem type 1 127
\square Graphing a piecewise-defined function: Problem type 2 128
\square Graphing a piecewise-defined function: Problem type 3 129
Finding a difference quotient for a linear or quadratic function 129
\square Finding a difference quotient for a rational function 130
Choosing a graph to fit a narrative: Basic 131
Choosing a graph to fit a narrative: Advanced 132
Module 6 135
\square Graphing a parabola of the form $y=a(x-h)^{2}+k$ 137
\square Finding the maximum or minimum of a quadratic function 138
Rewriting a quadratic function to find its vertex and sketch its graph 139
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola 140
\square Finding the x-intercept(s) and the vertex of a parabola 141
\square Word problem involving the maximum or minimum of a quadratic function 141
\square Word problem involving optimizing area by using a quadratic function 142
\square Writing the equation of a quadratic function given its graph 143
\square Identifying polynomial functions 144
Finding zeros of a polynomial function written in factored form 145
\square Finding zeros and their multiplicities given a polynomial function written in factored form 146
\square Finding x and y intercepts given a polynomial function 146
Determining the end behavior of the graph of a polynomial function 148
\square Determining end behavior and intercepts to graph a polynomial function 149
\square Matching graphs with polynomial functions 149
Inferring properties of a polynomial function from its graph 150
Finding a polynomial of a given degree with given zeros: Real zeros 151
Polynomial long division: Problem type 3 151
\square Dividing a polynomial by a monomial: Univariate 152
\square Synthetic division 152
\square The Factor Theorem 153
Solving a system of linear equations using elimination with multiplication and addition 154
\square Solving a word problem using a system of linear equations of the form $A x+B y=C$ 155
\square Solving a system of linear and quadratic equations 156
\square Graphically solving a system of linear and quadratic equations 157
Using a given zero to write a polynomial as a product of linear factors: Real zeros 158
Solving a quadratic inequality written in factored form 158
\square Solving a quadratic inequality 159
Module 7 162
\square Finding the intercepts, asymptotes, domain, and range from the graph of a rational function 164
Finding the asymptotes of a rational function: Constant over linear 165
\square Finding the asymptotes of a rational function: Linear over linear 166
Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or de-nominator167
Matching graphs with rational functions: Two vertical asymptotes 168
Graphing a rational function: Constant over linear 169
Graphing a rational function: Linear over linear 170
Graphing a rational function with holes 172
Writing the equation of a rational function given its graph 173
Horizontal line test 174
Graphing the inverse of a function given its graph 174
Determining whether two functions are inverses of each other 175
Finding, evaluating, and interpreting an inverse function for a given linear relationship 176
Inverse functions: Linear, discrete 176
\square Inverse functions: Cubic, cube root 178
\square Inverse functions: Rational 179
Inverse functions: Quadratic, square root 180
Graphing an exponential function and its asymptote: $f(x)=b^{-x}$ or $f(x)=-b^{a x}$ 181
Graphing an exponential function and its asymptote: $f(x)=a(e)^{x-b}+c$ 182
Table for an exponential function 183
The graph, domain, and range of an exponential function 183
Translating the graph of an exponential function 184
Transforming the graph of a natural exponential function 185
\square Evaluating an exponential function that models a real-world situation 185
\square Evaluating an exponential function with base e that models a real-world situation 186
Module 8-Review Module 189
Module 9 190
Solving an exponential equation by finding common bases: Linear exponents 192
\square Solving an exponential equation by finding common bases: Linear and quadratic exponents 193
Converting between logarithmic and exponential equations 194
Converting between natural logarithmic and exponential equations 195
\square Evaluating logarithmic expressions 196
\square Graphing a logarithmic function: Basic 196
\square Translating the graph of a logarithmic function 197
\square The graph, domain, and range of a logarithmic function 198
\square Solving an equation of the form $\log _{b} a=c$ 198
Basic properties of logarithms 199
Domain of a logarithmic function: Advanced 200
\square Expanding a logarithmic expression: Problem type 1 201
\square Expanding a logarithmic expression: Problem type 2 202
\square Writing an expression as a single logarithm 202
Using properties of logarithms to evaluate expressions 203
Solving a multi-step equation involving a single logarithm: Problem type 1 204
\square Solving a multi-step equation involving a single logarithm: Problem type 2 205
\square Solving a multi-step equation involving natural logarithms 206
Solving an equation involving logarithms on both sides: Problem type 1 206
\square Solving an equation involving logarithms on both sides: Problem type 2 207
Solving an exponential equation by using logarithms: Exact answers in logarithmic form 208
\square Finding the time given an exponential function with base e that models a real-world situation 209
\square Finding the initial amount and rate of change given an exponential function 210
Module 10 212
Converting between degree and radian measure: Problem type 1 214
Sketching an angle in standard position 215
\square Sine, cosine, and tangent ratios: Numbers for side lengths 216
Sine, cosine, and tangent ratios: Variables for side lengths 216
\square Coterminal angles 217
\square Area of a sector of a circle 217
\square Finding coordinates on the unit circle for special angles 218
\square Reference angles: Problem type 1 219
\square Reference angles: Problem type 2 220
\square Trigonometric functions and special angles: Problem type 1 221
\square Trigonometric functions and special angles: Problem type 2 221
\square Trigonometric functions and special angles: Problem type 3 221
\square Finding trigonometric ratios from a point on the unit circle 222
Evaluating expressions involving sine and cosine 223
\square Even and odd properties of trigonometric functions 224
Finding trigonometric ratios given a right triangle 224
Determining the location of a terminal point given the signs of trigonometric values 225
Finding values of trigonometric functions given information about an angle: Problem type 1 226
Finding values of trigonometric functions given information about an angle: Problem type 2 226
Finding values of trigonometric functions given information about an angle: Problem type 3227
Finding values of trigonometric functions given information about an angle: Problem type 4 227
\square Using trigonometry to find a length in a word problem with one right triangle 228
\square Using a trigonometric ratio to find a side length in a right triangle 228
\square Using the Pythagorean Theorem to find a trigonometric ratio 229
Module 11 231
$\square S$ Sketching the graph of $y=a \sin x$ or $y=a \cos x$ 233
\square Sketching the graph of $y=\sin b x$ or $y=\cos b x$ 234
\square Sketching the graph of $y=\sin x+d$ or $y=\cos x+d$ 235
\square Sketching the graph of $y=\sin (x+c)$ or $y=\cos (x+c)$ 236
\square Sketching the graph of $y=a \sin (x+c)$ or $y=a \cos (x+c)$ 237
Sketching the graph of $y=a \sin b x$ or $y=a \cos b x$ 237
Sketching the graph of $y=a \sin (b x)+d$ or $y=a \cos (b x)+d$ 238
Sketching the graph of $y=a \sin (b x+c)$ or $y=a \cos (b x+c)$ 239
\square Amplitude and period of sine and cosine functions 239
\square Amplitude, period, and phase shift of sine and cosine functions 240
\square Sketching the graph of a secant or cosecant function: Problem type 1 240
\square Sketching the graph of a tangent or cotangent function: Problem type 1 241
Matching graphs and equations for secant, cosecant, tangent, and cotangent functions 242
Writing the equation of a sine or cosine function given its graph: Problem type 1 243
Word problem involving a sine or cosine function: Problem type 1 244
\square Word problem involving a sine or cosine function: Problem type 2 244
\square Values of inverse trigonometric functions 245
Composition of a trigonometric function with its inverse trigonometric function: Problem type 1 246
Composition of a trigonometric function with its inverse trigonometric function: Problem type 2 247
Composition of a trigonometric function with the inverse of another trigonometric function: Problemtype 1249
\square Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 2 250
Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 3 250
Composition of trigonometric functions with variable expressions as inputs: Problem type 1 251
\square Composition of trigonometric functions with variable expressions as inputs: Problem type 2 251
Domains and ranges of trigonometric functions 252
Module 12-Review Module 255
Module 13 256
\square Simplifying trigonometric expressions 258
Verifying a trigonometric identity 259
\square Proving trigonometric identities: Problem type 1 259
\square Proving trigonometric identities: Problem type 2 260
Proving trigonometric identities: Problem type 3 261
\square Double-angle identities: Problem type 1 261
\square Double-angle identities: Problem type 2 262
\square Sum and difference identities: Problem type 3 263
Proving trigonometric identities using double-angle properties 264
Half-angle identities: Problem type 2 265
Finding solutions in an interval for a basic equation involving sine or cosine 266
Solving a basic trigonometric equation involving sine or cosine 266
Finding solutions in an interval for a basic tangent, cotangent, secant, or cosecant equation 267
Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 1268
\square Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 2 269
Finding solutions in an interval for a trigonometric equation in factored form 269
Finding solutions in an interval for a trigonometric equation using Pythagorean identities: Problemtype 1270
Finding solutions in an interval for a trigonometric equation with an angle multiplied by a constant 270
Solving a trigonometric equation modeling a real-world situation 271
Finding solutions in an interval for an equation with sine and cosine using double-angle identities 272
Module 14 274
Using trigonometry to find angles of elevation or depression in a word problem 276
Solving a right triangle 276
Solving a triangle with the law of sines: Problem type 1 277
\square Solving a triangle with the law of sines: Problem type 2 279
\square Solving a word problem with the law of sines 281
Solving a triangle with the law of cosines 281
\square Solving a word problem with the law of cosines 282
Plotting points in polar coordinates 283
\square Multiple representations of polar coordinates 285
Converting rectangular coordinates to polar coordinates: Special angles 286
Converting polar coordinates to rectangular coordinates 287
Converting an equation written in polar form to one written in rectangular form: Problem type 1 288
\square Converting an equation written in polar form to one written in rectangular form: Problem type 2 289
Converting an equation written in rectangular form to one written in polar form 289
Graphing a polar equation: Basic 290
Graphing a polar equation: Circle 291
Graphing a polar equation: Limaçon 292
Graphing a polar equation: Rose 295
Matching polar equations with their graphs 296
\square Identifying symmetries of graphs given their polar equations 297
Module 15-Final Review 299
Solutions 300
Index 306
Common Properties, Graphs \& Formulas 306

How to use ALEKS

Working in ALEKS with the Notebook

- Every ALEKS topic is in the Notebook.
- Not every topic in the Notebook will be in YOUR Learning Carousel.
- If you have already mastered a topic, you will not see the topic in your Learning Carousel.
- You do NOT need to complete the Notebook for a topic you have already mastered.
- How to work through ALEKS topics

1. ALEKS presents you with a topic.
2. Use the table of contents to find the topic in the Notebook.
3. You will find one of the following icons to help direct your learning.

- Indicates you should watch a video. You may be asked to select a different video than the first video to pop up.
- 国 You should open the e-book.
* You may need to scrolll down to find the appropriate topic.
* Notebook entries are made to look EXACTLY like the e-book material
- Aa Open the dictionary to show definitions of terms.
- L Directs you to resources your instructor has added.
- If there is no icon, the material should come directly from the Learning Page, which is the first page presented to you with a new topic.

The Learning Carousel

- To bring down the Learning Carousel, click the $\bar{\nabla}$ on the upper left side of the ALEKS Learning page.
- \bigcirc indicates a goal topic for the current module
- A indicates a locked topic. Click the icon to see what topics must be worked to unlock it.
- No icon means it is a prerequisite topic. Use the Index to find the topic in your Notebook.
- When the Learning Carousel is pulled down, you can
- Click the Filiers - for options to filter topics.
- The Filter menu is shown below.

Search for topic You can type in the name of a topic to find it.
TAGS Click in the boxes to show only the topics that are

* goal topics,
* unlocked,
* have videos.

Hamburger Menu

- The Hamburger Menu $\overline{\text { E }}$ is in the upper left of your ALEKS screen.
- The options in the Hamburger Menu are shown below.

Home	
Learn	
Review	
Assignments	
Worksheet	
Calendar	
Gradebook	
Reports	
Message Center	
Instructor Resources	
Textbook	
Dictionary	
Manage My Classes	

Home Takes you back to the home screen.

Learn Opens the next topic ALEKS has ready for you to learn.

Review Opens up topics you have learned or mastered for you to review.

Calendar Opens a calendar view of deadlines for weekly modules and exams.

Gradebook Shows your grades for ALEKS modules and exams. The complete and official gradebook is in Blackboard.

Reports Opens a menu of reports that provide additional information about your progress in ALEKS. We encourage you to take a look at these pages.

Technical Support

ALEKS Technical Support is available at https://www.aleks.com/support/contact_support or by phone at (800) 258-2374. Call Technical support if you need help with

- accessing your account.
- locating a video.
- questions diplaying correctly.
- other technical issues not related to math content.
\qquad

Instructor: \qquad
Phone: \qquad

Email: \qquad
Office: \qquad

Focus Group:

Required Course Materials: ALEKS 18-week access and the \qquad Course Notebook

All email correspondence will go to your official UND email address.
Course prerequisites and content: Topics covered will include: Equations and inequalities; polynomial rational, exponential, logarithmic and trigonometric functions; inverse trigonometric functions; and algebraic and trigonometric methods commonly needed in calculus. Prerequisite: MATH 93 or an appropriate score in the Placement Testing Program.

The Math Active Learning Lab (MALL): Research shows that \qquad , not by listening to someone talk about or present the subject. The primary reason many students do not succeed in traditional math courses is that they do not do the problems or spend enough time engaged with the material.

The MALL is a research-based approach designed to support student engagement with math. Most of your time in this course will be spent doing math, and your instructor will support your learning by facilitating in-class assignments and providing mini-lectures on the more challenging topics. Instructors and tutors are available during the required MALL time to provide just-in-time support.

In a traditional math class, all students are expected to learn at the same pace. In the MALL, the ALEKS learning system allows you to work at you own pace, skip topics you have already mastered, and provides feedback as you are working.

COVID-19: All members of the University community have a role in creating and maintaining a COVID-19 resilient campus. There are several expectations that all community members, including students, are asked to follow for the safety of all:

- maintain physical \qquad of at least 6 feet while in UND facilities,
- wear \qquad coverings during interactions with others and in the classroom,
- wash their hands often and use hand sanitizer,
- properly clean spaces that they utilize, and
- if experiencing any symptoms, \qquad and call their health care provider.
- Students electing not to comply with any of the COVID related requirements will not be permitted in the \qquad , and may be subject to disciplinary action.

All members of the University community are expected to model positive \qquad both on- and off-campus. Information regarding the pandemic and UND's efforts to create a COVID resilient campus is available on the COVID-19 blog (http://blogs.und.edu/coronavirus/). Please subscribe to stay up to date on COVID related information.

Students who test positive for COVID-19 or are identified as a close contact are expected to self-isolate/quarantine. If you have tested positive for COVID-19 or have been placed in quarantine due to being identified as a close contact or travel we strongly recommend that you report the information to the Office of Student Rights and Responsibilities at 701.777 .2664 or online at https://veoci.com/veoci/p/w/ss2x4cq9238u. Doing so will ensure students have the support they need to continue with their academic goals and to protect others.

Due to the evolving circumstances of the COVID-19 pandemic, all information in this syllabus may need to be \qquad to meet the needs of remote instruction. Every effort will be made to operate in a manner consistent with the expectations outlined in this document.

Course Components

Focus Group

- Assignments given during the Focus Group meetings will be completed in small groups.
- On-time attendance is \qquad to earn full-credit on the assignment.
- Unless required for the Focus Group activity, cell-phone or computer use will result in a zero for the day.
- Students who do not attend the \qquad meeting, or contact the instructor the first week, will be DROPPED FROM THE COURSE.
- Students who do not \qquad their Initial Knowledge Check within two full days of their first class meeting will be DROPPED FROM THE COURSE.
- Once a week you will meet in class, the other day you will work in ALEKS in the MALL or remotely.
- Focus Group Absences
- If due to a serious emergency, absences will usually be excused. Documentation
- University sanctioned absences must be documented prior to the absence.
- Travel plans \qquad cause for an excused absence.
- All focus group assignments have a to account for any unexcused absences.
- Absences will be addressed on a case-by-case basis.

ALEKS

- Weekly module to be completed by ___ at 11:59 pm.
- Can work anywhere you have internet access.
- Deadlines \qquad be extended because of home computer or home internet issues.

MALL Time

- Spend at least 2.5 hours in the MALL working in ALEKS from \qquad
- MALL time must be completed in O'Kelly 33 (face-to-face) or virutally through Zoom.
- MALL time is class time, you should be working only on \qquad -
- Credit for MALL time is based \qquad on front desk check-in/out.
- Check-in with your UND ID when entering and check-out when exiting the MALL.
- Failure to check-in/out results in __ minutes recorded.
- Check-in/out with another student's ID is academic dishonesty.
- Minutes \qquad from one week to another.
- Focus Group time \qquad toward your MALL time.
- Food is NOT allowed in the MALL.
- The MALL is the place to get your math questions answered!
- MALL staff are there \qquad .

Notebook

- Graded \qquad in Focus Group.
\bullet \qquad for MALL time and Focus Group.

Topic Goal Extra Credit

- Complete 10 topics in ALEKS by \qquad at $11: 59 \mathrm{pm}$.
- Earn a Focus Group bonus point.

Exams

- There will be \qquad exams.
- Each exam will have 125 pts
- ALEKS exam: 100 pts
* Must be completed in the MALL exam area
* Must be completed by 9:00 pm the \qquad the written exam.
* UND ID is required to take your ALEKS exam.
* All scratch work must be submitted to \qquad as a PDF within 30 min of test completion.
* You may not leave your table during an exam without permission.
* Cell phones must be placed face \qquad on the table.
- Written exam: 25 pts
* will be given during the Focus Group meeting.

Exam 1: \qquad Exam 2: \qquad Exam 3: \qquad

Final Exam

- The final exam will be a comprehensive ALEKS exam.
- All scratch work must be submitted to Blackboard within 30 min of test completion.
- The final ALEKS exam must be completed by Wednesday, December 16 at 7:30 pm.

Grading

- Your course grade will be a weighted average of the following:

Exams	$\%$
Final Exam	$\boxed{\%}$
MALL Time	10%
Focus Group Activities	10%
Module Completion	15%

- Grading Scale: $\mathrm{A}=90 \%$ \& above, $\mathrm{B}=80-89 \%, \mathrm{C}=70-79 \%, \mathrm{D}=60-69 \%$.

Try Score

- Your Try Score reflects your effort in this course.
- The Try Score is composed of:
- focus group participation,
- notebook completion,
- MALL time and
- module completion.
- This is \qquad included in your course grade, but will be shared with your academic advisor.

Finishing the Course Early

- Given the individualized nature of this course it is possible to complete the course \qquad .
- Each time an exam is given, \qquad students have the option to take the final in place of the scheduled exam.
- To qualify to take the final early
- the week before the written exam, arrange with the MALL office to take a proctored Knowledge Check
- \qquad at least 90% of the in the course on this proctored ALEKS Knowledge Check

Academic Honesty

- All students in attendance at the University of North Dakota are expected to be honorable and to observe standards of conduct appropriate to a community of scholars.
- Academic misconduct includes
- all acts of dishonesty in any academically related matter.
- any knowing or intentional help or attempt to help, or conspiracy to help, another student.
- use of \qquad , books, calculators, \qquad or any electronic devices on exams.
- A student who attempts to obtain credit for work that is not their own (whether that be on a homework assignment, exam, etc.) will receive \qquad for that item of work, and at the professor's discretion, may also receive a failing grade in the course.
- For more information read the Code of Student Life at https://und.policystat.com/ policy/6747183/latest/.

Accommodations

- Disability
- Contact me to request disability accommodations, discuss medical information, or plan for an emergency evacuation.
- To get confidential guidance and support for disability accommodation requests, students are expected to register with DSS at http://und.edu/disability-services/, 190 McCannel Hall, or 701.777.3425.
- COVID-19
- Due to COVID-19 students may need to request course adjustments, flexibility in delivery of content, and increased absenteeism.
- Students with concerns regarding physically attending class during COVID-19 are encouraged to do the following:
* Talk with your \qquad to determine appropriate accommodations, as soon as possible
* Students with a known disability should contact Disability Student Services (DSS).

Starfish

- Important information is available to you through Starfish, which is an online system used to help students be successful.
- When an instructor observes student behaviors or concerns that may impede academic success, the instructor may raise a flag that notifies the student of the concern and/or refer the student to their academic advisor or UND resource.
- Please pay attention to these emails and take the recommended actions. They are sent to help you be successful!
- Starfish also allows you to
- schedule appointments with various offices and individuals across campus.
- request help on a variety of topics
- search and locate information on offices and services at UND
- You can log into Starfish by clicking on Logins on the UND homepage and then selecting Starfish. A link to Starfish is also available in Blackboard once you have signed in.

Notice of Nondiscrimination

- It is the policy of the University of North Dakota that no person shall be discriminated against because of race, religion, age, color, gender, disability, national origin, creed, sexual orientation, gender identity, genetic information, marital status, veteran's status, or political belief or affiliation and the equal opportunity and access to facilities shall be available to all.
- Concerns regarding Title IX, Title VI, Title VII, ADA, and Section 504 may be addressed to:
- Donna Smith, Director of Equal Employment Opportunity/Affirmative Action and Title IX Coordinator, 401 Twamley Hall, 701.777.4171
- UND.affirmativeactionoffice@UND.edu
- Office for Civil Rights, U.S. Dept. of Education, 500 West Madison, Suite 1475, Chicago, IL 60611

Resolution of Problems

Should a problem occur, you should speak to your instructor first. If the problem is not resolved, meet with Dr. Michele Iiams, MALL Director. If the problem continues to be unresolved, go to Dr. Gerri Dunnigan, Mathematics Department Chair, and next to the college Dean. Should the problem persist, you have the right to go to the Provost next, and then to the President.

How to Seek Help When in Distress

- We know that while college is a wonderful time for most students, some students may struggle.
- You may experience students in distress on campus, in your classroom, in your home, and within residence halls.
- Distressed students may initially seek assistance from faculty, staff members, their parents, and other students.
- In addition to the support we can provide to each other, there are also professional support services available to students through the Dean of Students and University Counseling Center.
- Both staffs are available to consult with you about getting help or providing a friend with the help that he or she may need.
- For more additional information, please visit the UND Cares program Webpage at https://und.edu/student-life/student-rights-responsibilities/.

Time Management

Good time management, good study skills and good organization will help you be successful in this course (and all of your classes). Answer the following questions.

1. To motivate yourself to complete a course, it is helpful to have clear reasons for taking the course. List your goals for taking this course.
2. Taking 12-15 credit-hours is the equivalent of a full-time job. Often students try to work too many hours while taking classes.
NOTE: Students need to work to pay tuition, rent, buy food, etc., but working too many extra hours for things that are not needed can really impact their success. There is a balance between working to earn money now and having to spend more money later to retake courses.
(a) Write down the number of of credit-hours you are taking this term and the number of hours you work per week.

- Number of credit-hours \qquad
- Number of hours worked per week
(b) The table gives the recommended limit to the number of hours you should work for the number of credit-hours you are taking.
- How do your numbers from part (a) compare to those in the table?

Number of Credit-Hours	Maximum Number of Hours of Work per Week
3	40
6	30
9	20
12	10
15	0

(c) Keep in mind that other responsibilities in your life, such as your family, might also make it necessary to limit your hours at work even more. What other responsibilities do you have?
(d) It is often suggested that you devote 2 hours of study and homework time outside of class for each credit-hour you take. For example:

12	credit-hours	15	credit-hours
24	study hours	30	study hours
36	total hours	45	total hours

- Based on the number of credit-hours you are taking, how many study hours should you plan for?
\qquad credit hours $\mathrm{X} 2=$ \qquad study hours
- What is the total number of hours (class time plus study time) that you should devote to school?
\qquad credit hours + \qquad study hours = \qquad total hours
- Your MALL course is a 3-credit course. This means you might need to spend up to 9 hours each week in class, working in ALEKS, or studying.
- At least 2 of these hours should be completed in the MALL.

On the next page, write down the times each day (for the next week) that you

- have scheduled classes,
- are scheduled to work
- other non-negotiable commitments (family, organization meetings, etc.)
- times that you plan to work in the MALL
- times that you plan to study outside of the MALL

Time Management

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
8:00-8:30							
8:30-9:00							
9:00-9:30							
9:30-10:00							
10:00-10:30							
10:30-11:00							
11:00-11:30							
11:30-12:00							
12:00-12:30							
12:30-1:00							
1:00-1:30							
1:30-2:00							
2:00-1:30							
2:30-3:00							
3:00-3:30							
3:30-4:00							
4:00-4:30							
4:30-5:00							
5:00-5:30							
5:30-6:00							
6:00-6:30							
6:30-7:00							
7:00-7:30							
7:30-8:00							
8:00-8:30							
8:30-9:00							
9:00-9:30							
9:30-10:00							
10:00-10:30							
10:30-11:00							

Achieving Your Potential

Read each sentence, then check the box that best describes your behaviors and attitudes as they pertain to this course and to your life in general. Don't overthink the questions. Just ask yourself how you compare to most people. Be honest. There are no right or wrong answers.

	Not at all like me	Not much like me	Somewhat like me	Mostly like me	Very much like me
I arrive on time and attend every class meeting.	1	2	3	4	5
I complete assignments on time.	1	2	3	4	5
I have difficulty staying alert and on-task during class.	5	4	3	2	1
I tend to rush through assignments just to get them finished.	5	4	3	2	1
I am willing to learn from my mistakes and use them as an opportunity for growth.	1	2	3	4	5
I have a positive attitude and am ready to learn new ideas and concepts.	1	2	3	4	5
I haven't really set any goals for this course.	5	4	3	2	1
I organize my class materials, handouts, and assignments so that I can easily find information when I need it.	1	2	3	4	5
I have difficulty finding enough time in the day to complete my assignments and study.	5	4	3	2	1
I seek help from my instructor, tutors, classmates, or other resources when I am having difficulty understanding a new topic.	1	2	3	4	5
I'm not really sure why I am going to college.	5	4	3	2	1
I know that I can learn difficult concepts if I work hard and do my best.	1	2	3	4	5

Test Analysis

Have you ever thought of your graded test as a learning experience? There is a lot you can learn about yourself, your study habits, and your test-taking skills by examining your graded test after you get it back.

- Did you do as well as you thought you could?
- Or is there room for improvement?

You may think, "the test was too hard" or "the teacher didn't give us enough time", but, chances are, your instructor has been giving a similar test under similar conditions to many students before you. So let's see what YOU can do to earn a higher score on your next test.

Look at your graded test and analyze if each point loss was due to your having been unprepared for that problem, a concept error, or a careless error .

- Being underprepared for a problem means you didn't know how to do the problem because you hadn't done the homework that would have prepared you for it. Often an error made is considered an underprepared error if you look at the problem and have no idea where to begin.
- A concept error is one where you really didn't understand the concept behind the problem. No matter how much time was available for a problem like this, you wouldn't have been able to do it correctly because you have no conceptual understanding of the problem. This is not a procedural error: you can apply a procedure and still not understand the concept. Students demonstrate conceptual understanding in mathematics when they provide evidence that they can recognize, label, and generate examples of concepts; use and interrelate models, diagrams, manipulatives, and varied representations of concepts; identify and apply principles; know and apply facts and definitions; compare, contrast, and integrate related concepts and principles; recognize, interpret, and apply the signs, symbols, and terms used to represent concepts. Conceptual understanding reflects a student's ability to reason in settings involving the careful application of concept definitions, relations, or representations of either.
- A careless error is one where you understood the problem and knew how to solve it, but you made a mistake that could have been avoided. Maybe you copied the problem or your handwriting incorrectly, made a relatively minor mistake in calculation, or some similar error.

1. In the chart below, put the number of points you missed on each problem under the correct heading. Then find the total in each column.

Problem	unprepared	concept error	careless error
			Total points

2. In which column did you have the most missed points? What does that tell you about yourself?
3. What can you learn from this exercise?

Being Unprepared

Consider the points you lost because you were unprepared. Why did you take a test without being fully prepared? Often, activities and responsibilities in life interfere with good intentions about being diligent in attending class, completing the notebook, completing MALL time, and completing the module. It may be time to:

- re-examine your weekly schedule and make sure you are devoting a sufficient amount of time to this class. Lay out a time management grid of your schedule making sure to schedule your MALL time and math study time throughout the week.
- re-commit yourself to succeeding in this class. Think about your college and career goals and remind yourself of how this course helps you get one step closer to achieving them.

4. List two steps you will take to remedy being unprepared.

Concept Errors

Now consider the concept errors point loss. A high total in this column tells you that you didn't understand the concepts very well. You may understand a math concept for the hour you're working on problems, but forget it by the next day; possibly because you didn't do enough homework.

- Take Knowledge Checks when they appear. Knowledge Checks (KCs) are the way ALEKS helps you identify topics you are not retaining. Take each KC as if it were a QUIZ (no notebooks, calculators, friends, other websites, etc.) AND to the BEST OF YOUR ABILITY. Topics that you need to revisit will appear again in later modules as they are needed.
- Get the help you need immediately! Math concepts build on each other. Each new idea is based on many previous concepts. Make sure you get the help you need immediately, as soon as you find yourself beginning to feel lost, so that the confusion doesn't compound itself - otherwise it can become like a snowball, getting bigger and bigger as it roles through the snow.

If your total loss due to concept errors is fairly large, find out where you can get the help you need. A high concept error total is cause for concern and must be addressed immediately for you to succeed.
5. Which of the following can help you when you are struggling with math?
(a) your instructor
(b) MALL tutors
(c) Reworking and asking questions about previous Focus Group assignments
(d) Completing your Notebook pages
(e) All of the above

Careless Errors

Next look at careless error point loss. Careless errors are often caused by hurrying during a test or by lack of concentration due to test-anxiety or over-confidence. Here are some strategies that have worked for other students:

- Do the easiest problems first. When you first start a test, look it over and note which problems will be easiest for you. Do all those problems first to ensure you don't leave an easy problem blank just because it is at the end of the test. Finishing problems you find easy will help build your confidence! Then go through the rest of the test from beginning to end.
- Work carefully and neatly. As you do each problem, try to focus on one step at a time.
- Review each problem to look for careless errors when you finish the test. Find and correct common careless errors like arithmetic mistakes and sign errors before you turn in your test.
- Whenever possible, check your answer.

A lot of points can be gained by slowing down and being careful.
6. What are things you will do next time to prevent careless errors?
7. Now take half of your careless errors point total and add it back to your test total. What could your test grade have been? Would it have changed the letter grade?

Module 1

Contents

Translating a sentence into a multi-step equation 29
Converting between radical form and exponent form 29
Set-builder and interval notation 30
Union and intersection of intervals 31
Rewriting an algebraic expression without a negative exponent 32
\square Power, product, and quotient rules with negative exponents 33
Special products of radical expressions: Conjugates and squaring 34
Rational exponents: Unit fraction exponents and bases involving signs 34
\square Rational exponents: Non-unit fraction exponent with a whole number base 35
\square Rational exponents: Negative exponents and fractional bases 36
Squaring a binomial: Univariate 36
Complex fraction made of sums involving rational expressions: Problem type 3 37
Complex fraction made of sums involving rational expressions: Problem type 4 38
Complex fraction made of sums involving rational expressions: Problem type 5 39Factoring a product of a quadratic trinomial and a monomial39
Rationalizing a denominator using conjugates: Variable in denominator 40
Complex fraction with negative exponents: Problem type 1 40
Complex fraction with negative exponents: Problem type 2 41
Finding the x and y intercepts of a line given the equation: Advanced 41
Writing the equation of the line through two given points 42
\square Writing an equation in slope-intercept form given the slope and a point 43
Graping a line given its slope and y-intercept 44
Graphing a line given its equation in standard form 45
Graphing a line by first finding its x and y-intercepts 45
Finding intercepts of a nonlinear function given its graph 46
\square Finding the x and y intercepts of the graph of a nonlinear equation 47
Writing the equations of vertical and horizontal lines through a given point 48
Identifying parallel and perpendicular lines from equations 48
Using i to rewrite square roots of negative numbers 49
Writing equations of lines parallel and perpendicular to a given line through a point 50
Writing and evaluating a function that models a real-world situation: Advanced 51
Interpreting the parameters of a linear function that models a real-world situation: Advanced 52

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by
Translating a sentence into a multi-step equation

Learning Page Click on the first light bulb to complete the following.
More When translating phrases into algebraic expressions, it's helpful to look for the following key words.

Key Words	Operation
sum, increased by, more than, added to	
difference, decreased by, less than, subtracted from	
product, times, twice	
quotient, divided by	

EXAMPLE:

3 is the same as 5 less than the quotient of 16 and a number m.

- "is the same as 3 " means $3=$.
- the "quotient of 16 and a number m " is written $\frac{16}{m}$
- " 5 less than" is $\frac{16}{m}-5$

The equation is $\frac{16}{m}-5=3$

YOU TRY IT:

1. 7 more than the quotient of a number d and 6 is 9 .

Converting between radical form and exponent form

Learning Page We can convert between radical and exponential notations by using the following fact.

$$
x^{m / n}=
$$

When is this fact true? In order for the equations to be true, \qquad must be well defined as a
\qquad number. It is \qquad well defined when n is \qquad When n is \qquad
it is well defined only when \qquad is \qquad .

YOU TRY IT:

2. Convert $x^{7 / 2}$ to radical notation.
3. Convert $\sqrt[3]{x^{4}}$ to an expression with rational exponents.

Set-builder and interval notation

Learning Page The set $\{x \mid$ \qquad $\}$ is the set of all x such that x is \qquad

This set is an \qquad It is written using \qquad
We can specify an interval using \qquad a \qquad or
\qquad as shown below.

Set Builder Notation	Graph	Interval Notation
$\{x \mid a \leq x \leq b\}$		
$\{x \mid a<x<b\}$		
		$(a, b]$
$\{x \mid a \leq x<b\}$		$[a, \infty)$
		(a, ∞)
		$(-\infty, a)$
$\{x \mid x \leq a\}$		

A solid dot shows an endpoint that \qquad ـ.

In interval notation, this is shown using \qquad .

A hollow dot shows an endpoint that \qquad .

In interval notation, this is shown using \qquad .

EXAMPLE:

Given the set $\{x \mid-2<x \leq 4\}$, graph the set and write the interval notation.

$(-2,4]$

YOU TRY IT:

4. Given the set $\{x \mid x \geq-3\}$, graph the set and write the interval notation.

Union and intersection of intervals

ใน Open the Instructor Added Resource which will direct you to a video to complete the following.

Union and Intersection of Sets

The union of sets A and B, denoted
\qquad ,
is the set of elements that belong to set A \qquad to set B \qquad .

Shade in $A \cup B$.

The intersection of sets A and B, denoted \qquad is the set of elements
\qquad

Shade in $A \cap B$.

Given the sets $A=\{x \mid x>-6\}, B=\{x \mid \leq 3\}$, and $C=\{x \mid x \geq 7\}$ find the following. Write your answer in interval notation.

Set A:

Set B:

Set C:

a. $A \cup B=$
b. $A \cap B=$
c. $B \cap C=$
d. $B \cup C=$

EXAMPLE:

Given $A=\{x \mid x>2\}$ and $B=\{x \mid x \geq-3\}$.
Find the following.

