JTALK M., AVERIT'

COLLEGE

GRADUATE Georgia Southern University
> TUDIES .. .

Digital Commons@Georgia Southern
Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2021

A Semi-Active Vibration Isolator For 3D Printing On
Shipboard

Mohammad Z. Shahabuddin

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Cf Part of the Tribology Commons

Recommended Citation

Shahabuddin, Mohammad Z., "A Semi-Active Vibration Isolator For 3D Printing On
Shipboard" (2021). Electronic Theses and Dissertations. 2303.
https://digitalcommons.georgiasouthern.edu/etd/2303

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.


http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/303?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/2303?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

A SEMI-ACTIVE VIBRATION ISOLATOR FOR 3D PRINTING ON SHIPBOARD
by
MOHAMMAD SHAHABUDDIN

(Under the Direction of Sevki Cesmeci)

ABSTRACT

In the recent years, additive manufacturing (AM) (aka 3D printing) has become a viable alternative
to traditional manufacturing due to its unique advantages, such as enabling the fabrication of
complex geometries at reduced weight and costs as well as allowing on-site fabrication for
maintenance and repair. One specific application area of AM is with navy vessels. During extended
voyages, the navy vessels likely require the convenience of on-site fabrication of the
malfunctioned parts. However, the shipboard equipment suffers from a broad range of external
excitations arising not only from the waves but also from the vessel’s engines, which poses a
concern for the quality of the 3D printed parts. Thus, efficient vibration isolation systems are
needed for quality production. To this end, in this study, a novel semi-active vibration isolation
system called Magnetorheological-based Semi-Active Vibration Isolator (MR-SAVI) was
proposed. A comprehensive design methodology for the MR-SAVI, including both analytical and
simulation modeling, was presented. A sophisticated optimization program was created to find the
optimal values of the significant design parameters. The results were discussed, and future

recommendations were made for the fabrication and characterization of the device.
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CHAPTER 1

INTRODUCTION

As an exciting and still evolving technology, 3D printing has gained increasing popularity in recent
years due to its effectiveness, particularly in prototyping, maintenance, repair, and direct production in
some cases. Additive manufacturing (AM) can be utilized for various purposes and applications such as
prototyping, end-products in medical, aerospace, automotive industries at any location. (Campbell et al.
2011). One of the immediate applications of this technology is its use in military applications. This
technology can be adopted for various military projects, and many military branches are calling for more
adoption of additive manufacturing; one specific use is in the navy. The United States Navy started adding
3D printers to some of their vessels. The very first 3D printer has been installed onboard the USS Essex
(Sevenson 2014). The USS Essex is the U.S. Navy's amphibious assault ship.

Most ships go to sea duty for months at a time. Due to the remote location, it can be challenging
for a massive navy vessel to pull into a town or go to a nearby place for spare parts. Using cargo helicopters
might be the first option that comes to mind, but this is usually avoided due to high costs, plus excessive
preparations are needed for helicopter’s landing on the ship's helipad if the ship has one. The AM systems
can provide stable and high-quality spare parts to support Marine and Army missions. Additive
manufacturing has become an immediate option for manufacturing the needed parts offshore on navy
vessels. However, the shipboard equipment suffers from a broad range of external excitations arising from
the waves and the vessel's engines. That poses a concern for the quality of the 3D printed parts printed on
shipboard. The main factor the quality of the 3D printed parts rest upon, besides layer thickness and the
quality of the material used for 3D printing, is the vibration on the 3D printers. The manufacturing

dimensions and tolerances can deviate from the acceptable values as a result of ship motion or shipboard
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vibrations. As Sevenson et al. (2014) reported in their article, many military branches are calling for greater
adoption of additive manufacturing, including the U.S. Navy. It is interesting to see how the printer
performs; once the ship leaves the comfort of the dock, it is incredible to see a large cruise being tossed
around due to powerful waves rocking the ship. Waves, and the vibration of the vessel's engines, which
have a total output of 70,000 horsepower, could throw the calibration of the printers off (Sevenson 2014).
It is known that the shipboard equipment is exposed to broadband vibration excitations (Mil-std 2005).
Thus, the idea of 3D printing afloat brings questions about the viability of the process. No prior studies
have been found for the vibration control systems of 3D printers on shipboard. In fact, on a recent
solicitation, the U.S. Navy has called for innovative solutions to improve the quality of the 3D printed parts
on navy vessels. Therefore, there is a pressing need for innovative ways to attenuate the external vibrations
coming to the 3D printing equipment on shipboard.

Vibration isolation systems are used almost on every moving system that we see around. Examples
include building structures, bridges, air-, land-, and sea-vehicles, smart phones, tablets, laptops, and many
more. Vibration isolation systems can be categorized in four main groups: passive, active, hybrid, and semi-
active (Hongnan Li and Huo 2010). Current passive mounts and isolators with (pre-set) damping
characteristics used for vibration attenuation cannot support variable payload systems due to variation in
the overall system dynamics (Kavlicoglu et al. 2020). The active systems are bulky, complex, and require
high-power consumption and maintenance. The semi-active systems combine the advantages and eliminate
the drawbacks of the passive and active suspension systems; they are less complex, more reliable, and
require low power consumption (Swevers et al. 2007).

The magnetorheological (MR)-based isolation systems, a type of semi-active isolation systems,
have been employed in various applications ranging from landing gear of aircraft to crashworthiness of
helicopters, from prosthetic knees to weapon recoil, from automobile suspensions to off-road vehicles. A
magnetorheological-based semi-active vibration isolator can offer both controllable damping and stiffness

for precise vibration isolation. To this end, in this study, a novel semi-active vibration isolation system
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called Magnetorheological-based Semi-Active Vibration Isolator (MR-SAVI for short) was proposed. MR-
SAVI can operate at a wide range of frequencies and shift the AM equipment's natural frequency as needed.
This thesis presents a comprehensive design methodology for a proof-of-concept MR-SAVI. The proposed
design technique employs both analytical and simulation modeling, both of which are discussed in detail.
The significant design parameters are identified and optimized via a comprehensive optimization program
developed in Ansys. The generic method presented here can conveniently be used for future designs for

different design requirements.

1.1 Hypothesis

It is hypothesized that proposed generic analytical and simulation modeling can be reasonably

used for the design of MR-SAVT’s.