YOU TRY IT:

Given $D=\{x \mid x \leq 2\}$ and
$E=\{x \mid x>5\}$. Find the following.
5. $D \cap E$
a) $A \cup B$

We begin by sketching both graphs.

6. $D \cup E$

We want values in either of the two intervals.
$A \cup B=[-3, \infty)$
b) $A \cap B=(2, \infty)$

We want the overlap of the two intervals.

Rewriting an algebraic expression without a negative exponent

Learning Page

For any \qquad number a and any \qquad
n, we have the following.

Rule 1: $a^{-n}=$ \qquad

Move \qquad to the \qquad and make the \qquad

Rule 2: $\frac{1}{a^{-n}}=$ \qquad

Move \qquad to the \qquad and make the \qquad

YOU TRY IT: Write the following expressions with positive exponents.
7. $4 x^{-5}$
8. $\frac{3}{x^{-7}}$

Power, product, and quotient rules with negative exponents

(1)

Open the e-book to complete the following.
Definition of b^{0} and b^{-n}
If b is a nonzero real number and n is a positive integer, then

$b^{0}=\square$	Examples:
$b^{-n}=\square$	Examples:

Complete the table for Properties of Exponents. Let a and b be real numbers and m and n be integers.

Property	Example	Expanded Form

YOU TRY IT:

9. Simplify $\left(x^{-2} y^{3}\right)\left(\frac{3 x^{3} y}{z^{-1}}\right)^{-3}$. Write your answer using only positive exponents.

Special products of radical expressions: Conjugates and squaring

\square Watch the video Multiplying Conjugate Radical Expressions and Squaring Two-term Radical Expressions to complete the following.

Perform the indicated operations.
a.
b.
$(a-b)(a+b)=$ \qquad

$$
(a-b)^{2}=
$$

\qquad

Rational exponents: Unit fraction exponents and bases involving signs

\square Watch the video Definition of " a " to the $1 / n$ Power to complete the following.

Definition of $a^{1 / n}$

Let $n>1$ be an integer. Then, $a^{1 / n}=$ \qquad provided that $\sqrt[n]{a}$ is a \qquad number.

Verbal Interpretation	Algebraic Example
$a^{1 / n}$ equals the_of	
a, provided that the $n^{t h}$-root	
of a is a \quad number.	

a.
b.
c.

YOU TRY IT: Simplify the following.
10. $16^{1 / 4}=$
11. $8^{1 / 3}=$

Rational exponents: Non-unit fraction exponent with a whole number base

\square Watch the video Definition of " a " to the m / n Power to complete the following.

Definition of $a^{m / n}$

Let m and n be positive integers such that m / n is in lowest terms and $n>1$. Then $\sqrt[n]{a}$ is a
\qquad number,
$a^{m / n}=$ \qquad $=$ \qquad OR $a^{m / n}=$ \qquad $=$

Simplify if possible.
a.
b.
c.
d.
e.
f.

YOU TRY IT: Simplify the following.
12. $8^{2 / 3}=$
13. $81^{3 / 4}=$

Rational exponents: Negative exponents and fractional bases

If you have not already watched the video \square Definition of " a " to the m / n Power from the previous topic Rational exponents: Non-unit fraction exponent with a whole number base, do so now. You may watch the video again for a review.

YOU TRY IT: Simplify. Write your answers without exponents.
14. $\left(\frac{1}{16}\right)^{-3 / 2}$
15. $27^{-2 / 3}$

Squaring a binomial: Univariate

\square Watch the video Squaring a Binomial to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

The square of a binomial:

Multiply.

YOU TRY IT:

16. Rewrite $(7-3 y)^{2}$ without parentheses and simplify.

Complex fraction made of sums involving rational expressions: Problem type 3

\square Watch the video Simplifying Complex Fractions (Methods I and II) to complete the following.

Simplify using Method I.

Simplify Using Method II.

Complex fraction made of sums involving rational expressions: Problem type 4

\square Open the e-book to complete the following.
Simplifying a Complex Fraction: Multiply by the LCD (Method II)

Step 1

Step 2

Step 3

EXAMPLE:

Simplify $\frac{2+\frac{2}{x+2}}{1-\frac{3}{x-1}}$.
To start, we will multiply by $\frac{(x+2)(x-1)}{(x+2)(x-1)}$ to eliminate the fraction on the top and the fraction on the bottom.

$$
\begin{aligned}
\frac{2+\frac{2}{x+2}}{1-\frac{3}{x-1}} & =\frac{2+\frac{2}{x+2}}{1-\frac{3}{x-1}} \cdot \frac{(x+2)(x-1)}{(x+2)(x-1)} \\
& =\frac{2(x+2)(x-1)+\frac{2(x+2)(x-1)}{x+2}}{1(x+2)(x-1)-\frac{3(x+2)(x-1)}{x-1}} \\
& =\frac{2\left(x^{2}+x-2\right)+2 x-2}{x^{2}+x-2-3 x-6} \\
& =\frac{2 x^{2}+2 x-4+2 x-2}{x^{2}-2 x-8} \\
& =\frac{2 x^{2}+4 x-6}{x^{2}-2 x-8}
\end{aligned}
$$

YOU TRY IT:

17. Simplify $\frac{3-\frac{1}{x+4}}{1+\frac{2}{x-4}}$.

Complex fraction made of sums involving rational expressions: Problem type 5

ใด Open the Instructor Added Resource which will direct you to a video to complete the following.
Simplify.

YOU TRY IT: Simplify.
18. $\frac{1-\frac{15}{x}+\frac{56}{x^{2}}}{1-\frac{11}{x}+\frac{24}{x^{2}}}$

Factoring a product of a quadratic trinomial and a monomial

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.
Factor.

Rationalizing a denominator using conjugates: Variable in denominator

Learning Page To rationalize the denominator is to write an \qquad
To do this, we'll multiply the \qquad and \qquad by the

The radical expressions $a+b \sqrt{m}$ and \qquad are conjugates of each other.

EXAMPLE: Rationalize the denominator and simplify.

$$
\begin{aligned}
\frac{4}{3-2 \sqrt{x}} & =\frac{4}{3-2 \sqrt{x}} \cdot \frac{3+2 \sqrt{x}}{3+2 \sqrt{x}} \\
& =\frac{12+8 \sqrt{x}}{9-4 x}
\end{aligned}
$$

YOU TRY IT: Rationalize the denominator and simplify.
19. $\frac{-3}{4+5 \sqrt{y}}$

Complex fraction with negative exponents: Problem type 1

Open the e-book to complete EXAMPLE 7: Simplifying a Complex Fraction (Method II).

Solution:

First write the expression with

Step 1: Multiply the numerator and
denominator by the \qquad of all four individual fractions: \qquad
Step 2: Apply the \qquad
property.

Step 3: Simplify by \qquad and common factors.

YOU TRY IT:

20. Simplify $\frac{u^{2}-w^{-1}}{w^{2}+u^{-1}}$. Write your answer using only positive exponents.

Complex fraction with negative exponents: Problem type 2

Review EXAMPLE 7 from the previous topic: Complex fraction with negative exponents: Problem type 1 before working this topic.

EXAMPLE:

Simplify $\frac{3 x^{-1}-y^{-2}}{2 x^{-1}+4 y^{-1}}$. Write your answer using only positive exponents.

$$
\begin{aligned}
\frac{3 x^{-1}-y^{-2}}{2 x^{-1}+4 y^{-1}} & =\frac{\frac{3}{x}-\frac{1}{y^{2}}}{\frac{2}{x}+\frac{4}{y}} \\
& =\frac{\frac{3}{x}-\frac{1}{y^{2}}}{\frac{2}{x}+\frac{4}{y}} \cdot \frac{x y^{2}}{x y^{2}} \\
& =\frac{\frac{3 x y^{2}}{x}-\frac{x y^{2}}{y^{2}}}{\frac{2 x y^{2}}{x}+\frac{4 x y^{2}}{y}} \\
& =\frac{3 y^{2}-x}{2 y^{2}+4 x y}
\end{aligned}
$$

YOU TRY IT:

21. Simplify $\frac{-3 x y^{-1}+2 y^{-1}}{4 x^{-2}+5 y}$. Write your answer using only positive exponents.

Finding the x and y intercepts of a line given the equation: Advanced

Learning Page To find the x-intercept of a line, \qquad
If the x-intercept is a, this means the point \qquad lies on the line.

To find the y-intercept of a line, \qquad —.

If the y-intercept is b, this means the point \qquad lies on the line.

EXAMPLE:

Find the x and y-intercept of $4 x+3 y=-8$.
a) Find the x-intercept. Let $y=0$.

$$
\begin{aligned}
4 x+3(0) & =-8 \\
4 x & =-8 \\
x & =-2
\end{aligned}
$$

YOU TRY IT:

22. Find the x and y-intercept of $7 x-5 y=3$.
$(-2,0)$ is the x-intercept.
b) Find the y-intercept. Let $x=0$.

$$
\begin{aligned}
4(0)+3 y & =-8 \\
3 y & =-8 \\
y & =-\frac{8}{3}
\end{aligned}
$$

$\left(0,-\frac{8}{3}\right)$ is the y-intercept.

Writing the equation of the line through two given points

Watch the video Writing an Equation of the Line Passing Through Two Given Points and complete the following.Write an equation of the line that passes through the points \qquad and \qquad Write the answer in slope-intercept form.

YOU TRY IT:

23. Write the equation of the line through $(2,-4)$ and $(-1,3)$.

Writing an equation in slope-intercept form given the slope and a point

D Watch the video Using Slope-Intercept Form to Write an Equation of a Line and complete the following.

1. Use the slope-intercept form to write an equation of the line that passes through \qquad with slope $m=$ \qquad
2. Write the equation using function notation where $y=f(x)$.

YOU TRY IT:

24. Write the equation of the line with slope $m=\frac{3}{4}$ that passes through $(2,-3)$.

Graping a line given its slope and y-intercept

\square Watch the video Using the Slope and y-intercept to Graph a line to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

On the axes, plot and label the point $(0, b)$ and graph the line.

$$
m=\square \Longrightarrow m=
$$

Slope-intercept form:
a. Write the equation in slope-intercept from and determine the slope and y-intercept.

$$
m=\quad y \text { - intercept: }
$$

\qquad
b. Graph the equation by using the slope and y-intercept.

Graphing a line given its equation in standard form

Learning Page
First, solve the equation for \qquad Then, choose some \qquad values and evaluate.

EXAMPLE:

Sketch the graph of $3 x+4 y=8$.
Solve for y.

$$
\begin{aligned}
4 y & =8-3 x \\
y & =2-\frac{3}{4} x
\end{aligned}
$$

Find points that lie on the graph.

x	y
0	2
2	$\frac{1}{2}$
4	-1

YOU TRY IT:

25. Sketch the graph of $2 x-3 y=6$.

Graphing a line by first finding its x and y-intercepts

Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad by first finding the x and y-intercepts. x-intercept:
y-intercept:

YOU TRY IT: Consider the line $3 x-4 y=12$.
26. Find the x-intercept.
27. Find the y-intercept.
28. Sketch the graph.

Finding intercepts of a nonlinear function given its graph

Learning Page
The x-intercepts are where the graph intersects the \qquad
The x-intercepts are also \qquad of the function.

The y-intercept is where the graph intersects the \qquad
The graph of a function can have at \qquad y-intercept.

YOU TRY IT: Give all x and y intercepts of the graph below.

29. x-intercept(s):
30. y-intercept(s):

Finding the x and y intercepts of the graph of a nonlinear equation

Watch the video Identifying x - and y-intercepts to complete the following.

x-intercept(s):
y-intercept(s):

Determining x - and y-intercepts from an Equation

Given an equation in x and y,

- Find the \qquad by substituting \qquad for \qquad in the equation and solving for \qquad -
- Find the \qquad by substituting \qquad for \qquad in the equation and solving for \qquad .

Determine the x - and y-intercepts of the graph of the equation. x-intercept(s):
y-intercept(s):

EXAMPLE:

Find the x and y-intercepts of $16 x^{2}+25 y^{2}=400$.

- Find the x-intercepts.

$$
\begin{aligned}
16 x^{2}+25 \cdot 0^{2} & =400 \\
16 x^{2} & =400 \\
x^{2} & =25 \\
x & =5,-5
\end{aligned}
$$

The x-intercepts are $(5,0)$ and $(-5,0)$.

- Find the y-intercepts.

$$
\begin{aligned}
16 \cdot 0^{2}+25 y^{2} & =400 \\
25 y^{2} & =400 \\
y^{2} & =16 \\
y & =4,-4
\end{aligned}
$$

The y-intercepts are $(0,4)$ and $(0,-4)$.

Writing the equations of vertical and horizontal lines through a given point

Open the e-book to complete the following.

Linear Equations and Slopes of Lines

$$
A x+B y=C
$$

Slanted line

$y=k$
Horizontal line

__ slope \qquad

YOU TRY IT:

32. Write the equation of the vertical line through $(-4,3)$
33. Write the equation of the horizontal line through $(7,-12)$

Identifying parallel and perpendicular lines from equations

Learning Page Here are some facts about parallel and perpendicular lines.

Parallel Lines:

- Two \qquad lines are parallel if and only if they have the \qquad
- All \qquad lines are parallel to \qquad
Vertical lines are parallel only to other \qquad

Perpendicular Lines:

- Two nonvertical lines are perpendicular if and only if the \qquad is \qquad
- All vertical lines are perpendicular to all \qquad lines and vice versa.

Vertical lines are \qquad to horizontal lines and vice versa.

EXAMPLE:

Determine if the lines below are parallel, perpendicular, or neither.

$$
\begin{aligned}
5 y & =2 x+3 \\
-5 y & =3 x+2
\end{aligned}
$$

We first write the lines in slope-intercept form.

$$
\begin{aligned}
& y=\frac{2}{5} x+\frac{3}{5} \\
& y=-\frac{3}{5} x+\frac{2}{5}
\end{aligned}
$$

The slope of the first line is $\frac{2}{5}$ and the slope of the second line is $-\frac{3}{5}$. They are not equal so the lines are NOT parallel. $\frac{2}{5} \cdot-\frac{3}{5} \neq-1$ so the lines are NOT perpendicular.

YOU TRY IT:

34. Determine if the lines below are parallel, perpendicular, or neither.

$$
\begin{aligned}
6 y & =2 x+3 \\
-2 y & =6 x+2
\end{aligned}
$$

Using i to rewrite square roots of negative numbers

Open the e-book to complete the following.
The Imaginary Number i

- $i=$ \qquad and $i^{2}=$ \qquad
- If b is a positive real number, then $\sqrt{-b}=$

EXAMPLE: Simplify the following.
a) $\sqrt{-36}$

$$
\sqrt{-36}=i \sqrt{36}=6 i
$$

35. $\sqrt{-49}$
b) $\sqrt{-28}$

$$
\sqrt{-28}=i \sqrt{28}=i \sqrt{2^{2} \cdot 7}=2 i \sqrt{7}
$$

YOU TRY IT: Simplify the following.

Writing equations of lines parallel and perpendicular to a given line through a point

Watch the video Writing an Equation of a Line Parallel to Another Line and complete the following.Write an equation of the line passing through \qquad and parallel to the line \qquad
II Pause the video and try graphing the given line and the parallel line yourself.

Play the video and check your answers.

Watch the video Writing an Equation of a Line Perpendicular to Another Line and complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Write an equation of the line passing through \qquad and perpendicular to the line \qquad

II Pause the video and try graphing the given line and the perpendicular line yourself.

Play the video and check your answers.

YOU TRY IT: Consider the line $4 x+3 y=-6$. Find the equation of a line that is:
37. perpendicular to $4 x+3 y=-6$ and contains
38. parallel to $4 x+3 y=-6$ and contains $(4,-2)$. $(4,-2)$.

Writing and evaluating a function that models a real-world situation: Advanced

Watch the video Writing Linear Cost, Revenue, and Profit Functions and complete the following.

A lawn service company charges \qquad for each lawn maintenance call. The fixed monthly cost of \qquad includes telephone service and depreciation of equipment. The variable costs include labor, gasoline, and taxes. These amount to \qquad per lawn.
a. Write a linear cost function representing the monthly $\operatorname{cost} C(x)$ for x maintenance calls. $(\quad)=(\quad)+(\quad)$
b. Write a linear revenue function representing the monthly revenue $R(x)$ for x maintenance calls.
c. Write a linear profit function representing the monthly profit $P(x)$ for x maintenance calls.
d. Determine the number of calls needed per month for the company to make money.
e. If 42 calls are made for a given month, how much money will the lawn service earn or lose?

Interpreting the parameters of a linear function that models a real-world situation: Advanced

Open the Instructor Added Resource which will direct you to a video to complete the following.

Jose is driving to Chicago. Let y represent his distance from Chicago (in miles). Let x represent the time he has been driving (in hours). Suppose that x and y are related by the equation \qquad
a. How far was Jose from Chicago when he began his drive?
b. What is the change in Jose's distance from Chicago for each hour he drives?

This is given by the \qquad of the \qquad .

The slope of \qquad is \qquad .

This means that for \qquad that Jose drives, his \qquad to

Chicago will \qquad by \qquad miles.

YOU TRY IT:

Let y represent the total cost of producing a toy. Let x represent the number of toys produced. Suppose that x and y are related by the equation $1100+15 x=y$.
39. What is the change in the total cost for each toy made?
40. What is the cost to get started before any toys are made?

Notes from Focus Group:

Notes from Focus Group:

Module 2

Contents

Solving a quadratic equation needing simplification 57
\square Finding the roots of a quadratic equation with leading coefficient greater than 1 57
Finding the roots of a quadratic equation of the form $a x^{2}+b x=0$ 58
Writing a quadratic equation given the roots and the leading coefficient 58
Introduction to solving an absolute value equation 59
Solving an absolute value equation: Problem type 2 60
\square Solving an absolute value equation: Problem type 4 61
Solving a quadratic equation using the square root property: Exact answers, advanced 62
Completing the square 62
\square Solving a quadratic equation by completing the square: Exact answers 63
Applying the quadratic formula: Exact answers 64
Solving a quadratic equation with complex roots 65
Restriction on a variable in a denominator: Quadratic 65
Solving a word problem using a quadratic equation with rational roots 66
\square Solving a word problem using a quadratic equation with irrational roots 67
Solving a rational equation that simplifies to linear: Unlike binomial denominators 68
Solving an absolute value inequality: Problem type 3 69
\square Solving an absolute value inequality: Problem type 5 70
Solving for a variable in terms of other variables in a rational equation: Problem type 2 71
Solving an equation using the odd-root property: Problem type 2 72
Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numer-ators72
Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators 73
\square Solving a rational equation that simplifies to quadratic: Proportional form, advanced 74
Solving a radical equation that simplifies to a linear equation: One radical, advanced 75
\square Solving a radical equation that simplifies to a quadratic equation: One radical, advanced 76
Word problem involving radical equations: Advanced 77
Solving an equation with exponent $\frac{1}{a}$: Problem type 1 78
Finding the average rate of change of a function 79
\square Word problem involving average rate of change 79
Finding the average rate of change of a function given its graph 80
Finding the initial amount and rate of change given a graph of a linear function 81

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by
Solving a quadratic equation needing simplification

Learning Page
We first \qquad the equation with \qquad on one \qquad

EXAMPLE:

Solve: $2 x^{2}-x-3=(x+1)^{2}$.
We expand the right side of the equation.
$2 x^{2}-x-3=x^{2}+2 x+1$
Next, rewrite the equation with 0 on one side.

$$
\begin{aligned}
x^{2}-3 x-4 & =0 \\
\text { Factor. } & \\
(x-4)(x+1) & =0 \\
x & =4,-1
\end{aligned}
$$

YOU TRY IT:

41. Solve: $2 x^{2}+x=(x-2)^{2}-10$

Finding the roots of a quadratic equation with leading coefficient greater than 1

Watch the video Introduction to Quadratic Equations and the Zero Product Property to complete the following.
NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Definition of a Quadratic Equation

Let a, b, and c represent real numbers where $a \neq 0$. A quadratic equation in the variable x is an equation of the form

Zero Product Property
If $m n=0$, then \qquad or \qquad

Solve by applying the zero product property.

EXAMPLE: Solve $5 x^{2}+9 x-2=0$.

YOU TRY IT:

We begin by factoring.

$$
\begin{aligned}
5 x^{2}+9 x-2 & =0 \\
(5 x-1)(x+2) & =0 \\
x & =\frac{1}{5},-2
\end{aligned}
$$

Finding the roots of a quadratic equation of the form $a x^{2}+b x=0$

Open the e-book to complete the following.

Zero Product Property

If \qquad , then \qquad or \qquad .

EXAMPLE:

Solve the equation $2 x^{2}+8 x=0$.

$$
\begin{array}{rlr}
& 2 x^{2}+8 x=0 \\
& 2 x(x+4)=0 \\
2 x=0 & \text { or } & x+4=0 \\
x=0 & \text { or } & x=-4
\end{array}
$$

YOU TRY IT:

43. Solve the equation $4 x^{2}-20 x=0$.

The solution is $x=0,-4$.

Writing a quadratic equation given the roots and the leading coefficient

\qquad , which states that if k is a root of the polynomial
$P(x)=0$, then \qquad is a factor of the polynomial $P(x)$.

EXAMPLE: Write the quadratic equation whose roots are -2 and 3 , and whose leading coefficient is 7 .
-2 is a root so $x+2$ is a factor and 3 is a root so $x-3$ is a factor.

$$
\begin{aligned}
7(x+2)(x-3) & =0 \\
7\left(x^{2}-3 x+2 x-6\right) & =0 \\
7\left(x^{2}-x-6\right) & =0 \\
7 x^{2}-7 x-42 & =0
\end{aligned}
$$

YOU TRY IT:

44. Write the quadratic equation whose roots are 5 and -2 , and whose leading coefficient is 3 .

Introduction to solving an absolute value equation

\square Watch the video Introduction to Absolute Value Equations to complete the following.

Solve the equation.
$|u|=3$ \qquad
$|u|=0$ \qquad
$|u|=-3$ \qquad
$|x+1|=$ \qquad

Let k represent a real number.

1. If \qquad ,$|u|=k$ is equivalent to \qquad or \qquad
2. If $\quad,|u|=k$ is equivalent to \qquad -
3. If \qquad $|u|=k$ \qquad

Learning Page The absolute value of a number is its \qquad from \qquad on the number line.

YOU TRY IT: Solve for x.
45. $|x|=8$
46. $|x|=-3$

Module 2

Solving an absolute value equation: Problem type 2

\square Watch the video Solving Absolute Value Equations to complete the following.

Solve the equations.
a. \qquad b. \qquad
c. \qquad

Let k represent a real number.

1. If \qquad $|u|=k$ is equivalent to \qquad or \qquad .
2. If \qquad , $|u|=k$ is equivalent to \qquad .
3. If \qquad ,$|u|=k$ \qquad

YOU TRY IT: Solve for x.
47. $|3 x+2|=8$
48. $|4 x-1|=-7$

Solving an absolute value equation: Problem type 4

\square Watch the video Solving an Absolute Value Equation to complete the following.

Solve the equation.

EXAMPLE:

Solve the following equations.
a) $2|x+5|-10=0$

First isolate $|x+5|$.

$$
\begin{aligned}
2|x+5|-10 & =0 \\
2|x+5| & =10 \\
|x+5| & =5
\end{aligned}
$$

Write the equivalent statements without absolute value.

$$
\begin{aligned}
x+5 & =5 & \text { or } & x+5
\end{aligned}=-5 \text { 50. }-3|x-7|+5=-1
$$

YOU TRY IT:

Solve the following equations.
49. $-7|x-5|+4=9$

So $x=0,-10$
b) $6+4|x+3|=2$

$$
\begin{aligned}
4|x+3| & =-4 \\
|x+3| & =-1
\end{aligned}
$$

No solution.

Solving a quadratic equation using the square root property: Exact answers, advanced

\square Watch the video Introduction to the Square Root Property to complete the following.

Square Root Property

If $x^{2}=k$, then \qquad
The solution set is \qquad or more concisely \qquad
Solve by applying the square root property.
a.
b.
c.

EXAMPLE: Solve for x.

$$
2(x+1)^{2}=16
$$

Solve for the squared term.

$$
(x+1)^{2}=8
$$

Apply the square root property.

$$
\begin{aligned}
x+1 & = \pm \sqrt{8} \\
x & =-1 \pm 2 \sqrt{2}
\end{aligned}
$$

YOU TRY IT:

51. Solve: $\frac{1}{2}(x-2)^{2}-5=0$

Completing the square

\square Watch the video Introduction to Completing the Square and complete the following.

Determine the value of n that makes the polynomial a perfect square trinomial. Then factor as the square of a binomial.
a.
b.
c.

Solving a quadratic equation by completing the square: Exact answers

\square Watch the video Solving a Quadratic Equation With Leading Coefficient 1 by Completing the Square and complete the following.

Solve by completing the square and applying the square root property.

EXAMPLE:

Solve $x^{2}-12 x+33=0$ by completing the square.

$$
\begin{aligned}
& \begin{array}{l}
x^{2}-12 x+33=0 \\
x^{2}-12 x=-33
\end{array} \\
& \text { Add }\left(\frac{12}{2}\right)^{2} \text { to each side } \\
& x^{2}-12 x+36=-33+36
\end{aligned}
$$

Factor the left side.

$$
\begin{aligned}
(x-6)^{2} & =3 \\
x-6 & = \pm \sqrt{3}
\end{aligned}
$$

Apply the square root property.

$$
x=6 \pm \sqrt{3}
$$

YOU TRY IT:

52. Solve $x^{2}+2 x+5=0$ by completing the square.

Applying the quadratic formula: Exact answers

\square Watch the video Introduction to the Quadratic Formula to complete the following.

1. Factor and apply the zero product rule.

This method works if the \qquad expression is \qquad
2. Complete the square and apply the square root property.

This method works in \qquad
3. Apply the quadratic formula.

This method works in \qquad
State the quadratic formula.
Solve.

EXAMPLE: Solve $2 x^{2}+6 x-3=0$ using the quadratic formula.

$$
\begin{aligned}
2 x^{2}+6 x-3 & =0 \\
x & =\frac{-(6) \pm \sqrt{(6)^{2}-4(2)(-3)}}{2(2)} \\
x & =\frac{-6 \pm \sqrt{36+24}}{4} \\
x & =\frac{-6 \pm \sqrt{60}}{4} \\
x & =\frac{-6 \pm 2 \sqrt{15}}{4} \\
x & =\frac{-3 \pm \sqrt{15}}{2}
\end{aligned}
$$

YOU TRY IT:

53. Solve $-4 x^{2}-12 x+5=0$ by using the quadratic formula.

Solving a quadratic equation with complex roots

Learning Page
According to the quadratic formula, the solutions to the quadratic equation \qquad
are as follows.

$$
x=
$$

\qquad

EXAMPLE:

Solve $5 x^{2}-4 x+1=0$ using the quadratic formula.

$$
\begin{aligned}
5 x^{2}-4 x+1 & =0 \\
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(5)(1)}}{2(5)} \\
x & =\frac{4 \pm \sqrt{-4}}{10} \\
x & =\frac{4 \pm 2 i}{10} \\
x & =\frac{2}{5} \pm \frac{1}{5} i
\end{aligned}
$$

YOU TRY IT:

54. Solve $3 x^{2}+2 x+1=0$ by using the quadratic formula.

Restriction on a variable in a denominator: Quadratic

Learning Page

 Division by \qquad is not defined. So the expression is \qquad when its\qquad is \qquad .

EXAMPLE:

Find all excluded values for $\frac{y+2}{y^{2}-9}$.
We must exclude values when the denominator is 0 . That is when $y^{2}-9=0$.

$$
\begin{aligned}
y^{2}-9 & =0 \\
y^{2} & =9 \\
y & =3,-3
\end{aligned}
$$

$\frac{y+2}{y^{2}-9}$ is undefined when $y=3$ or $y=-3$.

YOU TRY IT:

55. Find all excluded values of $\frac{u+7}{u^{2}-4 u+4}$.

Solving a word problem using a quadratic equation with rational roots

\square Watch the video Using a Quadratic Equation in an Application Involving Area to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Sketch the graph from the video and show all work.

YOU TRY IT:

56. The front face of a shed is in the shape shown below. The length of the rectangular region is 3 times the height of the truss. The height of the rectangle is 2 ft more than the height of the truss. If the total area of the front face of the shed is $336 \mathrm{ft}^{2}$, determine the length and width of the rectangular region. Let x be the height of the truss.

Solving a word problem using a quadratic equation with irrational roots

2 Open the Instructor Added Resource which will direct you to a video to complete the following.

The population P of a culture of bacteria is given by \qquad , where t is the time in hours since the culture was started. Determine the time(s) at which the population was \qquad _. Round to the nearest hour.

EXAMPLE:

If football is kicked straight up with an initial velocity of $128 \mathrm{ft} / \mathrm{sec}$ from a height of 5 ft , then its height, h, above the earth is a given by $h=-16 t^{2}+128 t+5$. When will the football hit the ground?

The football hits the ground when the height is 0 , so we set $h=0$ and solve for t.
$-16 t^{2}+128 t+5=0$
Multiply each by -1 .
$16 t^{2}-128 t-5=0$
Use the quadratic formula.

$$
\begin{aligned}
& x=\frac{128 \pm \sqrt{128^{2}-4(16)(-5)}}{2(16)} \\
& x=\frac{128+\sqrt{16704}}{32}, \frac{128-\sqrt{16704}}{32}
\end{aligned}
$$

There will only be one solution
because cannot have a negative time.

$$
x=\frac{128+\sqrt{16704}}{32} \approx 8.04 \mathrm{sec}
$$

YOU TRY IT:

57. If football is kicked straight up with an initial velocity of $128 \mathrm{ft} / \mathrm{sec}$ from a height of 5 ft , then its height, h, above the earth is a given by $h=-16 t^{2}+128 t+5$. When will the football be at 37 feet?

Solving a rational equation that simplifies to linear: Unlike binomial denominators

\square Watch the video Solving a Rational Equation and complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve.

EXAMPLE: Solve the equation.

$$
\frac{x}{x-3}=\frac{3}{x-3}-\frac{3}{4}
$$

We first note that x cannot be 3 .
Multiply both sides of equation by the LCD.

$$
4(x-3) \cdot \frac{x}{x-3}=4(x-3) \cdot \frac{3}{x-3}-4(x-3) \cdot \frac{3}{4}
$$

Simplify.

$$
\begin{aligned}
4(x-3) \cdot \frac{x}{x-3} & =4(x-3) \cdot \frac{3}{x-3}-4(x-3) \cdot \frac{3}{4} \\
4 x & =12-3(x-3) \\
4 x & =12-3 x+9 \\
7 x & =21 \\
x & =3
\end{aligned}
$$

$x=3$ is a restricted value so there is no solution.

YOU TRY IT: Solve the equation.
58. $\frac{3}{4 t+4}+1=\frac{2 t-5}{t+1}$

Solving an absolute value inequality: Problem type 3

\square Watch the video Introduction to Absolute Value Inequalities to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve the equation or inequality.
$|u|=$ \qquad
\qquad
$|u|$ \qquad
$|u|$ \qquad

Solve the inequality.
a.
b.

For a real number $k>0$,

1. $|u|<k$ is equivalent to \qquad .
2. $|u|>k$ is equivalent to \qquad or \qquad

EXAMPLE: Graph the solution to the inequality on the number line.

$$
|2 x+3| \leq 5
$$

Use the properties from above to rewrite.

$$
\begin{array}{r}
-5 \leq 2 x+3 \leq 5 \\
-8 \leq 2 x \leq 2 \\
-4 \leq x \leq 1
\end{array}
$$

YOU TRY IT: Graph the solution to the inequality on the number line.
59. $|3 y-6|>6$

Solving an absolute value inequality: Problem type 5

Watch the video Solving an Absolute Value Inequality (Less Than) to complete the following.Solve the inequality and write the solution set in interval notation.

For a real number $k>0$,

1. $|u|<k$ is equivalent to \qquad
2. $|u|>k$ is equivalent to \qquad -

EXAMPLE:

Solve the following inequalities.
a) $|3 x+2|<7$

Write the equivalent statements without absolute value.

$$
\begin{array}{r}
-7<3 x+2<7 \\
-9<3 x<5 \\
-3<x<\frac{5}{3}
\end{array}
$$

The solution in interval notation is $\left(-3, \frac{5}{3}\right)$ and graphically is

b) $-2|4-x| \leq-4$

First isolate $|4-x|$.

$$
|4-x| \geq 2
$$

Write the equivalent statements without absolute value.

$$
\begin{array}{rlrlrl}
4-x & \geq 2 & \text { or } & & 4-x & \leq-2 \\
-x & \geq-2 & \text { or } & -x & \leq-6 \\
x & \leq 2 & \text { or } & & x & \geq 6
\end{array}
$$

The answer in interval notation is $(-\infty, 2] \cup[6, \infty)$ and graphically is

YOU TRY IT:

Solve the following inequalities.
60. $3<|2 x-1|$
61. $|5-4 x| \leq 1$

Solving for a variable in terms of other variables in a rational equation: Problem type 2

Learning Page
Carefully read the example on the Learning Page.

EXAMPLE: Solve for P.

$$
A=P+P r t
$$

Factor out P on right.

$$
A=P(1+r t)
$$

Divide both sides by $1+r t$.
$\frac{A}{1+r t}=P$

YOU TRY IT: Solve for d.
62. $S=\frac{n}{2}(a+d)$

Solving an equation using the odd-root property: Problem type 2

2 Open the Instructor Added Resource which will direct you to a video to complete the following.
Solve for x.

YOU TRY IT: Solve for x.
63. $\frac{1}{2}(x+5)^{3}-64=0$

Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numerators

ใด Open the Instructor Added Resource which will direct you to a video to complete the following.

Solve for x. \qquad

YOU TRY IT: Solve for x.
64. $\frac{1}{x}+\frac{1}{x-1}=\frac{3}{2}$

Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators

Watch the video Solving a Rational Equation that Reduces to a Quadratic and complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve the equation.

EXAMPLE: Solve for x.

$$
\frac{x-3}{x-1}=\frac{x-2}{x-4}-1
$$

$x=1$ and $x=4$ are excluded from the solution.
Multiply both sides by the LCD.

$$
\begin{aligned}
&(x-1)(x-4) \frac{x-3}{x-1}=\left(\frac{x-2}{x-4}-1\right)(x-1)(x-4) \\
& \text { Simplify. } \\
&(x-1)(x-4) \frac{x-3}{x-1}=\frac{(x-2)(x-1)(x-4)}{x-4}-1(x-1)(x-4) \\
&(x-3)(x-4)=(x-2)(x-1)-\left(x^{2}-5 x+4\right) \\
& x^{2}-7 x+12=x^{2}-3 x+2-x^{2}+5 x-4 \\
& x^{2}-9 x+14=0 \\
&(x-7)(x-2)=0 \\
& x=2,7
\end{aligned}
$$

Solving a rational equation that simplifies to quadratic: Proportional form, advanced

Open the Instructor Added Resource which will direct you to a video to complete the following.