1.2 Objectives

e Developing a design methodology for a novel smart vibration isolation system.
o Identifying the significant design parameters.

e Optimizing the significant design parameters based on the design requirements.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The quality of the 3D printed parts can be affected by many factors, including printing material,
layer thickness, printing speed, extrusion temperature, and so on. (Banjanin et al. 2018). While holding
those factors constant, this paper aims to investigate the installation of a 3D printer on a shipboard with
vibration isolators and its influences to improve the quality of the 3D printed parts. Because the
manufacturing dimensions and tolerances could deviate significantly from the acceptable values as a result
of waves, ship motion, and shipboard vibrations. A summary of research and development of active,
passive, semi-active structural control devices and their roles for structural protection against wind,
vibration, and seismic loads will be discussed in this chapter, including their capabilities and limitations,
and followed by the use of magnetorheological technology; Magnetorheological Fluid (MRF) and
Magnetorheological Elastomer (MRE), and the fabrication of MREs as one of the essential parts of this

research.

2.2 Additive Manufacturing

Additive manufacturing (AM) has created a paradigm shift in manufacturing in the last two
decades. This technological innovation, concocted during the 1980s, has gone global recently. It can deliver
even the most complicated shapes, from micro- to macro-levels, at reduced weights and robust structural
integrities. There are numerous applications of 3D printing, including medical, aerospace, energy, defense

industries, which are likely to spread and revolutionize the whole industrial spectrum. Although the use of
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3D printing is increasingly becoming common, more work still needs to be done to improve the quality of

the printed parts.

Consequently, anchored on this reason, the constant basic, analytical modular examination ought
to be conducted within the limits of the quality assessment (Rayna, Striukova, and Darlington 2015). Such
systematic modular analyses assume exceptionally critical roles as far as evading potential disappointment.
Figure 1 shows the workflow step by step in additive manufacturing. The first step is to create a 3D
computer-aided design (CAD) model and converting the CAD model to STL format; the digital model is

turned into a physical object by constructing the model layer at a time (Clark, Liska, and Mulhaupt 2017).

- - CAD; = —
—— —4
3D Scan N = —
PSS = Y S
'{f: =
= =
- -
- ==
Fa

Support structures

\ © ! { Slicing;
Postprocessing A = Path planning;

3D Printing

Figure 1: Overview of the typical additive manufacturing workflow: (a) turning an idea into a drawing
using CAD, (b) preprocessing of model data, and (c) a digital model is turned into a physical object by
adding material a layer at a time (Clark, Liska, and Miilhaupt 2017).

2.3 Structural Control System

Structural control systems can be grouped in to four main categories: passive, active, hybrid, and
semi-active control (Hongnan Li and Huo 2010). An active control system features an externally powered

actuator mechanism to supply control forces to the structure, e.g., an active mass damper. On the other
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hand, a passive control system is simple, reliable, and does not require an external power source, e.g., a
tuned mass damper (Hongnan Li and Huo 2010). The use of active control systems and some combinations
of passive and active systems are called hybrid systems (Soong and Spencer 2000). Semi-active control
systems combine the best characteristics of both passive and active control systems. The semi-active control
system is a class of active systems that only requires small external energy to tune the parameters of the

control system, e.g., active variable damper (Hongnan Li and Huo 2010).

2.3.1 Active Isolation Systems

The active vibration isolation systems are bulky, complex, require high power consumption and
high maintenance costs. However, they have the advantage that negative damping can be provided; a more
extensive range of forces can be generated at low velocities, hence potentially improving system
performance and adaptability to varying loading conditions (Swevers et al., 2007). Active control systems
are composed of controllable force devices integrated with sensors, controllers, and real-time information
processing (Soong and Spencer 2000). The sensor system measures the excitation input, such as
acceleration to the structure. Then the control system acquires the input data from the sensors, computes
the required counterforce, and sends a corresponding signal to the actuator system to produce the applied
reaction force and offer a remarkable isolation performance (Cesmeci et al. 2019). Active control system
research is very challenging, and it is indeed integrating several diverse disciplines. Starting from civil and
mechanical engineering, including computer science, data processing, control theory, material science,
sensing technology, structural dynamics, chemical, and wind and earthquake engineering (Soong and

Spencer 2000).

2.3.2 Passive Isolation Systems

Passive isolation systems have a fixed (pre-set) damping characteristic, and they are not adaptable

to varying loading conditions (Swevers et al., 2007). However, in the case of a power failure, the passive



15

components of the control still offer some degree of protection, unlike a fully active control system. Another
advantage of using passive system techniques is that it provides a cost-effective means of protection. In
other words, they are much simpler and more affordable and require low maintenance costs compared to

the modern active systems.

Bridges are one of the applications that have been widely protected using passive isolation systems
(Kunde and Jangid 2003). There are many cases of bridge collapses in the past due to wind loads. One of
the most known case studies of engineering failure is the Tacoma Narrows Bridge in Tacoma, Washington.
Bridges and skyscrapers are particularly vulnerable to damage and even collapse when subjected to wind
loads, and to mitigate this wind-induced motion, that is when dampers become effective. The reliability of
passive systems showed in Hayashikawa et al.'s (2000) investigation of the dynamic behavior of steel
towers of the cable-stayed bridge subjected to significant three-dimensional earthquake ground motions. It
is suggested the use of the passive control device and the seismic performance of steel towers with passive
control device effectively reduce the reaction forces at the tower basements (Hayashikawa, Matsui, and
Kaneko 2000). Along with the passive control system, there have been studies for semi-active control

systems to better protect applications in both buildings and bridges.

2.3.3 Semi-Active Isolation Systems

Semi-active vibration isolation devices have received a great deal of research interest in the last
two decades due to their being fail-safe, adaptive, and requiring less power usage. An additional benefit of
the semi-active systems is that they require low fabrication and maintenance costs (Cesmeci et al. 2019).
Moreover, they have a fast response time, usually on the order of milliseconds (Ali and Ramaswamy 2009).
Another attractive feature of a semi-active control system in case of a power outage is that the device would
still operate in passive mode with some preset constant damping characteristics (Cesmeci et al., 2019).
Semi-active control systems were investigated in order to understand their performance through external

excitations. Symans and Kelly (1998) investigated the effectiveness of semi-active dampers through an
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analytical and computational study of a bridge's seismic response, which indicated that damage to the
structure could be prevented or significantly reduced during an earthquake using semi-active dampers
(Kunde and Jangid 2003). Control strategies based on semi-active devices integrate the best characteristic

of both active and passive control systems (Soong and Spencer, 2000).

A semi-active damper system was installed back in 1998 in the Kajima Shizuoka Building in Japan.
For the first time, a semi-active damper system applied to an actual building actively controls its response
to severe earthquakes (Kobori, 2000; Kurata et al., 2004). As seen in Figure 2, the building's walls were
equipped with semi-active dampers to empower it to be used as a disaster relief base in post-earthquake
events (Kobori, 2000; Kurata et al., 2004). Each damper consists of a flow control valve, a check valve,
and an accumulator and can develop a maximum damping force of 1,000 kN (Soong and Spencer, 2000).
A sample of the response analysis results based on one of the selected control schemes and several
earthquake input motions with the scaled maximum velocity of 50 cm/sec, together with a simulated Tokai
wave, were illustrated in Figure 3 (Soong and Spencer, 2000). It was shown that both the story shear forces
and drifts were significantly lowered when the control system was turned on. In the event of the shear
forces, they are limited within their elastic-limit range while, without control, they would enter the plastic
range (Kobori, 2000; Kurata et al., 2004). A semi-active control system can provide a large control force
by changing parameters such as control device damping coefficient and stiffness; hence, it has the positive
aspect that it can control the response of a large-scale structure in a severe earthquake with smaller energy

when compared to the active systems utilizing an actuator, for example (Kurata 2004).
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Figure 2: Kajima Shizuoka Building and Semi-active Hydraulic Damper (Kobori 2000).
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The semi-active damper, such as the MR damper, can generate the required damping force in a
very short period of time, usually in less than a couple of hundred milliseconds, depending on the design
and application (H. Li et al., 2012). The control sensors, typically the accelerometers, in the system read
the external excitation input and transmit the signal to the control board. The control board then sends the
required input signal to the electromagnet to tune the damping, and thus, the force applied by the damper
(W. Eltahawy et al. 2018) as illustrated in (Figure 4). What makes the MR dampers even more desirable is
their fail-safe feature. In the event of a power outage, during an earthquake, or an electronic failure, for

example, the damper can still work as a passive oil damper with pre-designed damping properties.

Sensors Controller > Sensors

A A

A

Control
Actuators

PED

A 4

Structure | | Response

Figure 4: Structure with Semi-active Control (Soong and Spencer 2000).

2.4 Magnetorheological Vibration Isolators

MR damper is one type of the semi-active vibration isolator devices. They have been used for
vibration attenuation in various applications, including civil engineering, automotive suspensions,
aerospace, and navy sectors (Cesmeci et al. 2018). These devices employ a special kind of fluid — called
MR fluid — from which the device takes its name. MR fluids are a kind of composite material consisting of

micron-sized iron particles dispersed in a carrier fluid, usually hydrocarbon-based oils, which will be
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elaborated on in the next section (Eltahawy et al. 2019). A typical MR damper houses a cylinder, piston,

magnetic coil, and rod as well as the MR fluid, as shown in Figure 5.

MR Fluid Reservoir

Coll

Rear Piston Rod [ Front Piston Rod

Piston Approximate Flux Path

Figure 5: Typical MR damper components (Poynor and Reinholtz 2001).

2.4.1 Magnetorheological Fluid

MR materials, belonging to the functional smart material family, offer tunable rheological and
viscoelastic characteristics such as shear stress, yield stress, dynamic modulus, and damping when exposed
to an external applied magnetic field (Kwon, Lee, and Choi 2018). Traditionally there have been two major
classes of MR materials: MR fluids and MR elastomers. The MR fluid is a smart fluid composed of
micrometer-sized magnetic particles embedded in a carrier fluid such as silicon oil. They have the capability
of changing their damping characteristics under applied magnetic fields (G. Li and Yang 2020). MR fluid
transforms from viscous fluid to a solid-like paste with controllable yield stress in milliseconds when
exposed to a magnetic field (Spaggiari 2012). The iron particles dispersed in the carrier fluid align in the
direction of magnetic flux lines and form a chain-like structure, as shown in Figure 6. These chain-like
structures restrain the fluid flow, thereby increasing the viscous characteristics of the suspension system
(Delivorias 2004). By controlling the magnetic field's intensity, the shear strength of the MR fluid can be
altered; hence, the resistance to flow can be varied. Activation and deactivation of the MR fluid can be
done as soon as the magnetic field passes through the fluid and within milliseconds. When the magnetic

field is removed, the chains are broken, and the iron particles return to their original distribution (Delivorias
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2004). One of the positive aspects of MR fluid is that it is controllable and widely used for vibration control
due to MR fluid’s adjustable mechanical characteristics. MR fluid has many advantages, such as continuous
tunable damping force, compact structure, long-term stability, low energy consumption, simple electronics,
straightforward control, and fast response. MR fluids can be developed by mixing, for example, silicone oil
with iron powder and adding some surfactants to retard the potential sedimentation in a laboratory
environment. The MRFs are also commercially available and can be purchased from several vendors,

including Lord Corporation, USA.
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Figure 6: Activation of MR fluid: (a) no magnetic field applied; (b) magnetic field applied; (c) ferrous
particle chains have formed (© 2005 Lord Corporation All rights reserved).

2.4.2 Magnetorheological Elastomer

Magnetorheological elastomers (MRES) have received considerable attention in recent years. An
MRE, belonging to the MR material family, is a type of composite material with magnetic particles
embedded in a non-magnetic elastomeric matrix. MREs can operate in a wide range of frequencies, tolerate
large shear deformations, and have a speedy response time of a couple of milliseconds (Behrooz, Wang,
and Gordaninejad 2014). When exposed to an external magnetic field, the stiffness of the MREs alters such
that as the magnetic field increases, the stiffness increases. As a result, the MRE provides a controllable
stiffness that can conveniently be used to shift the resonant frequencies of structures. When the magnetic

field is removed, the material retrieves its initial property (Y. Li et al. 2014). MREs also have inherent
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damping along with their stiffness features. MREs possess very similar advantages to those of MRFs.
However, MREs can eliminate some disadvantages, such as the settling of magnetic particles that frequently
occurs in MRFs. MREs do not have any fluid leakage problems, and thus, they don't require any sealing

components (Dong et al., 2009).