Solve for x.

EXAMPLE: Solve for x.

$$
\frac{18}{x^{2}-8 x+12}=\frac{-2 x}{x-2}
$$

Factor the denominator.

YOU TRY IT: Solve for y.
66. $\frac{2 y}{y-6}=\frac{12}{y^{2}-7 y+6}$

$$
\frac{18}{(x-2)(x-6)}=\frac{-2 x}{x-2}
$$

$x=2$ and $x=6$ are excluded from the solution.
Multiply both sides by the LCD.

$$
(x-2)(x-6) \frac{18}{(x-2)(x-6)}=\frac{-2 x}{x-2}(x-2)(x-6)
$$

Simplify.

$$
\begin{aligned}
(x-2)(x-6) \frac{18}{(x-2)(x-6)} & =\frac{-2 x}{x-2}(x-2)(x-6) \\
18 & =-2 x(x-6) \\
18 & =-2 x^{2}+12 x \\
2 x^{2}-12 x+18 & =0 \\
2\left(x^{2}-6 x+9\right) & =0 \\
2(x-3)^{2} & =0 \\
x & =3
\end{aligned}
$$

Solving a radical equation that simplifies to a linear equation: One radical, advanced

!

Open the e-book to complete the following.

Solving a Radical Equation

Step 1

Step 2

Step 3

Step 4

In solving radical equations, \qquad potentially arise when both sides of the equation are raised to an even power. Therefore, an equation with only \qquad roots will not have extraneous solutions. However, it is still recommended that all potential solutions \qquad $-$

EXAMPLE: Solve for y.

$$
\sqrt{y+8}+2=4
$$

Isolate the radical.

$$
\sqrt{y+8}=2
$$

Square both sides.

$$
(\sqrt{y+8})^{2}=(2)^{2}
$$

Simplify.

$$
\begin{aligned}
y+8 & =4 \\
y & =-4
\end{aligned}
$$

Check the solution.

$$
\begin{array}{r}
\sqrt{-4+8}+2 \stackrel{?}{=} 4 \\
\sqrt{4}+2 \stackrel{?}{=} 4 \\
4=4
\end{array}
$$

$y=-4$ is a solution.

Solving a radical equation that simplifies to a quadratic equation: One radical, advancedWatch the video Solving a Radical Equation in which Squaring a Binomial is Required to complete the following.

Solve the equation.

EXAMPLE: Solve for y.

$$
\begin{aligned}
\sqrt{y+18}+2 & =y \\
\sqrt{y+18} & =y-2 \\
(\sqrt{y+18})^{2} & =(y-2)^{2} \\
y+18 & =y^{2}-4 y+4 \\
0 & =y^{2}-5 y-14 \\
0 & =(y-7)(y+2) \\
y & =-2,7
\end{aligned}
$$

Check the solutions.

$$
\begin{array}{rrr}
\sqrt{-2+18}+2 & \stackrel{?}{=}-2 & \sqrt{7+18}+2 \stackrel{?}{=} 7 \\
\sqrt{16}+2 \stackrel{?}{=}-2 & \sqrt{25}+2 \stackrel{?}{=} 7 \\
4+2 & \stackrel{?}{=}-2 & 5+2 \stackrel{?}{=} 7 \\
6 & \neq-2 & 7
\end{array}=7
$$

YOU TRY IT: Solve for x.
68. $\sqrt{2 x+29}+3=x$
$y=7$ is a solution.

Word problem involving radical equations: Advanced

EXAMPLE:

The distance d (in miles) that an observer can see on a clear day is approximated by $d=\frac{49}{40} \sqrt{h}$, where h is the height of the observer in feet. If Rita can see 24.5 mi , how far above ground is her eye level?
$d=24.5$ which can also be written as $d=\frac{49}{2}$.
We substitute this into the given equation and solve for h.

$$
\frac{49}{2}=\frac{49}{40} \sqrt{h}
$$

Multiply both sides by $\frac{40}{49}$

$$
\begin{aligned}
\frac{40}{49} \cdot \frac{49}{2} & =\frac{40}{49} \cdot \frac{49}{40} \sqrt{h} \\
20 & =\sqrt{h}
\end{aligned}
$$

Square both sides.
400 feet $=h$

YOU TRY IT:

69. If an object is dropped from a height of h meters, the velocity v (in $\mathrm{m} / \mathrm{sec}$) at impact is given by $v=\sqrt{19.6 h}$. Determine the impact velocity for an object dropped from a height of 10 m .

Solving an equation with exponent $\frac{1}{a}$: Problem type 1

\square Watch the video Solving an Equation with Rational Exponents to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Solve the equation.

EXAMPLE: Solve for x.

$$
\sqrt[3]{2 x-5}=-3
$$

Cube both sides.

$$
\begin{aligned}
&(\sqrt[3]{2 x-5})^{3}=(-3)^{3} \\
& \text { Simplify } \\
& 2 x-5=-27 \\
& 2 x=-22 \\
& x=-11
\end{aligned}
$$

Check the solution.

$$
\begin{aligned}
\sqrt[3]{2(-11)-5} & \stackrel{?}{=}-3 \\
\sqrt[3]{-27} & \stackrel{?}{=}-3 \\
-3 & =-3
\end{aligned}
$$

YOU TRY IT: Solve for x.
70. $\sqrt[5]{4 x+8}=2$

Finding the average rate of change of a function

Watch the video Determining Average Rate of Change to complete the following.

Determine the average rate of change of the function on the given interval.

$$
f(x)=
$$

\qquad $m=$ \qquad
a. \qquad
b. \qquad
c. \qquad

EXAMPLE:

Find the average rate of change of $f(x)=x^{2}+x-4$ from $x=1$ to $x=3$.

$$
\begin{aligned}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} & =\frac{f(3)-f(1)}{3-1} \\
& =\frac{\left(3^{2}+3-4\right)-\left(1^{2}+1-4\right)}{2} \\
& =\frac{8-(-2)}{2}=5
\end{aligned}
$$

YOU TRY IT:

71. Find the average rate of change of $f(x)=3-2 x-x^{2}$ from $x=-1$ to $x=2$.

Word problem involving average rate of change

\qquad of the line passing through
\qquad and \qquad

EXAMPLE: Travis is cooking a beef roast. The table below gives the temperature $R(t)$ of the roast in degrees Celsius, at a few times t in minutes after he removed it from the oven. Find the average rate of change for the temperature from 10 to 50 minutes.

Time t	Temperature $R(t)$
0	226.6
10	205.6
30	157.6
50	119.6
70	61.6

The average rate of change over $\left[x_{1}, x_{2}\right]$ is given by the formula below. In this problem $x_{2}=50$ and $x_{1}=10$. We find the values of the function from the table above.

$$
\begin{aligned}
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} & =\frac{f(50)-f(10)}{50-10} \\
& =\frac{119.6-205.6}{40} \\
& =\frac{-86}{40}=-2.15^{\circ} \mathrm{C} \text { per minute }
\end{aligned}
$$

Finding the average rate of change of a function given its graph

Watch the video Determining Average Rate of Change 1 to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

The function given by $y=f(x)$ shows the value of \qquad invested at \qquad interested compounded continuously after x years.
a. Find the average amount earned per year between the \qquad year and \qquad year.

$$
m=
$$

b. Find the average amount earned per year between the \qquad year and \qquad year.

Finding the initial amount and rate of change given a graph of a linear function

Learning Page Carefully read the example on the Learning Page.

YOU TRY IT:

At a candy factory, a machine is putting candy into a container. The graph shows the amount of candy, in pounds, in the container versus time in minutes.

72. What is the amount of candy in the container at 0 minutes?
73. Describe how the time and amount of candy are related.

Notes from Focus Group:

Notes from Focus Group:

Module 3

Contents

Evaluating a function: Absolute value, rational, radical 85
Evaluating a piecewise-defined function 85
\square Evaluating a cube root function 86
Variable expressions as inputs of functions: Problem type 2 86
Variable expressions as inputs of functions: Problem type 3 87
Domain of a rational function: Excluded values 87
Domain of a rational function: Interval notation 88
Domain of a square root function: Advanced 88
Finding the domain of a fractional function involving radicals 89
Domain and range from the graph of a piecewise function 90
Domain and range of a linear function that models a real-world situation 90
\square Domain and range from the graph of a continuous function 91
Identifying functions from relations 92
Vertical line test 93
Determining whether an equation defines a function: Basic 94Finding inputs and outputs of a two-step function that models a real-world situation: Functionnotation94
Finding inputs and outputs of a function from its graph 95
Graphing a parabola of the form $y=a x^{2}+c$ 96
Graphing a cubic function of the form $y=a x^{3}$ 97
Graphing a square root function: Problem type 2 97
Transforming the graph of a function by reflecting over an axis 99
Transforming the graph of a function by shrinking or stretching 100
Transforming the graph of a function using more than one transformation 101
Transforming the graph of a quadratic, cubic, square root, or absolute value function 102
Matching parent graphs with their equations 103
How the leading coefficient affects the graph of a parabola 104Translating the graph of an absolute value function: Two steps104
Writing an equation for a function after a vertical and horizontal translation 105

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by
Evaluating a function: Absolute value, rational, radical

EXAMPLE:

Given $f(x)=\frac{x+3}{x-2}$ and
$g(x)=|1-4 x|$, find the following.
a) $f(-2)$

$$
\begin{aligned}
f(-2) & =\frac{-2+3}{-2-2} \\
& =\frac{1}{-4}=-\frac{1}{4}
\end{aligned}
$$

b) $g(6)$

$$
\begin{aligned}
g(6) & =|1-4(6)| \\
& =|1-24|=|-23|=23
\end{aligned}
$$

YOU TRY IT:

Given $f(x)=\frac{x-4}{2 x+6}$ and
$g(x)=|1-4 x|$, find the following.
74. $g(-4)$
75. $f(-3)$

Evaluating a piecewise-defined function

\square Watch the video Interpreting a Piecewise-Defined Function to complete the following.

Evaluate the function for the given values of x.

$$
g(x)=\left\{\begin{array}{lll}
\square & \text { for } x \leq-2 & \text { II Pau } \\
& \text { for }-2<x<3 & \text { c. } g(-2)= \\
& \text { for } x \geq 3 & \text { d. } g(0)=
\end{array}\right.
$$

a. $g(-3)=$
e. $g(4)=$
b. $g(3)=$

Play the video and check your answers.

Evaluating a cube root function

See a list
of cubes
Complete the chart below of perfect cubes.

x	x^{3}	x	x^{3}
1		6	
2		7	
3		8	
4		9	
5		10	

EXAMPLE:
Given $f(x)=\sqrt[3]{4 x+7}$ find $f(-2)$.

$$
\begin{aligned}
f(-2) & =\sqrt[3]{4(-2)+7} \\
& =\sqrt[3]{-1}=-1
\end{aligned}
$$

YOU TRY IT:

76. Given $f(x)=\sqrt[3]{4 x+7}$ find $f(5)$.

Variable expressions as inputs of functions: Problem type 2

D Watch the video Evaluating a Function to complete the following.

Given \qquad evaluate \qquad

EXAMPLE:

Given $g(x)=\sqrt{1-4 x}$, find $g(x+h)$.

$$
\begin{aligned}
g(x+h) & =\sqrt{1-4(x+h)} \\
& =\sqrt{1-4 x-4 h}
\end{aligned}
$$

YOU TRY IT:

77. Given $f(x)=3 x^{2}-4 x+7$, find $f(x+h)$.

Variable expressions as inputs of functions: Problem type 3

EXAMPLE:

Given $f(x)=3 x^{2}-4 x+7$, find $f(x-2)$.

YOU TRY IT:

78. Given $g(x)=\sqrt{1-4 x}$, find $g\left(x^{2}-4\right)$.

We substitute $x-2$ into the expression for x.

$$
f(x-2)=3(x-2)^{2}-4(x-2)+7
$$

FOIL and distribute.

$$
=3\left(x^{2}-4 x+4\right)-4 x+8+7
$$

Distribute and simplify.
$=3 x^{2}-12 x+12-4 x+15$
$=3 x^{2}-16 x+27$

Domain of a rational function: Excluded values

Learning Page The fraction cannot have a \qquad of \qquad

YOU TRY IT: Find all values of x that are NOT in the domain of g.
79. $g(x)=\frac{x+4}{x^{2}-9}$

Domain of a rational function: Interval notation

Learning Page The domain of any rational function is the set of x for which the \qquad

There are \qquad on the domain of a rational function.

EXAMPLE:
Find the domain of $f(x)=\frac{x-5}{x^{2}+x-12}$.
We must determine where the denominator is zero. $x^{2}+x-12=(x+4)(x-3)=0$. So $x=3,-4$. These are the values we want to exclude from the domain.

YOU TRY IT:

80. Find the domain of $f(x)=\frac{x-2}{x^{2}-2 x-15}$.

Domain: $(-\infty,-4) \cup(-4,3) \cup(3, \infty)$

Domain of a square root function: Advanced

Open the e-book to complete the following.

Guidelines to Find Domain of a Function

To determine the implied domain of a function defined by $y=f(x)$,

- Exclude values of x that make the \qquad
- Exclude values of x that make the \qquad _.

EXAMPLE:
Find the domain of $g(x)=\sqrt{5 x-8}$.
We must determine where $5 x-8$ is greater than or equal to zero.

$$
\begin{aligned}
5 x-8 & \geq 0 \\
5 x & \geq 8 \\
x & \geq \frac{8}{5}
\end{aligned}
$$

So the domain is $\left[\frac{8}{5}, \infty\right)$

Finding the domain of a fractional function involving radicals

Watch the video Determining Domain and Range of a Function from its Equation to complete the following.

Write the domain of the function in interval notation.
a.
b.
c.

EXAMPLE: Find the domain of the function.

$$
f(x)=\frac{\sqrt{3-x}}{x-1}
$$

YOU TRY IT: Find the domain of the function.
82. $g(x)=\frac{4-2 x}{\sqrt{9-7 x}}$

We must consider two parts.

- We may not have a zero in the denominator, so

$$
\begin{aligned}
x-1 & \neq 0 \\
x & \neq 1
\end{aligned}
$$

- We also must have 0 or a positive value under the square root.

$$
\begin{aligned}
3-x & \geq 0 \\
-x & \geq-3 \\
x & \leq 3
\end{aligned}
$$

The domain is the intersection of these two sets. In interval notation: $(-\infty, 1) \cup(1,3)$

Domain and range from the graph of a piecewise function

\square Watch the video Interpreting Function Values from the Graph to complete the following.
a. Determine $f(-2)$
b. Determine $f(3)$
c. Find x for which $f(x)=-1$.
d. Find x for which $f(x)=-4$.

e. Determine the x-intercept(s).
f. Determine the y-intercept.
g. Determine the domain.
h. Determine the range.

Domain and range of a linear function that models a real-world situation

Learning Page

- Description of values for the domain:

The domain of a function is the \qquad

- Description of values for the range:

The range of a function is the \qquad .

To find the range, let's look at the \qquad for some values of the

EXAMPLE:

The Perfect Pickle delivers pickles to its customers. Let C be the total cost to transport the pickles, in dollars. Let P be the amount of pickles transported in pounds. The company can transport up to 30 pounds of pickles. Suppose that $C=130 \mathrm{P}+1500$ gives C as a function of P. Describe the domain and range in words and determine the domain and range.

Domain: The domain will be the amount of pickles transported in pounds.
The domain is $[0,30]$.

- The amount of pickles cannot be negative so the domain must be greater than or equal to 0 .
- The company cannot transport more than 30 pounds of pickles so the domain must be less than or equal to 30 .
- The amount of pickles could be any amount between 0 and 30 .

Range: The range will be the cost to transport the pickles in dollars.
The range is [1500,5400].

- What would the cost be if 0 pounds of pickles were transported? $C=1500$.
- What would the cost be if 30 pound of pickles were transported? $C=130(30)+1500=5400$
- The cost to transport any other amount of pickles will be in between $\$ 1500$ and $\$ 5400$.

Domain and range from the graph of a continuous function

Watch the video Determining Domain and Range of a Function from its Graph to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Determine the domain and range.

Domain:

Range:
Range:

EXAMPLE:

Find the domain and range of the function from the graph.

Domain: $(-\infty, \infty)$
Range: $(-\infty, 3$]

YOU TRY IT:

83. Find the domain and range of the function from the graph.

Identifying functions from relations

\square Watch the video Determining Whether a Relation Defines y as a Function of x to complete the following.

Definition of a Function

Given a relation in x and y, we say that y is a function of x if for each value of \qquad
\qquad there is \qquad in the range.

Determine whether the relation defines y as a function of x.
a. $\{(5,2),(4,-3),(3,1),(5,4)\}$
b. $\{(3,1),(4,2),(-1,2)\}$

YOU TRY IT:

For each relation, determine whether or not it is a function.
84. $\{(2,3),(-5,1),(0,3),(5,-4)\}$.
85. $\{(1,-2),(-7,3),(1,5),(0,8)\}$.

Vertical line test

Watch the video Introduction to the Vertical Line Test to complete the following.

Write the points and plot them on the axes.

Using the Vertical Line Test

Consider a relation defined by a set of points (x, y) graphed on a rectangular coordinate system. The graph defines y as a function of x if \qquad vertical line intersects the graph in

Sketch the graphs from the video below and state if the graph defines y as a function of x.

YOU TRY IT: For each relation, determine whether or not it is a function.
86.

87.

Determining whether an equation defines a function: Basic

Watch the video Determining if a Relation Defines y as a Function of x to complete the following.
a.
b.
c.

Finding inputs and outputs of a two-step function that models a real-world situation: Function notation

EXAMPLE:

A crew can lay 5 miles of track each day. They need to lay 175 miles of track. The length, L, in miles, that is left to lay after d days is given by the function $L(d)=175-5 d$.
a. How many miles of track does the crew have left to lay after 12 days?

We want to substitute 12 in for d to find $L(12)$.

$$
\begin{aligned}
L(12) & =175-5(12) \\
& =175-60 \\
& =115 \text { miles }
\end{aligned}
$$

b. How many days will it take the crew to lay all of the track?

We want to know when $L(d)=0$.

$$
\begin{aligned}
175-5 d & =0 \\
-5 d & =-175 \\
d & =35 \text { days }
\end{aligned}
$$

YOU TRY IT:

Steve wants to save $\$ 700$ to buy a computer. He saves $\$ 18$ each week. The amount A, in dollars he still needs after w weeks is given by the function $A(w)=700-18 w$.
88. How much money does Steve still need after 5 weeks?
89. If Steve still needs $\$ 394$, how many weeks has he been saving?

Finding inputs and outputs of a function from its graph

Learning Page Each point on the graph of a function f can be written as an \qquad

For each point (x, y) on the \qquad the x coordinate gives an \qquad of the function.

The y coordinate gives the corresponding \qquad That is \qquad

The video Interpreting Function Values from the Graph may also be helpful. You may find space to take notes under the topic Domain and range from the graph of a piecewise function.

EXAMPLE:

Use the graph to find the following.

a) $f(2)$

We see the point $(2,2)$ on the graph, so $f(2)=2$.
b) One value of x for which $f(x)=-2$

From the graph we see that $f(0)=-2$ so $x=0$. There are also two other values of x where $f(x)=-2$.

YOU TRY IT:

Use the graph to find the following.

90. $g(1)$
91. One value of x for which $g(x)=-1$

Module 3

Graphing a parabola of the form $y=a x^{2}+c$

Open the e-book to complete the following.

Vertical Shrinking and Stretching of Graphs

Consider a function defined by $y=f(x)$. Let \qquad represent a \qquad real number.

- If \qquad then the graph of \qquad is the graph of $y=f(x)$ \qquad
\qquad by a factor of a.
- If \qquad then the graph of \qquad is the graph of $y=f(x)$
\qquad by a factor of a.

Note: for any point \qquad on the graph of $y=f(x)$, the point \qquad is on the graph of $y=$ $a f(x)$.

EXAMPLE: Sketch the graph of $y=2 x^{2}-5$.

- We first plot the vertex at $(0,-5)$.
- Next we plot 2 points on either side of the vertex.
*All parabolas have symmetry so we can use this when finding points.
- If $x=1$, then $y=2(1)^{2}-5=-3$. Plot $(1,-3)$.
- If $x=-1$, then $y=2(-1)^{2}-5=-3$. Plot $(-1,-3)$.
We could also have used symmetry. Because the points x values are the same distance from the x value of the vertex, they must have the same y coordinate.
- If $x=2$, then $y=2\left(2^{2}\right)-5=3$. Plot $(2,3)$ and using symmetry plot $(-2,3)$.

YOU TRY IT:

92. Sketch the graph of $y=-\frac{1}{2} x^{2}+3$.

Graphing a cubic function of the form $y=a x^{3}$

EXAMPLE:

Sketch the graph of $y=\frac{1}{3} x^{3}$.
We will complete the chart below to obtain the points to graph.

x	$y=\frac{1}{3} x^{3}$	(x, y)
-2	$y=\frac{1}{3}(-8)=-\frac{8}{3}$	$\left(-2,-\frac{8}{3}\right)$
-1	$y=\frac{1}{3}(-1)=-\frac{1}{3}$	$\left(-1,-\frac{1}{3}\right)$
0	$y=\frac{1}{3}(0)=0$	$(0,0)$
1	$y=\frac{1}{3}(1)=\frac{1}{3}$	$\left(1, \frac{1}{3}\right)$
2	$y=\frac{1}{3}(8)=\frac{8}{3}$	$\left(2, \frac{8}{3}\right)$

The graph of $y=x^{3}$ is drawn below as a dashed line so you can see how the value of a changes the graph.

YOU TRY IT:

93. Sketch the graph of $y=-\frac{3}{2} x^{3}$.

Module 3

Horizontal Translations of Graphs

Consider a function defined by $y=f(x)$. Let h represent a positive real number.

- The graph of \qquad is the graph of $y=f(x)$ shifted \qquad
- The graph of \qquad is the graph of $y=f(x)$ shifted \qquad -.

EXAMPLE:

Sketch the graph of $f(x)=\sqrt{x-2}-3$.
This is the graph of $f(x)=\sqrt{x}$ shifted 2 units right and 3 units down so the leftmost point will be $(2,-3)$.

The graph will have x values greater than or equal to 2 .

We will find 3 other points on the graph.

x	$f(x)=\sqrt{x-2}-3$	(x, y)
3	$f(3)=\sqrt{3-2}-3=-2$	$(3,-2)$
6	$f(6)=\sqrt{6-2}-3=-1$	$(6,-1)$
11	$f(11)=\sqrt{11-2}-3=0$	$(11,0)$

The graph of $y=\sqrt{x}$ is drawn below as a dashed line so you can see how the graph has shifted.

YOU TRY IT:

94. Sketch the graph of $g(x)=\sqrt{x+1}+2$.

Transforming the graph of a function by reflecting over an axis

Watch the video Investigating Reflections Across the x and y-Axes to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Reflections Across the x and y-Axes

Consider a function defined by $y=f(x)$.

- The graph of \qquad is the graph of $y=f(x)$ reflected across the \qquad $-$
- The graph of \qquad is the graph of $y=f(x)$ reflected across the \qquad $-$

Sketch the blue graph from the video using a dashed line and the red graph using a solid line.

Sketch the graph of $y=f(x)$ using a dashed line and the transformed graph using a solid line.

Given $y=f(x)$, Graph $y=f(-x)$.

Points on $y=f(x)$:
\qquad
Points on $y=f(-x)$:

Given $y=f(x)$, Graph $y=-f(x)$.

Points on $y=f(x)$:
\qquad

Points on $y=-f(x)$:
\qquad

Transforming the graph of a function by shrinking or stretching

Watch the video Investigating Horizontal Shrinking and Stretching to complete the following.

Horizontal Shrinking and Stretching of Graphs

Consider a function defined by $y=f(x)$. Let \qquad represent a \qquad real number.

- If \qquad then the graph of \qquad is the graph of $y=f(x)$ \qquad
\qquad by a factor of a.
- If \qquad , then the graph of \qquad is the graph of $y=f(x)$
\qquad by a factor of a.

Note: for any point \qquad on the graph of $y=f(x)$, the point \qquad is on the graph of $y=f(a x)$.

Sketch the graph of $y=f(x)$ using a dashed line and the transformed graph using a solid line.
Given $y=f(x)$, Graph $y=f(3 x)$.
Given $y=f(x)$, Graph $y=f\left(\frac{1}{3} x\right)$.

Points on $y=f(x)$:
\qquad
Points on $y=f(3 x)$:

Points on $y=f(x)$:

Points on $y=f\left(\frac{1}{3} x\right)$:
\qquad

Transforming the graph of a function using more than one transformation

Open the e-book to complete the following.

Steps for Graphing Multiple Transformations of Functions

To graph a function requiring multiple transformations, use the following order.
1.
2.
3.
4.

EXAMPLE:

The graph of $y=f(x)$ is shown. Draw the graph of $y=-2 f(x-1)+3$.

This is the graph of $y=f(x)$ that is

- stretched vertically by a factor of 2
- reflected across the x-axis
- shifted right 1 and up 3.

Consider the following points:

Original	Stretch	Reflect	Shift
$(-5,-2)$	$(-5,-4)$	$(-5,4)$	$(-4,7)$
$(0,3)$	$(0,6)$	$(0,-6)$	$(1,-3)$
$(5,-2)$	$(5,-4)$	$(5,4)$	$(6,7)$

YOU TRY IT:

95. The graph of $y=g(x)$ is shown. Draw the graph of $y=\frac{1}{2} g(x+2)-3$.

Transforming the graph of a quadratic, cubic, square root, or absolute value function

Possible transformations on a graph are reflecting about an axis, shifting, stretching, and shrinking. The chart below summarizes all the possible transformations of parent functions.

Transformations of functions

Consider a function defined by $y=f(x)$. If h, k, and a represent positive real numbers, then the graphs of the following functions are related to $y=f(x)$ as follows.

Transformation	Effect on the Graph of f	Changes to Points on f
Vertical Translations of Graphs $\begin{aligned} & y=f(x)+k \\ & y=f(x)-k \end{aligned}$	Shift \qquad units Shift \qquad units	Replace (x, y) by Replace (x, y) by
Horizontal translations $\begin{aligned} & y=f(x-h) \\ & y=f(x+h) \end{aligned}$	Shift \qquad units Shift \qquad units	Replace (x, y) by Replace (x, y) by
Vertical stretch/shrink $y=a f(x)$	Vertical \qquad if $a>1$ Vertical \qquad if $0<a<1$ Graph is stretched/shrunk vertically by a factor of \qquad	Replace (x, y) by
Horizontal stretch/shrink $y=f(a x)$	Horizontal \qquad if $a>1$ Horizontal \qquad if $0<a<1$ Graph is shrunk/stretched horizontally by a factor of \qquad	Replace (x, y) by
Reflection $\begin{aligned} & y=-f(x) \\ & y=f(-x) \end{aligned}$	Reflection across the \qquad Reflection across the \qquad	Replace (x, y) by Replace (x, y) by

Matching parent graphs with their equations

回

Basic functions and Their Graphs

How the leading coefficient affects the graph of a parabola

Learning Page An equation of the form \qquad $(a \neq 0)$ describes a \qquad whose
vertex is at the \qquad _.

The value of the \qquad tells us how the parabola looks.
(a) A \qquad leading coefficient (\qquad) gives a parabola that opens \qquad

A ___ leading coefficient \qquad) gives a parabola that opens \qquad -.
(b) A \qquad parabola has a leading coefficient a \qquad

A \qquad parabola has a leading coefficient a \qquad

Translating the graph of an absolute value function: Two steps

Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad
Translations:
x-intercept(s):

y-intercept:

EXAMPLE: Sketch the graph of $g(x)=|x+3|-$ 5.

- This is the graph of $g(x)=|x|$ shifted left 3 and down 5.
- We also find the x and y intercepts to obtain the graph.
- Let $x=0$ to find the y-intercept:

$$
y=|0+3|-5=3-5=-2 .
$$

- Let $y=0$ to find the x-intercept(s):

$$
\begin{array}{rlrl}
& |x+3|-5 & =0 \\
|x+3| & =5 \\
x+3=5 & \text { or } & x+3 & =-5 \\
x=2 & \text { or } & & x=-8
\end{array}
$$

YOU TRY IT:

96. Sketch the graph of $f(x)=|x+2|-3$.

Writing an equation for a function after a vertical and horizontal translation

Open the Instructor Added Resource which will direct you to a video to complete the following.

Using translations of the base graph $y=|x|$, write the equation of the graph shown below.

The base graph has been moved \qquad units to the \qquad and \qquad units
\qquad

The equation of the graph
is \qquad .

YOU TRY IT: Write the equation of the graph given below.
97.

Notes from Focus Group:
$\underline{\text { Notes from Focus Group: }}$

Module 4-Review Module

To help you review for your upcoming exam, this module contains all of the topics from the modules since the last exam. Topics that you have already mastered will not appear in your carousel.Complete this module before you take the ALEKS exam.Each exam has two parts.

- The ALEKS exam (100 pts)
- The ALEKS exam must be taken in the MALL.
- The ALEKS exam is a Comprehensive Knowledge Check.
- Your score is the number of topics you have mastered out of the number of topics you should have mastered by this point.
- If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
- Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.
- The Written exam (25 pts)
- Take your written exam in class the day of your focus group.
- To study for the written exam:
- Rework your old Focus Group assignments.
- Rework any topics in ALEKS you may have lost on the ALEKS exam.

	Score
ALEKS Exam	
Written Exam	

Module 5

Contents

Identifying the center and radius to graph a circle given its equation in standard form 111
\square Identifying the center and radius of a circle given in general form: Basic
112
\square Writing an equation of a circle given its center and a point on the circle113Finding where a function is increasing, decreasing, or constant given the graph: Interval notation113\square Finding where a function is increasing, decreasing, or constant given the graph114Finding values and intervals where the graph of a function is zero, positive, or negative114\square Finding local maxima and minima of a function given the graph115\square Finding the absolute maximum and minimum of a function given the graph116
Even and odd functions: Problem type 1 117
Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin 118
Testing an equation for symmetry about the axes and origin 119
Introduction to the composition of two functions 120
Composition of two functions: Basic 121
Expressing a function as a composition of two functions 121
\square Composition of a function with itself 122
Composition of two functions: Advanced 123
Word problem involving composition of two functions 124
Quotient of two functions: Basic 125
Sum, difference, and product of two functions 125
Combining functions to write a new function that models a real-world situation 126
Combining functions: Advanced 127
Graphing a piecewise-defined function: Problem type 1 127
Graphing a piecewise-defined function: Problem type 2 128
\square Graphing a piecewise-defined function: Problem type 3 129
Finding a difference quotient for a linear or quadratic function 129
Finding a difference quotient for a rational function 130
Choosing a graph to fit a narrative: Basic 131
Choosing a graph to fit a narrative: Advanced 132

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by
Identifying the center and radius to graph a circle given its equation in standard form

\square Watch the video Identifying the Center and Radius of a Circle from Standard Form to complete the following.

An equation of a circle is given. Identify the center and radius.

Equation	Standard form	Center	Radius
$(x-h)^{2}+(y-k)^{2}=r^{2}$	$(x-h)^{2}+(y-k)^{2}=r^{2}$	(h, k)	r

EXAMPLE:

Find the center and radius of the circle and sketch the graph.

$$
(x-2)^{2}+(y+1)^{2}=20
$$

Center: $(2,-1)$ and Radius: $\sqrt{20}=2 \sqrt{5}$

YOU TRY IT:

98. Find the center and radius of the circle and sketch the graph.

$$
(x+1)^{2}+(y+3)^{2}=4
$$

Identifying the center and radius of a circle given in general form: Basic

\square Watch the video Given an Equation of a Circle in General Form Write the Standard Form to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

$$
\begin{array}{ll}
(x-8)^{2}+(y+3)^{2}=28 \\
x^{2}+y^{2}-16 x+6 y+45=0
\end{array} \quad \text { form }
$$

Write the equation in standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$. Then identify the center and radius.

EXAMPLE:

Find the center and radius of the circle and sketch the graph.

$$
2 x^{2}+20 x+2 y^{2}-16 y+80=0
$$

Before completing the square, we must divide by 2 so the coefficient of x and y is a 1 .

$$
\begin{aligned}
2 x^{2}+20 x+2 y^{2}-16 y+80 & =0 \\
x^{2}+10 x+y^{2}-8 y & =-40 \\
x^{2}+10 x+25+y^{2}-8 y+16 & =-40+25+16 \\
(x+5)^{2}+(y-4)^{2} & =1
\end{aligned}
$$

Center: $(-5,4)$ Radius: 1

YOU TRY IT:

99. Find the center and radius of the circle and sketch the graph.

$$
3 x^{2}-18 x+3 y^{2}-24 y=0
$$

Writing an equation of a circle given its center and a point on the circle

Learning Page
The standard form of an equation of a circle with center (h, k) and radius r is

We need to find \qquad which is the \qquad from the \qquad to a point on the circle.

So we can find r using the \qquad

EXAMPLE: Write the equation of the circle with center $(5,-1)$ and passing through $(1,3)$.

- We begin by finding the radius. This is the distance between the two given points.

$$
\begin{aligned}
& r=\sqrt{(5-1)^{2}+(-1-3)^{2}} \\
& r=\sqrt{16+16} \\
& r=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

- We have the center and radius so we write the equation.

$$
(x-5)^{2}+(y+1)^{2}=32
$$

YOU TRY IT:

100. Write the equation of the circle with center $(-3,5)$ and passing through $(4,5)$.

Finding where a function is increasing, decreasing, or constant given the graph: Interval notation

Watch the video Determining the Intervals over Which a Function Increases Decreases or is Constant with Open Intervals to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Sketch the graph of $f(x)$. Use interval notation to write the intervals over which f is

1. increasing.
2. decreasing.
3. constant.

EXAMPLE: Determine where the function below is increasing, decreasing, or constant.

The function is

- Increasing on $(1, \infty)$
- Decreasing on $(-\infty,-2)$
- Constant on $(-2,1)$

YOU TRY IT: Determine where the function below is increasing, decreasing, or constant.
101.

Finding where a function is increasing, decreasing, or constant given the graph

Learning Page If the graph is horizontal, the function is \qquad
If the graph is falling, the function is \qquad .

If the graph is rising, the function is \qquad .

Finding values and intervals where the graph of a function is zero, positive, or negative

Open the Instructor Added Resource which will direct you to a video to complete the following.
a. Is $f(-2)$ negative?
b. For which value(s) of x is $f(x)<0$?
c. For which value(s) of x is $f(x)=0$?
d. For which value(s) of x is $f(x)>0$

Finding local maxima and minima of a function given the graph

Watch the video Introduction to Relative Maxima and Minima to complete the following.