2.4.2.1 Magnetorheological Elastomer Fabrication

There are two categories of MREs. They are distinguished by the distribution of magnetic particles
within the elastomer: isotropic and anisotropic MREs. The fabrication process of MREs consists of three
steps: mixing, degassing, and curing with magnetic particle orientation, as illustrated in Figure 7 (Kwon,
Lee, and Choi 2018). First, all ingredients, including magnetic particles, elastomeric matrix, and additives,
are mixed under a sufficient processing temperature to remove air bubbles inside the mixture. The air
entrapped in the MRE mixture can alternatively be removed by putting the mixture in a vacuum chamber.
Next, the isotropic MR elastomers are cured without the presence of a magnetic field. In contrast, the

anisotropic MR elastomers are cured with the presence of a magnetic field (Kwon, Lee, and Choi 2018).

Mixing

Elastomer
Matrix

LA
¥
Additives

Moo ¥

Ingredients Anisotropic MRE Customized Magnet-Heat Device

Figure 7: Schematic diagram of fabrication process of isotropic and anisotropic MREs (Kwon, Lee, and
Choi 2018).

The curing process for anisotropic materials requires a strong magnetic field above 0.8 T to form chain-like

structures of magnetic particles in the matrix. A constant temperature is also required to maintain the
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flexibility of the magnetic particles for both isotropic and anisotropic materials during curing (Y. Li et al.,
2014). The temperature varies depending on the elastomer matrix; some require only a room temperature,
and others require a temperature above 120 °C. After the curing process, the magnetic particles are locked
in the matrix, and only extra work can force the particles to move away from their original positions.
Following the curing process, the cured sample is subjected to a further chemical process called
vulcanization. The process is to modify the polymer by forming cross-links between the individual polymer
chains, thus creating a more durable material (Y. Li et al., 2014).

Isotropic MRE’s magnetic particles are homogeneously distributed. In an anisotropic MR
elastomer, magnetic particles are distributed in the elastomer in a particular pattern that might offer a higher
MR effect (Bastola, Paudel, and Li 2018). Isotropic MREs are relatively easy to make by simply mixing
iron particles with silicone oil and silicon rubber, then pouring the mixture into a mold and degassed in a
vacuum (Kallio et al., 2007). When the MRE samples were subjected to an external magnetic field during
curing, the iron particles form a chain-like structure, forming an anisotropic MRE.

Fabrication of anisotropic MRE samples can be complicated due to the magnetic particles’
particular arrangement in the elastomer, which can be done with several different methods. One of the best
ways to fabricate an anisotropic MRE sample is to use a 3D printer, which allows the creation of MRES
with completely arbitrary distributions of magnetic particles within the matrix material (Vaezi and Yang
2014).

Bastola et al. (2018) fabricated MRE illustrated in Figure 8 using a 3D printer with a multi-material
printing technique. Each layer required a series of steps. The printer has multiple heads, one filled with
MRF and the other with the elastomer matrix resin, and it was equipped with a UV unit, which was used
for curing (Bastola, Paudel, and Li 2018). As illustrated in Figure 25, the elastomer matrix resin was
dispensed from the nozzle forming a bottom layer, and then it was cured with UV light. After that, on top
of the bottom layer, various structures of MRF filaments were printed from another nozzle. After that, those

printed patterns were covered entirely by the elastomer matrix resin from the previous nozzle, and then it
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was fully cured with UV light (Bastola, Paudel, and Li 2018). In this way, the first layer of MRE was

completed. The process was repeated until the desired thickness of the sample was achieved.

UV head Cartridge 2 e MR fluid

Elastomer matrix
ii Canridge | UV light

(1): elastomer matrix deposition to form a bottom layer
(2): bottom layer curing with UV light

Final (3): printing of MR fluid

(4): elastomer matrix deposition to cover MR fluid patterns

L (5): curing with UV light

Figure 8: Schematic illustration for printing of hybrid MRE via extrusion printing (Bastola, Paudel, and
Li 2018).
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CHAPTER 3

METHODOLOGY
3.1 Overview

The Magnetorheological-based Semi-Active Vibration Isolator (MR-SAVI) employs both the MRF
and MRE technologies. The top part contains MRF-132DG enclosed in a cylinder with two chambers and
a moving piston with a shaft. The bottom part houses two MREs, working in shear mode, two permanent
magnets, and an electromagnet. Top and bottom caps close the ends of the cylinder, and four external rods
fasten the caps against the cylinder, as shown in Figure 9 (a). A wear band between the piston and the inner
wall of the cylinder helps to keep the piston centered, allowing for even pressure distributions on the seals.
In addition, the piston features an annular flow gap, where the MRF is passing through when the shaft is

reciprocating.

Wear band
Epoxy Flow gap

mz,

Bottom Seal

Permanent magnet x 2 Bottom Cap

Seal
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Magnetic Flux Lines

Copper Cail

Flow gap

(b)

Figure 9: (a) Isometric cross-section view of the MR-SAVI and (b) detailed view demonstrating the
generated magnetic flux lines in the flow gap.

The piston splits the top part into chamber 1 and 2. As the piston moves toward the bottom, the
annular flow gap allows the MR fluid to flow from chamber 2 to chamber 1. However, during the rebound
phase, the piston rod tries to restore its position against the compressive energy. As a result, the previously
displaced fluid in the top chamber is pulled back through the annular gap to chamber 2. The piston also
houses a copper coil to create a variable magnetic field to control the flow of MRF through the flow gap.
When the coil is energized, an electromagnetic field is developed in the flow gap, which activates the MR
fluid and generates a controllable MR damping in addition to passive viscous damping Figure 9
(b). Furthermore, there will be an additional contribution to the damping by the MRE changing the

equivalent damping of the whole system.
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Figure 10: The significant geometric design parameters. (a) 2D cross-section view of the MR-SAVI
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(b) detail view of the top part of the device where it carries the MR fluid.
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In general product development, one of the initial processes is identifying the system or design

requirements. Literature suggests that the design requirements for MR devices generally include the scale

of the prototype, weight of the structure, design stroke, design frequency, design passive stiffness, design
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passive damping ratio, and dynamic range. The power consumption and geometric (or space) constraints
can also be added to this list as these can also be optimized along with the parameters listed. The design

requirements for MR-SAVI1 are given in Table 1.

Table 1: Design requirements for MR-SAVI

The scale of the prototype S
Weight of the structure (including the w
variable weight of the 3D printed part)

Design stroke X
Design frequency f
Design passive equivalent stiffness k
Design passive equivalent damping ratio ¢
Dynamic range D
Maximum power P

The focus of this study is to develop a design methodology for a proof-of-concept MR-SAVI.
Hence, only the representative values of some of the design parameters are considered; frequency f = 4 Hz,
the stroke, X = 0.635 cm, viscous damping ratio ¢ = 0.2, and dynamic range, D = 2.5. These values are
determined based on literature and experience, considering both the time and resource constraints.

The design of the MR-SAVI includes both analytical and simulation modeling. The proposed
analytical model identifies and superimposes all the force components due to both MRF and MRE parts.
These forces include the seal friction force, spring force due to MREs, viscous damping force due to MREs,
controllable MR damping force due to MREs, viscous damping force due to MRF, and controllable
damping force due to MRF. There is currently no analytical modeling is available in the literature for the
MREs. Previous designs followed the following design procedure: first, the MREs were fabricated, then
tested to obtain the force vs. displacement characterization curves. Next, the proposed phenomenological

models were utilized to describe the dynamic behavior of the MREs. These models incorporated
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coefficients that are functions of stroke, frequency, and current. These coefficients were identified based
on the experimental data and used for the design of future MREs. Basically, the output force of the MREs
could be predicted based on the stroke, frequency, and current information, which could be used at the
design stages for the next MREs. However, the fabrication and characterization of the MREs are beyond
the scope of this work. This study rather outlines the design methodology of the MR-SAVI and focuses on
the design of the MRF component. The reader should be reminded that the design of MR-SAVI is a very
involved task, and the focus on the MRF component only is deemed to be sophisticated enough to occupy
this thesis.

The proposed analytical modeling for the MR-SAVI involves parameters that are functions of
magnetic field developed in the flow gap. The magnetic field information could be readily obtained via
theoretical electromagnetic analyses, however, at the expense of loss in accuracy. A reasonable alternative
is computer simulations. Also, the parameters in the analytical model are related to each other. For example,
while the flow gap, h, increases, the dynamic range, D, increases, but the viscous damping ratio, ¢
decreases. Furthermore, the temperature has been known to affect the performance of MR devices, which
should be accounted for at the design stage (Cesmeci et al. 2010). Electromagnetic analysis and thermal
analyses can be conveniently conducted on a Finite Element Analysis (FEA) software (Sahin, Cesmeci, and
Wereley 2011). Thus, an optimal design method would be integrating the software results with the
analytical formulations. Ansys is a good candidate to do such a task. While the electromagnetic and thermal
simulations could be performed on Maxwell and Heat Transfer modules, an Excel module could be used to
carry out the analytical calculations. Therefore, a comprehensive program is developed in Ansys platform
to carry out the simulations and analytical calculations simultaneously, followed by an optimization study

on the same platform.
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Methodology
Design Methodology
Analytical Finite Element Analysis Experimental
Validation
Friction force, Frriction Electromagnetic analysis (Ansys-
Maxwell)

Fail-safe viscous damping force, Fyiscous

Dynamic force range, D
MR damping force, Fyg Viscous damping ratio, &

MR stiffness force, Futiffness Thermal analysis (Ansys-Transient Thermal)

Figure 11: The schematic diagram for the Design Methodology of MR-SAVI.

The critical geometric design parameters used in analytical and finite element modeling are shown in

Figure 10.

3.2 Analytical Modeling

The analytical modeling of the MR devices starts with dynamic range discussions. Dynamic range,
D, is a measure of the performance of an MR damper (Cesmeci 2017). It is described as the ratio of the

total damper force to the uncontrollable damping forces and can be expressed in math (Yang et. a. 2002):

D - Fdamper _ FMR +FyiscoustFseal =1 + FMR (31)
Funcontrollable FyiscoustFseal FyiscoustFseal
The combination of forces produced by different parts of MR-SAVI will be discussed in this section. For
MR-SAVI, the total device force is the combination of seal friction, spring, viscous damping, and MR

damping forces.
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Fdevice = Fseal + Fspring,MRE + Fviscous,MRF + FMR,MRF + Fviscous,MRF + FMR,MRF (32)

The fail-safe MRF viscous damping and controllable MR damping forces are discussed in subsections 3.2.1
and 3.2.2, respectively. Seal force and Spring force are representative force values to assist the current
study, and these values are based on literature review and experience within an acceptable range. Spring

force is coming from MRE.
3.2.1 Viscous Damping Force

The device acts as a passive damper when there is no electromagnetic field applied. As the piston
moves toward the base, the MR fluid flows to chamber 1 from chamber 2 through the annular flow gap
within the piston, thereby generating a viscous dissipation. The force generated due to the viscous flow

through the flow gap is well established and is given by (Yang et al. 2002).

WhVy. 12 4 Q Lyiston A
Fyiscous = (1 + ZQp) Wz;ll; S (3.3)

where,

Ap: The effective piston area

w: The mean circumference of the flow path
V,: The psiton velocity

u: The plastic viscosity of the MR fluid

Q: The flow rate through the gap

Lypiston: The axial length of the psiton

h: The height of the gap
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3.2.2 MR Damping Force

Controllable MR dampers dynamically change their properties to accommodate varying loading
conditions (Li and Huo 2010). They do this by utilizing the unique properties of the MRFs. MRFs behave
as a typical Newtonian fluid under no magnetic field. However, under the influence of an external magnetic
field, MRFs change their state from liquid to semi-solid. In this state, to initiate a flow, a certain pre-stress
must be applied to the fluid. This unique behavior renders MRF to be a non-Newtonian fluid. This type of
fluid behavior can be represented conveniently with the simple Bingham plastic model (Cesmeci 2017).
Graphical representation of the Bingham plastic model is shown in Figure 12.

T=T,+ Uy T>T, (3.4)

T = The shear stress

7, = The yield stress

u = The plastic viscosity

y = The shear strain rate
7, is a function of the magnetic field and can be controlled with the intensity of the applied magnetic field.

The Bingham plastic model is also represented in Figure 12.

Shear stress, 7

p: Plastic viscosity

»
Ll

Shear strain rate, y

Figure 12 : Graphical representation of the Bingham plastic model (Cesmeci 2017)
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The controllable MR force based on the parallel plate approximation and Bingham plastic model by Yang

et al. (2002):

12Qpu ) Ty(B) L Ap Sgn(Vp) (3.5)

Fyp = (2.07 + 12 Q p+0.4 w h2 7,,(B) h

Ap: The effective piston area

w: The mean circumference of the annular flow gap
Sgn: signum function

V,: The psiton velocity

w: The plastic viscosity of the MR fluid

Q: The flowrate through the annular gap

Lypiston: The axial length of the piston

h: The height of the gap

L: The effective axial pole length "active pole"

3.3 Finite Element Modeling

The design of MR-SAVI involves finite element modeling in addition to the theoretical modeling
discussed in Section 3.2. This section discusses an optimization study that determines the optimal geometric
parameters, incorporating electromagnetic and thermal analyses. The model geometries here are drawn
based on the optimized geometric parameters listed in Section 4.3.