Relative Minimum and Relative Maximum Values

- $f(a)$ is a relative maximum of f if there exists an open interval containing a such that
\qquad for all x in the interval.
- $f(a)$ is a relative minimum of f if there exists an open interval containing a such that
\qquad for all x in the interval.

Note: An \qquad interval is an interval in which the endpoints are \qquad
a. Determine the relative maxima.
b. Determine the relative minima.

EXAMPLE:

Use the graph of the function f below to find:

a) Local maximum and minimum values of f

- Local maximum value: 4
- Local minimum value: 0
b) Values at which f has a local maximum and minimum
- Local maximum at $x=0$
- Local minimum at at $x=2$

YOU TRY IT:

Use the graph of the function f below to find:

102. All local maximum and minimum values of f
103. All values at which f has a local maximum and minimum

Finding the absolute maximum and minimum of a function given the graph

Learning Page We will use the following information about absolute maximums and minimums, vertical asymptotes, and "holes".

Suppose the domain of a function f is an interval.

- Absolute maximums and minimums:

The absolute \qquad of f is the \qquad of any point on the graph of f.

The absolute \qquad of f is the \qquad of any point on the graph of f.

- Vertical asymptotes:

Suppose the graph of f has a vertical asymptote, \qquad -.

As the x-coordinatesof the graph of f approach a, the y-coordinates approach \qquad or \qquad

If the y-coordinates approach \qquad then the function will \qquad have an absolute \qquad -.

If the y-coordinates approach \qquad then the function will \qquad have an absolute \qquad

- "Holes":

A "hole" in the graph of f is show as a \qquad
A "hole" is a point that is \qquad on the graph of f.

If a "hole" in the graph of f has a \qquad y-coordinate than any point on the graph of f, then the function does \qquad have an absolute \qquad -.

If a "hole" in the graph of f has a \qquad y-coordinate than any point on the graph of f, then the function does \qquad have an absolute \qquad

Even and odd functions: Problem type 1

Watch the video Introduction to Even and Odd Functions to complete the following.

Even and Odd Functions

- A function f is an even function if \qquad for all x in the domain of f.

The graph of an even function is symmetric with respect to the \qquad .

- A function f is an odd function if \qquad for all x in the domain of f.

The graph of an odd function is symmetric with respect to the \qquad

EXAMPLE: Determine if the following are even, odd or neither.
a) $f(x)=4 x^{3}-x+\frac{1}{x}$

$$
\begin{aligned}
f(-x) & =4(-x)^{3}-(-x)+\frac{1}{-x} \\
& =-4 x^{3}+x-\frac{1}{x} \\
-f(x) & =-1\left(4 x^{3}-x+\frac{1}{x}\right)=-4 x^{3}+x-\frac{1}{x} \\
f(-x) & =-f(x) \text { so } f \text { is odd. }
\end{aligned}
$$

b) $f(x)=2 x^{5}+3 x^{3}-5$

$$
\begin{aligned}
f(-x) & =2(-x)^{5}+3(-x)^{3}-5 \\
& =-2 x^{5}-3 x^{3}-5 \\
-f(x) & =-\left(2 x^{5}+3 x^{3}-5\right) \\
& =-2 x^{5}-3 x^{3}+5
\end{aligned}
$$

$f(-x) \neq f(x)$ and $f(-x) \neq-f(x)$ so f is neither even or odd.
c) $f(x)=3 x^{4}+5 x^{2}-7$

$$
\begin{aligned}
f(-x) & =3(-x)^{4}+5(-x)^{2}-7 \\
& =3 x^{4}+5 x^{2}-7
\end{aligned}
$$

$f(-x)=f(x)$ so f is even.

YOU TRY IT: Determine if the following are even, odd or neither.
104. $g(x)=\frac{2}{x-3}$
105. $g(x)=3|x|+2$
106. $g(x)=x^{3}-x$

Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin

\square Watch the video Introduction to Symmetry to complete the following.

Symmetry with respect to the x-axis

Every point (x, y) has a mirror image \qquad .

Symmetry with respect to the y-axis

Every point (x, y) has a
mirror image \qquad

Symmetry with respect to the origin

Every point (x, y) has a
mirror image \qquad .

YOU TRY IT: Determine what kind of symmetry (if any) applies to the graph.
107.

Testing an equation for symmetry about the axes and origin

\square Watch the video Testing for Symmetry to complete the following.

Tests for Symmetry

Consider an equation in the variables x and y.

- The graph of an equation is symmetric with respect to the \qquad if substituting
\qquad in the equation results in an equivalent equation.
- The graph of an equation is symmetric with respect to the \qquad if substituting
\qquad in the equation results in an equivalent equation.
- The graph of an equation is symmetric with respect to the \qquad if substituting
\qquad and \qquad in the equation results in an equivalent equation.

Determine whether the graph of the equation is symmetric with respect to the x-axis, y-axis, origin, or none of these.
a.
b.

EXAMPLE:

Determine whether the graph of the equation is symmetric with respect to the x-axis, the y-axis, or the origin.

$$
x^{2} y^{2}+x y=4
$$

- Replace y with $-y$.

$$
\begin{aligned}
x^{2}(-y)^{2}+x(-y) & =4 \\
x^{2} y^{2}-x y & =4
\end{aligned}
$$

This is not equivalent to $x^{2} y^{2}+x y=4$ so it is not symmetric to the x-axis.

- Replace x with $-x$.

$$
\begin{aligned}
(-x)^{2} y^{2}+(-x)(y) & =4 \\
x^{2} y^{2}-x y & =4
\end{aligned}
$$

This is not equivalent to $x^{2} y^{2}+x y=4$ so it is not symmetric to the y-axis.

- Replace x with $-x$ and y with $-y$.

$$
\begin{gathered}
(-x)^{2}(-y)^{2}+(-x)(-y)=4 \\
x^{2} y^{2}+x y=4
\end{gathered}
$$

This is equivalent to $x^{2} y^{2}+x y=4$ so it is symmetric to the origin.

YOU TRY IT:

108. Determine whether the graph of the equation is symmetric with respect to the x-axis, the y-axis, or the origin.

$$
5 x^{2}+8 y^{2}=14
$$

Introduction to the composition of two functions

Watch the video Composing Functions to complete the following.
Composition of Functions

The composition of f and g, denoted $f \circ g$ is defined by $(f \circ g)(x)=$ \qquad The domain of $f \circ g$ is the set of real numbers x in the domain of g such that

Evaluate the given functions for

$$
f(x)=\square \quad g(x)=\square \quad h(x)=
$$

a.
b.

Composition of two functions: Basic

Learning Page Given functions f and g, we can define a new function, $f \circ g$, as follows.

$$
(f \circ g)(x)=
$$

\qquad
This function is called the composition of \qquad
Note that a value of $f \circ g$ is obtained as follows.
First evaluate the function \qquad to obtain \qquad

Then evaluate the function \qquad to obtain \qquad
The domain of $f \circ g$ is the set of all values x for which \qquad is in the \qquad

EXAMPLE:

Given $f(x)=x^{2}-3 x$ and $g(x)=\sqrt{x-1}$, find $(f \circ g)(5)$.

$$
\begin{aligned}
(f \circ g)(5) & =f(g(5)) \\
& =f(\sqrt{5-1}) \\
& =f(2) \\
& =2^{2}-3(2) \\
& =-2
\end{aligned}
$$

YOU TRY IT:

Given $f(x)=3 x^{2}+2 x+3$ and $g(x)=1-\frac{1}{x}$, find $(f \circ g)(1)$.
109. $(f \circ g)(1)$

Expressing a function as a composition of two functions

Watch the video Decomposing a Function to complete the following.

Find two functions f and g such that $h(x)=(f \circ g)(x)$.

Composition of a function with itself

ใน Open the Instructor Added Resource which will direct you to a video to complete the following.

Given \qquad , find and simplify $(f \circ f)(x)$.

EXAMPLE:

Given $f(x)=x^{2}+2$ and $g(x)=\frac{1}{x-4}$, find the following.
a) $(f \circ f)(x)$

$$
\begin{aligned}
f(f(x)) & =f\left(x^{2}+2\right) \\
& \left(x^{2}+2\right)^{2}+2 \\
& =\left(x^{4}+2 x^{2}+2 x^{2}+4\right)+2 \\
& =x^{4}+4 x^{2}+6
\end{aligned}
$$

b) $(g \circ g)(x)$

$$
\begin{aligned}
g(g(x)) & =g\left(\frac{1}{x-4}\right) \\
& =\frac{1}{\frac{1}{x-4}-4} \\
& =\frac{1}{\frac{1}{x-4}-4} \cdot \frac{x-4}{x-4} \\
& =\frac{x-4}{1-4(x-4)} \\
& =\frac{x-4}{1-4 x+16} \\
& =\frac{x-4}{17-4 x}
\end{aligned}
$$

YOU TRY IT:

Given $f(x)=\frac{3}{x}$ and $g(x)=x^{2}-5$, find the following functions and their domains.
110. $(f \circ f)(x)$
111. $(g \circ g)(x)$

Composition of two functions: Advanced

\square Watch the video Composing Functions and Determining Domain 1 to complete the following.

For the given functions, evaluate $(q \circ m)(x)$ and write the domain in interval notation.

EXAMPLE:

Given $f(x)=\frac{x}{x+2}$ and $g(x)=\frac{1}{x-4}$, find the following functions and their domains.
a) $(f \circ g)(x)$

$$
\begin{aligned}
f(g(x)) & =f\left(\frac{1}{x-4}\right) \\
& =\frac{\frac{1}{x-4}}{\frac{1}{x-4}+2} \\
& =\frac{\frac{1}{x-4}}{\frac{1}{x-4}+2} \cdot \frac{x-4}{x-4} \\
& =\frac{1}{1+2(x-4)} \\
& =\frac{1}{2 x-7}
\end{aligned}
$$

We must exclude 4 from the domain and we must also exclude values of x where $\frac{1}{x-4}+2=0$. We solve this equation for x.

$$
\begin{aligned}
\frac{1}{x-4}+2 & =0 \\
1+2(x-4) & =0(x-4) \\
1+2 x-8 & =0 \\
2 x & =7 \\
x & =\frac{7}{2}
\end{aligned}
$$

The domain of $f \circ g$ is
$\left(-\infty, \frac{7}{2}\right) \cup\left(\frac{7}{2}, 4\right) \cup(4, \infty)$.

YOU TRY IT:

Given $f(x)=\frac{3}{x}$ and $g(x)=\frac{x-1}{x-4}$, find the following functions and their domains.
112. $(g \circ f)(x)$

Word problem involving composition of two functions

Open the e-book and read EXAMPLE 10 to complete the following.

At a popular website the cost to download individual songs is \qquad per song. In addition, a first time visitor to the website has a one-time coupon for \qquad off.
a. Write a function to represent the $\operatorname{cost} C(x)$ (in $\$$) for a first-time visitor to purchase x songs.

$$
C(x)=
$$

\qquad
The cost function is a \qquad -.
b. The sales tax for online purcahses depends on the location of the business and customer. If the sales tax rate on a purchase is \qquad , write a function to represent the total cost $T(a)$ for a first-time visitor who buys a dollars in songs.
$T(a)=$ \qquad $=$ \qquad
The total cost is the \qquad
c. Find $(T \circ C)(x)$ and interpret the meaning in context.
$(T \circ C)(x)=T(C(x))=$ \qquad $=$ \qquad $=$ \qquad
$(T \circ C)(x)$ represents the \qquad for a first-time visitor to the website.
d. Evaluate $(T \circ C)(10)$ and interpret the meaning in context.
$(T \circ C)(10)=$ \qquad $=$ \qquad
The \qquad for a first-time visitor to \qquad

Quotient of two functions: Basic

\square Watch the video Evaluating Functions for a Given Value of x to complete the following.

Evaluate the functions for the given values of x.
$f(x)=$ \qquad $g(x)=$ \qquad $h(x)=$ \qquad
a.
b.

Sum, difference, and product of two functions

Watch the video Introduction to Operations on Functions to complete the following.

Sum, Difference, Product, and Quotient of Functions

Given the functions f and g, the functions $f+g, f-g, f \cdot g$, and $\frac{f}{g}$ are defined by:

$$
\begin{aligned}
&(f+g)(x)= \\
&(f-g)(x)= \\
&(f \cdot g)(x)= \\
&\left(\frac{f}{g}\right)= \\
&
\end{aligned}
$$

The domains of the functions $f+g, f-g, f \cdot g$, and $\frac{f}{g}$ are all real numbers in the _ـ_ of the individual functions f and g.

For $\frac{f}{g}$ we further restrict the domain to \qquad
Find $(f+g)(x)$.

EXAMPLE:

Given $f(x)=x^{2}-3 x$ and $g(x)=\sqrt{4 x-1}$, find the function and its domain.

$$
\begin{aligned}
(f \cdot g)(x) & =f(x) \cdot g(x) \\
& =\left(x^{2}-3 x\right) \sqrt{4 x-1}
\end{aligned}
$$

The domain of f is $(-\infty, \infty)$ and the domain of g is $\left[\frac{1}{4}, \infty\right)$ so the domain of $f \cdot g$ is the intersection of the two domains. Interval notation: $\left[\frac{1}{4}, \infty\right)$.

YOU TRY IT:

Given $f(x)=3 x^{2}+2 x$ and $g(x)=1-\frac{1}{x}$, find the function and its domain.
113. $(g \cdot f)(x)$

Combining functions to write a new function that models a real-world situation

EXAMPLE:

A website designer creates videos on how to create websites. He sells the video packages for $\$ 40$ each. His one-time initial cost to produce a package is $\$ 5000$. The cost to ship each video is $\$ 2.80$.
a. Write a function that represents the cost $C(x)$ to produce and ship x video packages.
$C(x)=2.8 x+5000$
b. Write a function that represents the revenue $R(x)$ for selling x video packages.
$R(x)=40 x$
c. Evaluate $(R-C)(x)$ and interpret its meaning in the context of this problem.
$(R-C)(x)=40 x-(2.8 x+5000)=$ $37.2 x-5000$
This represents the profit for selling x video packages.

YOU TRY IT:

An artist makes jewelry from polished stones. The rent for her studio and utilities comes to $\$ 640$ per month. It also costs her $\$ 3.50$ for supplies to make one necklace. She sells the necklaces for $\$ 25$ each.
114. Write a function $C(x)$ that represents the cost to produce x necklaces during a one month period.
115. Write a function $R(x)$ that represents the revenue for selling x necklaces.
116. Evaluate $(R-C)(x)$ and interpret its meaning in the context of this problem.

Combining functions: Advanced

\square Watch the video Combining Functions and Finding Domain to complete the following.

Given \qquad and \qquad evaluate the given function and write the domain in interval notation.
a.
b.

Graphing a piecewise-defined function: Problem type 1

Open the Instructor Added Resource which will direct you to a video to complete the following.

Module 5

Graphing a piecewise-defined function: Problem type 2

\square Watch the video Graphing a Piecewise-Defined Function to complete the following.

Graph. $m(x)= \begin{cases}\square & \text { if }-4<x<-1 \\ & \text { if }-1 \leq x<3 \\ & \text { if } x \geq 3\end{cases}$

The graph of $f(x)$ is continuous if there are no "holes" or "jumps" in the graph. In other words, you can draw the graph without lifting your pencil.

Graphing a piecewise-defined function: Problem type 3

If you did not complete the video Graphing a Piecewise-Defined Function under the topic Graphing a piecewisedefined function: Problem type 2, click the video link now and complete the work.

YOU TRY IT:

117. Sketch the graph of $f(x)= \begin{cases}-2 & \text { if } x<-3 \\ x+1 & \text { if }-3 \leq x \leq 2 \\ 4 & \text { if } x>2\end{cases}$

Finding a difference quotient for a linear or quadratic function

Watch the video Finding a Difference Quotient for a Nonlinear Function to complete the following. NOTE: This may not be the first video that pops up. Select the appropriate video in the video box.

Given \qquad find the difference quotient.

EXAMPLE:

Find the difference quotient for
$f(x)=3 x^{2}-4 x+5$.
First, find $f(x+h)$.

$$
\begin{aligned}
f(x+h) & =3(x+h)^{2}-4(x+h)+5 \\
& =3\left(x^{2}+2 x h+h^{2}\right)-4 x-4 h+5 \\
& =3 x^{2}+6 x h+3 h^{2}-4 x-4 h+5
\end{aligned}
$$

Now find $\frac{f(x+h)-f(x)}{h}$.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h+5-\left(3 x^{2}-4 x+5\right)}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}-4 x-4 h+5-3 x^{2}+4 x-5}{h} \\
& =\frac{6 x h+3 h^{2}-4 h}{h} \\
& =\frac{h(6 x+3 h-4)}{h} \\
& =6 x+3 h-4
\end{aligned}
$$

YOU TRY IT:

118. Find the difference quotient for $f(x)=-4 x^{2}+5 x-3$.

YOU TRY IT: Find the difference quotient for
119. $f(x)=\frac{5}{x-3}$.

Choosing a graph to fit a narrative: Basic

ใิ $_{\text {ใn }}$ Open the Instructor Added Resource which will direct you to a video to complete the following.
Sketch the graph that best describes the scenario below.
(a) A__ flies ___ from its nest to go hunting.

(b) Frank drives at a \qquad speed for a while.

Choosing a graph to fit a narrative: Advanced

ใน Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph that best describes the scenario below.
(a) Hector begins his jogging workout by running \qquad for about a minute. Once he hits a comfortable pace, he runs at that pace for \qquad minutes. Then he gradually \qquad to a stop over the next few minutes.

(b) Tina is delivering a pizza to Ellen's house. She drives at a \qquad speed toward the house until she hits a traffic jam and has to \qquad for several minutes. After, she starts up again and drives at a \qquad speed than before.

Notes from Focus Group:

Notes from Focus Group:

Module 6

Contents
\square Graphing a parabola of the form $y=a(x-h)^{2}+k$ 137
Finding the maximum or minimum of a quadratic function 138
Rewriting a quadratic function to find its vertex and sketch its graph 139
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola 140
Finding the x-intercept(s) and the vertex of a parabola 141
Word problem involving the maximum or minimum of a quadratic function 141
Word problem involving optimizing area by using a quadratic function 142
Writing the equation of a quadratic function given its graph 143
Identifying polynomial functions 144
Finding zeros of a polynomial function written in factored form 145
Finding zeros and their multiplicities given a polynomial function written in factored form 146
Finding x and y intercepts given a polynomial function 146
Determining the end behavior of the graph of a polynomial function 148
Determining end behavior and intercepts to graph a polynomial function 149
Matching graphs with polynomial functions 149
Inferring properties of a polynomial function from its graph 150
Finding a polynomial of a given degree with given zeros: Real zeros 151
Polynomial long division: Problem type 3 151
\square Dividing a polynomial by a monomial: Univariate 152
Synthetic division 152
The Factor Theorem 153
Solving a system of linear equations using elimination with multiplication and addition 154
Solving a word problem using a system of linear equations of the form $A x+B y=C$ 155
Solving a system of linear and quadratic equations 156
Graphically solving a system of linear and quadratic equations 157
Using a given zero to write a polynomial as a product of linear factors: Real zeros 158
Solving a quadratic inequality written in factored form 158
\square Solving a quadratic inequality 159

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics byGraphing a parabola of the form $y=a(x-h)^{2}+k$
\square Watch the video Graphing a Parabola Given an Equation in Vertex Form to complete the following.

Given $h(x)=$ \qquad
a. Determine whether the graph of the parabola opens upward or downward.
b. Identify the vertex.
c. Determine the x-intercepts.
d. Determine the y-intercept.
e. Sketch the function.
f. Determine the axis of symmetry.

g. Determine the minimum or maximum value of the function.
h. Domain:

Range:

Finding the maximum or minimum of a quadratic function

\square Watch the video Applying the Vertex Formula and Graphing a Parabola to complete the following.

Given $g(x)=$ \qquad
a. Determine whether the graph of the parabola opens upward or downward.
b. Identify the vertex.
c. Determine the x-intercept(s).
d. Determine the y-intercept.
e. Sketch the function.

f. Determine the axis of symmetry.
g. Determine the minimum or maximum value of the function.
h. Domain:

Rewriting a quadratic function to find its vertex and sketch its graph

\square Watch the video Graphing a Parabola Given its Equation in Standard Form to complete the following.

Given $d(x)=$ \qquad
a. Determine whether the graph of the parabola opens upward or downward.
b. Identify the vertex.
c. x-intercept(s):
d. y-intercept:
e. Sketch the function.

f. Determine the axis of symmetry.
g. Determine the minimum or maximum value of the function.
h. Domain:

Range:

Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola

Open the e-book to complete the following.

Quadratic Function

A function defined by \qquad $(a \neq 0)$ is called a quadratic function. By completing the square $f(x)$ can be expressing in vertex form as $f(x)=a(x-h)^{2}+k$.

- The graph of f is a \qquad with vertex \qquad .
- If \qquad , the parabola opens \qquad and the \qquad is the
\qquad point. The \qquad value of f is \qquad .
- If \qquad , the parabola opens \qquad and the \qquad is the
\qquad
\qquad value of f is \qquad
- The \qquad is \qquad This is the \qquad line that passes through the \qquad
On the graphs below, label
- the axis of symmetry with $x=h$
- the vertex with (h, k)
- the value of a with $a>0$ or $a<0$

Finding the x-intercept(s) and the vertex of a parabola

Learning Page

Finding the x-intercept(s)
An x-intercept is the \qquad of a point where the graph \qquad
A parabola can have \qquad
\qquad or \qquad x-intercepts.

At each point where a graph \qquad the x-axis, the y-coordinate is \qquad .

To find any x-intercepts of the parabola, we let \qquad and solve the resulting \qquad equation.

Finding the vertex:

The vertex lies on the \qquad

Word problem involving the maximum or minimum of a quadratic function

Watch the video Interpreting the Vertex of a Parabola in an Application to complete the following.

A fireworks mortar is launched straight upward from a pool deck platform 3 m off the ground at an initial velocity of $42 \mathrm{~m} / \mathrm{sec}$. The height of the mortar can be modeled by \qquad , where $h(t)$ is the height in meters and t is the time in seconds after launch.
a. Determine the time at which the mortar is at its maximum height. Round to 2 decimal places.
b. What is the maximum height? Round to the nearest meter.

Word problem involving optimizing area by using a quadratic function

Watch the video Applying a Quadratic Function in Geometry to complete the following.Suppose that a family wants to fence in an area of their yard for a garden. One side is already fenced from the neighbor's property.

Draw the picture to illustrate this example.
a. If the family has enough money to buy \qquad ft of fencing, what dimensions would produce the maximum area for the garden?

Constraint equation: \qquad $=$ \qquad
Area equation: \qquad
b. What is the maximum area?

YOU TRY IT: Two pens are to be built adjacent to one another from 120 ft of fencing.

120. What dimensions should be used to maximize the area of an individual coop?
121. What is the maximum area of an individual coop?

Writing the equation of a quadratic function given its graph

Learning Page

The graph of a quadratic function is a \qquad .

Any quadratic function f whose graph has vertex \qquad can be written in the following form.

$$
f(x)=\text {, where } a \neq 0
$$

Carefully read the example on the Learning Page and the example below.

EXAMPLE:

Find the equation of the quadratic function f whose graph is shown below.

A parabola with vertex (h, k) has the form: $y=a(x-h)^{2}+k$

The graph has vertex $(4,-3)$ so we have $y=$ $a(x-4)^{2}-3$.

We need to find a. We use the other given point: $(6,-11)$, which gives us an x and a y value to substitute and solve then for a.

$$
\begin{aligned}
y & =a(x-4)^{2}-3 \\
-11 & =a(6-4)^{2}-3 \\
-8 & =a(2)^{2} \\
-2 & =a
\end{aligned}
$$

Equation of parabola: $y=-2(x-4)^{2}-3$

YOU TRY IT:

Find the equation of the quadratic function f whose graph is shown below.
122.

Identifying polynomial functions

\square Watch the video Introduction to Polynomial Functions to complete the following.

Definition of a Polynomial Function

Let n be a whole number and $a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{1}, a_{0}$ be \qquad , where $a_{n} \neq 0$. Then a function defined by

$$
f(x)=
$$

\qquad
is called a polynomial function of degree \qquad .

Polynomial Function
Not a Polynomial Function
$f(x)=$ \qquad
y

degree $=$ \qquad
Graph three functions that are NOT polynomials.

EXAMPLE:

Identify which of the following are polynomials.
a) $A(x)=3 x^{5}-2 x^{3}+5 x^{-4}$ This is not a polynomial because the exponent on the term $5 x^{-4}=\frac{5}{x^{4}}$ is not a whole number.
b) $B(x)=x^{3}+\sqrt{5} x^{2}-3 x+\sqrt{7}$

This is a polynomial. All coefficients are real numbers and all exponents are whole numbers.
c) $C(x)=\frac{3-x}{7}$

This is a polynomial, it can be rewritten as $C(x)=\frac{3}{7}-\frac{1}{7} x$. All coefficients are real numbers and all exponents are whole numbers.
d) $D(x)=\frac{4-x^{2}}{x-1}$

This is not a polynomial. It is a ratio of polynomials so is a rational function.

YOU TRY IT:

Identify which of the following are polynomials.
123. $a(x)=3 x^{5}-2 \sqrt{x}+5 x^{2}$
124. $b(x)=\frac{5 x^{4}-2 x^{2}+x}{3}$
125. $c(x)=-6$
126. $d(x)=2 x(x+4)(x-7)(x+1)^{4}$

Finding zeros of a polynomial function written in factored form

Learning Page The \qquad of f are the real numbers x for which \qquad

So we set \qquad and \qquad .

For a product to \qquad at least one of the \qquad must \qquad 0.

YOU TRY IT:

127. Find the zeros of $f(x)=3 x^{2}\left(x^{2}-9\right)(x+4)$

Finding zeros and their multiplicities given a polynomial function written in factored form

Watch the video Determining Zeros and Multiplicities to complete the following.Determine the zeros of the function and state their multiplicities.
$f(x)=$ \qquad
Zero: \qquad Multiplicity: \qquad
Zero: \qquad Multiplicity: \qquad
Zero: \qquad Multiplicity: \qquad
Zero: \qquad Multiplicity: \qquad

EXAMPLE:
Consider the polynomial

$$
p(x)=-4 x(x-3)^{2}(x+7)^{3}(x-1) .
$$

List each zero and its multiplicity.
Zeros of multiplicity one: 0,1
Zero of multiplicity two: 3
Zero of multiplicity three: -7

YOU TRY IT:

128. Consider the polynomial

$$
q(x)=5 x^{2}(x-1)^{4}(x+5)^{2}(x+6) .
$$

List each zero and its multiplicity.

Finding x and y intercepts given a polynomial function

Learning Page

A y-intercept is the \qquad of a point where the graph
the \qquad .

A function's graph has \qquad y-intercept.

To find it, we find the \qquad -.

Continued on the next page

Watch the video Identifying Zeros and Multiplicities to complete the following.

Given a polynomial function defined by $y=f(x)$:
The values of x in the \qquad of f for which \qquad are called the \qquad of the function. These are also called the \qquad of the equation \qquad

Determine the zeros of the function and state their multiplicities.

EXAMPLE:

Find all intercepts of $p(x)=3 x^{3}+x^{2}-2 x$.
a) y-intercept
$p(0)=3(0)^{3}+0^{2}-2(0)=0$
$(0,0)$ is the y-intercept.
b) x-intercept

$$
\begin{aligned}
3 x^{3}+x^{2}-2 x & =0 \\
x\left(3 x^{2}+x-2\right) & =0 \\
x(3 x-2)(x+1) & =0 \\
x & =0, \frac{2}{3},-1
\end{aligned}
$$

$(0,0),\left(\frac{2}{3}, 0\right)$, and $(-1,0)$ are x-intercepts.

YOU TRY IT:

129. Find all intercepts of $q(x)=2 x^{4}-2 x^{3}-$ $24 x^{2}$.

Determining the end behavior of the graph of a polynomial function

Open the e-book to complete the following.
Notation for Infinite Behavior of $y=f(x)$

$x \rightarrow \infty$	is read as___ direction		
This means that x becomes infinitely large in the ___ direction		\quad	is read as ___ direction
:---			
This means that x becomes infinitely large in the _ diren			

The Leading Term Test

Consider a polynomial function given by

$$
f(x)=
$$

\qquad
As $x \rightarrow \infty$ or as $x \rightarrow-\infty, f$ eventually becomes forever increasing or forever decreasing and will follow the general behavior of \qquad .

Compete the chart below, then sketch a graph in each box that represents the correct end behavior.

Determining end behavior and intercepts to graph a polynomial function

\square Watch the video Graphing a Polynomial Function to complete the following.

Graph $k(x)=$ \qquad leading term:

y-intercept:

Zeros:

Matching graphs with polynomial functions

\pm Open the e-book to complete the following.

Touch Points and Cross Points

Let f be a polynomial function and let c be a real zero of f. The point \qquad is an x-intercept of the graph of f. Furthermore,

- If c is a zero of \qquad multiplicity, the graph \qquad the x-axis at c.

The point $(c, 0)$ is called a \qquad _.

- If c is a zero of \qquad multiplicity, the graph \qquad the x-axis at c.

The point $(c, 0)$ is called a \qquad .

EXAMPLE:

Sketch the graph of

$$
f(x)=-\frac{1}{2}(x-1)^{2}(x+3)(x+1)^{2} .
$$

- The touch points of f are $(1,0)$ and $(-1,0)$.
- The cross point of f is $(-3,0)$.
- The y-intercept of f is $\left(0,-\frac{3}{2}\right)$.
- The degree of f is 5 and a_{n} is negative so as $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow \infty$.

YOU TRY IT:

130. Sketch the graph of

$$
g(x)=x^{2}(x+1)^{2}(x-3)(x-2)
$$

Inferring properties of a polynomial function from its graph

Δ Watch the video Turning Points of a Graph of a Polynomial Function to complete the following.

Number of Turning Points of a Polynomial Function

Let f represent a polynomial function of \qquad Then the graph of f has at most turning points.

YOU TRY IT: Below is the graph of a polynomial function f with real coefficients. Use the graph to answer the following questions.

131. At what x-values does f have local minima?
132. What is the sign of the leading coefficient of f ?
133. What is the lowest possibility for the degree of f ?

Finding a polynomial of a given degree with given zeros: Real zeros

Learning Page The Factor Theorem tells us the following.
A number c is a \qquad of a polynomial $f(x)$ if and only if \qquad is a \qquad
of \qquad _.

We also get that, if c is a zero of \qquad then \qquad is a \qquad YOU TRY IT:
134. Find a polynomial $p(x)$ of degree 5 that has zeros $-2,0,1$ (multiplicity 2), 7 .

Polynomial long division: Problem type 3

\square Watch the video Long Division of Polynomials with a Nonlinear Divisor to complete the following.

EXAMPLE:

Use polynomial long division to evaluate:
$\left(x^{4}+3 x^{3}+x-5\right) \div\left(x^{2}-3\right)$

YOU TRY IT:

Use polynomial long division to evaluate:
135. $\left(2 x^{5}+x^{4}-x^{3}-x-1\right) \div\left(x^{2}-2 x+1\right)$

$$
\begin{aligned}
& \left.x^{2}-3\right) \frac{x^{2}+3 x+3}{x^{4}+3 x^{3}+x-5} \\
& \frac{-x^{4}+3 x^{2}}{3 x^{3}+3 x^{2}}+x \\
& \frac{-3 x^{3}+9 x}{3 x^{2}+10 x-5} \\
& \begin{array}{r}
-3 x^{2} \quad+9 \\
10 x+4
\end{array}
\end{aligned}
$$

So $\left(x^{4}+3 x^{3}+x-5\right) \div\left(x^{2}-3\right)$

$$
=x^{2}+3 x+3+\frac{10 x+4}{x^{2}-3}
$$

Dividing a polynomial by a monomial: Univariate

Learning Page Carefully read the example on the Learning Page
YOU TRY IT: Divide.
136. $\frac{3 x^{4}-6 x^{3}+9 x}{3 x^{2}}$

Synthetic division

\square Watch the video Introduction to Synthetic Division to complete the following.

EXAMPLE:

Use synthetic division to evaluate:
$\left(x^{4}-14 x^{2}+5 x-9\right) \div(x+4)$

YOU TRY IT:

Use synthetic division to evaluate:
137. $\left(2 x^{4}-x^{3}-3 x-1\right) \div(x-2)$

So $\left(x^{4}-14 x^{2}+5 x-9\right) \div(x+4)$

$$
=x^{3}-4 x^{2}+2 x-3+\frac{3}{x+4}
$$

The Factor Theorem

Watch the video Introduction to the Factor Theorem to complete the following.

Factor Theorem

Let $f(x)$ be a polynomial.

1. If $f(c)=0$, then \qquad is a \qquad of $f(x)$.
2. If \qquad is a factor of $f(x)$, then \qquad
Use the Factor Theorem to determine if the given binomial is a factor of $f(x)$.

$$
f(x)=x^{4}+11 x^{3}+41 x^{2}+61 x+30
$$

a. \qquad
b. \qquad

EXAMPLE:

Use the Factor Theorem to determine whether $x+1$ is a factor of $p(x)=-3 x^{3}+4 x^{2}-2 x-6$.

$$
\begin{aligned}
p(-1) & =-3(-1)^{3}+4(-1)^{2}-2(-1)-6 \\
& =3+4+2-6 \\
& =3
\end{aligned}
$$

$p(-1) \neq 0$ so $x+1$ is not a factor of $p(x)$.

YOU TRY IT:

138. Use the Factor theorem to determine whether $x+4$ is a factor of $q(x)=x^{3}-13 x+12$.

Solving a system of linear equations using elimination with multiplication and addition

\square Watch the video Solving a System of Equations Using the Addition Method to complete the following. NOTE: This may not be the first video that pops up. Select the appropriate video in the video box.

Solve the system by using the addition method.

EXAMPLE: Solve the system of equations using elimination.

$$
\begin{aligned}
& 2 x-3 y=-2 \\
& 3 x-2 y=12
\end{aligned}
$$

Multiply the first equation by -3 and the second equation by 2 .

$$
\begin{aligned}
-3(2 x-3 y) & =-2(-3) \\
2(3 x-2 y) & =12(2)
\end{aligned}
$$

Simplify the equations. Note that we have a $6 x$ in one equation and $\mathrm{a}-6 x$ in the other.

$$
\begin{aligned}
-6 x+9 y & =6 \\
6 x-4 y & =24
\end{aligned}
$$

Add the two equations together and solve for y.

$$
\begin{aligned}
-6 x+9 y & =6 \\
6 x-4 y & =24 \\
\hline 5 y & =30 \\
y & =6
\end{aligned}
$$

Use one of the equations to solve for x.

$$
\begin{aligned}
2 x-3(6) & =-2 \\
2 x-18 & =-2 \\
2 x & =16 \\
x & =8
\end{aligned}
$$

The solution is the ordered pair $(8,6)$.

Solving a word problem using a system of linear equations of the form $A x+B y=C$
Learning Page Carefully read through the example on the Learning Page.

YOU TRY IT:

140. John and Alycia bought school supplies. John spent $\$ 10.65$ on 4 notebooks and 5 pens. Alycia spent $\$ 7.50$ on 3 notebooks and 3 pens. What is the cost of 1 notebook and what is the cost of 1 pen?

Solving a system of linear and quadratic equations

\square Watch the video Solving a Nonlinear System of Equations by using the Substitution Method to complete the following.

Solve the system by using the substitution method.

EXAMPLE: Solve the system.

$$
\begin{aligned}
2 x^{2}-y & =8 \\
7 x+y & =-4
\end{aligned}
$$

We can use elimination and eliminate y.

$$
\begin{aligned}
2 x^{2}-y & =8 \\
7 x+y & =-4 \\
2 x^{2}+7 x & =4 \\
2 x^{2}+7 x-4 & =0 \\
(2 x-1)(x+4) & =0 \\
x & =\frac{1}{2},-4
\end{aligned}
$$

We must find the corresponding y-values. We can use either of the original equations.

- If $x=\frac{1}{2}$, we use the second equation and find

$$
y=-7\left(\frac{1}{2}\right)-4=-\frac{15}{2}
$$

- If $x=-4$, again use the second equation and

$$
y=-7(-4)-4=24
$$

The solutions are $\left(\frac{1}{2},-\frac{15}{2}\right)$ and $(-4,24)$.

YOU TRY IT:

141. Solve the system.

$$
\begin{aligned}
y & =x^{2}+1 \\
y-x & =2
\end{aligned}
$$

Graphically solving a system of linear and quadratic equations

Watch the video Introduction to Nonlinear Systems of Equations to complete the following. NOTE: This may not be the first video that pops up. Select the appropriate video in the video box.

$$
\begin{aligned}
& y=x^{2}-2 \\
& 2 x-y=2
\end{aligned}
$$

$$
4 x^{2}=4-y^{2}
$$

$$
16 y^{2}=144+9 x^{2}
$$

EXAMPLE:

Graph the system of equations to find its solution.

$$
\begin{aligned}
& y=x \\
& y=x^{2}-6
\end{aligned}
$$

From the graph we can see that the solutions are $(-2,-2)$ and $(3,3)$.

Using a given zero to write a polynomial as a product of linear factors: Real zeros

\square Watch the video Factoring a Polynomial Given a Zero of the Polynomial to complete the following.
a. Factor $f(x)=$ \qquad given that $\frac{1}{4}$ is a zero.
b. Solve \qquad

Solving a quadratic inequality written in factored form

ใ2 Open the Instructor Added Resource which will direct you to a video to complete the following.

Graph the solution to the inequality \qquad

$x=$ \qquad
\qquad $x=$ \qquad

Solving a quadratic inequality

Watch the video Solving Quadratic Inequalities to complete the following.

Solve the inequality.

EXAMPLE: Graph the solution to the inequality.

$$
x^{2}-x<12
$$

We rewrite the inequality, then factor.

$$
\begin{aligned}
x^{2}-x-12 & <0 \\
(x-4)(x+3) & <0
\end{aligned}
$$

- We want the values of x that make ($x-$ 4) $(x+3)$ less than zero (negative).
- $(x-4)(x+3)$ is equal to zero when $x=4$ or $x=-3$.

We will test a point in each interval on the number line above.

- For $x=-4$, we have $(-)(-)=+$
- For $x=0$, we have $(-)(+)=-$
- For $x=5$, we have $(+)(+)=+$

Note that we do not need the VALUE, just whether it will be positive or negative.

The solution in interval notation is $(-3,4)$. And graphically is

-3-2-1

YOU TRY IT: Graph the solution to the inequality.
142.

$$
2 x^{2}-9 x \geq 5
$$

An alternative method to the one shown before is to graph the parabola and determine the answer from the graph. Solve $x^{2}-2 \geq 0$

We can find the x-intercepts of the graph $(\sqrt{2}, 0)$ and $(-\sqrt{2}, 0)$. We want the x values where the graph lies on or above the x-axis.

The solution is $(-\infty,-\sqrt{2}] \cup[\sqrt{2}, \infty)$.

Notes from Focus Group:

Notes from Focus Group:

Module 7

Contents
\square Finding the intercepts, asymptotes, domain, and range from the graph of a rational function 164
Finding the asymptotes of a rational function: Constant over linear 165
Finding the asymptotes of a rational function: Linear over linear 166
Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or de- nominator 167
Matching graphs with rational functions: Two vertical asymptotes 168
Graphing a rational function: Constant over linear 169
\square Graphing a rational function: Linear over linear 170
\square Graphing a rational function with holes 172
\square Writing the equation of a rational function given its graph 173
\square Horizontal line test 174
Graphing the inverse of a function given its graph 174
Determining whether two functions are inverses of each other 175
Finding, evaluating, and interpreting an inverse function for a given linear relationship 176
Inverse functions: Linear, discrete 176
Inverse functions: Cubic, cube root 178
Inverse functions: Rational 179
Inverse functions: Quadratic, square root 180
Graphing an exponential function and its asymptote: $f(x)=b^{-x}$ or $f(x)=-b^{a x}$ 181
Graphing an exponential function and its asymptote: $f(x)=a(e)^{x-b}+c$ 182
Table for an exponential function 183
The graph, domain, and range of an exponential function183\square Translating the graph of an exponential function184
Transforming the graph of a natural exponential function 185
Evaluating an exponential function that models a real-world situation 185
\square Evaluating an exponential function with base e that models a real-world situation 186

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Finding the intercepts, asymptotes, domain, and range from the graph of a rational function

Watch the video Introduction to Rational Functions to complete the following.a. As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
b. As $x \rightarrow 4^{-}, f(x) \rightarrow$ \qquad
c. As $x \rightarrow 4^{+}, f(x) \rightarrow$ \qquad
d. As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
e. Increasing:

h. Range:
f. Decreasing:
g. Domain:

In mathematics, \rightarrow means the word \qquad .

YOU TRY IT: Use the graph to answer the following questions about $f(x)$.

143. Find the domain of $f(x)$.
144. Find the range of $f(x)$.
145. Find all asymptotes of $f(x)$.

Finding the asymptotes of a rational function: Constant over linear

Learning Page

Vertical asymptote(s):

A rational function in \qquad form has vertical asymptotes at the \qquad
of the \qquad -.

Horizontal asymptote(s):

A rational function can have \qquad horizontal asymptote.

To find the horizontal asymptotes (if any), we compare the \qquad of the numerator with the \qquad of the denominator.

- If \qquad the horizontal asymptote is \qquad —.
- If \qquad the horizontal asymptote is given by
- If \qquad there is \qquad horizontal asymptote.

YOU TRY IT:

146. Find all vertical and horizontal asymptotes of the function $f(x)=\frac{7}{3 x-2}$.

Finding the asymptotes of a rational function: Linear over linear

Open the e-book to complete the following.

Definition of a Vertical Asymptote

The line \qquad is a vertical asymptote of the graph of a function f if $f(x)$ approaches
\qquad or \qquad as x approaches \qquad from either side.

Identifying Vertical Asymptotes of a Rational Function

Consider a rational function f defined by \qquad , where $p(x)$ and $q(x)$ have
\qquad other than 1 .

If c is a \qquad then \qquad is a \qquad asymptote of the graph of f.

Definition of a Horizontal Asymptote

The line \qquad is a horizontal asymptote of the graph of a function f if infinity or negative infinity.

Identifying Horizontal Asymptotes of a Rational Function

Let f be a rational function defined by

$$
f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+b_{m-2} x^{m-2}+\ldots+b_{1} x+b_{0}}
$$

The definition of $f(x)$ indicates that \qquad is the \qquad of the \qquad and \qquad is the \qquad of the \qquad
1.
2.
3.

YOU TRY IT:

147. Find all vertical and horizontal asymptotes of the function $f(x)=\frac{-5 x+4}{3 x-2}$.

Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or denominator

\square Watch the video Identifying Vertical Asymptotes Algebraically to complete the following.
a. $m(x)=$ \qquad

b. $f(t)=\square$

Watch the video Identifying Horizontal Asymptotes Algebraically to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.
a. $h(x)=$ \qquad b. $m(x)=$ \qquad
c. $t(x)=$ \qquad

EXAMPLE:

Find all asymptotes of

$$
f(x)=\frac{x+1}{(x-2)(x+3)}
$$

- The numerator and denominator share no common factors other than 1 .
- To find the vertical asymptotes we consider the zeros of the denominator which are 2 and -3 .
- Vertical asymptotes:
- $x=2$
- $x=-3$
- Horizontal asymptote:
- We look at the degree of the top compared to the degree of the bottom.
- As x gets large, y will get close to zero so the horizontal asymptote is $y=0$.

YOU TRY IT:

148. Find all asymptotes of

$$
f(x)=\frac{x^{2}}{x^{2}-9}
$$

Graphing a rational function: Constant over linear

Open the e-book to complete the following.

Graphing a Rational Function

Consider a rational function f defined by $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials with no common factors.

1. Determine the \qquad by evaluating \qquad
2. Determine the \qquad by finding the real solutions of \qquad .

The value of $f(x)$ equals zero when \qquad -.
3. Identify any \qquad and graph them as dashed lines.
4. Determine whether the function has a \qquad or a slant asymptote (or neither), and graph the asymptote as a dashed line.
5. Determine where the function crosses the \qquad or slant asymptote (if applicable).
6. If a test for \qquad is easy to apply, use \qquad to plot additional points. Recall:

- f is an even function (symmetric to the \qquad) if \qquad
- f is an odd function (symmetric to the \qquad) if \qquad

7. Plot at least one point on the intervals defined by the x-intercepts, vertical asymptotes, and any points where the function crosses a horizontal or slant asymptote.
8. Sketch the function based on the information found in steps 1-7.

Graphing a rational function: Linear over linear

Open the e-book to read EXAMPLE 7: Graphing a Rational Function to complete the following steps.
Graph $f(x)=$ \qquad

Solution:

1. Determine the \qquad .
$f(0)=\frac{(0)+3}{(0)-2}=$ \qquad The y-intercept is \qquad
2. Determine the \qquad
$\frac{x+3}{x-2}=0$ when \qquad or $x=-3$

The x-intercept is \qquad
3. Identify the \qquad asymptotes.

The polynomial \qquad has a zero at $x=2$,

The vertical asymptotes occur at the values of and the numerator $x+3$ is \qquad for $x=2$. x for which the denominator is \qquad and the numerator is \qquad
The graph has one vertical asymptote, \qquad
4. Determine whether f has a horizontal or slant asymptote.

The degree of the \qquad is \qquad to the degree of the \qquad
Therefore, the graph has a horizontal asymptote given by the ratio of leading coefficients of the numerator and denominator.
\qquad is the horizontal asymptote.
5. Determine where f \qquad the horizontal asymptote (if at all).

Solve the equation \qquad
$\frac{x+3}{x-2}=1 \Longrightarrow x+3=x-2 \Longrightarrow 3=-2$ (contradiction)
The graph of f \qquad cross its horizontal asymptote.
6. Test for symmetry.
$f(-x)=\frac{-x+3}{-x-2}$ does not equal $f(x)$ or $-f(x)$. The function is \qquad even nor odd and is not symmetric with respect to the y-axis or origin.
7. Determine the behavior of f on each interval.

Determine the sign of the function on the intervals shown defined by the x-intercept at $x=-3$ and the vertical asymptote \qquad

Continued on the next page.

Interval	Test Point	Comments
$(-\infty,-3)$		- Since $f(x)$ is \qquad on this interval, $f(x)$ must approach the horizontal asymptote $y=1$ from below as \qquad
$(-3,2)$		- Since $f(x)$ is \qquad on this interval, the graph crosses the x-axis at the intercept $(-3,0)$ and continues downward (through the y-intercept). As x approaches the vertical asymptote $x=2$ from the
	$(3,6)$	- Since $f(x)$ is \qquad on this interval, as x approaches the vertical asymptote $x=2$ from the \qquad $f(x) \rightarrow$ \qquad - Since $f(x)$ is positive on this interval, $f(x)$ must approach the horizontal asymptote from \qquad as $x \rightarrow \infty$.

8. Sketch the function.

Module 7

Graphing a rational function with holes

ใด Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of $f(x)=$ \qquad .

YOU TRY IT:

149. Sketch the graph of $g(x)=\frac{3 x^{2}}{x^{3}-x^{2}}$.

Writing the equation of a rational function given its graph

Learning Page We must determine the equation of a rational function $f(x)=\frac{p(x)}{q(x)}$ given its graph.
To do this, we will use the following properties.

Property 1:

If \qquad is a vertical asymptote of the graph, then \qquad is a factor of the \qquad $q(x)$.

Property 2:

If \qquad is an x-intercept of the graph, then \qquad is a factor of the \qquad $p(x)$.

If there is \qquad x-intercept and the rational function is in \qquad form, then \qquad
has \qquad _.

Property 3:

If \qquad ,$a \neq 0$, is a \qquad of the graph, then the degree of the
numerator $p(x)$ \qquad the degree of the denominator $q(x)$, and a equals the \qquad

Property 4:

If \qquad is a horizontal asymptote of the graph, then the \qquad

YOU TRY IT: Write the equation of the graph given below.
150.

Module 7

Horizontal line test

\square Watch the video Applying the Horizontal Line Test to complete the following.

Horizontal Line Test

A function defined by $y=f(x)$ is \qquad if \qquad intersects the graph in \qquad .

Determine if the relation defines y as a one-to-one function of x.

Graphing the inverse of a function given its graph

Learning Page To get the graph of \qquad we take the \qquad of \qquad and
\qquad them.

That is, we \qquad the \qquad of each \qquad
We see that the graph of f^{-1} is the \qquad of the \qquad over the
line \qquad .

YOU TRY IT: The graph of $f(x)$ is given.
Sketch the graph of $f^{-1}(x)$ on the same axes.
151.

Determining whether two functions are inverses of each other

\square Watch the video Determining Whether Two Functions are Inverses to complete the following.

Determine whether the two functions are inverses.
$f(x)=$ \qquad and $g(x)=$ \qquad

Let f be a \qquad function. Then g is the inverse of f if the following conditions are both true.
1.
2.

YOU TRY IT:

152. Determine if $f(x)=3 x+7$ and $g(x)=\frac{x-3}{7}$ are inverses.

Finding, evaluating, and interpreting an inverse function for a given linear relationship

EXAMPLE: Steve is walking and his distance D in miles from Fargo after x hours of walking is given by $D(x)=11.6-4 x$.
a. Describe in words what $D^{-1}(x)$ means.

With a function and its inverse we are "switching" the domain and range.
The input for $D^{-1}(x)$ will be a distance and the output will be a time.
$D^{-1}(x)$ represents the amount of time in hours that Steve has walked when he is x miles from Fargo.
b. Find $D^{-1}(x)$.

$$
\begin{aligned}
y & =11.6-4 x \\
x & =11.6-4 y \\
x-11.6 & =-4 y \\
\frac{x-11.6}{-4} & =y \\
D^{-1}(x) & =\frac{11.6-x}{4}
\end{aligned}
$$

Inverse functions: Linear, discrete

Learning Page For a given \qquad function f, there is a related function, \qquad
which is the \qquad .

The function f maps \qquad if and only if f^{-1} maps \qquad
So, the \qquad are the \qquad and vice versa.

More precisely,
\qquad
There is a general method to find the inverse of a function that is defined by an equation.

Step 1:

Step 2:
Step 3:
Step 4: .
The composition of a function with its \qquad always gives an \qquad equal to
the \qquad Continued on the next page.

Watch the video Introduction to Inverse Functions to complete the following.

$f=\ldots \quad$| Domain: |
| :--- |
| Range: |
| $f^{-1}=\ldots, \quad l$ |
| Domain: |
| Range: |

EXAMPLE:

Given $f=\{(1,3),(2,4),(5,7)\}$, find the following
a) f^{-1}

The inverse function f^{-1} reverses the ordered pairs of f.
$f^{-1}=\{(3,1),(4,2),(7,5)\}$.

YOU TRY IT:

Given $g=\{(3,0),(2,5),(4,6),(7,9)\}$, find the following.
b) $f^{-1}(7)$

From part a) we see $f^{-1}(7)=5$.
c) $\left(f^{-1} \circ f\right)(1)$

$$
\left(f^{-1} \circ f\right)(1)=f^{-1}(f(1))=f^{-1}(3)=1
$$

153. g^{-1}
154. $g^{-1}(5)$
155. $\left(g^{-1} \circ g\right)(7)$

Domain:
Range:

Domain:
Range:

EXAMPLE:

Given $g(x)=3 x-7$, find the following
a) $g^{-1}(x)$

$$
\begin{aligned}
g(x) & =3 x-7 \\
y & =3 x-7 \\
x & =3 y-7 \\
x+7 & =3 y \\
\frac{x+7}{3} & =y \\
g^{-1}(x) & =\frac{x+7}{3}
\end{aligned}
$$

b) $\left(g \circ g^{-1}\right)(4)$

From the definition of inverse function we know $\left(g \circ g^{-1}\right)(x)=x$ for all x in the domain. So $\left(g \circ g^{-1}\right)(4)=4$.

YOU TRY IT:

Given $f(x)=\frac{1}{7} x+5$.
156. Find $f^{-1}(x)$
157. Find $\left(f \circ f^{-1}\right)(-3)$.

Inverse functions: Cubic, cube root

ใิ Open the Instructor Added Resource which will direct you to a video to complete the following.

YOU TRY IT:

158. Find the inverse of $f(x)=(x+4)^{3}$.

Inverse functions: Rational

Watch the video Finding the Inverse of a Rational Function to complete the following.

Write an equation for the inverse function for the one-to-one function.

$$
t(x)=
$$

\qquad

EXAMPLE: Find the inverse of $f(x)=\frac{x-3}{x+2}$.

$$
y=\frac{x-3}{x+2}
$$

Switch x and y.
$x=\frac{y-3}{y+2}$
Multiply both sides by $y+2$

$$
x(y+2)=\frac{y-3}{y+2} \cdot y+2
$$

Distribute the x.

$$
x y+2 x=y-3
$$

Bring all terms with y to one side and all other terms to other side.

$$
x y-y=-2 x-3
$$

Factor out y.

$$
y(x-1)=-2 x-3
$$

Divide by $x-1$
$y=\frac{-2 x-3}{x-1}$
$f^{-1}(x)=\frac{-2 x-3}{x-1}$

YOU TRY IT:

159. Find the inverse of $g(x)=\frac{2 x-1}{x-4}$.

Inverse functions: Quadratic, square root

\square Watch the video Finding the Inverse of a Function with a Restricted Domain to complete the following.
a. Graph $f(x)=$ \qquad $;$.
b. From the graph of f, is f a one-to-one function?
c. Write the domain of f in interval notation.
d. Write the range of f in interval notation.
e. Write an equation for $f^{-1}(x)$.
f. Graph $y=f(x)$ and $y=f^{-1}(x)$ on the same coordinate system.

g. Write the domain of $f^{-1}(x)$ in interval notation.
h. Write the range of $f^{-1}(x)$ in interval notation.

EXAMPLE:

a) Find the inverse of $f(x)=\sqrt{x-4}+3$.

$$
\begin{aligned}
f(x) & =\sqrt{x-4}+3 \\
y & =\sqrt{x-4}+3 \\
x & =\sqrt{y-4}+3 \\
x-3 & =\sqrt{y-4} \\
(x-3)^{2} & =y-4 \\
x^{2}-6 x+9+4 & =y \\
f^{-1}(x) & =x^{2}-6 x+13 \text { for } x \geq 3
\end{aligned}
$$

We need the extra condition $x \geq 3$ because otherwise $f^{-1}(x)$ is NOT one-to-one.
b) Find the inverse of $g(x)=x^{2}+2 x-4$ where $x \geq-1$.

$$
\begin{aligned}
g(x) & =x^{2}+2 x-4 \\
y & =x^{2}+2 x-4 \\
x & =y^{2}+2 y-4 \\
x & =y^{2}+2 y+1-1-4 \\
x & =(y+1)^{2}-5 \\
x+5 & =(y+1)^{2} \\
\sqrt{x+5} & =y+1 \\
\sqrt{x+5}-1 & =f^{-1}(x)
\end{aligned}
$$

YOU TRY IT:

160. Find the inverse of $f(x)=\sqrt{3 x-1}+2$.
161. Find the inverse of $g(x)=x^{2}-6 x-4$ where $x \geq 3$.

Graphing an exponential function and its asymptote: $f(x)=b^{-x}$ or $f(x)=-b^{a x}$

Learning Page Background:

For a \qquad $b \neq 1$, a function of the form \qquad is an exponential function with base b.

Sketch an exponential function with base $b>1$.

Sketch a graph with base $0<b<1$.

Module 7

Graphing an exponential function and its asymptote: $f(x)=a(e)^{x-b}+c$

\square Watch the video Graphing Exponential Functions to complete the following. NOTE: This video may not pop up immediately. Select it from the list of videos in the video box.

Graph the functions.
a. $g(x)=$ \qquad
b. $k(x)=$ \qquad

x	$g(x)$
0	
1	
2	
3	
-1	
-2	
-3	

x	$k(x)$
0	
1	
2	
3	
-1	
-2	
-3	

Table for an exponential function

Learning Page The table gives \qquad x and their corresponding \qquad $h(x)$.

We use the rule $\left(\frac{a}{b}\right)^{-n}=$ \qquad

YOU TRY IT: Complete the tables below.
162.

x	$g(x)=5^{x}$
0	
1	
2	
3	
-1	
-2	
-3	

163.

x	$f(x)=\left(\frac{1}{3}\right)^{x}$
0	
1	
2	
3	
-1	
-2	
-3	

The graph, domain, and range of an exponential function

Open the e-book to complete the following.
Graphs of $f(x)=b^{x}$
The graph of an exponential function defined by $f(x)=b^{x}$ where $b>0$ and $b \neq 1$ has the following properties.

1. If $b>1, f$ is an \qquad exponential function.

If $0<b<1, f$ is a \qquad exponential function.
2. The domain is \qquad .
3. The range is \qquad
4. The line \qquad is a \qquad
5. The function passes through the point \qquad (this is the y-intercept) because $f(0)=b^{0}=1$.

Translating the graph of an exponential function

\square Watch the video Graphing an Exponential Function Using Transformations to complete the following.

Graph $g(x)=$ \qquad

EXAMPLE:

Sketch the graph of $y=-2^{x+3}+5$.
This is the graph of $y=2^{x}$ transformed by

- Shifting down 5 units
- Shifting left 3 units
- Reflecting across the x-axis

YOU TRY IT.

164. Sketch the graph of $y=3^{x-2}-4$

Transforming the graph of a natural exponential function

Learning Page
Some ways to transform the graph of a function.
1.
2.
3.

In what order is it a good idea to perform the transformations?
YOU TRY IT: Sketch the graph of $y=e^{x-1}-3$
165.

Evaluating an exponential function that models a real-world situation

EXAMPLE:

The dollar value $c(t)$ of a car that is t years old is given by $c(t)=19,900(0.86)^{t}$. Find the value initial value of the car and the value of the car after 11 years.

- Initial value

The initial value will be the value of the car at 0 years so we compute $c(0)$.
$c(0)=19,900(0.86)^{0}=\$ 19,900$

- Value after 11 years

We are computing $c(11)$.
$c(11)=19,900(0.86)^{11} \approx \$ 3787$

YOU TRY IT:

A radioactive substance has a half-life of 14 hours. The amount $a(t)$ in grams of a sample remaining after t hours is given by

$$
a(t)=2800\left(\frac{1}{2}\right)^{\frac{t}{14}}
$$

166. Find the initial amount in the sample.
167. Find the amount remaining after 30 hours.

Evaluating an exponential function with base e that models a real-world situation

\square Watch the video Applying an Exponential Function to Newton's Law of Cooling to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

The temperature $T(t)$ of an object set to cool is modeled by

$$
T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}
$$

where T_{a} is the \qquad of the surrounding \qquad
T_{0} is the \qquad temperature of the object
t is the \qquad since the hot object was set to cool
k is a \qquad related to the physical \qquad of the object

A cake comes out of the oven at \qquad and is placed on a cooling rack in a \qquad kitchen.

After checking the temperature several minutes later, it is determined that the cooling rate k is \qquad .
a. Write a function that models the temperature $T(t)$ (in ${ }^{\circ} \mathrm{F}$) of the cake t minutes after being removed from the oven.
b. What is the temperature of the cake 10 min after coming out of the oven? Round to the nearest degree.
c. It is recommended that the cake should not be frosted until it has cooled to under $100^{\circ} \mathrm{F}$. If Jessica waits 1 hr to frost the cake, will the cake be cool enough to frost?

EXAMPLE:

A bacteria population size increases according to $P(t)=1700 e^{0.18 t}$ where t is measured in hours. Find the initial number in the population and the number after 7 hours.

- Initial number

We want the number of bacteria after 0 hours so we compute $P(0)$.
$P(0)=1700 e^{0.18(0)}=1700$

- Number after 7 hours $P(7)=1700 e^{0.18(7)} \approx$ 5993

YOU TRY IT:

The velocity $v(t)$ in m / s of an object falling near Earth's surface is given by $v(t)=49\left(1-e^{-0.22 t}\right)$ where t is measured in seconds.
168. Find the velocity of the object after 4 seconds.

Notes from Focus Group:

Notes from Focus Group:

Module 8-Review Module

To help you review for your upcoming exam, this module contains all of the topics from the modules since the last exam. Topics that you have already mastered will not appear in your carousel.

Complete this module before you take the ALEKS exam.
Each exam has two parts.

- The ALEKS exam (100 pts)
- The ALEKS exam must be taken in the MALL.
- The ALEKS exam is a Comprehensive Knowledge Check.
- Your score is the number of topics you have mastered out of the number of topics you should have mastered by this point.
- If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
- Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.
- The Written exam (25 pts)
- Take your written exam in class the day of your focus group.
- To study for the written exam:
- Rework your old Focus Group assignments.
- Rework any topics in ALEKS you may have lost on the ALEKS exam.

	Score
ALEKS Exam	
Written Exam	

Module 9

Contents
Solving an exponential equation by finding common bases: Linear exponents 192
Solving an exponential equation by finding common bases: Linear and quadratic exponents 193
Converting between logarithmic and exponential equations 194
\square Converting between natural logarithmic and exponential equations 195Evaluating logarithmic expressions196
Graphing a logarithmic function: Basic 196
Translating the graph of a logarithmic function 197
The graph, domain, and range of a logarithmic function 198
Solving an equation of the form $\log _{b} a=c$ 198
Basic properties of logarithms 199
Domain of a logarithmic function: Advanced 200Expanding a logarithmic expression: Problem type 1201
\square Expanding a logarithmic expression: Problem type 2 202
\square Writing an expression as a single logarithm 202Using properties of logarithms to evaluate expressions203
Solving a multi-step equation involving a single logarithm: Problem type 1 204
Solving a multi-step equation involving a single logarithm: Problem type 2 205
Solving a multi-step equation involving natural logarithms 206
Solving an equation involving logarithms on both sides: Problem type 1 206
Solving an equation involving logarithms on both sides: Problem type 2 207
Solving an exponential equation by using logarithms: Exact answers in logarithmic form 208
Finding the time given an exponential function with base e that models a real-world situation 209
\square Finding the initial amount and rate of change given an exponential function210

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Solving an exponential equation by finding common bases: Linear exponents

Watch the video Solving an Exponential Equation by Using the Equivalence Property to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Equivalence Property of Exponential Expressions

Let b, x, and y be real numbers with $b>0$ and $b \neq 1$. Then,

$$
b^{x}=b^{y} \text { implies that }
$$

Solve.
Check:

Learning Page For any positive number A such that $A \neq 1$, we have the following.
\qquad if and only if \qquad
We can write each side of our equation with the \qquad and then apply this property.

EXAMPLE: Solve for x.

$$
32^{x-4}=64
$$

Rewrite each side with base 2.
$\left(2^{5}\right)^{x-4}=2^{6}$
Simplify exponent on left.

$$
2^{5 x-20}=2^{6}
$$

Use property from above.
$5 x-20=6$
$5 x=26$
$x=\frac{26}{5}$

YOU TRY IT: Solve for x.
169. $4^{x+2}=\frac{1}{2^{x}}$

Solving an exponential equation by finding common bases: Linear and quadratic exponents

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.

YOU TRY IT: Solve for x.

170. $16^{7 x-7}=4^{x^{2}+4 x+7}$

Converting between logarithmic and exponential equations

\square Watch the video Converting from Logarithmic Form to Exponential Form to complete the following.

Write each equation in exponential form.
a.
b.

Watch the video Converting from Exponential Form to Logarithmic Form to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Write each equation in logarithmic form.
a.
b.
is the same as
c.
\square is the same as

EXAMPLE:

a) Write $\log _{5} x=y$ as an exponential equation.

$$
\begin{aligned}
& \log _{5} x=y \\
& 5^{y}=x
\end{aligned}
$$

b) Write $c^{6}=3$ as a logarithmic equation.

$$
\begin{aligned}
c^{6} & =3 \\
\log _{c} 3 & =6
\end{aligned}
$$

YOU TRY IT:

171. Write $\log _{4} 5=x$ as an exponential equation.
172. Write $7^{y}=9$ as a logarithmic equation.

Converting between natural logarithmic and exponential equations

Learning Page For any numbers a, b, and c, with a and c positive ($a \neq 1$), we have the following equivalence.

$$
\log _{a} c=b \text { if and only if }
$$

The first is a \qquad equation, and the second is an \qquad equation.

However, when the base is \qquad , we do \qquad write \qquad .

Instead, we write \qquad which is read as \qquad
e is a special \qquad number. Its value is $e=$ \qquad
So, when the base of the logarithm is e, we write the relationship as follows.
\qquad if and only if

EXAMPLE:

a) Write $\ln 8=x$ as an exponential equation.

$$
\begin{aligned}
\ln 8 & =x \\
e^{x} & =8
\end{aligned}
$$

b) Write $e^{y}=2$ as a logarithmic equation.

$$
\begin{aligned}
e^{y} & =2 \\
\ln 2 & =y
\end{aligned}
$$

YOU TRY IT:

173. Write $\ln x=5$ as an exponential equation.
174. Write $e^{r}=t$ as a logarithmic equation.

Evaluating logarithmic expressions

\square Watch the video Evaluating Common and Natural Logarithms to complete the following.

Simplify the expressions.
a.
b.

YOU TRY IT: Simplify the expressions.
175. $\log _{5} \frac{1}{125}$
176. $\ln e^{5}$

Graphing a logarithmic function: Basic

Watch the video Graphing a Logarithmic Function to complete the following.Graph \qquad

	y
	0
	2
	-2

Translating the graph of a logarithmic function

\square Watch the video Using Transformations to Graph a Logarithmic Function to complete the following.

Graph.

EXAMPLE:

Sketch the graph of $y=\ln (x+2)-1$.
This is the graph of $y=\ln x$ shifted

- left 2 units
- down 1 unit

YOU TRY IT:

177. Sketch the graph of $y=-2 \ln (x+3)+1$.

The graph, domain, and range of a logarithmic function

Open the e-book to complete the following.

Graphs of Exponential and Logarithmic Functions

Exponential Functions

$b>1 \quad 0<b<1$

Domain: \qquad

Range: \qquad
Horizontal asymptote: \qquad

Logarithmic Functions

$b>1$
$0<b<1$
Domain: \qquad
Range: \qquad

Passes through: \qquad Passes through: \qquad
If $b>1$, the function is \qquad .

If $b>1$, the function is \qquad .

If $0<b<1$, the function is \qquad If $0<b<1$, the function is \qquad

Solving an equation of the form $\log _{b} a=c$

Learning Page For any numbers a, b, and c, with a and c positive $(a \neq 1)$, we have the following relationship.
\qquad if and only if \qquad

EXAMPLE: Solve.

$$
\log _{2} x=-3
$$

Use the relationship above.
$2^{-3}=x$
$\frac{1}{8}=x$

YOU TRY IT: Solve.

178. $\log _{x} 2=\frac{1}{3}$

Basic properties of logarithms

(1) Open the e-book to complete the following.

Product Property of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$. Then

$$
\log _{b}(x y)=
$$

\qquad

The logarithm of a product equals the \qquad

Quotient Property of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$. Then

$$
\log _{b}\left(\frac{x}{y}\right)=
$$

\qquad

The logarithm of a quotient equals the \qquad of the logarithm of the \qquad and the
\qquad of the \qquad

Power Property of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$. Let p be any real number. Then

$$
\log _{b} x^{p}=
$$

Properties of Logarithms

Let b, x, and y be positive real numbers where $b \neq 1$, and let p be any real number. Then the following properties of logarithms are true.

1. $\log _{b} 1=$ \qquad 3. $\log _{b} b^{p}=$ \qquad
2. $\log _{b} b=$ \qquad 4. $b^{\log _{b} x}=$ \qquad

Domain of a logarithmic function: Advanced

\square Watch the video Identifying the Domain of a Logarithmic Function to complete the following.

The domain of \qquad is restricted to \qquad
Write the domain in interval notation.
a. $f(x)=$ \qquad
b. $r(x)=$ \qquad

YOU TRY IT: Find the domain of the function. Write your answer in interval notation.
179. $g(x)=\log (x+7)$

Expanding a logarithmic expression: Problem type 1

\square Watch the video Applying the Product Property of Logarithms to complete the following.

Product Property of Logarithms

Let b, x, and y be positive real numbers where \qquad Then,
\qquad $=$ \qquad

Example:

Write the logarithm as a sum and simplify if possible.

EXAMPLE: Expand $\log \left(\frac{x^{3} y^{5}}{z}\right)$.
Use the Quotient Property

$$
\log \left(\frac{x^{3} y^{5}}{z}\right)=\log \left(x^{3} y^{5}\right)-\log z
$$

Use the Product Property
$=\log x^{3}+\log y^{5}-\log z$
Use the Power Property

$$
=3 \log x+5 \log y-\log z
$$

YOU TRY IT:

180. Expand $\ln \left(\frac{x z^{2}}{y^{5}}\right)$.

Expanding a logarithmic expression: Problem type 2

\square Watch the video Writing a Logarithmic Expression in Expanded Form to complete the following.

Write the expression as the sum or difference of logarithms.

EXAMPLE: Expand $\log \left(\frac{x^{3} y^{5}}{\sqrt{z}}\right)$.

$$
\begin{aligned}
\log \left(\frac{x^{3} y^{5}}{\sqrt{z}}\right) & =\log \left(x^{3} y^{5}\right)-\log \sqrt{z} \\
& =\log x^{3}+\log y^{5}-\log \sqrt{z} \\
& =3 \log x+5 \log y-\frac{1}{2} \log z
\end{aligned}
$$

YOU TRY IT:
181. Expand $\ln \left(\frac{3 \sqrt{x}}{y^{5} z^{4}}\right)$.