Computer simulations can be effectively used to assist such study, better understand and optimize
the system performance to demonstrate its reliability. For example, to calculate the dynamic range, the yield
stress of the MRF in the flow gap has to be known. This could be done using 1D Maxwell's equations;

however, more accurate information of the yield stress can be obtained by running 3D electromagnetic
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FEA, using commercially available software packages such as Ansys Maxwell. Also, Microsoft Excel
Module in Ansys can be used to host and employ the theoretical equations that will be used as a part of the
proposed design methodology. These two modules, along with others such as Ansys Geometry module, can
be integrated to develop a comprehensive optimization program in Ansys platform to seek the optimal

design parameters for the MR-SAVI.

3.3.1 Electromagnetic Analysis

Currents passing through coil wires generate a magnetic field. When the MR is exposed to a
magnetic field while passing through the MR valve, the damper acts in the semi-active mode, increasing
the fluid's viscosity, supplying additional damping that varies with the intensity of the magnetic field. This
is what could be termed "controllable MR damping force,” which also involves calculating the dynamic
yield stress, 7(B), of the MR fluid. For the purpose of obtaining z(B), the magnetic flux density, B, developed
in the flow gap needs to be known (Cesmeci 2017). The magnetic flux density, B, can be estimated using
finite element analysis (FEA). In this study, ANSYS Maxwell module is used to calculate the B in the flow
gap. The 3D model is designed, and analyses are conducted. The analyses are applied to the entire device
model. However, the magnetic field concentrations are around the piston area, including the MREs and
permanent magnets in the bottom part of the device.

The Geometry Module in ANSYSS is used to create a 3D model geometry. Next, the geometry file
is imported into the Maxwell Module, and related materials are assigned to each component. Low-Carbon
Steel Grade AISI 1018 is selected for the shaft, cylinder, top, and bottom caps. MRF 132-DG is assigned
to the MR fluid in the chambers. MRE material to the MRE samples, and NdFeB 35 is assigned to
permanent magnets. Copper material is assigned to the coils.

AISI 1010 with proper magnetic properties is chosen for the shaft and the cylinder to help to

develop the magnetic field in the targeted areas. The relationship between the magnetic flux density, B, and
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magnetic field intensity, H; the yield stress, z, and magnetic field intensity, H, for the fluid is given by the

following expressions (© 2005 Lord Corporation).

B=0.68[ 1 —e (1097001 + /o H (3.6)
T = 63,855.60 tanh(6.33 X 107¢ H) (3.7)

Where B is in Tesla, H is in A/m, zis in Pa, and so=4n x 107 T/(A/m) is the magnetic constant (Cesmeci

2017).

3.3.2 Thermal Analysis

As in the case of the electromagnetic analyses discussed earlier, theoretical formulations, such as
lumped parameter method, can be used to calculate a 1D temperature profile to address the effects of heating
on the performance of the MR-SAVI. However, again, FEA offers a more convenient way to obtain 2D or
3D and more accurate results for the temperature field on the device. To this end, the Transient Thermal
module is used to carry out the transient heat transfer simulations in Ansys. The total energy dissipation
from the device can be calculated from the area under a force vs. displacement loop (Cesmeci 2017). This
energy becomes a heat source to the MR fluid, which eventually increases the fluid temperature and affects
the device's performance. The device components are subject to failure due to overheating, and that includes
seals. Heat damage leads to reduced seal life. Mckee et al. demonstrated the effects of temperature on the
performance of seals (McKee, Gordaninejad, and Wang 2018). They reported that increased temperature
expanded the seals, resulting in deformation on the seals, which shortened the seal life. Moreover, the
expansion on the seals caused an increase in the friction force because the seal lips pushed stronger against
the shaft before the failure occurred. Furthermore, according to Curie's law, as the temperature increases,
the iron particles inside the MR fluid partially lose their ability to be magnetized; therefore, magnetization

decreases.
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The copper coils in the MR-SAVI generate electromagnetic heating; additional heating energy
sources in the device when the coils are energized. Although copper has high electrical conductivity, there
is some resistance to electrical current, causing Ohmic power losses, which transforms into heating
(Cesmeci 2017). When the energy of an electric current is converted into heat through the electrical
resistance, the Joule heating raises the temperature in coils and surroundings. As the temperature in the
coils increases, the resistance of the wires increases (Cesmeci 2017). So, this requires additional power for
the coils to maintain the same magnetic field in the MR fluid. The heat transfer to the piston and cylinder
wall from both the MR fluid and coils consequently reduces the efficiency of the electromagnet. All these
concerns should be taken into consideration in the design of MR-SAVI.

Thermal analysis is performed using the Transient Thermal module in ANSYS. The thermal
analysis involves theoretical calculations to determine the heat generation due to viscous dissipation and an
electromagnetic analysis to calculate the heat generation from Joule heating. All theoretical calculations are
performed in the Excel module, whereas the Maxwell module performs the electromagnetic analysis. The
calculated heat sources are linked to the Transient Thermal module. Figure 13 shows the schematic of a
comprehensive multi-objective optimization developed in ANSYS platform where Electromagnetic,
Transient Thermal Heating, and Microsoft Excel modules are integrated to determine the optimal geometry
of the device.

An Excel spreadsheet module is programmed to do all calculations, including the total viscous
heating. The Excel module passes the viscous heating value as heat input to the Transient Thermal module.
The calculation of the MR damping force requires information about the magnetic flux density in the flow
gap. This information is transferred to the Excel module from the Maxwell module. On the other hand, the
Joule heating is calculated by the Maxwell module directly. The Joule heating (aka Ohmic losses) data from
Maxwell 3D is transferred to ANSYS Transient Thermal to observe the temperature rise over time. This is
verified with the formulation for the Joule heating, Q = I°R, where | is the current and R is the resistance of

the coil. The device is to be cooled with a fan at room temperature during the tests. The forced convection,
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a convection boundary condition with T = 22 °C room temperature and # = 50 W/m?-°C, is considered and
assigned to all outer surfaces of the device based on literature (Cesmeci 2017). The total viscous heating is

calculated by the superposition of the seal friction, viscous, and MR damping as,

WTotal =2 Ffriction+ T[FviscousX + 4'FMRX (3-8)
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Electromagnetic Analysis Results

The results for magnetic flux density, B, in the flow gap for the current input of 1000 A x turns are
shown in Figure 13. These results are from the electromagnetic analysis discussed earlier. The regions in
the flow channel where the magnetic field is developed are called active pole regions. Whereas the region
next to the coil is called the passive pole length since there is no magnetic field generated in that region.