Writing an expression as a single logarithm

\square Watch the video Writing the Sum or Difference of Logarithms as a Single Logarithm 2 to complete the following.

Write the logarithmic expression as a single logarithm with coefficient 1, and simplify if possible.

EXAMPLE: Write $\frac{1}{2} \ln y-\frac{1}{3} \ln x+\ln 2$ as a single log.

$$
\begin{aligned}
\frac{1}{2} \ln y-\frac{1}{3} \ln x+\ln 2 & =\ln y^{1 / 2}-\ln x^{1 / 3}+\ln 2 \\
& =\ln \sqrt{y}-\ln \sqrt[3]{x}+\ln 2 \\
& =\ln \left(\frac{\sqrt{y}}{\sqrt[3]{x}}\right)+\ln 2 \\
& =\ln \left(\frac{2 \sqrt{y}}{\sqrt[3]{x}}\right)
\end{aligned}
$$

YOU TRY IT:

182. Write $\log (x-1)+\log 3-3 \log x$ as a single log.

Solving a multi-step equation involving a single logarithm: Problem type 1

Open the e-book to read EXAMPLE 8: Solving a Logarithmic Equation to complete the following steps.
Solve. \qquad
Solution:

$$
\begin{gathered}
4 \log _{3}(2 t-7)=8 \\
\log _{3}(2 t-7)=2
\end{gathered}
$$

Isolate the \qquad by \qquad both sides by 4 .

The equation is in the form \qquad where \qquad
Write the equation in \qquad form.

$$
\begin{array}{cl}
2 t-7=9 & \text { Check: } 4 \log _{3}(2 t-7)=8 \\
t=8 & 4 \log _{3}[2(8)-7] \stackrel{?}{=} 8 \\
& 4 \log _{3} 9 \stackrel{?}{=} 8 \\
& 4 \cdot 2 \stackrel{?}{=} 8 \checkmark
\end{array}
$$

YOU TRY IT: Solve.
184. $5 \log _{6}(7 x+1)=10$

Solving a multi-step equation involving a single logarithm: Problem type 2

Watch the video Solving a Logarithmic Equation by Writing Exponential Form to complete the following.

Solving Logarithmic Equations by Using Exponential Form
Step 1 Given a logarithmic equation, \qquad the \qquad on
\qquad of the \qquad

Step 2 Use the \qquad to write the equation in the form
\qquad where k is a constant.

Step 3 Write the equation in \qquad .

Step 4 \qquad the equation from \qquad
Step 5 \qquad the potential solution(s) in the \qquad .

Solve.

Check:

EXAMPLE: Solve.

$$
\log _{3}(x-1)-\log _{3} 4=2
$$

Use Quotient Property of Logs.

$$
\log _{3} \frac{x-1}{4}=2
$$

Use Def of Log.

$$
\begin{aligned}
\frac{x-1}{4} & =3^{2} \\
x-1 & =36 \\
x & =37
\end{aligned}
$$

YOU TRY IT: Solve.
185. $-7+\log _{4}(x+3)=-5$

Solving a multi-step equation involving natural logarithms

ใด Open the Instructor Added Resource which will direct you to a video to complete the following.
Solve for x.

YOU TRY IT: Solve for x.
186. $\ln (x+2)=4$

Solving an equation involving logarithms on both sides: Problem type 1
\square Watch the video Solving a Logarithmic Equation 2 to complete the following.

Solve

YOU TRY IT: Solve the equation.
187. $\log _{3} x+\log _{3}(x+6)=3$

Solving an equation involving logarithms on both sides: Problem type 2

D Watch the video Solving a Logarithmic Equation by Using the Equivalence Property to complete the following.

Equivalence Property of Logarithmic Expressions

Let b, x, and y be positive real numbers with $b \neq 1$. Then,
\qquad implies that

Solve \qquad

EXAMPLE:

Solve.

$$
\begin{aligned}
\log _{5}(x+18)+\log _{5}(x-6) & =2 \log _{5} x \\
\log _{5}((x+18)(x-6)) & =\log _{5} x^{2} \\
(x+18)(x-6) & =x^{2} \\
x^{2}+12 x-108 & =x^{2} \\
12 x-108 & =0 \\
12 x & =108 \\
x & =9
\end{aligned}
$$

YOU TRY IT:

Solve.
188. $\log _{2} x+\log _{2}(x-4)=\log _{2}(x+24)$

Solving an exponential equation by using logarithms: Exact answers in logarithmic form
\square Watch the video Solving an Exponential Equation by Using Logarithms 3 to complete the following.

Solve \qquad

EXAMPLE: Solve.

$$
\begin{aligned}
4^{x+2} & =7^{x} \\
\ln 4^{x+2} & =\ln 7^{x} \\
(x+2) \ln 4 & =x \ln 7 \\
x \ln 4+2 \ln 4 & =x \ln 7 \\
x \ln 4-x \ln 7 & =-2 \ln 4 \\
x(\ln 4-\ln 7) & =-2 \ln 4 \\
x & =\frac{2 \ln 4}{\ln 4-\ln 7}
\end{aligned}
$$

YOU TRY IT: Solve.
189. $e^{x-2}=9$

Finding the time given an exponential function with base e that models a real-world situation

\square Watch the video Solving Two Equations for a Specified Variable to complete the following. NOTE: This video may not pop up immediately. Select it from the list of videos in the video box.

Solve for k.

Solve for D.

Finding the initial amount and rate of change given an exponential function

Learning Page A function in the following form models \qquad .
\qquad (where $a>0, b>0$, and $b \neq 1$)
Here, y is an \qquad and t is the \qquad Note the following.

- The constant \qquad is the \qquad , that is, the value of
- The constant \qquad tells whether the functions models \qquad -.
- If \qquad then the function models \qquad
- If \qquad then the function models \qquad
- From the value of \qquad we can also ge the \qquad of growth or decay.
- If \qquad , then b equals \qquad , where r is the \qquad
That is \qquad is the \qquad (expressed as a decimal) for each
- If \qquad , then b equals \qquad , where r is the \qquad
That is \qquad is the \qquad (expressed as a decimal) for each

[^0]Notes from Focus Group:

Module 10

Contents
Converting between degree and radian measure: Problem type 1214
Sketching an angle in standard position 215
Sine, cosine, and tangent ratios: Numbers for side lengths 216
\square Sine, cosine, and tangent ratios: Variables for side lengths 216
Coterminal angles 217
Area of a sector of a circle 217
Finding coordinates on the unit circle for special angles 218
Reference angles: Problem type 1219
Reference angles: Problem type 2 220
Trigonometric functions and special angles: Problem type 1 221
Trigonometric functions and special angles: Problem type 2 221
Trigonometric functions and special angles: Problem type 3 221Finding trigonometric ratios from a point on the unit circle222
Evaluating expressions involving sine and cosine 223
Even and odd properties of trigonometric functions 224
Finding trigonometric ratios given a right triangle 224
Determining the location of a terminal point given the signs of trigonometric values 225
Finding values of trigonometric functions given information about an angle: Problem type 1 226
Finding values of trigonometric functions given information about an angle: Problem type 2 226
Finding values of trigonometric functions given information about an angle: Problem type 3 227
Finding values of trigonometric functions given information about an angle: Problem type 4 227
Using trigonometry to find a length in a word problem with one right triangle 228
\square Using a trigonometric ratio to find a side length in a right triangle 228
Using the Pythagorean Theorem to find a trigonometric ratio 229

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Converting between degree and radian measure: Problem type 1

\square Watch the video Converting between Degrees to Radians and Vice Versa to complete the following.

Converting Between Degree and Radian Measure

- To convert from degrees to \qquad multiply the degree measure by \qquad .
- To convert from radians to \qquad multiply the radian measure by \qquad

Number of radians in one revolution: $\frac{2 \pi r}{r}=$ \qquad radians $=$ \qquad

1. Convert \qquad to radians.
2. Convert \qquad to degrees.

EXAMPLE:

Convert $\frac{5 \pi}{3}$ to degrees.
$\frac{5 \pi}{3} \cdot \frac{180^{\circ}}{\pi}=300^{\circ}$

YOU TRY IT:

190. Convert 165° to radians.

Sketching an angle in standard position

Learning Page An angle θ in standard position has its \qquad side on the

If θ is positive, we rotate the terminal side in the \qquad direction.

If θ is negative, we rotate the terminal side in the \qquad direction.

An angle that makes a \qquad revolution of the circle sweeps \qquad radians.

Using this fact, we can find the radian measures of some "quarter turn" angles.
$\frac{1}{4}$ revolution $=$ \qquad radians
$\frac{1}{2}$ revolution $=$ \qquad radians
$\frac{3}{4}$ revolution $=$ \qquad radians

On the circles below label the angles using radians on the unit circle. On the left circle use positive angles and the right circle use negative angles.

Sine, cosine, and tangent ratios: Numbers for side lengths

\square Watch the video Define Trigonometric Functions of Acute Angles to complete the following.

Label the triangle as shown in the video.

sine:
cosecant:
cosine:
secant:
tangent:
cotangent:

Sine, cosine, and tangent ratios: Variables for side lengths

Learning Page A trigonometric ratio is a ratio of \qquad
For an acute angle with measure x, these ratios are defined as follows.
$\sin x=$
$\cos x=$

$\tan x=$

Coterminal angles

Learning Page Two angles are coterminal if they have the \qquad
For a given angle θ, \qquad or \qquad
\qquad
gives an angle \qquad with \qquad _.

A \qquad revolution is \qquad which is 360°.

So, to get an angle coterminal with θ, we \qquad a multiple of \qquad radians or 360 degrees.

Area of a sector of a circle

Watch the video Determining the Area of a Sector to complete the following.

Find the area of the sector of a circle with radius r and central angle θ.

Find the exact area of the sector of the circle shown. Then approximate to the nearest tenth of a centimeter. Label the circle as shown in video.

Finding coordinates on the unit circle for special angles

ใ? Open the Instructor Added Resource which will direct you to a video to complete the following.
$\cos 0=$ \qquad
$\cos \frac{\pi}{2}=$ \qquad
$\cos \pi=$ \qquad
$\cos \frac{3 \pi}{2}=$ \qquad
$\sin 0=$ \qquad
$\sin \frac{\pi}{2}=$ \qquad
$\sin \pi=$ \qquad
$\sin \frac{3 \pi}{2}=$ \qquad

On the triangle below, label the angle and side lengths of the triangle as they are labeled in the video.

Show the work to find $\sin \frac{\pi}{4}$ and $\cos \frac{\pi}{4}$.

On the triangle below, label the angle and side lengths of the triangle as they are labeled in the video.

Show the work to find $\sin \frac{\pi}{3}$.
$\cos \frac{\pi}{3}=$ \qquad

From the triangle above we have $\cos \frac{\pi}{6}=$ \qquad and $\sin \frac{\pi}{6}=$ \qquad

Continued on the next page.

On the circle given below, label the coordinates of each intersection point with the unit circle.

Reference angles: Problem type 1

\square Watch the video Finding Reference Angles to complete the following.

EXAMPLE:

Find the reference angle, r, for the given angle.
a) $\theta=\frac{2 \pi}{3}$

YOU TRY IT:

Find the reference angle, r, for the given angle.
191. $\theta=\frac{7 \pi}{6}$

Reference angles: Problem type 2

Open the e-book to complete the following.

Definition of a Reference Angle

Let θ be an angle in standard position. The reference angle for θ is the \qquad formed by the \qquad and the \qquad .

EXAMPLE:

Find the reference angle, r, for the given angle.
a) $\theta=\frac{13 \pi}{4}$

YOU TRY IT:

Find the reference angle, r, for the given angle.
192. $\theta=-\frac{8 \pi}{3}$

Trigonometric functions and special angles: Problem type 1

\square Watch the video Using the Unit Circle to Evaluate the Trigonometric Functions of Special Angles to complete the following.

Evaluate the functions.
a.
b.

Trigonometric functions and special angles: Problem type 2

Learning Page Complete the following fundamental identities.
$\sec \theta=$
$\tan \theta=$
$\csc \theta=$
$\cot \theta=$

Trigonometric functions and special angles: Problem type 3

Complete the chart below.

θ	$\cos \theta$	$\sin \theta$
0		
$\frac{\pi}{6}$		
$\frac{\pi}{4}$		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		
π		
$\frac{3 \pi}{2}$		

Finding trigonometric ratios from a point on the unit circle

Watch the video Evaluating Trigonometric Functions Using the Unit Circle to complete the following.

Suppose that the real number t corresponds to the point \qquad on the unit circle. Evaluate the six trigonometric functions of t.
$\sin t=$
$\cos t=$
$\csc t=$

EXAMPLE:

Suppose θ is an angle whose terminal side intersects the unit circle at $\left(-\frac{12}{13}, \frac{5}{13}\right)$. Find the exact value of the following.
a) $\sin \theta=\frac{5}{13}$

The y coordinate of the intersection point gives us $\sin \theta$.
b) $\cos \theta=-\frac{12}{13}$

The x coordinate of the intersection point gives us $\cos \theta$.
c) $\tan \theta=-\frac{5}{12}$

d) $\sec \theta=-\frac{13}{12}$
e) $\csc \theta=\frac{13}{5}$
f) $\cot \theta=-\frac{12}{5}$

YOU TRY IT:

Suppose θ is an angle whose terminal side intersects the unit circle at $\left(\frac{40}{41},-\frac{9}{41}\right)$. Find the exact value of the following.
193. $\sin \theta=$
194. $\cos \theta=$
195. $\tan \theta=$
196. $\sec \theta=$
197. $\csc \theta=$
198. $\cot \theta=$

Evaluating expressions involving sine and cosine

Learning Page We will have to know the sine and cosine of some common trigonometric angles.
We should also keep in mind some facts about angles in \qquad position.

- A rotation \qquad gives a \qquad angle.

A rotation \qquad gives a \qquad angle.

- When finding sine and cosine values of a \qquad angle, we can use the
\qquad angle.

EXAMPLE:

Given $\theta=\frac{3 \pi}{4}$, evaluate each expression.

$$
\begin{aligned}
\sin (-\theta) & =\sin \left(-\frac{3 \pi}{4}\right) \\
& =\sin \left(\frac{5 \pi}{4}\right) \\
& =-\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\sin ^{2} \theta=\sin ^{2}\left(\frac{3 \pi}{4}\right)
$$

$$
=\left(\sin \frac{3 \pi}{4}\right)^{2}
$$

$$
=\left(\frac{\sqrt{2}}{2}\right)^{2}
$$

$$
=\frac{1}{2}
$$

$$
\begin{aligned}
\sin (2 \theta) & =\sin \left(2 \cdot \frac{3 \pi}{4}\right) \\
& =\sin \left(\frac{3 \pi}{2}\right) \\
& =-1
\end{aligned}
$$

YOU TRY IT:

Given $\theta=\frac{7 \pi}{6}$, evaluate each expression.
199. $\sin (-\theta)=$
200. $\sin ^{2} \theta=$
201. $\sin (2 \theta)=$

Even and odd properties of trigonometric functions

Learning Page A function $f(x)$ is odd if \qquad for all x in its domain.

A function $f(x)$ is even if \qquad for all x in its domain.

If \qquad of these properties hold, then f is \qquad odd nor even.

回
Open the e-book to complete the following.
Even and Odd Properties of Trigonometric Functions

Function	Evaluate at t and $-t$	Property
Sine	$\sin t=y$ and $\sin (-t)=$	$\sin (-t)=$ _ function
Cosine	$\cos t=x$ and $\cos (-t)=$	$\cos (-t)=\ldots$ function
Cosecant	$\csc t=\frac{1}{y} \text { and } \csc (-t)=$	$\csc (-t)=\ldots$ function
Secant	$\sec t=\frac{1}{x}$ and $\sec (-t)=$	$\sec (-t)=\ldots$ function
Tangent	$\tan t=\frac{y}{x}$ and $\tan (-t)=$	$\tan (-t)=$ _ function
Cotangent	$\cot t=\frac{x}{y}$ and $\cot (-t)=$	$\cot (-t)=\ldots$ function

Finding trigonometric ratios given a right triangle

Learning Page State the Pythagorean Theorem for the triangle given below.

Click on trigonometric ratios to define the following in terms of the sides of the right triangle given.

$$
\begin{array}{lll}
\sin \theta= & \tan \theta= & \csc \theta= \\
\cos \theta= & \sec \theta= & \cot \theta=
\end{array}
$$

EXAMPLE:
Find $\cos \theta$ from the triangle given.

8

YOU TRY IT:

Find the length of H, the hypotenuse.

$$
\begin{aligned}
8^{2}+15^{2} & =H^{2} \\
289 & =H^{2} \\
17 & =H
\end{aligned}
$$

$\cos \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
$\cos \theta=\frac{8}{17}$.

Determining the location of a terminal point given the signs of trigonometric values

Learning Page Let θ be an angle with terminal point (x, y) on the unit circle.
The signs of x and y depend on the quadrant in which the terminal point lies.
Complete the following chart determining the sign in each quadrant using + for positive and - for negative.

	Quadrant I	Quadrant II	Quadrant III	Quadrant IV
x	+	-		
y	+	+		
$\sin \theta$				
$\cos \theta$				
$\tan \theta$				
$\sec \theta$				
$\csc \theta$				
$\cot \theta$				

Finding values of trigonometric functions given information about an angle: Problem type 1

Watch the video Evaluating Trigonometric Functions of Any Angle to complete the following.The point \qquad is on the terminal side of an angle θ drawn in standard position. Find the values of the six trigonometric functions of θ.

Finding values of trigonometric functions given information about an angle: Problem type 2

ใी Open the Instructor Added Resource which will direct you to a video to complete the following.

Let θ be an angle in quadrant III such that \qquad Find the exact value of the following.

Label the triangle sides as labeled in the video.
a) $\cos \theta=$

b) $\tan \theta=$
c) $\sec \theta=$
d) $\csc \theta=$
e) $\cot \theta=$

Finding values of trigonometric functions given information about an angle: Problem type 3

Watch the video Evaluating a Trigonometric Function from Given Information by Using Fundamental Identities to complete the following.

Given $\sin \theta=$ \qquad in Quadrant III, use the fundamental trigonometric identities to find $\cos \theta$.

Finding values of trigonometric functions given information about an angle: Problem type 4

Watch the video Using Reference Angles to Evaluate a Trigonometric Function from Given Information to complete the following.

Given $\tan \theta=$ \qquad and \qquad <0, find the values of $\sin \theta$ and $\cos \theta$.

YOU TRY IT: Given $\cos \theta=-\frac{8}{17}$ and θ is in Quadrant II, find the exact value of the following.
203. $\sin \theta=$
204. $\tan \theta=$
207. $\cot \theta=$
205. $\sec \theta=$

Using trigonometry to find a length in a word problem with one right triangle

Watch the video Apply Trigonometric Functions to Find an Unknown Distance to complete the following.A \qquad foot boat ramp makes a \qquad angle with the water. What is the height of the ramp above the water at the ramp's highest point?

Using a trigonometric ratio to find a side length in a right triangle

Learning Page Define the following in terms of the sides of the right triangle given.

A

Using the Pythagorean Theorem to find a trigonometric ratio

\square Watch the video Evaluating Trigonometric Functions Given Two Sides of a Right Triangle to complete the following.

Given a right triangle with legs of length \qquad cm and \qquad cm , find the values of the six trigonometric functions of the smallest angle.

Label the graph as shown in the video.

$\cos \theta=$
$\tan \theta=$
$\csc \theta=$
Find the value of c.
$\sec \theta=$
$\cot \theta=$

Notes from Focus Group:

Notes from Focus Group:

Module 11

Contents

Sketching the graph of $y=a \sin x$ or $y=a \cos x$ 233
\square Sketching the graph of $y=\sin b x$ or $y=\cos b x$ 234
\square Sketching the graph of $y=\sin x+d$ or $y=\cos x+d$ 235
\square Sketching the graph of $y=\sin (x+c)$ or $y=\cos (x+c)$ 236
Sketching the graph of $y=a \sin (x+c)$ or $y=a \cos (x+c)$ 237
Sketching the graph of $y=a \sin b x$ or $y=a \cos b x$ 237
Sketching the graph of $y=a \sin (b x)+d$ or $y=a \cos (b x)+d$ 238
Sketching the graph of $y=a \sin (b x+c)$ or $y=a \cos (b x+c)$ 239
Amplitude and period of sine and cosine functions 239
\square Amplitude, period, and phase shift of sine and cosine functions 240
Sketching the graph of a secant or cosecant function: Problem type 1 240
Sketching the graph of a tangent or cotangent function: Problem type 1 241
Matching graphs and equations for secant, cosecant, tangent, and cotangent functions 242
Writing the equation of a sine or cosine function given its graph: Problem type 1 243
Word problem involving a sine or cosine function: Problem type 1 244
Word problem involving a sine or cosine function: Problem type 2 244
Values of inverse trigonometric functions 245
Composition of a trigonometric function with its inverse trigonometric function: Problem type 1 246
Composition of a trigonometric function with its inverse trigonometric function: Problem type 2247
Composition of a trigonometric function with the inverse of another trigonometric function: Prob- lem type 1 249
Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 2250
Composition of a trigonometric function with the inverse of another trigonometric function:Problem type 3250
Composition of trigonometric functions with variable expressions as inputs: Problem type 1 251
Composition of trigonometric functions with variable expressions as inputs: Problem type 2 251
Domains and ranges of trigonometric functions 252

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics bySketching the graph of $y=a \sin x$ or $y=a \cos x$
\square Watch the video Graphing $y=A \sin (x)$ to complete the following.

Graph the function and identify the key points on one full period.

\square Watch the video Graphing $y=A \cos (x)$ to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Graph the function and identify the key points on one full period.

EXAMPLE: Sketch the graph of $y=-\frac{1}{4} \cos x$.
We will consider how the y-coordinates of the five key points change from the graph of $y=$ $\cos x$.

x	$y=\cos x$	$y=-\frac{1}{4} \cos x$
0	1	$-\frac{1}{4}$
$\frac{\pi}{2}$	0	0
π	-1	$\frac{1}{4}$
$\frac{3 \pi}{2}$	0	0
2π	1	$-\frac{1}{4}$

The amplitude of $y=-\frac{1}{4} \cos x$ is $\frac{1}{4}$.

YOU TRY IT:

208. Sketch the graph of $y=5 \sin x$.

Sketching the graph of $y=\sin b x$ or $y=\cos b x$

ใ? Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad .

Amplitude and Period of the Sine and Cosine Functions

For $y=A \sin B x$ and $y=A \cos B x$ and $b>0$, the amplitude and period are
Amplitude $=$ \qquad and Period $=$ \qquad

Period $=$ \qquad
\qquad
Clearly label all values on the x-axis.

YOU TRY IT:

209. Sketch the graph of $y=\sin 2 x$. Clearly label all values on the x-axis.

Sketching the graph of $y=\sin x+d$ or $y=\cos x+d$

ใ Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad

Sketching the graph of $y=\sin (x+c)$ or $y=\cos (x+c)$

Open the e-book to complete the following.
Characteristics of the Graphs of $y=\sin x$ and $y=\cos x$

- The domain is \qquad
- The range is \qquad $-$
- The period is \qquad
- The graph of $y=\sin x$ is symmetric with respect to the \qquad -.
- $y=\sin x$ is an \qquad function.
- The graph of $y=\cos x$ is symmetric with respect to the \qquad
- $y=\cos x$ is an \qquad function.
- The graphs of $y=\sin x$ and $y=\cos x$ differ by a

YOU TRY IT:

210. Sketch the graph of $y=\sin \left(x-\frac{\pi}{4}\right)$.

Sketching the graph of $y=a \sin (x+c)$ or $y=a \cos (x+c)$

Open the e-book to complete the following.

Properties of the General Sine and Cosine Functions

Consider the graphs of $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$ with $B>0$

1. The \qquad is \qquad -.
2. The period is \qquad -.
3. The phase shift is \qquad
4. The vertical shift is \qquad
5. One full cycle is given on the interval \qquad
6. The domain is \qquad .
7. The range is \qquad .

Sketching the graph of $y=a \sin b x$ or $y=a \cos b x$

\square Watch the video Graphing $y=A \sin B x$ and $y=\cos B x$ to complete the following.

Identify the amplitude and period and graph the function. Clearly label all values on the x-axis.
$A=$ \qquad
$P=$ \qquad

Module 11

Sketching the graph of $y=a \sin (b x)+d$ or $y=a \cos (b x)+d$

O2 Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad Clearly label all values on the x-axis.

Period $=$ \qquad $=$ \qquad

YOU TRY IT:

211. Sketch the graph of $y=-4 \cos 3 x+2$.

Sketching the graph of $y=a \sin (b x+c)$ or $y=a \cos (b x+c)$

Watch the video Graph a function of the Form $y=A \sin (B x-C)+D$ to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Graph the function $h(x)=$ \qquad Clearly label all values on the x-axis.

Period: \qquad

Phase shift: \qquad

Vertical shift: \qquad

Amplitude and period of sine and cosine functions

Learning Page The sine and cosine functions are \qquad -.

This means that their graphs
For instance, \qquad has a period of \qquad
So, \qquad for all x.

The amplitude of a sine or cosine function is \qquad

For example, consider $y=\sin x$ again.
It has a maximum \qquad and a minimum \qquad

The distance between these is \qquad , so the amplitude is \qquad .

More generally, we can consider \qquad and \qquad with $b>0$.

For each, the amplitude is \qquad The period is \qquad .

YOU TRY IT: For the function $y=-3 \cos 5 x$:
212. Period:
213. Amplitude:

Amplitude, period, and phase shift of sine and cosine functions

Open the Instructor Added Resource which will direct you to a video to complete the following.

Find the period, phase shift, and amplitude of \qquad .

Period:

Amplitude:
Phase shift:

YOU TRY IT: Find the period, phase shift, and amplitude of $y=-3 \sin \left(4 x-\frac{\pi}{2}\right)$.
214. Amplitude:

Period:
Phase shift:

Sketching the graph of a secant or cosecant function: Problem type 1

\square Watch the video Graph the Parent Secant Function to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

First sketch $y=\cos x$ using a dashed line, then sketch $y=\sec x$ using a solid line.

EXAMPLE:

Sketch the graph of $y=\frac{1}{2} \sec 2 x$.

- Reminder that $y=\frac{1}{2} \sec 2 x=\frac{1}{2} \cdot \frac{1}{\cos 2 x}$.
- We use the graph of $y=\frac{1}{2} \cos 2 x$ as the guide function.
- The amplitude is $\frac{1}{2}$.
- The period is $\frac{2 \pi}{2}=\pi$.
- The graph will have vertical asymptotes when $\cos 2 x=0$.
- This happens when $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \ldots$.

YOU TRY IT:

215. Sketch the graph of $y=-4 \sec 3 x$.

Sketching the graph of a tangent or cotangent function: Problem type 1

\square Watch the video Graph the Cotangent Function with Transformations to complete the following.

Graph $y=$ \qquad Clearly label all values on the x-axis.

EXAMPLE: Sketch the graph of $y=-\tan 2 x$.

- Reminder that $y=\tan 2 x=\frac{-\sin 2 x}{\cos 2 x}$.
- The graph will have vertical asymptotes where $\cos 2 x=0$.
This happens when $x=-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \ldots$
- The graph will be 0 where $-\sin 2 x=$ 0.

This happens when $x=-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi, \ldots$

- The period is $\frac{\pi}{2}$.
- The graph is a reflection over the x-axis of $y=\tan x$.

YOU TRY IT:

216. Sketch the graph of $y=\tan \left(x-\frac{\pi}{6}\right)$.

Matching graphs and equations for secant, cosecant, tangent, and cotangent functions

(⿴囗 Open the e-book to complete the following.

Graphs of the Cosecant and Secant Functions		
	$y=\csc x$	$y=\sec x$
Domain		
Range		
Amplitude		
Period		
Vertical Asymptotes		
Symmetry		

Continued on the next page

Graphs of the Tangent and Cotangent Functions		
	$y=\tan x$	$y=\cot x$
Domain		
Range		
Amplitude		
Period		
Vertical Asymptotes		
Symmetry		

Writing the equation of a sine or cosine function given its graph: Problem type 1

Learning Page Look at the general graphs for the equations $y=a \sin b x$ and $y=a \cos b x$, where $b>0$.
For each, the amplitude and period are as follows.
amplitude =
\qquad period $=$ \qquad

We can find b by first finding the \qquad -.

The period is the \qquad of an interval in which the graph \qquad exactly cycle.

YOU TRY IT: Write an equation to describe the graph below.

Word problem involving a sine or cosine function: Problem type 1

Learning Page For $a \neq 0$, equations of the form \qquad and \qquad can be used
to model simple \qquad motion.

Here, \qquad is the \qquad from the \qquad position and \qquad is the \qquad

Displacement is the \qquad
and it can be \qquad or \qquad

For example, the displacement is negative when the current position is \qquad

We use the \qquad equation if \qquad

We use the \qquad equation if \qquad

The \qquad is the time it takes for one complete cycle of the motion. It is given by \qquad

The \qquad is the maximum displacement from 0 (\qquad). It is given by \qquad

To find the sign of a, we need to consider the \qquad of the graph.

Word problem involving a sine or cosine function: Problem type 2

Learning Page
Many periodic phenomena can be described by sine or cosine \qquad of time \qquad
These functions might take the following forms (for \qquad).

$$
f(t)=
$$

\qquad or $\quad f(t)=$ \qquad

The amplitude of these functions is \qquad and the period is \qquad —.

The \qquad value of these functions is \qquad and the \qquad is

The frequency of these functions is the \qquad of \qquad per unit of \qquad
The period is the time it takes for \qquad cycle. So, the \qquad is the
of the \qquad

$$
\text { frequency }=\frac{1}{}=
$$

\qquad

Values of inverse trigonometric functions

\square Watch the video Evaluating the Inverse Sine Function to complete the following.

The Inverse Sine Function

The inverse sine function, denoted \qquad or \qquad is the \qquad of
the restricted sine function $y=\sin x$ for \qquad Therefore,

$$
y=\sin ^{-1} x \Leftrightarrow
$$

\qquad
\qquad $\Leftrightarrow \sin y=x$
a.
b.
c.
\square Watch the video Evaluating the Inverse Cosine Function to complete the following.NOTE: This may not be the first video to pop up. Select it from the list in the video box.

$$
\begin{aligned}
& y=\cos ^{-1} x \Leftrightarrow \\
& -1 \leq x \leq 1 \quad _\leq y \leq \\
& y=\square \Leftrightarrow \cos y=x \quad-1 \leq x \leq 1 \quad-\quad \leq y \leq
\end{aligned}
$$

Evaluate the function.
a.
b.

EXAMPLE: Find the exact value of the following.
a) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

- We want the angle whose sine is $-\frac{\sqrt{3}}{2}$.
- It must lie in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$
\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}
$$

b) $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$

- We want the angle whose cosine is $\frac{\sqrt{2}}{2}$.
- It must lie in $[0, \pi]$.
$\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
c) $\tan ^{-1}(-1)$
- We want the angle whose tangent is -1 .
- It must lie in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
$\tan ^{-1}(-1)=-\frac{\pi}{4}$

YOU TRY IT: Find the exact value of the following
218. $\cos ^{-1}\left(-\frac{1}{2}\right)$

Composition of a trigonometric function with its inverse trigonometric function: Problem type 1

Watch the video Composing Trigonometric Functions and Inverse Trigonometric Functions to complete the following.Find the exact values.
a.
b.

Composition of a trigonometric function with its inverse trigonometric function: Problem type 2

More

More about the composition of a trigonometric function with its inverse

For each of cosine, sine and tangent, we will consider the valid \qquad (domain) of the \qquad function, and the valid \qquad (range) of the \qquad function.

Let's look at the composition of cosine and inverse cosine.

Function	Inputs	Outputs
$y=\cos \theta$	θ in	y in
$\theta=\cos ^{-1} y$	y in	θ in

- $\cos \left(\cos ^{-1} y\right)=$ \qquad
Note that the \qquad function is \qquad -.

The input \qquad must be in the interval \qquad

If y is in \qquad then \qquad
But if y is \qquad in \qquad then $\cos ^{-1} y$ is \qquad
and so is $\cos \left(\cos ^{-1} y\right)$.

- $\cos ^{-1}(\cos \theta)=$ \qquad
Note that the \qquad function is \qquad

The input \qquad can be \qquad .

The \qquad function is \qquad

The output \qquad must be in the interval \qquad

So, if θ is in \qquad then \qquad

But if θ is \qquad in \qquad , then we must find the \qquad β in
\qquad such that $\cos \beta=$ \qquad

Continued on the next page

More about the composition of a trigonometric function with its inverse

Now, we'll look at the composition of sine and inverse sine.

Function	Inputs	Outputs
$y=\sin \theta$	θ in	y in
$\theta=\sin ^{-1} y$	y in	θ in

- $\sin \left(\sin ^{-1} y\right)=$ \qquad
Note that the \qquad function is \qquad
The input \qquad must be in the interval \qquad
If y is in \qquad then \qquad
But if y is \qquad in \qquad then $\sin ^{-1} y$ is \qquad and so is $\sin \left(\sin ^{-1} y\right)$.
- $\sin ^{-1}(\sin \theta)=$ \qquad
Note that the \qquad function is \qquad .

The input \qquad can be \qquad
The \qquad function is \qquad

The output \qquad must be in the interval \qquad .

So, if θ is in \qquad , then \qquad
But if θ is \qquad in \qquad , then we must find the \qquad β in
\qquad such that $\sin \beta=$ \qquad -.

Finally, let's look at the composition of tangent and inverse tangent.

Function	Inputs	Outputs
$y=\tan \theta$	\qquad	y in
$\theta=\tan ^{-1} y$	y in	θ in

EXAMPLE:

Find the exact value of the following.
Find the exact value of the following
a) $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$

- The answer must lie in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- $\frac{2 \pi}{3}$ is not in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$
\begin{aligned}
\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) & =\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

222. $\tan \left(\tan ^{-1} 4\right)$
223. $\sin ^{-1}\left(\sin \left(-\frac{\pi}{6}\right)\right)$

- We may have any real number here to
apply the inverse property.
$\tan \left(\tan ^{-1}(-1)\right)=-1$
b) $\cos \left(\cos ^{-1} \frac{1}{4}\right)$
- $\frac{1}{4}$ is in $[-1,1]$ so we use the inverse property.
$\cos \left(\cos ^{-1} \frac{1}{4}\right)=\frac{1}{4}$
c) $\tan \left(\tan ^{-1}(-1)\right)$

YOU TRY IT:

221. $\cos ^{-1}\left(\cos \frac{3 \pi}{4}\right)$

Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 2

If you have not watched the video Using a Right Triangle to Compose Trigonometric Functions and Inverse Trigonometric Functions, do so now and complete the work in the box in the previous topic.

EXAMPLE:
Find the exact value of $\tan \left(\cos ^{-1}\left(-\frac{4}{5}\right)\right)$.

- Let $\theta=\cos ^{-1}\left(-\frac{4}{5}\right)$.
- Then $\cos \theta=-\frac{4}{5}$.
- We know that θ must be in quadrant II.

- From the triangle we want to find $\tan \theta$.
$\tan \left(\cos ^{-1}\left(-\frac{4}{5}\right)\right)=-\frac{3}{4}$

YOU TRY IT:

224. Find the exact value of $\cos \left(\sin ^{-1} \frac{12}{13}\right)$

Composition of trigonometric functions with variable expressions as inputs: Problem type 1

Watch the video Writing a Trigonometric Expression as an Algebraic Expression to complete the following. NOTE: This may not be the first video that pops up. Select this video from the list of videos on the left of the video box.

Write the given expression as an algebraic expression.
It is not necessary to rationalize the denominator.

Fill in the side lengths on the triangle below.

Composition of trigonometric functions with variable expressions as inputs: Problem type 2

If you have not already done so, watch the video Writing a Trigonometric Expression as an Algebraic Expression and take notes under the previous topic.

EXAMPLE:

Find the exact value of $\sin \left(\cos ^{-1} u\right)$.

- Let $\theta=\cos ^{-1}(u)$.
- Then $\cos \theta=\frac{u}{1}$.
- We use the Pythagorean Theorem to find the third side of the triangle.

- From the triangle we want to find $\sin \theta$.
$\sin \left(\cos ^{-1} u\right)=\sqrt{1-u^{2}}$

YOU TRY IT:

226. Find the exact value of $\cos \left(\tan ^{-1} \frac{\sqrt{1-u^{2}}}{u}\right)$

Module 11

Domains and ranges of trigonometric functions

Learning Page Complete the chart below.

Function	Domain	Range	Graph				
$y=\cos x$			r 1 $-\pi$ $-\frac{\pi}{2}$ -1	$\frac{\pi}{2}$		$\frac{3 \pi}{2}$	$\underset{2 \pi}{ }{ }^{\theta}$
$y=\sin x$			$\stackrel{r}{\uparrow}$ 1 $-\pi$ $-\frac{\pi}{2}$ -1	$\frac{\pi}{2}$		$\frac{3 \pi}{2}$	$\underset{2 \pi}{ }{ }^{\theta}$
$y=\sec x$				$\frac{\pi}{2}$		$\frac{3 \pi}{2}$	$\xrightarrow[2 \pi]{ }{ }^{\theta}$
$y=\csc x$				$\frac{\pi}{2}$		$\frac{3 \pi}{2}$	$\xrightarrow[2 \pi]{ }{ }^{\text {a }}$
$y=\tan x$			r 1 $-\pi$ $-\frac{\pi}{2}$ -1	$\frac{\pi}{2}$		$\frac{3 \pi}{2}$	$\xrightarrow[2 \pi]{ } \theta$
$y=\cot x$				$\frac{\pi}{2}$		$\frac{3 \pi}{2}$	$\xrightarrow[2 \pi]{ }{ }^{\theta}$

$\underline{\text { Notes from Focus Group: }}$

Notes from Focus Group:

Module 12-Review Module

To help you review for your upcoming exam, this module contains all of the topics from the modules since the last exam. Topics that you have already mastered will not appear in your carousel.

Complete this module before you take the ALEKS exam.
Each exam has two parts.

- The ALEKS exam (100 pts)
- The ALEKS exam must be taken in the MALL.
- The ALEKS exam is a Comprehensive Knowledge Check.
- Your score is the number of topics you have mastered out of the number of topics you should have mastered by this point.
- If you lose topics on your ALEKS exam, your Review Module completion grade will not change.
- Your scratch work for the ALEKS exam must be numbered and turned in through Blackboard.
- The Written exam (25 pts)
- Take your written exam in class the day of your focus group.
- To study for the written exam:
- Rework your old Focus Group assignments.
- Rework any topics in ALEKS you may have lost on the ALEKS exam.

	Score
ALEKS Exam	
Written Exam	

Module 13

Contents

Simplifying trigonometric expressions 258
Verifying a trigonometric identity 259
\square Proving trigonometric identities: Problem type 1 259
Proving trigonometric identities: Problem type 2 260
Proving trigonometric identities: Problem type 3 261
Double-angle identities: Problem type 1 261
Double-angle identities: Problem type 2 262
\square Sum and difference identities: Problem type 3 263
Proving trigonometric identities using double-angle properties 264
Half-angle identities: Problem type 2 265
Finding solutions in an interval for a basic equation involving sine or cosine 266
Solving a basic trigonometric equation involving sine or cosine 266
Finding solutions in an interval for a basic tangent, cotangent, secant, or cosecant equation 267
Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 1268
Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 2269Finding solutions in an interval for a trigonometric equation in factored form269
Finding solutions in an interval for a trigonometric equation using Pythagorean identities: Prob- lem type 1270
Finding solutions in an interval for a trigonometric equation with an angle multiplied by a constant270
\square Solving a trigonometric equation modeling a real-world situation271
Finding solutions in an interval for an equation with sine and cosine using double-angle identities 272

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Simplifying trigonometric expressions

\square Watch the video Simplifying a Trigonometric Expression to complete the following.

Simplify.

Fundamental Identities

Reciprocal Identities	$\csc x=$	$\sec x=$	$\cot x=$
	$\sin x=$	$\cos x=$	$\tan x=$
Quotient Identities	$\tan x=$	$\cot x=$	
Pythagorean Identities			
Even and Odd Identities	$\sin (-x)=$	$\cos (-x)=$	
	$\csc (-x)=$	$\sec (-x)=$	
	$\tan (-x)=$	$\cot (-x)=$	

EXAMPLE:

Simplify $\frac{\sec x}{\csc x}$.

$$
\begin{aligned}
\frac{\sec x}{\csc x} & =\frac{\frac{1}{\cos x}}{\frac{1}{\sin x}} & & \text { Reciprocal } \\
& =\frac{1}{\cos x} \cdot \frac{\sin x}{1} & & \text { Algebra } \\
& =\frac{\sin x}{\cos x} & & \text { Algebra } \\
& =\tan x & & \text { Quotient }
\end{aligned}
$$

YOU TRY IT:

227. Simplify $\frac{\cot x}{\cos x}$.

Verifying a trigonometric identity

Learning Page To prove a trigonometric identity, we use algebraic transformations and the following
fundamental trigonometric identities. Try to complete the chart below from memory, then check your work on the Learning Page.

Reciprocal identities:

$\sin u=$	$\cos u=$	$\tan u=$
$\csc u=$	$\sec u=$	$\cot u=$

Quotient Identities:

$\cot u=$

Pythagorean identities:
1)
$\sec u=$
$\cot u=$
$\tan u=$

.

Proving trigonometric identities: Problem type 2

\square Watch the video Introduction to Verifying Trigonometric Identities and complete the following.

Guidelines for Verifying a Trigonometric Identity

1. Work with \qquad of the equation (usually the \qquad
\qquad) and keep the other side in mind as your \qquad
2. Look for opportunities to apply the \qquad -.

- If the expression is a \qquad consider the
\qquad
- If \qquad are present, look to see if the terms can be grouped in one of the forms of a \qquad
- If an expression involves a \qquad consider using the
\qquad —.

3. Apply basic algebraic techniques such as

-
-
-
-

4. Consider writing expressions explicitly in terms of \qquad
Verify the identity.

EXAMPLE:

Verify the identity $\cot x+\tan x=\sec x \csc x$.

$$
\begin{aligned}
\cot x+\tan x & =\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x} & & \text { Quotient } \\
& =\frac{\cos ^{2} x}{\sin x \cos x}+\frac{\sin ^{2} x}{\cos x \sin x} & & \text { Algebra } \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\sin x \cos x} & & \text { Algebra } \\
& =\frac{1}{\sin x \cos x} & & \text { Pythagorean } \\
& =\frac{1}{\sin x} \cdot \frac{1}{\cos x} & & \text { Algebra } \\
& =\csc x \sec x & & \text { Reciprocal }
\end{aligned}
$$

YOU TRY IT:

228. Verify $\sec x+\tan x=\frac{\cos x}{1-\sin x}$.

Proving trigonometric identities: Problem type 3

If necessary, review the Guidelines for Verifying a Trigonometric Identity found under the previous topic Proving trigonometric identities: Problem type 2.

Double-angle identities: Problem type 1

\square Watch the video Find the Sine, Cosine and Tangent of 2 times Theta to complete the following.

Use the given information to find $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$.
$\sin \theta=$ \qquad for θ in Quadrant IV.

EXAMPLE:

Given $\cos \theta=-\frac{4}{5}$ and θ is in Quadrant III, find the following.
a) $\sin 2 \theta$

We will use the Double-Angle identity but we first find $\sin \theta$. We can do this in two ways.

- Use the Pythagorean Identity.

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin ^{2} \theta+\left(-\frac{4}{5}\right)^{2} & =1 \\
\sin ^{2} \theta & =1-\frac{16}{25} \\
\sin ^{2} \theta & =\frac{9}{25} \\
\sin \theta & =-\frac{3}{5}
\end{aligned}
$$

- Make a right triangle as we did previously.

230. $\cos 2 \theta$

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2\left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right) \\
& =\frac{24}{25}
\end{aligned}
$$

b) $\cos 2 \theta$

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =\left(-\frac{4}{5}\right)^{2}-\left(-\frac{3}{5}\right)^{2} \\
& =\frac{16}{25}-\frac{9}{25} \\
& =\frac{7}{25}
\end{aligned}
$$

Double-angle identities: Problem type 2

Open the e-book to complete the following.

Double-Angle Formulas

```
sin}20
```

\qquad $\tan 2 \theta=$ \qquad
$\cos 2 \theta=$ \qquad $=$ \qquad $=$ \qquad

Sum and difference identities: Problem type 3

\square Watch the video Applying the Sum Formula for Cosine Given Values of $\sin u$ and $\cos u$ to complete the following.

Find the exact value of $\cos (\alpha+\beta)$ subject to the given conditions. $\sin \alpha=$ \qquad for α in Quadrant III.
$\cos \beta=$ \qquad for β in Quadrant II.

Open the e-book to complete the following.

Sum and Difference Formulas

Sine Formulas	$\sin (u+v)=$ $\sin (u-v)=$ Cosine Formulas
$\cos (u+v)=$	
$\cos (u-v)=$	

EXAMPLE:

Verify the identity

$$
\sin \left(x+\frac{\pi}{4}\right)+\sin \left(x-\frac{\pi}{4}\right)=\sqrt{2} \sin x .
$$

$$
\begin{aligned}
& \sin \left(x+\frac{\pi}{4}\right)+\sin \left(x-\frac{\pi}{4}\right) \\
& =\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}+\sin x \cos \frac{\pi}{4}-\cos x \sin \frac{\pi}{4} \\
& =2 \sin x \cos \frac{\pi}{4} \\
& =2 \sin x \cdot \frac{\sqrt{2}}{2} \\
& =\sqrt{2} \sin x
\end{aligned}
$$

Proving trigonometric identities using double-angle properties

\square Watch the video Verify an Identity Using Double Angle Identities to complete the following. NOTE: This may not be the first video to pop up. Select it from the list in the video box.

Verify the identity.

Half-angle identities: Problem type 2

\square Watch the video Finding the Sine and Cosine of a Half-Angle to complete the following.

Given that $\cos \alpha=$ \qquad for \qquad $<\alpha<$ \qquad find
a.
b.
c.

Half-Angle Formulas

$\sin \frac{\alpha}{2}=$ \qquad
$\cos \frac{\alpha}{2}=$ \qquad
$\tan \frac{\alpha}{2}=$ \qquad $=$ \qquad $=$ \qquad
The sign \qquad or \qquad is determined by the \qquad in which the angle \qquad lies.

Finding solutions in an interval for a basic equation involving sine or cosine

Watch the video Introduction to Trigonometric Equations to complete the following. You will only complete part a . in the video.Solve the equation \qquad over the interval $[0,2 \pi)$.

EXAMPLE: Find all solutions to $3 \sqrt{2}+6 \cos x=0$ on the interval $[0,2 \pi)$.

We begin by solving for $\cos x$.

$$
\begin{aligned}
3 \sqrt{2}+6 \cos x & =0 \\
6 \cos x & =-3 \sqrt{2} \\
\cos x & =-\frac{\sqrt{2}}{2}
\end{aligned}
$$

We are asking,"What angleshave cosine equal to $-\frac{\sqrt{2}}{2}$?"

$$
x=\frac{3 \pi}{4}, \frac{5 \pi}{4}
$$

Solving a basic trigonometric equation involving sine or cosine

Watch the video Introduction to Trigonometric Equations to complete the following. You will only complete part b. of the video.

Solve the equation \qquad over the set of real numbers.

EXAMPLE:

Find all solutions to $3 \sqrt{2}+6 \cos x=0$ on the set of all real numbers.
We want all multiples of the angles we found in part a).

$$
\begin{aligned}
& x=\frac{3 \pi}{4}+2 \pi n \quad \text { for any integer } n \\
& x=\frac{5 \pi}{4}+2 \pi n
\end{aligned}
$$

Finding solutions in an interval for a basic tangent, cotangent, secant, or cosecant equation

Open the e-book to complete EXAMPLE 1.

Solve over $[0,2 \pi)$.

$$
\begin{aligned}
2 \tan x & = \\
3 \tan x & =\square \\
x & =\frac{\sqrt{3}}{3} \\
x & \text { by } 3 .
\end{aligned}
$$

YOU TRY IT:

234. Find all solutions to $4 \tan \theta+4=0$ on $[0,2 \pi)$.

Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 1

\square Watch the video Solving a Quadratic Trigonometric Equation by the Square Root Property to complete the following.

Solve the equation over the interval $[0,2 \pi)$.

EXAMPLE:
Find all solutions to $\tan ^{2} x-1=0$ on $[0,2 \pi)$.

$$
\begin{aligned}
\tan ^{2} x-1 & =0 \\
\tan ^{2} x & =1 \\
\tan x & = \pm 1 \\
x & =\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

YOU TRY IT:

235. Find all solutions to $2 \cos ^{2} x-1=0$ on $[0,2 \pi)$.

Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 2
\square Watch the video Solving a Quadratic Trigonometric Equation by Factoring to complete the following.

Solve the equation over the interval $[0,2 \pi)$.

Finding solutions in an interval for a trigonometric equation in factored form
Learning Page If a \qquad is \qquad , then at least one of the \qquad
must be \qquad _.

EXAMPLE:

Find all solutions to $(\sin x+3)(\sin x-1)=0$ on $[0,2 \pi)$.

We begin by setting each factor equal to zero.

$$
(\sin x+3)(\sin x-1)=0
$$

$$
\begin{aligned}
\sin x+3 & =0 \\
\sin x & =-3
\end{aligned}
$$

No solution

$$
\begin{aligned}
\sin x-1 & =0 \\
\sin x & =1 \\
x & =\frac{\pi}{2}
\end{aligned}
$$

YOU TRY IT:
236. Find all solutions to $(2 \cos x-1)(\cos x+1)=0$ on $[0,2 \pi)$.

Finding solutions in an interval for a trigonometric equation using Pythagorean identities: Problem type 1

Watch the video Solving a Trigonometric Equation Using Pythagorean Identities to complete the following.Solve the equation over the interval $[0,2 \pi)$.

Finding solutions in an interval for a trigonometric equation with an angle multiplied by a constant

ใ? Open the Instructor Added Resource which will direct you to a video to complete the following.

Find all solutions to on $[0,2 \pi]$.

YOU TRY IT:

237. Find all solutions to $2 \cos 2 x+1=0$ on $[0,2 \pi)$.

Solving a trigonometric equation modeling a real-world situation

Learning Page Carefully read through the example on the Learning Page and take notes below.

Finding solutions in an interval for an equation with sine and cosine using doubleangle identities

ใิ Open the Instructor Added Resource which will direct you to a video to complete the following.

Find all solutions to \qquad on $[0,2 \pi]$.

YOU TRY IT:

238. Find all solutions to $\sin 2 x=\cos x$ on $[0,2 \pi)$.

Notes from Focus Group:
$\underline{\text { Notes from Focus Group: }}$

Module 14

Contents

Using trigonometry to find angles of elevation or depression in a word problem276Solving a right triangle 276\square Solving a triangle with the law of sines: Problem type 1277
\square Solving a triangle with the law of sines: Problem type 2 279
\square Solving a word problem with the law of sines 281
Solving a triangle with the law of cosines 281
\square Solving a word problem with the law of cosines 282
Plotting points in polar coordinates 283
\square Multiple representations of polar coordinates 285
Converting rectangular coordinates to polar coordinates: Special angles 286
\square Converting polar coordinates to rectangular coordinates 287
Converting an equation written in polar form to one written in rectangular form: Problem type 1 288
Converting an equation written in polar form to one written in rectangular form: Problem type 2289\square Converting an equation written in rectangular form to one written in polar form289
Graphing a polar equation: Basic 290
Graphing a polar equation: Circle 291
\square Graphing a polar equation: Limaçon 292
\square Graphing a polar equation: Rose 295
Matching polar equations with their graphs 296
Identifying symmetries of graphs given their polar equations 297

Weekly Checklist

Complete MALL time.Work in ALEKS and Notebook at least 4 days a week.Complete the weekly Module and Notebook pages by the due date.Attend Focus Group.Actively participate in Focus Group.Earn extra credit: Complete 10 topics by

Using trigonometry to find angles of elevation or depression in a word problem

回
Open the e-book to complete EXAMPLE 4: Computing an Angle in a Construction Application.

Find the pitch of the roof to the nearest tenth of a degree.

Solution:

The pitch angle is the angle that the \qquad makes with the \qquad Using either right triangle formed by the 6 - ft altitude and half the width of the house we have

$$
\begin{aligned}
\tan \theta & =\square \\
\theta & =\square
\end{aligned}
$$

Solving a right triangle

\square Watch the video Solving a Right Triangle to complete the following.

Solve the right triangle.
Label the triangle below.

EXAMPLE:

Solve for the unknowns in the given triangle.

42

- Find B.
$B=180^{\circ}-90^{\circ}-54^{\circ}=36^{\circ}$
- Find c.

$$
\begin{aligned}
\frac{c}{42} & =\sin 54^{\circ} \\
c & =42 \sin 54^{\circ} \\
c & \approx 34.0
\end{aligned}
$$

- Find b.

$$
\begin{aligned}
\frac{b}{42} & =\sin 36^{\circ} \\
b & =42 \sin 36^{\circ} \\
b & \approx 24.7
\end{aligned}
$$

YOU TRY IT:

239. Solve for the unknowns in the given triangle.

Solving a triangle with the law of sines: Problem type 1

\square Watch the video Applying the Law of Sines Given SAA to complete the following.

Solve triangle ABC subject to the given conditions.
$A=$ \qquad $B=$ \qquad $a=$ \qquad

Label the triangle below.

EXAMPLE:

Consider the triangle drawn below. Find the unknown values.

Use the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin 100^{\circ}}{7} & =\frac{\sin B}{5} \\
5 \sin 100^{\circ} & =7 \sin B \\
\sin B & =\frac{5 \sin 100^{\circ}}{7} \\
B & =\sin ^{-1}\left(\frac{5 \sin 100^{\circ}}{7}\right) \\
B & \approx 44.7^{\circ}
\end{aligned}
$$

We know the sum of the angles of a triangle is 180°, so

$$
\begin{aligned}
& A=180^{\circ}-100^{\circ}-\sin ^{-1}\left(\frac{5 \sin 100^{\circ}}{7}\right) \\
& A \approx 35.3^{\circ}
\end{aligned}
$$

We can also use the Law of Sines to find the length of a.

$$
\begin{aligned}
\frac{\sin 100^{\circ}}{7} & =\frac{\sin \left(80^{\circ}-\sin ^{-1}\left(\frac{5 \sin 100^{\circ}}{7}\right)\right)}{a} \\
a \sin 100^{\circ} & =7 \sin \left(80^{\circ}-\sin ^{-1}\left(\frac{5 \sin 100^{\circ}}{7}\right)\right) \\
a & =\frac{\sin \left(80^{\circ}-\sin ^{-1}\left(\frac{5 \sin 100^{\circ}}{7}\right)\right)}{\sin 100^{\circ}} \\
a & \approx \frac{7 \sin 35.3^{\circ}}{\sin 100^{\circ}} \\
a & \approx 4.1
\end{aligned}
$$

YOU TRY IT:

240. Consider the triangle drawn below. Find the unknown values.

Solving a triangle with the law of sines: Problem type 2

2 Open the Instructor Added Resource which will direct you to a video to complete the following.

For each case, draw the picture of the triangle(s) and state the number of possible solutions.

- $a<h$ \# of solutions: \qquad
- $a=h \quad$ \# of solutions: \qquad - $a>b$ \# of solutions: \qquad
- $h<a<b$ \# of solutions: \qquad

Continued on the next page

\square Watch the video Use the Law of Sines to Solve a Triangle SSA (Two Solutions) to complete the following. NOTE: This may not be the first video to pop up. Select it from the list in the video box.

Solve the triangle ABC using the given information.
$a=\longrightarrow, b=\square$ $\sin 45^{\circ}=$ \qquad $\Longrightarrow h=18 \sin 45^{\circ} \approx$ \qquad

Label the triangle below.

Label the triangle below.

Solving a word problem with the law of sines

\square Watch the video Using the Law of Sines in an Application to complete the following.

From a point along a straight road, the angle of elevation to the top of a hill is \qquad
From \qquad ft farther down the road, the angle of elevation to the top of the hill is \qquad How high is the hill?

Label the triangle below.

Solving a triangle with the law of cosines

Watch the video Using the Law of Cosines to Solve a Triangle SAS to complete the following.

Solve triangle ABC given that $a=$ \qquad , $c=$ \qquad and $B=$ \qquad

EXAMPLE:

Consider the triangle drawn below. Find the unknown values.

We begin by finding c using the Law of Cosines.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
3^{2} & =5^{2}+7^{2}-2(5)(7) \cos C \\
9 & =74-70 \cos C \\
-65 & =-70 \cos C \\
\frac{13}{14} & =\cos C \\
\cos ^{-1}\left(\frac{13}{14}\right) & =C \\
C & \approx 21.8^{\circ}
\end{aligned}
$$

We now use the Law of Sines to find either A or B.

$$
\begin{aligned}
\frac{\sin B}{7} & =\frac{\sin \left(\cos ^{-1}\left(\frac{13}{14}\right)\right)}{3} \\
\sin B & =7 \cdot \frac{\frac{3 \sqrt{3}}{14}}{3} \\
\sin B & =\frac{\sqrt{3}}{2} \\
B & =\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
B & =120^{\circ}
\end{aligned}
$$

Now we find A.

$$
\begin{aligned}
& A=180-120-\cos ^{-1}\left(\frac{13}{14}\right) \\
& A=60-\cos ^{-1}\left(\frac{13}{14}\right) \\
& A \approx 38.2
\end{aligned}
$$

YOU TRY IT:

241. Consider the triangle drawn below. Find the unknown values.

Solving a word problem with the law of cosines

Open the e-book to complete the following.

Law of Cosines

If $\triangle A B C$ has sides of lengths a, b, and c opposite vertices A, B, and C, respectively, then
1.
2.
3.

Plotting points in polar coordinates

Open the e-book to complete the following.

Polar Coordinate System

A polar coordinate system consists of a fixed point O called the \qquad (or origin), and a ray called the \qquad , with endpoint at the pole. Each point P in the plane is defined by an ordered pair \qquad where r is the \qquad
\qquad

On the picture below, label the pole, the polar axis, θ, and r.

- If $r>0$, point P is located \qquad from the pole in the direction of \qquad
- If $r<0$, point P is located \qquad from the pole in the direction of
\qquad (the direction \qquad).
- If $r=0$, point P is located \qquad
θ is a directed angle from the \qquad to line $O P$.
- $\theta>0$ is measured \qquad from the polar axis.
- $\theta<0$ is measured \qquad from the polar axis.

The polar axis in a polar coordinate system is usually aligned with the \qquad in a rectangular coordinate system.

Continued on the next page

Watch the video Plotting Points in a Polar Coordinate System to complete the following.Plot the points whose polar coordinates are given. Label each point on your graph using the letters given.
a. P
b. Q
c. R \qquad d. S \qquad

EXAMPLE:

Plot the following points on the given axes.
a) $\left(2, \frac{2 \pi}{3}\right)$
b) $\left(-3, \frac{\pi}{4}\right)$
c) $\left(1,-\frac{\pi}{6}\right)$

YOU TRY IT:

Plot the following points on the given axes.
242. $\left(3, \frac{5 \pi}{4}\right)$
243. $\left(-1, \frac{3 \pi}{2}\right)$
244. $\left(2,-\frac{7 \pi}{6}\right)$

Multiple representations of polar coordinates

Learning Page In the polar coordinate system, a point with coordinates (r, θ) has infinitely many representations.

- For example, both \qquad and \qquad represent the point with coordinates \qquad
This is true because adding or subtracting multiples of \qquad gives \qquad angles.
- Also, \qquad and \qquad are other representations of \qquad _.

EXAMPLE: Find two additional polar representations of the point $\left(7, \frac{2 \pi}{3}\right)$.

$$
\begin{aligned}
\left(7, \frac{2 \pi}{3}\right) & =\left(7, \frac{2 \pi}{3}-2 \pi\right) \\
& =\left(7,-\frac{4 \pi}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(7, \frac{2 \pi}{3}\right) & =\left(-7, \frac{2 \pi}{3}+\pi\right) \\
& =\left(-7, \frac{5 \pi}{3}\right)
\end{aligned}
$$

YOU TRY IT: Find two additional polar representations of the point $\left(-3, \frac{5 \pi}{6}\right)$.
245. $\left(-3, \frac{5 \pi}{6}\right)=$
246. $\left(-3, \frac{5 \pi}{6}\right)=$

Converting rectangular coordinates to polar coordinates: Special angles

OR Open the Instructor Added Resource which will direct you to a video to complete the following.

On the graph, label x, y, r, and θ.

Find polar coordinates of the point \qquad

Two possible polar representations: \qquad or \qquad

YOU TRY IT: Find polar coordinates of the following rectangular point.
247. $(\sqrt{3},-\sqrt{3})$

Converting polar coordinates to rectangular coordinates

Learning Page Consider a point P in quadrant I with polar coordinates \qquad where r and θ are
\qquad On the graph below, label x, y, r, and θ.

From right triangle trigonometry, we get that the \qquad coordinates (r, θ) and the \qquad coordinates are related by two equations.

$$
\frac{x}{r}=\ldots \text { and } \frac{y}{r}=
$$

\qquad
Multiplying each side of the equations by \qquad gives the following.
\qquad and \qquad

As it turns out, we can use these formulas to find the rectangular coordinates \qquad for \qquad polar coordinates \qquad .

Watch the video Converting From Polar Coordinates to Rectangular Coordinates to complete the following.

Convert the ordered pair in polar coordinates to rectangular coordinates.

EXAMPLE: Find the rectangular coordinates of the polar point $\left(6, \frac{2 \pi}{3}\right)$.

YOU TRY IT: Find the rectangular coordinates of the following polar point.
248. $\left(-3, \frac{5 \pi}{6}\right)$

$$
\begin{aligned}
x & =r \cos \theta & y & =r \sin \theta \\
& =6 \cos \frac{2 \pi}{3} & & =6 \sin \frac{2 \pi}{3} \\
& =6\left(-\frac{1}{2}\right) & & =6 \frac{\sqrt{3}}{2} \\
& =-3 & & =3 \sqrt{3}
\end{aligned}
$$

So $\left(6, \frac{2 \pi}{3}\right)=(3,3 \sqrt{3})$

Converting an equation written in polar form to one written in rectangular form: Problem type 1

Learning Page To convert an equation in polar form to rectangluar form, we can use the following polar-rectangular relationships.
\qquad and \qquad
\qquad and \qquad
Watch the video Converting Equations from Polar to Rectangular Coordinates to complete the following.

Write an equivalent equation using rectangular coordinates.
a. \qquad
b. \qquad
c. \qquad
d. \qquad

EXAMPLE:

Convert the following polar equations to rectangular equations.
a) $\theta=\frac{2 \pi}{3}$

We know $\tan \theta=\frac{y}{x}$ so we have

$$
\begin{aligned}
\tan \frac{2 \pi}{3} & =\frac{y}{x} \\
-\sqrt{3} & =\frac{y}{x} \\
y & =-\sqrt{3} x
\end{aligned}
$$

YOU TRY IT:

Convert the following polar equations to rectangular equations.
249. $r \sin \theta=-5$
250. $r=-5 \sin \theta$
b) $r=5 \cos \theta$

Multiply both sides by r.

$$
\begin{aligned}
r \cdot r & =r \cdot 5 \cos \theta \\
r^{2} & =5 r \cos \theta \\
x^{2}+y^{2} & =5 x
\end{aligned}
$$

Converting an equation written in polar form to one written in rectangular form: Problem type 2

Try to write the polar-rectangular relationships from memory. Check your work on the Learning Page
\qquad and
\qquad and \qquad

EXAMPLE: Convert the following polar equations to rectangular equations.
a) $r=\frac{2}{3 \cos \theta-5 \sin \theta}$

Multiply both sides by $3 \cos \theta-5 \sin \theta$.

$$
\begin{aligned}
(3 \cos \theta-5 \sin \theta) r & =\frac{2(3 \cos \theta-5 \sin \theta)}{3 \cos \theta-5 \sin \theta} \\
3 r \cos \theta-5 r \sin \theta & =2 \\
3 x-5 y & =2
\end{aligned}
$$

YOU TRY IT: Convert the following polar equations to rectangular equations.
251. $r=\frac{-3}{4 \cos \theta+7 \sin \theta}$

Converting an equation written in rectangular form to one written in polar form

Learning Page To convert an equation in rectangular form to polar form, we can use the following
polar-rectangular relationships.
\qquad and \qquad
\qquad and \qquad

Watch the video Convert an Equation of a Circle from Rectangular to Polar Coordinates to complete the following.

Convert the equation in rectangular coordinates to polar coordinates.

EXAMPLE: Convert the following rectangular equations to polar equations.
a) $y=-\sqrt{3} x$

We know $\tan \theta=\frac{y}{x}$ so we have

$$
\begin{aligned}
\frac{y}{x} & =-\sqrt{3} \\
\tan \theta & =-\sqrt{3} \\
\theta & =\frac{2 \pi}{3}
\end{aligned}
$$

b) $x^{2}+y^{2}-2 x=0$

We know $x^{2}+y^{2}=r^{2}$ and $x=r \cos \theta$.

$$
\begin{aligned}
r^{2}-2 r \cos \theta & =0 \\
r^{2} & =2 r \cos \theta \\
r & =2 \cos \theta
\end{aligned}
$$

c) $y=3$

We know $y=r \sin \theta$.

$$
\begin{aligned}
r \sin \theta & =3 \\
r & =\frac{3}{\sin \theta} \\
r & =3 \csc \theta
\end{aligned}
$$

YOU TRY IT: Convert the following rectangular equations to polar equations
252. $y=-x$
253. $x^{2}+y^{2}+3 y=0$
254. $x=1$

Graphing a polar equation: Basic

Learning Page The graph of a polar equation is the set of all points \qquad that satisfy the equation.

- $r=a$ is the graph of a \qquad centered at the \qquad with radius \qquad
- $\theta=a$ is the graph of a \qquad through the \qquad making an angle \qquad
with the \qquad (line has \qquad).
- $r \cos \theta=a$ is the graph of a \qquad line \qquad units from the pole.
- If \qquad the line is to the \qquad of the pole.
- If \qquad the line is to the \qquad of the pole.
- $r \sin \theta=a$ is the graph of a \qquad line \qquad units from the pole.
- If \qquad the line is \qquad the pole.
- If \qquad the line is \qquad the pole.

EXAMPLE:

Sketch the graph of the polar equations.
a) $r=2$

b) $\theta=\frac{\pi}{6}$

YOU TRY IT:

Sketch the graph of the polar equations.
255. $r=-3$

256. $r=-3 \csc \theta$

Graphing a polar equation: Circle

Open the Instructor Added Resource which will direct you to a video to complete the following.

The polar equation of a circle will have the form
\qquad
\qquad , or \qquad

Rectangular graph: Clearly label all points.

Polar graph: Clearly label all points.

YOU TRY IT: Sketch the graph $r=3 \cos \theta$.
257. Rectangular graph: Clearly label all points.

258. Polar graph: Clearly label all points.

Graphing a polar equation: Limaçon

ญิ Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of $r=1-2 \sin \theta$.

Rectangular graph: Clearly label all points.

Polar graph: Clearly label all points.

Continued on the next page

Sketch the graph of $r=2+2 \sin \theta$.

Rectangular graph: Clearly label all points.

Polar graph: Clearly label all points.

Sketch the graph of $r=2+\sin \theta$.
Rectangular graph: Clearly label all points.

Polar graph: Clearly label all points.

A polar equation of a cardioid will be of the form $r=a \cos \theta \pm a \quad$ or $\quad r=a \sin \theta \pm a$.
A polar equation of a limacon without a loop will be of the form

$$
r=a \cos \theta \pm b \quad \text { or } \quad r=a \sin \theta \pm b \quad \text { where } a<b
$$

A polar equation of a limacon with a loop will be of the form

$$
r=a \cos \theta \pm b \quad \text { or } \quad r=a \sin \theta \pm b \quad \text { where } a>b .
$$

Module 14

YOU TRY IT: Sketch the graph $r=1-\cos \theta$.
259. Rectangular graph: Label all points.

260. Polar graph: Label all points.

YOU TRY IT: Sketch the graph $r=-4+2 \sin \theta$.
261. Rectangular graph: Label all points.

262. Polar graph: Label all points.

YOU TRY IT: Sketch the graph $r=1-2 \cos \theta$.
263. Rectangular graph: Label all points.

264. Polar graph: Label all points.

Graphing a polar equation: Rose

วิ Open the Instructor Added Resource which will direct you to a video to complete the following.

Sketch the graph of \qquad
Rectangular graph: Clearly label the points.
Polar graph: Clearly label the points.

A polar equation of a rose will be of the form
or \qquad
If n is \qquad the rose will have \qquad leaves.

If n is \qquad the rose will have \qquad leaves.

YOU TRY IT: Sketch the graph $r=2 \cos 3 \theta$.
265. Sketch the polar graph as a rectangular graph. Clearly label the points.

266. Sketch the polar graph. Label your points.

Matching polar equations with their graphs

Open the e-book to complete the following.