These regions are labeled in Figure 13 a.

In order to achieve a higher Dynamic range, D, Fmr must be maximized while Fyiscous IS minimized,

and Fea is usually constant within a reasonable range as illustrated by Eq. (2.1) (Cesmeci 2017).

Figure 13: (a) CAD model cross section view of MR-SAVI (b) magnetic flux density distribution B
magnitude using Maxwell 2D, (c) B vector using Maxwell 3D vector in electromagnetic analysis with
current input of 1000 A X turns.



38

Fmr and Fuiscous are both functions of the height of the flow gap, h, active pole and length, La. It is
observed that increasing the value of the height of the flow gap, h, decreases the Fur and Fyiscous, Which

results in reducing the value of the dynamic range, D, presented in Figure 14 a.

Furthermore, the response surface of L, shows that increasing the active pole length, L, increases
Fwmr and thus, increases D. It is important to point out that increasing L. increases the magnetic field
generated in the flow gap, which provides high dynamic yield stress, t(B), and eventually increases Fur as
7(B), is a multiplier in Fur. Considering the magnetic saturation of the MR fluid, the z(B), is limited by the
magnetic field saturation. Fmgr increases with increasing La since L, is a multiplier in Fur equation.
Considering the above-mentioned, La increases the axial length of the piston. Thus, it increases Lpiston,

resulting in decreasing D. The variations of D with h, L, L, are illustrated in Figure 14.

(@)
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(b)

(©)

Figure 14: Variation of dynamic force range, D, with respect to the (a) flow gap, (b) active pole length,
(c) passive pole length.
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Another important design requirement is the viscous damping ratio, which is also a function of

geometric dimensions of the MR valve as well as fluid properties:

w 1
Ty XZ) (Zx/m)

(4.1)

Cviscous = (

wg: The driving frequency
M: The mass
K: Spring constant

X: Amplitude of the harmonic excitation

where W = [>™/®4

o Foiscous 1S the energy dissipation due to viscous dissipation.

There are several ways in which the viscous damping ratio, ¢, can be affected by h, La, or L,. The value of
the viscous damping ratio, ¢, significantly decreases with increasing values of the flow gap, h, as F,;scous 1S
inversely proportional to the h in equation (3.3) as shown in Figure 15 a. Conversely, (,iscous iNCreases
linearly with increasing La, and L as the two parameters increase the axial length of the piston, Lpiston, Which
is a multiplier in F;sc0us (€quation 3.3). The effects of La, and Lp on F,;sc0ys are illustrated in Figure 15
b, Figure 15 c. Therefore, there must be an optimal value for h, L,, and L, to reach the given target for

Cviscous- 1he procedures to obtain the optimal values of these parameters are discussed in Section 4.3.
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(©

Figure 15: Variation of of viscous damping ratio, {,,;scous. With respect to the (a) flow gap, (b) active
pole length, (c) passive pole length.

4.2 Thermal Analysis Results

The temperature distribution in the device was obtained from the Transient Thermal heating
analysis. The accuracy of the thermal analysis is highly dependent on the boundary conditions. The
boundary condition for the transient thermal analysis is set to be forced convection, i.e., a convection
boundary condition with T =22 °C room temperature and 4 = 50 W/m?°C. The device temperature remained
stable, with negligible increment. This is mainly because the thermal simulations are carried out only for 4
complete cycles as well as the low force levels of the device. Again, this simulation time was only a
representative time. For an actual application, depending on the type of printer and part that is going to be
printed, the maximum operating time of the MR-SAVI should be estimated, and the heat transfer analyses
should be run accordingly to account for the deteriorating effects of temperature on the performance of the

MR-SAVI. The concentration of temperature is found to be in the MRF area in chambers 1 and 2. There is
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no heat transfer from the inner surface of the chambers to the outside wall of the cylinders as shown in
Figure 166. The temperature distribution in the MR fluid for X =0.00635 m, t=0.25 to 1 sec, and | = 1000

A X turns.

C: Transient Thermal
emperature

22.0013 Max
22.00115
22.00101
22.00086
22.00072
22.00058
22.00043
22.00029
22.00014

22 Min

Figure 16: Transient Thermal analysis.

4.3 Optimization

Computer-aided simulation tools have enabled engineers to design highly complex systems while
taking into consideration constraints across multiple physical domains (e.g., mechanical, electronic,
thermal, etc.) (Irina 2014). Optimization is an effective technique to identify the important design

parameters and subsequently search for their optimal values.

Section 4.1 indicates that D and {,;sc0us are both functions of h, L,, and L. In this study, the
following parameters, h, La, and L, must be optimized to give the desired design requirements. A multi-
objective optimization program is developed in ANSYS platform to carry out such a comprehensive
optimization study as shown in Figure 17. Maxwell, Transient Thermal, and Microsoft Excel modules are

run simultaneously to determine the magnetic flux density in the flow gap, to calculate D and {y,;ccous-
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Figure 17: A multi-objective optimization program developed in ANSYS platform.

The input and output parameters are stored in the Microsoft Excel module, which is connected with
the “parameter set” in Ansys workspace, as shown in Figure 18. The geometric parameters are linked with
the Geometry module, while the current input to the coils is fed to the Maxwell module. A large number of
equations from sections (3.2) and (3.3) are all entered in the Microsoft Excel module (e.g., dynamic range,
D, viscous damping force, Fuiscous, COntrollable MR damping force, Fmg, Yield stress, 7, viscous damping
ratio, (yiscous, aS Well as, the total viscous heating, Wiotal). The outputs of the Maxwell module, i.e., magnetic
flux density, B, and magnetic field intensity, H, are passed to the Microsoft Excel module to calculate, #(B);

thus, Fmr and Wiota.

Wiotar IS transferred to the Transient Thermal module as a heat source to the MR fluid. Likewise,
another output of the Maxwell module, total Ohmic loss, is linked to the Transient Thermal module directly

as the other heat source to the coils.



45

In addition, all circuits suffer from some form of time delay between the input and output terminals
when voltage is continuously applied; hence, the electromagnet's time constant was optimized as well.
These communications between the modules are performed simultaneously. Then, the optimum design is
explored with the response surface optimization module. Figure 18 and Figure 19 show the optimized input

and output parameters, respectively.

Outline of All Parameters

A B C D
1 D Parameter Mame Value Unit
2 B Input Parameters
3 = O Geometry (A1)
4 lp Pao D5_al 0.015 m
5 b Pa1 D5_h 0.0015 m
& p Paz DS_L1 0.022 m
7 p Pa3 DS_L2 0.022 m
8 b Pos Ds_pL 0.045 m
g = @ Maxwell 30 Design (B1)
10 p P100 &Temp [cel] 295,15
11 If'p F142 SElectricCurrent [A] 1000 A
12 =) E Transient Thermal (C1)
13 fp F158 MRF Magnitude 4578.1 W m~-3
14 b P89 Coil Magnitude 1.0497 W m~-3
15 = [:X_: Microsoft Office Excel (D1)
15 b Pi0s WE_AWG 21
17 p P17 WB_E_ave 0.11885
18 p Pi12 WE_CoilHeight 0,013 =l
19 p P114 WE_ConductorSource 1000 A hd
20 fp P118 WEB_frequency_f 4 Hz LI
21 b P120 WE_h 0.0015 m x|
77 b P121 WE_HMRF 14369 Am-1
23 p P122 WE L 1 0.022 m hd
24 b P123 WB_L 2 0.022 m =l
25 b P14 WB_L_a 0.015 m =
6 fh P125 WE_L_p 0.045 m
27 h P12 WEB_R_p 0.03731 m x|
28 p P131 WE_Stroke _X 0.00535 m =]
29 h P132 WB_Temp 2 c =l
= fp Mew input parameter MNew name New expression

Figure 18: Optimization input parameters.



3 E Output Parameters

32 = @l Maxwel 30 Design (B1)

33 pd P95 AvgMag_B1 0.081327

34 pd P97 AvgMag_B3 0.15639

35 pd P101 H1i 10174

35 pd P102 H2 19564

37 pd P103 OhmicLoss 1.0497

33 = E!o Transient Thermal (C1)

39 pd P170 Temperature Maximum 22,001 C
40 P_;l P171 Max Temp in MRF Maximum Temperature 22.001

41 ﬁ] P172 Max Temp in Coil Maximum Temperature 22

42 = [3: Microsoft Office Excel (D1)

43 pd P108 WB_C_th 0.008 m
44 pd P109 WB_Ceq 2755.3 Msm~-1
45 pd P110 WE_Ceq_total 6381.7 Msm~-1
45 pd P111 WB_CoilArea 0.00081 m*2
47 pd P113 WE_CoilResistance 8.7566 Chm
48 p:] P115 WE_CurrentInput 0.84631 A
49 pd P116 WB_D 2.3192

50 pd P126 WE_mu 0.15795 Pas
51 pd P127 WE_PowerInput 6.27138 W
52 pd P133 WE_Turns 11381.6

53 pd P135 WE_Velocity_v0 0.15959 ms~-1
54 pd P136 WB_VoltageInput 7.4108 ]
55 pd P137 WE_W_total 20.318 i|
56 pd P138 WEB_W _viscous 8.772 |
57 pd P133 WB_{_total 0.013394

58 pd P140 WB_{_viscous 0.0057325

59 pd P141 WE_T 4491.4 Pa
&0 pd P185 WE_V_chamber 0.017752 m*3
61 pd P86 WB_A_p 0.0043732 m*2

ﬁ] MNew output parameter

Mew expression

Figure 19: Optimization output parameters.
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The optimization algorithm provides several candidates. In this approach, the local optima in each
objective are obtained and modified to create a new population of candidate designs. The significant input
and output values obtained from the analysis to optimize the dynamic range and viscous damping ratio

response are provided in Table 2.

Table 2: Obtained optimized input and output parameters

Input parameter Name Best candidate
h (m) 0.001500773
La(m) 0.019584297
Lp (m) 0.046805543
Stroke_X (m) 0.006755364
Output parameter Name Best candidate
Dynamic range, D, 3.120488218
Viscous damping force, Fviscous (N) 1083.504163
MR damping force, FMR (N) 769.2043897
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Conclusion

In this study, a novel semi-active vibration isolation system called Magnetorheological-based
Semi-Active Vibration Isolator (MR-SAVI for short) was proposed to potentially attenuate the deteriorating
effects of the external vibrations on the quality of the 3D printed parts on shipboard. For the design of MR-
SAVI, a comprehensive modeling approach, including both the analytical and simulation modeling, was
presented. The analytical modeling included parameters that required computer simulations, such as
electromagnetic and thermal analyses. A primitive way of tackling this challenge would be performing the
simulations on an FEA software and then inputting the results of these simulations into the analytical
formulations on different software such as Excel or MATLAB and carrying out the analytical calculations
on that different platform, and vice versa. However, this would be a very cumbersome process and hinder
the process of identifying the relationships between the many parameters in the analytical formulations
thoroughly. Rather, we preferred to develop a comprehensive program on a single platform, where we could
connect the FEA simulations directly with the analytical formulation and allow them to communicate with
each other simultaneously. To do that, we used Ansys. This also allowed us to perform subsequent
optimization studies within the same platform conveniently. With the help of this Ansys program, we were

able to obtain the optimal values of the significant design parameters.

The generic method presented here can be conveniently used for future MR-SAVI designs with

different design requirements.
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5.2 Future work

Further study can be done by testing and characterizing MREs and validating the 3D printing

method for MREs fabrication.

Fabricating, building, and testing MR-SAVI. Experimental validation of the optimization results
will give more opportunities for data acquisition, which can be analyzed, and to further examine the

accuracy of the analytical and FE model.
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APPENDICES

APPENDIX A. PISTON RIGHT END TECHNICAL DRAWING OF THE MR-SAVI

All technical drawings units are in mm.
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APPENDIX B. PISTON LEFT END TECHNICAL DRAWING
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APPENDIX C. PISTON BODY TECHNICAL DRAWING
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APPENDIX D. PISTON ASSEMBLY TECHNICAL DRAWING
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APPENDIX E. CYLINDER RIGHT SIDE TECHNICAL DRAWING
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APPENDIX F. CYLINDER LEFT SIDE TECHNICAL DRAWING
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APPENDIX G. CAP LEFT SIDE TECHNICAL DRAWING
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APPENDIX H. CAP RIGHT SIDE TECHNICAL DRAWING
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