Common Polar Equations and Their Graphs

Lines	$\begin{aligned} & \theta=0 x \text {-axis } \\ & \theta=\frac{\pi}{2} y \text {-axis } \end{aligned}$	$\theta=a$ Line through origin	$r=\frac{a}{\sin \theta}$ Horizontal line	$r=\frac{a}{\cos \theta}$ Vertical line
Circles and Spirals	$r=a$ Circle	$r=a \cos \theta$ Circle	$r=\sin \theta$ Circle	$r=a \theta$ Spiral
Limaçons $\begin{aligned} & r=a \pm b \cos \theta \\ & r=a \pm b \sin \theta \end{aligned}$	$a<b$ limaçon with a loop	$a=b$ cardioid	$b<a<2 b$ dimpled limaçon	$a \geq 2 b$ convex limaçon
Roses $\begin{aligned} & r=a \cos n \theta \\ & r=a \sin n \theta \end{aligned}$	$r=a \sin 2 \theta$ 4-petal rose	$r=a \sin 4 \theta$ 8 -petal rose	$r=a \sin 3 \theta$ 3-petal rose	$r=a \sin 5 \theta$ 5-petal rose

Identifying symmetries of graphs given their polar equations

Open the Instructor Added Resource which will direct you to a video to complete the following.

Tests for Symmetry in Polar Coordinates

For an equation in polar coordinates, if the indicated substitution produces an equivalent equation, then the graph has the indicated type of symmetry.

1. Symmetry with respect to the polar axis: Replace \qquad by \qquad
2. Symmetry with repect to the line $\theta=\frac{\pi}{2}$: Replace \qquad by \qquad
3. Symmetry with respect to the pole: Replace \qquad by \qquad
$\cos (-\theta)=$ \qquad $\sin -\theta)=$ \qquad $\sin -\theta)=$ \qquad

Sketch the graphs below from the video that have the appropriate symmetry.

Symmetric to the polar axis (x-axis)

Symmetric to $\theta=\frac{\pi}{2}$ (y-axis)

$\underline{\text { Notes from Focus Group: }}$

Notes from Focus Group:

Module 15-Final Review

To help you review for your upcoming final exam, this module contains all of the topics from the course. Topics that you have already mastered will not appear in your carousel.

- ALEKS final exam
- The ALEKS final exam must be taken in the MALL.
- The ALEKS final exam is a Comprehensive Knowledge Check.
- The ALEKS final exam must be completed by \qquad
- To study for the final exams:
- Complete this ALEKS Final Review Module.
- Rework the problems on your old exams.
- Review your old Focus Group assignments.

Solutions

Module 1

1. $7+\frac{d}{6}=9$
2. $\sqrt{x^{7}}$
3. $x^{4 / 3}$
$\xrightarrow[-5-4-3-2-1]{ } 0$
4. \varnothing
5. $(-\infty, 2] \cup(5, \infty)$
6. $\frac{4}{x^{5}}$
7. $3 x^{7}$
8. $\frac{1}{27 x^{11 z^{3}}}$
9. 2
10. 2
11. 4
12. 27
13. 64
14. $\frac{1}{9}$
15. $49-42 y+9 y^{2}$
16. $\frac{3 x^{2}-x-44}{x^{2}+2 x-8}$
17. $\frac{x-7}{x-3}$
18. $\frac{-12+15 \sqrt{y}}{16-25 y}$
19. $\frac{u\left(w u^{2}-1\right)}{w\left(w^{2} u+1\right)}$
20. $\frac{-3 x^{3}+2 x^{2}}{4 y+5 x^{2} y^{2}}$
21. x-intercept: $\frac{3}{7}$
y-intercept: $-\frac{3}{5}$
22. $y=-\frac{7}{3} x+\frac{2}{3}$
23. $y=\frac{3}{4} x-\frac{9}{2}$
24.

26. 4
27. -3
28.

29. $x=-1,3$ y-intercept: $-\frac{3}{2}$
30. $y=-\frac{3}{2}$
31. x-intercepts: $(\sqrt{5}, 0),(-\sqrt{5}, 0)$ y-intercepts: $(0, \sqrt{7}),(0,-\sqrt{7})$
32. $x=-4$
33. $y=-12$
34. perpendicular
35. $7 i$
36. $4 i \sqrt{3}$
37. $y=\frac{3}{4} x-5$
38. $y=-\frac{4}{3} x+\frac{10}{3}$
39. $\$ 15$ per toy produced
40. $\$ 1100$

Module 2

41. $x=-3,-2$
42. $x=-\frac{4}{3}, \frac{1}{2}$
43. $x=0,5$
44. $3 x^{2}-9 x-30=0$
45. $-8,8$
46. No solution
47. $2,-\frac{10}{3}$
48. No solution
49. No solution
50. $x=5,9$
51. $x=2 \pm \sqrt{10}$
52. $x=-1 \pm 2 i$
53. $x=\frac{-3 \pm \sqrt{14}}{2}$
54. $x=-\frac{1}{3} \pm i \frac{\sqrt{2}}{3}$
55. $u=2$
56. length: 24 ft height: 10 ft
57. $x=4 \pm \sqrt{14} \mathrm{sec}$ $x \approx .26 \mathrm{sec}, 7.74 \mathrm{sec}$
58. $t=\frac{27}{4}$

59. $\left[1, \frac{3}{2}\right]$ llllllllll
60. $d=\frac{2 S-a n}{n}$
61. $x=4 \sqrt[3]{2}-5$
62. $x=\frac{1}{3}, 2$
63. $x=-\frac{1}{3}$
64. $y=3,-2$
65. No Solution
66. $x=10$
67. $14 \mathrm{~m} / \mathrm{sec}$
68. $x=6$
69. -3
70. 20
71. As time increases, the amount of candy in the container increases by 60 pounds per minute.

Module 3

74. 17
75. undefined
76. 3
77. $3 x^{2}+6 x h+3 h^{2}-4 x-4 h+$ 7
78. $\sqrt{17-4 x^{2}}$
79. $x=3,-3$
80. $(-\infty,-3) \cup(-3,5) \cup(5, \infty)$
81. $\left(-\infty, \frac{4}{7}\right]$
82. $\left(-\infty, \frac{9}{7}\right)$
83. Domain: $(-\infty, \infty)$

Range: $[-2, \infty)$
84. Function
85. Not a Function
86. Function
87. Not a Function
88. $\$ 610$
89. 17 weeks
90. 2
91. 0
92.

93.

94.

95.

96.

97. $y=(x-4)^{2}-6$

Module 5
98. Center: $(-1,-3)$, Radius: 2

99. Center: $(3,4)$, Radius: 5

100. $(x+3)^{2}+(y-5)^{2}=49$
101. Increasing on $(-\infty,-2)$

Decreasing on $(1, \infty)$
Constant on $(-2,1)$
102. local min value: 0
local max value: 4
103. max at $x=0$
\min at $x=-2,2$
104. neither
105. even
106. odd
107. y-axis

Solutions

108. symmetric to the x-axis, y axis and the origin
109. 3
110. $(f \circ f)(x)=x$
111. $(g \circ g)(x)=x^{4}-10 x^{2}+20$
112. $\frac{3-x}{3-4 x}$

D: $(-\infty, 0) \cup\left(0, \frac{3}{4}\right) \cup\left(\frac{3}{4}, \infty\right)$
113. $3 x^{2}-x-2$

D: $(-\infty, 0) \cup(0, \infty)$
114. $C(x)=3.5 x+640$
115. $R(x)=25 x$
116. $(R-C)(x)=21.5 x-640$

Represents the monthly profit for selling x necklaces.
117.

118. $-8 x-4 h+5$
119. $\frac{-5}{(x-3)(x+h-3)}$

Module 6

120. 20 ft by 15 ft
121. $300 \mathrm{ft}^{2}$
122. $y=3(x-1)^{2}-4$
123. Not a polynomial
124. polynomial
125. polynomial
126. polynomial
127. $0,3,-3,-4$
128. Zero of multiplicity one: -6 Zeros of multiplicity two: 0,-5 Zero of multiplicity four: 1
129. x-intercepts:
$(0,0)$,
$(-3,0),(4,0)$
y-intercept: $(0,0)$
130.

131. $x=-3$
132. negative
133. 3
134. $p(x)=x(x+2)(x-$ $1)^{2}(x-7)$
135. $2 x^{3}+5 x^{2}+7 x+9+$ $\frac{10 x-10}{x^{2}-2 x+1}$
136. $x^{2}-2 x+\frac{3}{x}$
137. $2 x^{3}+3 x^{2}+6 x+9+\frac{17}{x-2}$
138. $q(-4)=0$ so $x+4$ is a factor.
139. $(-2,2)$
140. A notebook is $\$ 1.85$ and a pen is $\$ 0.65$.
141. $\left(\frac{1+\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right),\left(\frac{1-\sqrt{5}}{2}, \frac{5-\sqrt{5}}{2}\right)$
142. $\begin{array}{llllllll}-3-2-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

Module 7

143. $(-\infty, 2) \cup(2, \infty)$
144. $(-\infty,-1) \cup(-1, \infty)$
145. Vertical asymptote: $x=2$ Horizontal asymptote: $y=-1$
146. Vertical: $x=\frac{2}{3}$ Horizontal: $y=0$
147. Vertical: $x=\frac{2}{3}$ Horizontal: $y=-\frac{5}{3}$
148. $x=3, x=-3, y=1$
149.

150. $f(x)=\frac{2(x+3)}{x-3}$
151.

152. $(f \circ g)(x)=\frac{3 x+40}{7}$ so f and g are NOT inverses.
153. $g^{-1}=\{(0,3),(5,2),(6,4),(9,7)\}$
154. 2
155. 7
156. $f^{-1}(x)=7 x-35$
157. -3
158. $f^{-1}(x)=\sqrt[3]{x}-4$
159. $g^{-1}(x)=\frac{4 x-1}{x-2}$
160. $f^{-1}(x)=\frac{1}{3} x^{2}-\frac{4}{3} x+\frac{5}{3}$
for $x \geq 2$
161. $g^{-1}(x)=\sqrt{x+13}+3$
162.

x	$g(x)=5^{x}$
0	1
1	5
2	25
3	125
-1	$\frac{1}{5}$
-2	$\frac{1}{25}$
-3	$\frac{1}{125}$

163.

x	$f(x)=\left(\frac{1}{3}\right)^{x}$
0	1
1	$\frac{1}{3}$
2	$\frac{1}{9}$
3	$\frac{1}{27}$
-1	3
-2	9
-3	27

164.

165.

166. 2800 grams
167. 634 grams
168. $29 \mathrm{~m} / \mathrm{s}$

Module 9

169. $x=-\frac{4}{3}$
170. $x=3,7$
171. $4^{x}=5$
172. $\log _{7} 9=y$
173. $e^{5}=x$
174. $\ln t=r$
175. -3
176. 5
177.

178. $x=8$
179. $(-7, \infty)$
180. $\ln x+2 \ln z-5 \ln y$
181. $\ln 3+\frac{1}{2} \ln x-5 \ln y-4 \ln z$
182. $\log \left(\frac{3 x-3}{x^{3}}\right)$
183. 21
184. $x=5$
185. $x=13$
186. $x=e^{4}-2$
187. $x=3$
188. $x=8$
189. $x=\ln 9+2$

Module 10
190. $\frac{11 \pi}{12}$
191. $r=\frac{\pi}{6}$
192. $r=\frac{\pi}{3}$
193. $-\frac{9}{41}$
194. $\frac{40}{41}$
195. $-\frac{9}{40}$
196. $\frac{41}{40}$
197. $-\frac{41}{9}$
198. $-\frac{40}{9}$
199. $\frac{1}{2}$
200. $\frac{1}{4}$
201. $\frac{\sqrt{3}}{2}$
202. $\frac{2}{\sqrt{5}}$
203. $\frac{15}{17}$
204. $-\frac{15}{8}$
205. $-\frac{17}{8}$
206. $\frac{17}{15}$
207. $-\frac{8}{15}$

Module 11

208.

209.

210.

211.

212. $\frac{2 \pi}{5}$
213. 3
214. Amp: 3

Period: $\frac{\pi}{2}$
Phase shift: $\frac{\pi}{8}$
215.

216.

217. $y=-2 \sin 8 x$
218. $\frac{2 \pi}{3}$
219. $\frac{\pi}{6}$
220. $-\frac{\pi}{4}$
221. $\frac{3 \pi}{4}$
222. 4
223. $-\frac{\pi}{6}$
224. $\frac{5}{13}$
225. 1
226. u

Module 13

227. $\csc x$

228.

$$
\begin{aligned}
\sec x+\tan x & =\frac{1}{\cos x}+\frac{\sin x}{\cos x} \\
& =\frac{1+\sin x}{\cos x} \\
& =\frac{1+\sin x}{\cos x} \cdot \frac{1-\sin x}{1-\sin x} \\
& =\frac{1-\sin ^{2} x}{\cos x(1-\sin x)} \\
& =\frac{\cos ^{2} x}{\cos x(1-\sin x)} \\
& =\frac{\cos x}{1-\sin x}
\end{aligned}
$$

229. $-\frac{4 \sqrt{2}}{9}$
230. $\frac{7}{9}$
231.

$$
\begin{aligned}
& \frac{\sin (x+y)}{\cos x \sin y} \\
& =\frac{\sin x \cos y+\cos x \sin y}{\cos x \sin y} \\
& =\frac{\sin x \cos y}{\cos x \sin y}+\frac{\cos x \sin y}{\cos x \sin y} \\
& =\tan x \cot y+1
\end{aligned}
$$

232. $x=\frac{4 \pi}{3}, \frac{5 \pi}{3}$
233. $x=\frac{4 \pi}{3}+2 \pi n, \frac{5 \pi}{3}+2 \pi n$
234. $x=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
235. $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
236. $x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
237. $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
238. $x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$

Module 14

239. $B=48, a \approx 80.3, b \approx 89.2$
240. $A=115^{\circ}, b \approx 2.8, c \approx 4.3$
241. $a \approx 15.4, B \approx 34.1^{\circ}, C \approx$ 110.9°
242.

243.

244.

245. $\left(3, \frac{11 \pi}{6}\right)$, answers may vary
246. $\left(3,-\frac{\pi}{6}\right)$, answers may vary
247. $\left(\sqrt{6}, \frac{7 \pi}{4}\right)$, answers may vary
248. $\left(\frac{3 \sqrt{3}}{2},-\frac{3}{2}\right)$
249. $y=-5$
250. $x^{2}+y^{2}=-5 y$
251. $4 x+7 y=-3$
252. $\theta=\frac{3 \pi}{4}$, answers may vary
253. $r=-3 \sin \theta$
254. $r=\sec \theta$
255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

Index

Amplitude and period of sine and cosine functions, 239
Amplitude, period, and phase shift of sine and cosine functions, 240
Applying the quadratic formula: Exact answers, 64
Area of a sector of a circle, 217
Basic properties of logarithms, 199
Choosing a graph to fit a narrative: Advanced, 132
Choosing a graph to fit a narrative: Basic, 131
Combining functions to write a new function that models a real-world situation, 126
Combining functions: Advanced, 127
Completing the square, 62
Complex fraction made of sums involving rational expressions: Problem type 4,38
Complex fraction with negative exponents: Problem type 1, 40
Complex fraction with negative exponents: Problem type 2, 41
Composition of a function with itself, 122
Composition of a trigonometric function with its inverse trigonometric function: Problem type 1, 246
Composition of a trigonometric function with its inverse trigonometric function: Problem type 2, 247
Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 1, 249
Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 2, 250
Composition of a trigonometric function with the inverse of another trigonometric function: Problem type 3, 250
Composition of trigonometric functions with variable expressions as inputs: Problem type 1, 251
Composition of trigonometric functions with variable expressions as inputs: Problem type 2, 251
Composition of two functions: Advanced, 123
Composition of two functions: Basic, 121
Converting an equation written in polar form to one written in rectangular form: Problem type 1, 288
Converting an equation written in polar form to one written in rectangular form: Problem type 2, 289
Converting an equation written in rectangular form to one written in polar form, 289
Converting between degree and radian measure: Problem type 1,214
Converting between logarithmic and exponential equations, 194
Converting between natural logarithmic and exponential equations, 195
Converting between radical form and exponent form, 29
Converting polar coordinates to rectangular coordinates, 287
Converting rectangular coordinates to polar coordinates: Special angles, 286
Coterminal angles, 217
Determining end behavior and intercepts to graph a polynomial function, 149
Determining if graphs have symmetry with respect to the x-axis, y-axis, or origin, 118
Determining the end behavior of the graph of a polynomial function, 148
Determining the location of a terminal point given the signs of trigonometric values, 225
Determining whether an equation defines a function: Basic, 94

Determining whether two functions are inverses of each other, 175
Dividing a polynomial by a monomial: Univariate, 152
Domain and range from the graph of a continuous function, 91
Domain and range from the graph of a piecewise function, 90
Domain and range of a linear function that models a real-world situation, 90
Domain of a logarithmic function: Advanced, 200
Domain of a rational function: Excluded values, 87
Domain of a rational function: Interval notation, 88
Domain of a square root function: Advanced, 88
Domains and ranges of trigonometric functions, 252
Double-angle identities: Problem type 1, 261
Double-angle identities: Problem type 2, 262
Evaluating a cube root function, 86
Evaluating a function: Absolute value, rational, radical, 85
Evaluating a piecewise-defined function, 85
Evaluating an exponential function that models a real-world situation, 185
Evaluating an exponential function with base e that models a real-world situation, 186
Evaluating expressions involving sine and cosine, 223
Evaluating logarithmic expressions, 196
Even and odd functions: Problem type 1, 117
Even and odd properties of trigonometric functions, 224
Expanding a logarithmic expression: Problem type 1, 201
Expanding a logarithmic expression: Problem type 2, 202
Expressing a function as a composition of two functions, 121
Factoring a product of a quadratic trinomial and a monomial, 39
Finding x and y intercepts given a polynomial function, 146
Finding a difference quotient for a linear or quadratic function, 129
Finding a difference quotient for a rational function, 130
Finding a polynomial of a given degree with given zeros: Real zeros, 151
Finding coordinates on the unit circle for special angles, 218
Finding horizontal and vertical asymptotes of a rational function: Quadratic numerator or denominator, 167
Finding inputs and outputs of a function from its graph, 95
Finding inputs and outputs of a two-step function that models a real-world situation: Function notation, 94
Finding intercepts of a nonlinear function given its graph, 46
Finding local maxima and minima of a function given the graph, 115
Finding solutions in an interval for a basic equation involving sine or cosine, 266
Finding solutions in an interval for a basic tangent, cotangent, secant, or cosecant equation, 267
Finding solutions in an interval for a trigonometric equation in factored form, 269
Finding solutions in an interval for a trigonometric equation using Pythagorean identities: Problem type 1, 270
Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 1, 268
Finding solutions in an interval for a trigonometric equation with a squared function: Problem type 2, 269
Finding solutions in an interval for a trigonometric equation with an angle multiplied by a constant, 270
Finding solutions in an interval for an equation with sine and cosine using double-angle identities, 272
Finding the x and y intercepts of a line given the equation: Advanced, 41
Finding the x and y intercepts of the graph of a nonlinear equation, 47
Finding the x-intercept(s) and the vertex of a parabola, 141
Finding the absolute maximum and minimum of a function given the graph, 116
Finding the asymptotes of a rational function: Constant over linear, 165
Finding the asymptotes of a rational function: Linear over linear, 166

INDEX

Finding the average rate of change of a function, 79
Finding the average rate of change of a function given its graph, 80
Finding the domain of a fractional function involving radicals, 89
Finding the initial amount and rate of change given a graph of a linear function, 81
Finding the initial amount and rate of change given an exponential function, 210
Finding the intercepts, asymptotes, domain, and range from the graph of a rational function, 164
Finding the maximum or minimum of a quadratic function, 138
Finding the roots of a quadratic equation of the form $a x^{2}+b x=0,58$
Finding the roots of a quadratic equation with leading coefficient greater than 1,57
Finding the time given an exponential function with base e that models a real-world situation, 209
Finding the vertex, intercepts, and axis of symmetry from the graph of a parabola, 140
Finding trigonometric ratios from a point on the unit circle, 222
Finding trigonometric ratios given a right triangle, 224
Finding values of trigonometric functions given information about an angle: Problem type 1, 226
Finding values of trigonometric functions given information about an angle: Problem type 2,226
Finding values of trigonometric functions given information about an angle: Problem type 3,227
Finding values of trigonometric functions given information about an angle: Problem type 4, 227
Finding where a function is increasing, decreasing, or constant given the graph, 114
Finding where a function is increasing, decreasing, or constant given the graph: Interval notation, 113
Finding zeros and their multiplicities given a polynomial function written in factored form, 146
Finding zeros of a polynomial function written in factored form, 145
Finding, evaluating, and interpreting an inverse function for a given linear relationship, 176
Graphically solving a system of linear and quadratic equations, 157
Graphing a cubic function of the form $y=a x^{3}, 97$
Graphing a line by first finding its x and y-intercepts, 45
Graphing a line given its equation in standard form, 45
Graphing a logarithmic function: Basic, 196
Graphing a parabola of the form $y=a(x-h)^{2}+k, 137$
Graphing a parabola of the form $y=a x^{2}+c, 96$
Graphing a piecewise-defined function: Problem type 1, 127
Graphing a piecewise-defined function: Problem type 2, 128
Graphing a piecewise-defined function: Problem type 3, 129
Graphing a polar equation: Basic, 290
Graphing a polar equation: Circle, 291
Graphing a polar equation: Limaçon, 292
Graphing a polar equation: Rose, 295
Graphing a rational function with holes, 172
Graphing a rational function: Constant over linear, 169
Graphing a rational function: Linear over linear, 170
Graphing a square root function: Problem type 2, 97
Graphing an exponential function and its asymptote: $f(x)=a(e)^{x-b}+c, 182$
Graphing an exponential function and its asymptote: $f(x)=b^{-x}$ or $f(x)=-b^{a x}, 181$
Graphing the inverse of a function given its graph, 174
Graping a line given its slope and y-intercept, 44
Half-angle identities: Problem type 2, 265
Hamburger Menu, 12
Horizontal line test, 174
How the leading coefficient affects the graph of a parabola, 104

Identifying functions from relations, 92
Identifying parallel and perpendicular lines from equations, 48
Identifying polynomial functions, 144
Identifying symmetries of graphs given their polar equations, 297
Identifying the center and radius of a circle given in general form: Basic, 112
Identifying the center and radius to graph a circle given its equation in standard form, 111
Inferring properties of a polynomial function from its graph, 150
Interpreting the parameters of a linear function that models a real-world situation: Advanced, 52
Introduction to solving an absolute value equation, 59
Introduction to the composition of two functions, 120
Inverse functions: Cubic, cube root, 178
Inverse functions: Linear, discrete, 176
Inverse functions: Quadratic, square root, 180
Inverse functions: Rational, 179
Matching graphs and equations for secant, cosecant, tangent, and cotangent functions, 242
Matching graphs with polynomial functions, 149
Matching graphs with rational functions: Two vertical asymptotes, 168
Matching parent graphs with their equations, 103
Matching polar equations with their graphs, 296
Multiple representations of polar coordinates, 285
Plotting points in polar coordinates, 283
Polynomial long division: Problem type 3, 151
Power, product, and quotient rules with negative exponents, 33
Proving trigonometric identities using double-angle properties, 264
Proving trigonometric identities: Problem type 1, 259
Proving trigonometric identities: Problem type 2, 260
Proving trigonometric identities: Problem type 3, 261
Quotient of two functions: Basic, 125
Rational exponents: Negative exponents and fractional bases, 36
Rational exponents: Non-unit fraction exponent with a whole number base, 35
Rational exponents: Unit fraction exponents and bases involving signs, 34
Rationalizing a denominator using conjugates: Variable in denominator, 40
Reference angles: Problem type 1, 219
Reference angles: Problem type 2, 220
Restriction on a variable in a denominator: Quadratic, 65
Rewriting a quadratic function to find its vertex and sketch its graph, 139
Rewriting an algebraic expression without a negative exponent, 32
Set-builder and interval notation, 30
Simplifying trigonometric expressions, 258
Sine, cosine, and tangent ratios: Numbers for side lengths, 216
Sine, cosine, and tangent ratios: Variables for side lengths, 216
Sketching an angle in standard position, 215
Sketching the graph of $y=\sin (x+c)$ or $y=\cos (x+c), 236$
Sketching the graph of $y=\sin b x$ or $y=\cos b x, 234$
Sketching the graph of $y=\sin x+d$ or $y=\cos x+d, 235$
Sketching the graph of $y=a \sin (x+c)$ or $y=a \cos (x+c), 237$

Sketching the graph of $y=a \sin (b x)+d$ or $y=a \cos (b x)+d, 238$
Sketching the graph of $y=a \sin (b x+c)$ or $y=a \cos (b x+c), 239$
Sketching the graph of $y=a \sin b x$ or $y=a \cos b x, 237$
Sketching the graph of $y=a \sin x$ or $y=a \cos x, 233$
Sketching the graph of a secant or cosecant function: Problem type 1, 240
Sketching the graph of a tangent or cotangent function: Problem type 1, 241
Solving a basic trigonometric equation involving sine or cosine, 266
Solving a multi-step equation involving a single logarithm: Problem type 1, 204
Solving a multi-step equation involving a single logarithm: Problem type 2, 205
Solving a multi-step equation involving natural logarithms, 206
Solving a quadratic equation by completing the square: Exact answers, 63
Solving a quadratic equation needing simplification, 57
Solving a quadratic equation with complex roots, 65
Solving a quadratic inequality, 159
Solving a quadratic inequality written in factored form, 158
Solving a rational equation that simplifies to linear: Unlike binomial denominators, 68
Solving a rational equation that simplifies to quadratic: Binomial denominators and numerators, 73
Solving a rational equation that simplifies to quadratic: Binomial denominators, constant numerators, 72
Solving a rational equation that simplifies to quadratic: Proportional form, advanced, 74
Solving a right triangle, 276
Solving a system of linear and quadratic equations, 156
Solving a system of linear equations using elimination with multiplication and addition, 154
Solving a triangle with the law of cosines, 281
Solving a triangle with the law of sines: Problem type 1, 277
Solving a triangle with the law of sines: Problem type 2, 279
Solving a trigonometric equation modeling a real-world situation, 271
Solving a word problem using a quadratic equation with irrational roots, 67
Solving a word problem using a quadratic equation with rational roots, 66
Solving a word problem using a system of linear equations of the form $A x+B y=C, 155$
Solving a word problem with the law of cosines, 282
Solving a word problem with the law of sines, 281
Solving an absolute value equation: Problem type 2, 60
Solving an absolute value equation: Problem type 4, 61
Solving an absolute value inequality: Problem type 3, 69
Solving an absolute value inequality: Problem type 5,70
Solving an equation involving logarithms on both sides: Problem type 1, 206
Solving an equation involving logarithms on both sides: Problem type 2, 207
Solving an equation of the form $\log _{b} a=c, 198$
Solving an equation using the odd-root property: Problem type 2, 72
Solving an equation with exponent $\frac{1}{a}$: Problem type 1, 78
Solving an exponential equation by finding common bases: Linear and quadratic exponents, 193
Solving an exponential equation by finding common bases: Linear exponents, 192
Solving an exponential equation by using logarithms: Exact answers in logarithmic form, 208
Special products of radical expressions: Conjugates and squaring, 34
Squaring a binomial: Univariate, 36
Sum and difference identities: Problem type 3, 263
Sum, difference, and product of two functions, 125
Synthetic division, 152

Table for an exponential function, 183
Technical Support, 13
Testing an equation for symmetry about the axes and origin, 119
The Factor Theorem, 153
The graph, domain, and range of a logarithmic function, 198
The graph, domain, and range of an exponential function, 183
The Learning Carousel, 11
Transforming the graph of a function by reflecting over an axis, 99
Transforming the graph of a function by shrinking or stretching, 100
Transforming the graph of a function using more than one transformation, 101
Transforming the graph of a natural exponential function, 185
Transforming the graph of a quadratic, cubic, square root, or absolute value function, 102
Translating a sentence into a multi-step equation, 29
Translating the graph of a logarithmic function, 197
Translating the graph of an absolute value function: Two steps, 104
Translating the graph of an exponential function, 184
Trigonometric functions and special angles: Problem type 1, 221
Trigonometric functions and special angles: Problem type 2, 221
Trigonometric functions and special angles: Problem type 3, 221
Union and intersection of intervals, 31
Using i to rewrite square roots of negative numbers, 49
Using a given zero to write a polynomial as a product of linear factors: Real zeros, 158
Using a trigonometric ratio to find a side length in a right triangle, 228
Using properties of logarithms to evaluate expressions, 203
Using the Pythagorean Theorem to find a trigonometric ratio, 229
Using trigonometry to find a length in a word problem with one right triangle, 228
Using trigonometry to find angles of elevation or depression in a word problem, 276
Values of inverse trigonometric functions, 245
Variable expressions as inputs of functions: Problem type 2, 86
Variable expressions as inputs of functions: Problem type 3, 87
Verifying a trigonometric identity, 259
Vertical line test, 93
Word problem involving a sine or cosine function: Problem type 1, 244
Word problem involving a sine or cosine function: Problem type 2, 244
Word problem involving average rate of change, 79
Word problem involving composition of two functions, 124
Word problem involving optimizing area by using a quadratic function, 142
Word problem involving radical equations: Advanced, 77
Word problem involving the maximum or minimum of a quadratic function, 141
Working in ALEKS with the Notebook, 11
Writing a quadratic equation given the roots and the leading coefficient, 58
Writing an equation for a function after a vertical and horizontal translation, 105
Writing an equation in slope-intercept form given the slope and a point, 43
Writing an equation of a circle given its center and a point on the circle, 113
Writing an expression as a single logarithm, 202
Writing and evaluating a function that models a real-world situation: Advanced, 51
Writing equations of lines parallel and perpendicular to a given line through a point, 50

Writing the equation of a quadratic function given its graph, 143
Writing the equation of a rational function given its graph, 173
Writing the equation of a sine or cosine function given its graph: Problem type 1, 243
Writing the equation of the line through two given points, 42
Writing the equations of vertical and horizontal lines through a given point, 48

ARITHMETIC PROPERTIES	
addition: $a+(b+c)=(a+b)+c$ Associative: multiplication: $a(b c)=(a b) c$	
Commutative:addition: $a+b=b+a$ multiplication: $a b=b a$	addition: $a+(-a)=0$ Inverse: multiplication: $a \cdot \frac{1}{a}=1, a \neq 0$
Distributive: $\quad a(b+c)=a b+a c$	
FRACTIONS	
Adding: $\quad \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$	Multiplying: $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$
Subtracting: $\quad \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$	Dividing: $\quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}$
FACTORING	
Difference of Two Squares $\begin{aligned} & a^{2}-b^{2}=(a-b)(a+b) \\ & a^{2}+b^{2}=\text { Does not factor } \end{aligned}$	Sum and Difference of Two Cubes $\begin{aligned} & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\ & a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \end{aligned}$
Perfect Square Trinomials $\begin{aligned} & a^{2}-2 a b+b^{2}=(a-b)^{2} \\ & a^{2}+2 a b+b^{2}=(a+b)^{2} \end{aligned}$	
DISTANCE AND MIDPOINT FORMULAS	
Distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	Midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $m=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
ABSOLUTE VALUE	
Statement Equivalent Statement $\begin{array}{ll} \|x\|=a & x=a \text { or } x=-a \\ \|x\|=\|y\| & x=y \text { or } x=-y \end{array}$	Statement Equivalent Statement $\begin{array}{ll} \|x\| \leq a & -a \leq x \leq a \\ \|x\| \geq a & x \leq-a \text { or } x \geq a \end{array}$
CIRCLE	
Standard Form of a Circle with center (h, k) and radius $r:(x-h)^{2}+(y-k)^{2}=r^{2}$	

Common Properties, Graphs \& Formulas

COMMON GRAPHS

$f(x)=m x+b$

GEOMETRY		
Rectangle	Perimeter $P=2 l+2 w$	Area $A=l w$
Parallelogram	Perimeter $P=2 a+2 b$	Area $A=b h$
Triangle	Perimeter $P=a+b+c$	Area $A=\frac{1}{2} b h$
Trapezoid	$\mathrm{P}=a+b_{1}+b_{2}+c$	Area $A=\left(\frac{b_{1}+b_{2}}{2}\right) h$
Circle	Circumference $C=2 \pi r$	Area $A=\pi r^{2}$
Right Circular Cone	Volume $V=\frac{1}{3} \pi r^{2} h$	Surface Area $A=\pi r \sqrt{r^{2}+h^{2}}$
Right Circular Cylinder	Volume $V=\pi r^{2} h$	Surface Area $A=2 \pi r h$
Sphere	Volume $V=\frac{4}{3} \pi r^{3}$	Surface Area $A=4 \pi r^{2}$
Parallelepiped	Volume $V=l w h$	Surface Area $A=2(l w+l h+w h)$

PROPERTIES OF EXPONENTS

$a^{m} \cdot a^{n}=a^{m+n}$	$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\left(a^{n}\right)^{m}=a^{n m}$	$(a b)^{m}=a^{m} b^{m}$
$a^{0}=1, a \neq 0$	$a^{-n}=\frac{1}{a^{n}}$	$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	

DEFINITION OF LOGARITHM

$$
\log _{a} x=y \Longleftrightarrow a^{y}=x \quad \ln x=y \Longleftrightarrow e^{y}=x
$$

LAWS OF LOGARITHMS

$$
\begin{array}{cc}
\log _{a} m+\log _{a} n=\log _{a} m n & \ln m+\ln n=\ln m n \\
\log _{a} m-\log _{a} n=\log _{a} \frac{m}{n} & \ln m-\ln n=\ln \frac{m}{n} \\
\log _{a} m^{n}=n \log _{a} m & \ln m^{n}=n \ln m \\
\hline
\end{array}
$$

RIGHT TRIANGLE TRIGONOMETRY

$\sin \theta=\frac{\text { opp }}{\text { hyp }}$	$\cos \theta=\frac{\text { adj }}{\text { hyp }}$	$\tan \theta=\frac{\text { opp }}{\text { adj }}$	$\cot \theta=\frac{\text { adj }}{\text { opp }}$
$\csc \theta=\frac{\text { hyp }}{\text { opp }}$	$\sec \theta=\frac{\text { hyp }}{\text { adj }}$	hyp	

QUOTIENT IDENTITIES	RECIPROCAL IDENTITIES
$\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}$	$\begin{array}{ll} \sec x=\frac{1}{\cos x} & \csc x=\frac{1}{\sin x} \\ \tan x=\frac{1}{\cot x} & \cot x=\frac{1}{\tan x} \end{array}$
PYTHAGOREAN IDENTITIES	SUM AND DIFFERENCE IDENTITES
$\begin{array}{ll} \sin ^{2} x+\cos ^{2} x=1 & \tan ^{2} x+1=\sec ^{2} x \\ 1+\cot ^{2} x=\csc ^{2} x \end{array}$	$\begin{aligned} & \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b \\ & \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b \end{aligned}$
DOUBLE-ANGLE FORMULAS	HALF-ANGLE FORMULAS
$\sin 2 x=2 \sin x \cos x \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x$	$\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}$
LAW OF SINES	LAW OF COSINES
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$	$\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \cos A \quad c^{2}=a^{2}+b^{2}-2 a b \cos C \\ & b^{2}=a^{2}+c^{2}-2 a c \cos B \end{aligned}$

[^0]: Notes from Focus Group:

