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Abstract

The notion of a replica of a nontrivial in-tree is defined. A result enabling to
determine whether an in-tree is a replica of another in-tree employing an injective
mapping between some subsets of sources of these in-trees is presented. There are
given necessary and sufficient conditions for the existence of a functional square root
of a function from a finite set to itself through presenting necessary and sufficient
conditions for the existence of a square root of a component of the functional graph
for the function and for the existence of a square root of the union of two components
of the functional graph for the function containing cycles of the same length using the
concept of the replica.

1 Introduction

The main problem of interest in this article is to determine a functional square root (half
iterate) of any function f : X → X, where X is a finite set. Generally, fractional iterates

(iterative roots of n-th order) are defined as follows: f
1
n is a function g : X → X such that

gn = f , for all n ∈ N and the n-th iterate of a function f : X → X is defined for non-negative
integers in the following way:

• f 0 := idX

• fn+1 := f ◦ fn

where idX is the identity function on X and f ◦ g denotes function composition.

1.1 Historical Background

The problem of half iterates and fractional iterates has been studied since the 19th century.
One of the earliest research on this topic is Charles Babbage’s research from 1815 of the
solutions of f

(
f(x)

)
= x over R, so-called the involutions of the real numbers [12]. For the

given function h the solution Ψ of Schröder’s equation

Ψ
(
h(x)

)
= sΨ(x),where the eigenvalue s = h′(a) and h(a) = a

enables finding arbitrary functional n-roots [35]. In general, all functional iterates of h are
given by ht(x) = Ψ−1

(
stΨ(x)

)
, for t ∈ R. Kneser studied [18] the half iterate of the expo-

nential function. Szekeres [34] dealt with regular iterations of real and complex functions.
Curtright and Zachos [6] analyzed the problem of approximate solutions of functional equa-
tions.

The concept of fractional iterate is strictly connected with the notion of an nth root of
a graph, since each function from a finite domain to itself can be depicted by its functional
graph. The concept of the square of a finite, undirected, and without loops or multiple lines
graph was introduced by Harary and Ross, [16]. They presented a criterion for a graph to
be the square of a tree. This concept can be generalized. Let G be an undirected graph.
The nth power of G, written Gn, is defined to be the graph having the same vertex set as G
with two vertices adjacent in Gn if and only if there is a path of length at most n between
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them. A graph G has an nth root H if Hn = G. If n = 2, we say that H is the square root
of G. Mukhopadhyay [31] characterized graphs that have at least one square-root graph and
proved that a connected undirected graph G with vertex set {v1, . . . , vn} has a square root
if and only if G contains a collection of n complete subgraphs G1, . . . , Gn such that for all
i, j ∈ {1, . . . , n}:

1.
⋃n
i=1Gi = G,

2. vi ∈ Gi,

3. vi ∈ Gj if and only if vj ∈ Gi.

Harary et al. [15] characterized graphs whose squares are planar. Geller [10] characterized
digraphs that have at least one square root. Lin and Skiena [24] invented a linear time
algorithm for finding the tree square roots of a given graph and a linear time algorithm for
finding the square roots of planar graphs.

Motwania and Sudanb [30] proved that computing any square root of a square graph, or
deciding whether a graph is a square, is an NP-hard problem. The following results concern
square root finding problem in terms of the girth of the square root. The girth of a graph G
with a cycle is the length of its shortest cycle. An acyclic graph has infinite girth. Chang et
al. [5] found a polynomial time algorithm to compute the tree acyclic square root. Farzad et
al. [8] presented a polynomial time characterization of squares of graphs with a girth of at
least 6. They also proved that the square root (if it exists) is unique up to isomorphism when
the girth of the square root is at least 7 and proved the NP-completeness of the problem for
square roots of girth 4. Adamaszek [1] proved that the square root of a graph is unique up
to isomorphism when the girth of the square root is at least 6 if it exists. Farzad and Karimi
[7] showed that the square root finding problem is NP-complete for square roots of girth 5.
Thus they proved the complete dichotomy theorem for the square root problem in terms of
the girth of the square roots: Square of graphs with girth g is NP-complete if and only if
g ≤ 5.

There is also vast polish literature devoted to iterative roots. Ger [11] and Kuczma [20]
dealt with functional equation ϕ2(x) = g(x). Kuczma [22] dealt with iterative functional
equations. Kuczma[21],[23] and Zdun [38] described fractional iterations of convex functions.
Zdun [36, 37] dealt with differentiable fractional iterations and with the problem of existence
and uniqueness of continuous iterative roots of homeomorphisms of the circle.

1.2 The Structure of the Article

The following section contains some basic notions and facts from Graph Theory as well as
some of the previous Kozyra’s results [19] used later in this article. In the third section, the
concepts of a coil and a replica, as well as their properties, are described. This section lays
the foundation for the main results of this article presented in the fourth section, in which
our attention will be focused on necessary and sufficient conditions for the existence of a
square root of a component of a functional graph or the existence of a connected square root
of the union of two components of a functional graph, containing cycles of the same length.
In this section, an example clarifying and using previous results is given.
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2 Preliminary

In the first subsection of this section some basic, coming from [14], and occurring later in
this article, terminology and facts from graph theory are presented. It can be omitted by
readers acquainted with standard terminology from graph theory. The second subsection of
this section contains some of Kozyra’s [19] results that will be used in the further parts of
this article.

2.1 Basic Definitions and Facts

A graph G = (V,E) consists of two sets V and E. The elements of V are called vertices
(or nodes). The elements of E are called edges. Each edge has a set of one or two vertices
associated to it, which are called its endpoints. An edge is said to join its endpoints. If
vertex v is an endpoint of edge e, then v is said to be incident on e, and e is incident on
v. A self-loop or loop is an edge that joins a single endpoint to itself. The graph union
of two graphs G and H is the graph G ∪ H whose vertex-set and edge-set are the disjoint
unions, respectively, of the vertex-sets and the edge-sets of G and H. A subgraph of a graph
G = (VG, EG) is a graph H = (VH , EH) such that VH ⊂ VG and EH ⊂ EG. In a graph G,
the induced subgraph on a set of vertices W = {w1, . . . , wk}, denoted G(W ), has W as its
vertex-set, and it contains every edge of G whose endpoints are in W . A directed edge (or
arc) is an edge e, one of whose endpoints is designated as the tail, and whose other endpoint
is designated as the head. An arc that is directed from vertex u to v is said to have tail u
and head v. A multi-arc is a set of two or more arcs having the same tail and same head. If
the digraphs under consideration do not have multi-arcs, then an arc that is directed from
vertex u to v is represented by the ordered pair (u, v). A digraph (or directed graph) is a
graph each of whose edges is directed. A trivial graph is a graph consisting of one vertex and
no edges. A simple digraph is a digraph with no self-loops and no multi-arcs. The underlying
graph of a directed or partially directed graph G is the graph that results from removing all
the designations of head and tail from the directed edges of G. The degree (or valence) of
a vertex v in a graph G, denoted deg(v), is the number of proper edges incident on v plus
twice the number of self-loops. The indegree of a vertex v in a digraph, denoted in deg(v),
is the number of arcs directed to v; the outdegree of vertex v, denoted out deg(v), is the
number of arcs directed from v. Each self-loop at v counts one toward the indegree of v
and one toward the outdegree. A vertex u in digraph D without multi-arcs dominates (or
beats) vertex v in D whenever (u, v) is an arc of D. The out-set of a vertex v in a digraph D
without multi-arcs, denoted O(v), is the set of all vertices that v dominates, and the in-set
of v, denoted I(v), is the set of all vertices that dominate v.

A walk in a graph G is an alternating sequence of vertices and edges,

W = (v0, e1, v1, e2, . . . , en, vn)

such that for j = 1, . . . , n, the vertices vj−1 and vj are the endpoints of the edge ej. If,
moreover, the edge ej is directed from vj−1 to vj , then W is a directed walk. The length of
a walk is the number of edges (counting repetitions). A walk is closed if the initial vertex
is also the final vertex; otherwise, it is open. A trail in a graph is a walk such that no edge
occurs more than once. A path in a graph is a trail such that no internal vertex is repeated.
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A cycle is a closed path of length at least 1. The cycle graph Cn is the n-vertex graph with n
edges, all on a single cycle. The distance between two vertices in a graph is the length of the
shortest walk between them. A graph is connected if between every pair of vertices there is
a walk. A digraph is (weakly) connected if its underlying graph is connected. A component
of a graph G is a connected subgraph H such that no subgraph of G that properly contains
H is connected. In other words, a component is a maximal connected subgraph.

A tree is a connected graph with no cycles (i.e., acyclic). A directed tree is a digraph
whose underlying graph is a tree. A source in a digraph is a vertex of indegree zero. A basis
of a digraph is a minimal set of vertices such that every other vertex can be reached from
some vertex in this set by a directed path. An in-tree is a directed tree with a distinguished
vertex r, called the root, such that for every other vertex v, the unique path from v to r
is a directed path from v toward the root r. A functional graph is a digraph in which each
vertex has outdegree one.

Fact 2.1. [14, Fact 19, p. 188] Let D be a functional graph, and let G be the underlying
undirected graph. Then each component of G contains exactly one cycle. In D this cycle is
a directed cycle, and the removal of any arc in it turns that component into an in-tree.

The depth or level of a vertex v in in-tree, denoted by lev(v), is its distance to the root,
that is, the number of edges in the unique directed path from v to the root. In an in-tree a
vertex w is called a descendant of a vertex v (and v is called an ancestor of w), if w is on
the unique path from v to the root. If, in addition, w 6= v, then w is a proper descendant of
v (and v is a proper ancestor of w).

2.2 Reformulation for the Problem of Determining a Functional
Square Root

The notion of a half iterate can be translated into Graph Theory language. Any function
ϕ : {1, . . . , n} → {1, . . . , n} can be represented as corresponding to ϕ the directed graph G =
(V,E) denoted by G(ϕ), with V = {1, . . . , n} and E = {(k, l) : k, l ∈ {1, . . . , n} & ϕ(k) =
l}.

Definition 2.1. Let G = (V,E) be a functional graph. A functional graph G′ = (V,E ′) is
called a square root of graph G iff

∀u,v ∈ V (u, v) ∈ E ⇐⇒ ∃w ∈ V (u,w), (w, v) ∈ E ′

There is straightforward relation between a functional square root of a function ϕ and a
square root of the functional graph G(ϕ). If ψ is a half iterate of ϕ, then G(ψ) is a square
root of G(ϕ). Similarly, for any function ϕ, if G′ is a square root of G(ϕ), then G′ = G(ψ)
for a half iterate ψ of ϕ.

Kozyra [19] presented four algorithms determining all half iterates and seven algorithms
finding one functional square root of any function f : X → X defined on a finite set X,
if these square roots exist and characterized functions which are their selves half iterates.
Moreover, Kozyra found formulas for the number of all half iterates of constant and the
number of all identity functions defined on an n-element set, as well as, he proved that these
numbers are greater than 2n−1. In this article there are used two results from [19]:
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Theorem 2.1. [19, Thm. 9, p. 7] Let α be a function from a finite domain to itself and
G(α) be its functional graph. Then there exists a half iterate of α iff

1. for each component in G(α) there exists its square root
or

2. for each component G1 = (V1, E1) of G(α) which has no square root there exists an-
other component G2 = (V2, E2) of G(α) containing a cycle of the same length as this
contained in G1 such that there exists a square root of the graph being the union of
these components – G3 = (V1 ∪ V2, E1 ∪ E2).

Proposition 2.1. [19, Prop. 10, p. 9] Assume that α is a function from an n-element set
to itself and its functional graph G(α) is a component containing a cycle ā := (a0, . . . , ak−1)
of length k and A := {a0, . . . , ak−1}. Then:

1. If there exists a half iterate β of α, then k is an odd number and β|A = α(k+1)/2|A.

2. If β is a function and G(α) is the cycle graph Ck containing the cycle ā, then β2 = α
iff β = α(n+1)/2.

3 Coils and Replicas

Theorem 2.1 represents a general way how to find a square root of a functional graph. In
this section, the concepts of a coil and a replica are defined as well as their properties are
characterized. These concepts allow finding a square root of a component or the union of two
components containing a cycle of the same length, what is described in the fourth section.
Thus the problem of finding a square root of a functional graph can be completely solved by
employing these tools.

Let G be a functional graph and C = (V,E) be one of its component. Then by Fact 2.1, C
contains exactly one cycle c̄ = (c0, . . . , ck−1) and for each x ∈ V sub-graph in− treeC(x) =
(Vx, Ex) defined as follows:

• Vx is the set consisting of x and all vertices v ∈ V \ {c0, . . . , ck−1} for which there
exists the unique path in the induced subgraph
C(V \ {c0, . . . , ck−1} ∪ {x}) from v to x.

• Ex = {e ∈ E : ∃u,v ∈ Vx : e = (u, v)}

is an in-tree with the root x.

Definition 3.1. Such sub-graph in− treeC(x) will be called the in-tree generated by element
x in graph C. An in-tree G = (V,E) will be called strictly nontrivial, if there exists a vertex
v ∈ V whose level is greater than 2 or equals 2.
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3.1 Coils

Definition 3.2. Let G1 = (V1, E1) and G2 = (V2, E2) be nontrivial in-trees with roots r1
and r2, respectively. A coil of graph G1 with graph G2 is a graph G = (V1 ∪ V2, E) such
that the following three conditions are satisfied:

(C1) G is an in-tree with the root r1

(C2) ∀a,b ∈ V1

[
(a, b) ∈ E1 ⇐⇒ ∃v ∈ V2(a, v), (v, b) ∈ E

]
(C3) ∀u,v ∈ V2

[
(u, v) ∈ E2 ⇐⇒ ∃a ∈ V1(u, a), (a, v) ∈ E

]
The set of all coils G1 with G2 of is denoted by Coils(G1, G2).

Proposition 3.1 (Some properties of coils). Let G1 = (V1, E1) and G2 = (V2, E2) be non-
trivial in-trees with roots r1 and r2, respectively. If graph G = (V1 ∪ V2, E) is a coil of graph
G1 with graph G2, then:

1. (r2, r1) ∈ E

2. E ⊆ V1 × V2 ∪ V2 × V1

3. if a is an ancestor of b in G1, then a is an ancestor of b in G for all a, b ∈ V1

4. if u is an ancestor of v in G2, then u is an ancestor of v in G for all u, v ∈ V2

5. if a is a source in G1 and (a, v) ∈ E, then:

• if v is a source in G2, then a is a source in G

• if (u, v) ∈ E2, then u is a source in G2 and in G

Proof. 1. Let u ∈ V2 be such that (u, r2) ∈ E2, then by (C3), there exists a ∈ V1 such
that (u, a) and (a, r2) ∈ E. Hence by (C1) a 6= r1. So there exists b ∈ V1 such
that (a, b) ∈ E1. Then by (C2), there exists v ∈ V2 such that (a, v), (v, b) ∈ E,
hence by (C1), v = r2. Suppose that b 6= r1, then there exists c ∈ V1 such that
(b, c) ∈ E1, thus by (C2), there exists w ∈ V2 such that (b, w), (w, c) ∈ E, so by
(C3), (r2, w) ∈ E2 – a contradiction, since r2 is the root of G2. Therefore b = r1 and
(r2, r1) ∈ E.

2. If a ∈ V1 \ {r1}, then there exists b ∈ V1 such that (a, b) ∈ E1, hence by (C1) and
(C2), there exists the unique u such that (a, u) ∈ E and u ∈ V2. If u ∈ V2 \ {r2},
then there exists v ∈ V2 such that (u, v) ∈ E2, so by (C1) and (C3) there exists the
unique a such that (u, a) ∈ E and a ∈ V1. By (C1) and (1), (r2, r1) ∈ E and it is
the unique path from r2 to r1. Summarizing, E ⊆ V1 × V2 ∪ V2 × V1.

3. If a is an ancestor of b in G1, then there exists the unique path
(a0, . . . , am) from a to b in G1, since G1 is an in-tree. By (C1) and (C2), for each
i ∈ {0, . . . ,m− 1} there exists the unique ui ∈ V2 such that
(a0, u0, a1, . . . , um−1, am) is the unique path from a to b in G.
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4. The proof is analogous to the proof of (3)

5. Assume that a is a source in G1 and (a, v) ∈ E. Suppose that a is not a source in G,
then by (2), there exists u ∈ V2 such that (u, a) ∈ E, hence by (C3), (u, v) ∈ E2,
thus v is not a source in G2. Assume now additionally that (u, v) ∈ E2 and suppose
that u is not a source in G2. Then there exists t ∈ V2 such that (t, u) ∈ E2, hence
by (C3), there exists b ∈ V1 such that (b, u) ∈ E. But (a, v) ∈ E and (u, v) ∈ E2,
therefore by (C1) and (C3), (u, a) ∈ E. So we have (b, u) ∈ E and (u, a) ∈ E,
thus by (C2), (b, a) ∈ E1 – a contradiction, since a is a source in G1. Therefore u is
a source in G2, and therefore if u were not a source in G, then by (2) and (C2), the
vertex a wouldn’t be a source in G1.

3.2 The Relation between Coils and Replicas

A key notion in this article is a replica.

Definition 3.3. Let G1 = (V1, E1) and G2 = (V2, E2) be nontrivial in-trees with roots r1
and r2, respectively. G2 is called a replica of G1 iff there exists a function ϕ : V1 \ {r1} → V2
such that the following four conditions are satisfied:

(R1) ∀a,b ∈ V1 \ {r1}(a, b) ∈ E1 =⇒
(
ϕ(a), ϕ(b)

)
∈ E2

(R2) ∀a ∈ V1 \ {r1}(a, r1) ∈ E1 =⇒ ϕ(a) = r2

(R3) ∀v ∈ V2 \ ϕ(V1 \ {r1})∃a ∈ V1 \ {r1} : (v, ϕ(a)) ∈ E2

(R4) ∀a1,b1,a2,b2
[(

(a1, b1) ∈ E1 ∧ (a2, b2) ∈ E1 ∧ b1 6= b2
)
⇒ ϕ(a1) 6= ϕ(a2)

]
As one can see, the concept of a replica is similar to an isomorphism. The reader interested

in algorithms for determining the isomorphism of graphs can find more information at the
following papers [2, 3, 4, 9, 13, 17, 25, 26, 27, 28, 29, 33]. Before we formulate a theorem
that establishes a relation between coils and replicas, let us consider the following example.

Example 3.1. Consider three in-trees from Fig. 1. We shall show that the in-tree G2 =
(V2, E2) with the root r2 is a replica of the in-tree G1 = (V1, E1) with the root r1: Define
function ϕ as follows

ϕ = {(a1, r2), (a2, b1), (a3, b1), (a4, b3), (a5, r2), (a6, b4)}.

We shall prove that ϕ satisfies condition (R1) – (R4):

(R1) Note that
(
ϕ(a2), ϕ(a1)

)
= (b1, r2) ∈ E2,

(
ϕ(a3), ϕ(a1)

)
= (b1, r2) ∈ E2,

(
ϕ(a6), ϕ(a5)

)
=

(b4, r2) ∈ E2,
(
ϕ(a4), ϕ(a2)

)
= (b3, b1) ∈ E2,

(R2) Note that IG1(r1) = {a1, a5} and ϕ(a1) = ϕ(a5) = r2

(R3) Note that V2 \ ϕ(v1 \ {r1}) = {b2, b5, b6} as well as (b2, ϕ(a2)) ∈ E2, (b5, ϕ(a6)) ∈ E2,
and (b6, ϕ(a1)) ∈ E2
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r1

a5

a6

a1

a2

a4

a3 b6 r2

b1

b2 b3

b4

b5

r3

c1

c2 c3

r1 r2

a5 b4 a6 b5

a1

b6

b1 a2

a3 b2

b3 a4

Figure 1: Three in-trees with roots r1, r2, r3 and a coil of in-tree with root r1 with in-tree
with root r2

(R4) Suppose that there exist x1, x2, y1, y2 ∈ V1 such that (x1, y1) ∈ E1, (x2, y2) ∈ E1,
y1 6= y2 and ϕ(x1) = ϕ(x2). Then x1 6= x2, since G1 is an in-tree. Moreover, {x1, x2} =
ϕ−1(r2) = {a1, a5} or {x1, x2} = ϕ−1(b1) = {a2, a3}. Hence we obtain that {y1, y2} =
{r1} or {y1, y2} = {a1}, so y1 = y2 – a contradiction.

Note also that the in-tree at the bottom of Fig. 1 is an example of a coil of the in-tree G1

with the in-tree G2.
We shall show that the in-tree G3 = (V3, E3) with the root r3 is not a replica of the in-tree

G1 = (V1, E1) with the root r1: Suppose that there exists a function ϕ : V1 \ {r1} → V3 that
satisfies conditions (R1) – (R4). Then by (R2), ϕ(a1) = ϕ(a5) = r3. Moreover, by (R1),(
ϕ(a2), ϕ(a1)

)
∈ E3 and

(
ϕ(a6), ϕ(a5)

)
∈ E3, since (a2, a1) ∈ E1 and (a6, a5) ∈ E1. So(

ϕ(a2), r3
)
∈ E3 and

(
ϕ(a6), r3

)
∈ E3, thus ϕ(a2) = ϕ(a6) = c1. Thus ϕ does not satisfy

condition (R4) – a contradiction.

Theorem 3.1. Let G1 = (V1, E1) and G2 = (V2, E2) be nontrivial in-trees with roots r1 and
r2, respectively. Then there exists E ⊆ V1×V2 ∪ V2×V1 such that (V1 ∪ V2, E) ∈ Coils(G1, G2)
iff G2 is a replica of G1.

Proof. (=⇒)
For each a ∈ V1 \ {r1} define function ϕ : V1 \ {r1} → V2 as follows:

• let b ∈ V1 be the unique element such that (a, b) ∈ E1, such b exists and is exactly
one, since G1 is a in-tree;

• by (C1) and (C2) from definition 3.2, there exists exactly one v ∈ V2 such that
(a, v), (v, b) ∈ E;
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• put ϕ(a) := v.

We shall show that ϕ satisfies conditions (R1) – (R4) from Definition 3.3:

(R1) Fix any a, b ∈ V1 \ {r1} and assume that (a, b) ∈ E1. Then by definition of ϕ, (ϕ(a), b),
(b, ϕ(b)) ∈ E, hence by condition (C3) from definition 3.2, (ϕ(a), ϕ(b)) ∈ E2.

(R2) Fix a ∈ V1 \ {r1} and assume that (a, r1) ∈ E1. Then by definition of ϕ,
(a, ϕ(a)), (ϕ(a), r1) ∈ E. Suppose that ϕ(a) 6= r2. Then there exists v ∈ V2 such
that (ϕ(a), v) ∈ E2, so by (C3) there exists b ∈ V1 such that (ϕ(a), b) and (b, v)
belong to E, thus b = r1, since the outdegree of any vertex apart from r1 in in-tree
equals 1, hence (r1, v) ∈ E – contradiction with (C1).

(R3) Assume that u ∈ V2 \ Im(ϕ). Then u 6= r2, since by (R2), r2 ∈ Im(ϕ). So there
exists v ∈ V2 such that (u, v) ∈ E2, thus by (C3), there exists a ∈ V1 such that
(u, a), (a, v) ∈ E, moreover a 6= r1, since (a, v) ∈ E and r1 is the root. Therefore
by definition of ϕ, ϕ(a) = v, thus (u, ϕ(a)) ∈ E2 and a ∈ V1 \ {r1}.

(R4) Fix a1, a2, b1, b2 ∈ V1 and assume that (a1, b1), (a2, b2) ∈ E1. Then by (C2) and
definition of ϕ, (a1, ϕ(a1)), (ϕ(a1), b1), (a2, ϕ(a2)), (ϕ(a2), b2) ∈ E. Suppose that
ϕ(a1) = ϕ(a2), then by (C1), b1 = b2.

(⇐=) Assume that ϕ : V1 \ {r1} → V2 satisfies conditions (R1)–(R4). By (R3), for
each v ∈ V2 \ Im(ϕ) there exists a ∈ V1 \ {r1} such that (v, ϕ(a)) ∈ E2. Let
ψ : V2 \ Im(ϕ)→ V1 \ {r1} be a function of choice such that (v, ϕ(ψ(v))) ∈ E2 for each
v ∈ V2 \ Im(ϕ). Define arc set

E := {(a, ϕ(a)) : a ∈ V1 \ {r1}} ∪ {(v, ψ(v)) : v ∈ V2 \ Im(ϕ)}
∪ {(ϕ(a), b) : a ∈ V1 \ {r1}, b ∈ V1, (a, b) ∈ E1}.

We shall prove that G = (V1 ∪ V2, E) is a coil G1 with G2:

(C1) Note that for any vertex v ∈ V1 \ {r1} ∪ V2 its outdegree in G equals 1: If
a ∈ V1 \ {r1}, then the arc (a, ϕ(a)) is the unique arc belonging to E whose tail is a.
Similarly if v ∈ V2 \ Im(ϕ), then (v, ψ(v)) is the unique arc belonging to E whose
tail is v. Assume now that v ∈ Im(ϕ). Then v = ϕ(a) for a vertex a ∈ V1 \ {r1},
(a, b) ∈ E1 for exactly one vertex b ∈ V1 and (v, b) ∈ E. Suppose that (v, b′) ∈ E
for a vertex b′ ∈ V1. Then there exists a′ ∈ V1 \ {r1} such that (a′, b′) ∈ E1 and
ϕ(a′) = ϕ(a) = v, hence by (R4), b = b′.

Fix any a ∈ V1 \ {r1}. Then there exists unique path from a to r1 in G1 -
(a0, a1, . . . , am), since G1 is an in-tree. Moreover the sequence
(a0, ϕ(a0), a1, ϕ(a1), . . . , r2, r1) is the unique path from a to r1 in G. If v ∈ Im(ϕ),
then v = ϕ(a) for a vertex a ∈ V1 \ {r1} and if (a0, a1, . . . , am) is the unique path
from a to r1 in G1, then (v, a1, ϕ(a1), . . . , r2, r1) is the unique path from v to r1 in G.
Similarly for any v ∈ V2 \ Im(ϕ), let a = ψ(v) ∈ V1 \ {r1} and (a0, . . . , am) be
the unique path from a to r1 in G1, then (v, a0, ϕ(a0), a1, . . . , r2, r1) is the unique path
from v to r1 in G.
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(C2) Fix any vertices a, b ∈ V1. Firstly assume that (a, b) ∈ E1. Then by definition of E,
(a, ϕ(a)), (ϕ(a), b) ∈ E and v = ϕ(a) ∈ V2. Now assume that (a, v), (v, b′) ∈ E.
Then by definition of E, v = ϕ(a) and there exist b ∈ V1 such that (a, b) ∈ E1 and
a′ ∈ V1 \ {r1} such that (a′, b′) ∈ E1 and ϕ(a′) = v. So by (R4), b′ = b and thus
(a, b′) ∈ E1.

(C3) Fix any u, v ∈ V2.
(=⇒) Assume that (u, v) ∈ E2.
We shall show that v ∈ Im(ϕ): If u ∈ V2 \ Im(ϕ), then by (R3), (u, ϕ(b)) ∈ E2

for a vertex b ∈ V1 \ {r1}, hence v = ϕ(b) and v ∈ Im(ϕ), since G2 is an in-tree and
the outdegree of u equals 1. So if v ∈ V2 \ Im(ϕ), then u ∈ Im(ϕ), so u = ϕ(a)
for a vertex a ∈ V1 \ {r1}, and there exists unique c ∈ V1 such that (a, c) ∈ E1.
If c = r1, then by (R2), u = ϕ(a) = r2, but (u, v) ∈ E2 – a contradiction, since G2 is
an in-tree with the root r2. So c ∈ V1 \ {r1} and by (R1), (ϕ(a), ϕ(c)) ∈ E2, so
ϕ(c) = v, since ϕ(a) = u and G2 is an in-tree, thus v ∈ Im(ϕ) – a contradiction.

Assume that u ∈ V2 \ Im(ϕ). Then (u, ψ(u)) ∈ E,
a := ψ(u) ∈ V1 \ {r1}, (a, ϕ(a)) ∈ E and (u, ϕ(a)) ∈ E2. Hence v = ϕ(a), since
G2 is an in-tree, thus (u, a) ∈ E and (a, v) ∈ E.
Assume that u, v ∈ Im(ϕ). Then u = ϕ(a) and v = ϕ(b) for some a, b ∈ V1 \ {r1}
and (a, c) ∈ E1 for some c ∈ V1 \ {r1}. Then by (R1), (u, ϕ(c)) ∈ E2, so ϕ(c) = v,
since G2 is an in-tree. Moreover, by definition of E, (ϕ(a), c), (c, ϕ(c)) ∈ E, so (u, c)
and (c, v) ∈ E.

(⇐=) Assume that (u, b), (b, v) ∈ E for some b ∈ V1. Then by definition of E,
v = ϕ(b). If u ∈ V2 \ Im(ϕ), then (u, ψ(u)) ∈ E, so ψ(u) = b, since G is in-tree. So
by definition of ψ, (u, ϕ(ψ(u))) = (u, v) ∈ E2. If u ∈ Im(ϕ), then u = ϕ(a) for some
a ∈ V1 \ {r1} and (a, c) ∈ E1 for some c ∈ V1. We shall show that c 6= r1: Suppose
that c = r1. Then by (R2), ϕ(a) = r2, and by definition of E, (ϕ(a), r1) ∈ E. Hence
(u, r1) ∈ E, thus b = r1, since (u, b) ∈ E and G is an in-tree. Therefore (r1, v) ∈ E,
since (b, v) ∈ E – a contradiction with definition of E. So by (R1), (ϕ(a), ϕ(c)) ∈ E2,
hence by definition of E, (ϕ(a), c), (c, ϕ(c)) ∈ E, thus c = b and v = ϕ(c), since G is
in-tree and therefore (u, v) ∈ E2.

3.3 A Characterization of Replicas by Sources and Other Proper-
ties of Replicas

Definition 3.4. Let G = (V,E) be an in-tree with the root r and S be its basis (set of
sources). Then:

1. An element t ∈ S is called trivial iff its level equals 1, i.e., lev(t) = 1.

2. A source d ∈ S is called dominated iff

(a) lev(d) ≥ 2 and
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(b) ∀w ∈ V (d, w) ∈ E =⇒ ∃u,v ∈ V (u, v), (v, w) ∈ E, i.e., I(I(O(d))) 6= ∅

3. A subset B ⊆ S is called a balanced set iff

(a) lev(b) ≥ 2 and b is not dominated for all b ∈ B and

(b) ∃v ∈ V ∀b ∈ B(b, v) ∈ E, i.e., ∀b ∈ BB ⊆ I(O(b))

4. A source b ∈ S is called balanced iff b ∈ B for a balanced set B.

5. A subset B ⊆ S is called a maximal balanced set iff B is a balanced set and for all
B′ ⊆ S if B ( B′, then B′ is not a balanced set.

6. A source m ∈ S is called maximal iff

(a) lev(m) ≥ 2 and m is not dominated as well as

(b) ∀v ∈ V (m, v) ∈ E =⇒ ¬∃u ∈ V \ {m}(u, v) ∈ E, i.e., I(O(m)) = {m}.

7. The first common descendant of vertices u, v ∈ V ,
denoted by FCD(u, v), is the vertex k ∈ V such that:

(a) k is a descendant of u and v and

(b) if l is a descendant of u and v, then either l = k or l is a descendant of k, for any
vertex l ∈ V

8. The important indegree of a vertex v, denoted by imp in deg(v), is the number of arcs
directed to v such that their tail is not a source in G;

9. The important in-set of v, denoted by Imp IG(v), is the set of all vertices that dominate
v and they are not sources.

Remark 3.1. Each source in an in-tree is trivial, dominated, balanced or maximal.

Proposition 3.2 (Some properties of replicas). Let G1 = (V1, E1) and
G2 = (V2, E2) be nontrivial in-trees with roots r1 and r2, respectively. Assume that G2 is a
replica of G1 and ϕ : V1 \ {r1} → V2 satisfies conditions (R1)–(R4). Let G′2 = (Im(ϕ), E ′2)
be the induced subgraph of G2 on the set Im(ϕ), i.e. E ′2 = {(u, v) ∈ E2 : u, v ∈ Im(ϕ)}.
Then:

1. ∀a ∈ V1 \ {r1}
(
(a, r1) ∈ E1 ⇐⇒ ϕ(a) = r2

)
2. ∀u,v ∈ V2

[(
(u, v) ∈ E2 ∧ u ∈ Im(ϕ)

)
=⇒ v ∈ Im(ϕ)

]
3. each v ∈ V2 \ Im(ϕ) is a source in G2

4. ∀a ∈ V1 \ {r1}levG1(a) = levG2(ϕ(a)) + 1

5. ∀u ∈ Im(ϕ)in degG′2(u) ≤
∑

a ∈ ϕ−1(u) in degG1(a)

6. ∀u ∈ Im(ϕ)imp in degG′2(u) ≤
∑

a ∈ ϕ−1(u) imp in degG1(a)
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7. ∀a ∈ V1 \ {r1}imp in degG1(a) ≤
∑

u ∈ Imp IG′2
(ϕ(a)) in degG′2(u)

8. ∀a,b ∈ V1 \ {r1}0 ≤ levG1(FCD(a, b))− levG2(FCD(ϕ(a), ϕ(b))) ≤ 1

9. If a ∈ V1 \ {r1} is a maximal or balanced source in G1, u ∈ V2 and (u, ϕ(a)) ∈ E2,
then u ∈ V2 \ Im(ϕ) and u is a maximal or balanced source in G2.

Example 3.2. As an illustration of Definition 3.4 and Proposition 3.2, let us again consider
in-trees G1 and G2 with roots r1 and r2, respectively, from Figure 1. Note that G1 has the
set of sources S1 = {a3, a4, a6}. Among these sources, a3 is dominated, however a4 and a6
are maximal. The in-tree G2 has the set of sources S2 = {b2, b3, b5, b6}. Note that {b2, b3}
is a maximal balanced set, b6 is a trivial source, and b5 is a maximal source in G2. Let us
remember that the function ϕ supporting that G2 is a replica of G1 has the following form

ϕ = {(a1, r2), (a2, b1), (a3, b1), (a4, b3), (a5, r2), (a6, b4)}.

Let G′2 = (Im(ϕ), E ′2) be the induced subgraph of G2 on the set Im(ϕ). We shall show that
some statements of Proposition 3.2 hold :

• Note that Im(ϕ) = {r2, b1, b3, b4} ⊇ {r2, b1} = O(b1) ∪O(b3) ∪O(b4).

• Note that V2 \ Im(ϕ) = {b2, b5, b6} ⊆ S2.

• For each i ∈ {1, 5} and j ∈ {2, 3, 6}:

– levG1(ai) = 1, levG1(aj) = 2, and levG1(a4) = 3;

– ϕ(ai) = r2, levG2(r2) = 0, ϕ(aj) ∈ {b1, b4}, levG2(b1) = levG2(b4) = 1, ϕ(a4) = b3,
and levG2(b3) = 2

So levG1(ai) = levG2(ϕ(ai)) + 1 for all i ∈ {1, . . . , 6}.

• Note that in degG′2(r2) = 2, ϕ−1(r2) = {a1, a5}, in degG1(a1) = 2, and in degG1(a5) =
1, so assertion 5 from Proposition 3.2 holds, for example, for u = r2.

• Similarly, statement 6 is true for u = r2, since imp in degG′2(r2) = 1 ≤ 1 = imp in degG1(a1)+
imp in degG1(a5), and ϕ−1(r2) = {a1, a5}

• Note that imp in degG1(a1) = 1 ≤ 1 = in degG′2(b1) and Imp IG′2(ϕ(a1)) = Imp IG′2(r2) =
{b1}.

• Note that levG1(FCD(a3, a4)) = levG1(a1) = 1 and levG2(FCD(ϕ(a3), ϕ(a4))) =
levG2(FCD(b1, b3)) = levG2(b1) = 1

• Note that a6 is maximal source in G1, (b5, b4) = (b5, ϕ(a6)) ∈ E2, as well as b5 ∈
V2 \ Im(ϕ) and b5 is a maximal source in G2.

Proof. 1. Fix any a ∈ V1 \ {r1} and assume that ϕ(a) = r2. Then there exists the unique
b ∈ V1 such that (a, b) ∈ E1. Suppose that b 6= r1, then by (R1), (ϕ(a), ϕ(b)) ∈ E2

– a contradiction, since ϕ(a) = r2 is the root of G2. The converse implication is true
by definition.

12

Theory and Applications of Graphs, Vol. 8 [2021], Iss. 1, Art. 8

https://digitalcommons.georgiasouthern.edu/tag/vol8/iss1/8
DOI: 10.20429/tag.2021.080108



2. Assume that (u, v) ∈ E2 and u ∈ Im(ϕ). Then u = ϕ(a) for some a ∈ V1 \ {r1}
and there exists the unique b ∈ V1 such that (a, b) ∈ E1. If b = r1, then by (R2),
u = ϕ(a) = r2 – a contradiction. So b 6= r1 and by (R1), (ϕ(a), ϕ(b)) ∈ E2, hence
v = ϕ(b), since G2 is an in-tree and u = ϕ(a).

3. Assume that v ∈ V2 is not a source in G2. Then there exists u ∈ V2 such that
(u, v) ∈ E2. If u ∈ Im(ϕ), then by (2), v ∈ Im(ϕ). If u ∈ V2 \ Im(ϕ), then
by (R3), there exists w ∈ Im(ϕ) such that (u,w) ∈ E2, but G2 is an in-tree, thus
w = v and v ∈ Im(ϕ).

4. Fix any a ∈ V1 \ {r1}. Let (a0, . . . , am) be the unique path from a to r1 in G1. Then
by (R1) and (R2) (ϕ(a0), . . . , ϕ(am−2), r2) is the path from ϕ(a0) to r2 in G2 and this
path is unique, since G2 is an in-tree.

5. Fix any u ∈ Im(ϕ). We shall show that

IG′2(u) = ϕ

 ⋃
b ∈ ϕ−1(u)

IG1(b)


If v ∈ ϕ(IG1(b)) for some b ∈ ϕ−1(u), then v = ϕ(c) for some c ∈ V1 \ {r1} such
that (c, b) ∈ E1, so by (R1), (ϕ(c), ϕ(b)) ∈ E ′2, hence (v, u) ∈ E ′2, thus v ∈ IG′2(u).
On the other hand, if v ∈ IG′2(u), then (v, u) ∈ E ′2, moreover v = ϕ(c) for some
c ∈ V1 \ {r1}, so (c, b) ∈ E1 for some b ∈ V1. Note that b 6= r1, otherwise
by (R2), v = ϕ(c) = r2 - a contradiction, since (v, u) ∈ E ′2. Therefore by (R1),
(ϕ(c), ϕ(b)) ∈ E ′2, thus (v, ϕ(b)) ∈ E ′2, so ϕ(b) = u, since G2 is an in-tree, hence
v = ϕ(c), c ∈ IG1(b) and b ∈ ϕ−1(u).
Therefore we have

in degG′2(u) = #IG′2(u) ≤ #
⋃

b ∈ ϕ−1(u)

IG1(b)

≤
∑

b ∈ ϕ−1(u)

#IG1(b) =
∑

b ∈ ϕ−1(u)

in degG1(b)

6. Fix any u ∈ Im(ϕ). We shall prove that

Imp IG′2(u) ⊆ ϕ

 ⋃
b∈ϕ−1(u)

Imp IG1(b)

 .

Assume that v ∈ Imp IG′2(u). Then (v, u) ∈ E ′2 and there exists w ∈ Im(ϕ) such
that (w, v) ∈ E ′2, thus there exist d, c ∈ V1 \ {r1} and b ∈ V1 such that w = ϕ(d),
(d, c) ∈ E1 and (c, b) ∈ E1. Note that b 6= r1, otherwise by (R2), ϕ(c) = r2, but by
(R1), (w,ϕ(c)) ∈ E ′2, hence ϕ(c) = v and (v, u) ∈ E ′2. Therefore by (R1) and fact
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that G′2 is an in-tree, ϕ(b) = u, v = ϕ(c) and c ∈ Imp IG1(b). So we obtain:

imp in degG′2(u) = #Imp IG′2(u)

≤ #ϕ

 ⋃
b∈ϕ−1(u)

Imp IG1(b)

 ≤ #
⋃

b∈ϕ−1(u)

Imp IG1(b)

≤
∑

b∈ϕ−1(u)

#Imp IG1(b) =
∑

b∈ϕ−1(u)

imp in degG1(b)

7. Fix any a ∈ V1 \ {r1} and assume that Imp I(a) = {b1, . . . , bm}. Then there exist
c1, . . . , cm ∈ V1 \ {r1} such that (ci, bi) ∈ E1 for all i ∈ {1, . . . ,m}, so by (R1),
(ϕ(ci), ϕ(bi)) ∈ E ′2 and (ϕ(bi), ϕ(a)) ∈ E ′2 for all i ∈ {1, . . . ,m}. Moreover by (R4),
#{ϕ(c1), . . . , ϕ(cm)} = m. Therefore we have:

imp in degG1(a) = #Imp I(a) = m = #{ϕ(c1), . . . , ϕ(cm)}

≤ #
⋃

u ∈ Imp I(ϕ(a))

IG′2(u) ≤
∑

u ∈ Imp I(ϕ(a))

in degG′2(u)

8. Fix any a, b ∈ V1 \ {r1} and let (am, am−1, . . . , a1, a0) be the unique path in
G1 from a to r1 and (bn, . . . , b1, b0) be the unique path in G1 from b to r1. Then
by (R1) and (R2), (ϕ(am), . . . , ϕ(a1)) is the unique path in G2 from ϕ(a) to r2 and
(ϕ(bn), . . . , ϕ(b1)) is the unique path in G2 from ϕ(b) to r2. Suppose that ak = bk =
FCD(a, b). Then ai 6= bj for all i ∈ {k + 1, . . . ,m} and j ∈ {k + 1, . . . , n}. So
by (R4), ϕ(ai) 6= ϕ(bj) for all i ∈ {k + 2, . . . ,m} and j ∈ {k + 2, . . . , n}, thus
FCD(ϕ(a), ϕ(b)) = ϕ(ak) and levG2(FCD(ϕ(a), ϕ(b))) = k− 1 or FCD(ϕ(a), ϕ(b)) =
ϕ(ak+1) and levG2(FCD(ϕ(a), ϕ(b))) = k.

9. Assume that a ∈ V1 \ {r1} is a maximal or balanced source and (u, ϕ(a)) ∈ E2.
Then there exists b′ ∈ V1 such that (a, b′) ∈ E1. Moreover levG1(a) ≥ 2 and by
(4), levG2(ϕ(a)) ≥ 1 and thus levG2(u) ≥ 2. Suppose that u ∈ Im(ϕ), then u = ϕ(e)
for some e ∈ V1 \ {r1}. Thus (e, f) ∈ E1 for some f ∈ V1 and f 6= r1,
otherwise by (R2), u = ϕ(e) = r2 and (u, ϕ(a)) ∈ E2 – a contradiction. Therefore
(f, g) ∈ E1 for some g ∈ V1 and by (R1), (u, ϕ(f)) ∈ E2, so ϕ(f) = ϕ(a), since G2

is an in-tree. Hence by (R4), g = b′ and a is dominated – a contradiction. Therefore
u ∈ V2 \ Im(ϕ) and by (3), u is a source in G2.

Suppose that u is dominated. Then there exist s, t ∈ V2 such that (s, t), (t, ϕ(a)) ∈ E2.
Then by (3), t ∈ Im(ϕ), since t is not a source in G2. Thus t = ϕ(d) for some
d ∈ V1 \ {r1} and (d, c) ∈ E1 for some c ∈ V1. Note that c 6= r1, otherwise by
(R2), t = ϕ(d) = r2 and (t, ϕ(a)) ∈ E2 – a contradiction. So there exists b ∈ V1
such that (c, b) ∈ E1 and by (R1), (t, ϕ(c)) ∈ E2, thus ϕ(c) = ϕ(a), since G2 is an
in-tree. Therefore by (R4), b = b′ and a is dominated – a contradiction.

The following theorem enables us to determine whether an in-tree is a replica of another
in-tree through finding an injective mapping between some subsets of sources of these in-
trees.
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Theorem 3.2. Let G1 = (V1, E1) and G2 = (V2, E2) be nontrivial in-trees with roots r1
and r2, respectively. Let Si be the basis of Gi, M

i be the set of all maximal sources in Si

and Bi be the family of all maximal balanced sets included in Si for i = 1, 2. Then G2 is a
replica of G1 if and only if there exist functions s(i) : Bi → Si such that s(i)(B) ∈ B for all
B ∈ Bi and i = 1, 2, there exist sets Sdux ⊆ S1 and Scomes ⊆ S2 such that #Sdux = #Scomes,
M1 ∪ s(1)(B1) ⊆ Sdux and M2 ∪ s(2)(B2) ⊆ Scomes, there exists an injection ψ : Sdux → Scomes
such that:

∀a ∈ Sdux0 ≤levG1(a)− levG2(ψ(a)) ≤ 1 (1)

∀a,b ∈ Sdux0 ≤levG1(FCD(a, b))− levG2

(
FCD

(
ψ(a), ψ(b)

))
≤ 1. (2)

Terms dux and comes come from Theory of Music and make a reference to the necessary
parts of a fugue: Subject and Answer.

Proof. (=⇒)
Assume that ϕ : V1 \ {r1} → V2 satisfies conditions (R1)–(R4).
For each B ∈ B1 define s(1) : B1 → S1 in the following way:

1. if ϕ(a) ∈ S2 for all a ∈ B, then choose a ∈ B and put s(1)(B) := a;

2. if ϕ(a) /∈ S2 for some a ∈ B, then choose such a ∈ B that ϕ(a) /∈ S2 and put
s(1)(B) := a.

Put Sdux := M1 ∪ s(1)(B1), Scomes := ∅, s(2) := ∅ and ψ := ∅. For each a ∈ Sdux modify
ψ, s(2) and Scomes as follows:

1. if ϕ(a) ∈ S2, then put ψ := ψ ∪ {(a, ϕ(a))},
Scomes := Scomes ∪ {ϕ(a)}; if additionally ϕ(a) ∈ B for some B ∈ B2, then put
s(2) := s(2) ∪ {(B,ϕ(a))}

2. if ϕ(a) /∈ S2, then choose u ∈ V2 such that (u, ϕ(a)) ∈ E2 and put ψ := ψ ∪ {(a, u)},
Scomes := Scomes ∪ {u}. Note that by (9) from Proposition 3.2, such u ∈ V2 \ Im(ϕ)
and it is maximal or balanced source, so if u ∈ B ∈ B2, then put s(2) := s(2) ∪ {(B, u)}.

We shall show that ψ is an injection:

• Assume that a, b ∈ Sdux and ϕ(a), ϕ(b) ∈ S2. Then ψ(a) = ϕ(a), ψ(b) = ϕ(b),
moreover (a, a1) ∈ E1 and (b, b1) ∈ E1 for some a1, b1 ∈ V1 \ {r1}, since
levG1(a) ≥ 2 and levG1(b) ≥ 2. Suppose that ϕ(a) = ϕ(b), then by (R4), a1 = b1, so
there exists B ∈ B1 such that a, b ∈ B, so a = b = s(1)(B), since Sdux ∩ B = s(1)(B)
for each B ∈ B1.

• Assume that a, b ∈ Sdux, ϕ(a) ∈ S2 and ϕ(b) /∈ S2. Then by definition of ψ,
ψ(a) = ϕ(a) 6= ψ(b) ∈ V2 \ Im(ϕ).

• Assume that a, b ∈ Sdux and ϕ(a), ϕ(b) /∈ S2. Then (ψ(a), ϕ(a)) ∈ E2 and
(ψ(b), ϕ(b)) ∈ E2. Suppose that ψ(a) = ψ(b). Then ϕ(a) = ϕ(b), since G2 is an
in-tree, and (a, a1), (b, b1) ∈ E1 for some a1, b1 ∈ V1, so by (R4), a1 = b1, thus
a = b = s(1)(B) for some B ∈ B1.
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Now we have guaranteed that M1 ∪ s(1)(B1) ⊆ Sdux but not necessary M2 ∪ s(2)(B2) ⊆
Scomes. We shall show that if u ∈ M2 \ Scomes or there exists B ∈ B2 such that u ∈ B and
B ∩ Scomes = ∅, then u ∈ V2 \ Im(ϕ) and there exists a ∈ S1 such that a is dominated
or balanced and (u, ϕ(a)) ∈ E2:
Assume that u ∈ M2 \ Scomes or there exists B ∈ B2 such that u ∈ B and B∩Scomes = ∅.

• Suppose that u = ϕ(a) for some source a ∈ V1 \ {r1} (a is a source, since ϕ(a) is a
source). Then a /∈ Sdux, since u /∈ Scomes. Moreover a can not be trivial, since otherwise
by (R2), u = ϕ(a) = r2. Of course a is not maximal, since M1 ⊆ Sdux. Suppose that
a ∈ B for some B ∈ B1. Then (a, b), (s(1)(B), b) for some b ∈ V1 \ {r1}. Thus by
(R1), if ψ(s(1)(B)) is trivial, then u = ϕ(a) is trivial – a contradiction, if ψ(s(1)(B))
is maximal, then u is dominated – a contradiction, if ψ(s(1)(B)) is balanced, then u
is dominated or balanced and u ∈ B such that B ∩ Scomes 6= ∅ – a contradiction,
if ψ(s(1)(B)) is dominated, then u is also dominated – contradiction. Therefore a is
dominated. So there exist b, c, d ∈ V1 \ {r1} such that (a, d),(b, c),(c, d) ∈ E1.
Thus by (R1), (u, ϕ(d)),(ϕ(b), ϕ(c)),(ϕ(c), ϕ(d)) ∈ E2, so u is dominated in G2 - a
contradiction. Therefore u ∈ V2 \ Im(ϕ) and by (3) from Proposition 3.2, u is a
source in G2.

• By (R3), there exists a ∈ V1 \ {r1} such that (u, ϕ(a)) ∈ E2. Suppose that a is
not a source. Then there exists b ∈ V1 \ {r1} such that (b, a) ∈ E1, so by (R1),
(ϕ(b), ϕ(a)) ∈ E2, thus u is not maximal, hence u must be balanced. Note that b is
a nontrivial source, since if b were not a source, then u would be dominated, moreover
b is not trivial, since a ∈ V1 \ {r1}. Moreover b is not dominated, since otherwise
there would exist c, d ∈ V1 \ {r1} such that (d, c), (c, a) ∈ E1, and by (R1), u would
be dominated. So b is maximal or balanced. If b is maximal, put b′ := b, otherwise
put b′ := s(1)(B), where b ∈ B ∈ B1. Note also that ϕ(b′) is a source in G2, since
otherwise u would be dominated, so by definition of Scomes, ϕ(b′) ∈ Scomes, thus there
exists B ∈ B2 such that u ∈ B and ϕ(b′) ∈ B ∩ Scomes - a contradiction.

• Therefore (u, ϕ(a)) ∈ E2 and a ∈ V1 \ {r1} is a source in G1. Of course a can not
be trivial, since otherwise ϕ(a) = r2, but levG2(u) ≥ 2 as u is maximal or balanced.
Suppose that a is maximal, then by definition of Scomes there exists v ∈ Scomes such
that (v, ϕ(a)) ∈ E2, moreover v is balanced, hence there exists B ∈ B2 such that
u, v ∈ B, thus u ∈ B and v ∈ B∩Scomes - a contradiction. Therefore a is dominated
or balanced.

Let M0 := M2 \ Scomes and B0 := ∅. For each u ∈ M2 \ Scomes choose a ∈ S1 such that
(u, ϕ(a)) ∈ E2 and modify Sdux, Scomes and ψ in the following way: put Sdux := Sdux ∪ {a},
Scomes := Scomes ∪ {u} and ψ := ψ ∪ {(a, u)}. For each B ∈ B2 such that B ∩ Scomes = ∅
choose u ∈ B and a ∈ S1 such that (u, ϕ(a)) ∈ E2 and modify B0, Sdux, Scomes, ψ
and s(2) as follows: put B0 := B0 ∪ {u}, Sdux := Sdux ∪ {a}, Scomes := Scomes ∪ {u},
ψ := ψ ∪ {(a, u)} and s(2) := s(2) ∪ {(B, u)}.

We shall show that ψ remains still an injection. After above modifications it suffices to
show that ψ is a function. Suppose that for some a ∈ S1 there exist u, v ∈ M0 ∪ B0 such
that (a, u),(a, v) ∈ ψ. Then (u, ϕ(a)),(v, ϕ(a)) ∈ E2, so u, v ∈ B0. Moreover, u, v ∈ B
for some B ∈ B2, thus u = v, since B ∩ Scomes = s(2)(B) for each B ∈ B2.
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By definition of ψ, ψ(a) = ϕ(a) or (ψ(a), ϕ(a)) ∈ E2 for each a ∈ Sdux, so 0 ≤
levG2(ψ(a))− levG2(ϕ(a)) ≤ 1, but by (4) from Proposition 3.2,
levG2(ϕ(a)) = levG1(a) − 1, thus 0 ≤ levG1(a) − levG2(ψ(a)) ≤ 1 for each a ∈ Sdux.
For the same reason, FCD(ψ(a), ψ(b)) = FCD(ϕ(a), ϕ(b)), so by (8) from Proposition 3.2,
0 ≤ levG1(FCD(a, b))− levG2(FCD(ψ(a), ψ(b))) ≤ 1 for all a, b ∈ Sdux.

(⇐=)
Assume that there exist functions s(i) : Bi → Si such that s(i)(B) ∈ B for all B ∈ Bi

and i = 1, 2, there exist sets Sdux ⊆ S1 and Scomes ⊆ S2 such that #Sdux = #Scomes,
M1 ∪ s(1)(B1) ⊆ Sdux and M2 ∪ s(2)(B2) ⊆ Scomes, there exists an injection ψ : Sdux → Scomes
satisfying conditions (1) and (2).

We shall show that there exists a function ϕ satisfying conditions (R1)-(R4). Define
ϕ : V1 \ {r1} → V2 in the following way:

• For each a ∈ Sdux put:

ϕ(a) :=

{
ψ(a), if levG2(ψ(a)) = levG1(a)− 1
v, if levG2(ψ(a)) = levG1(a) and ψ(a) dominates v in G2

Let (am, am−1, . . . , a0) be the unique path in G1 from a to r1 and
(um−1, . . . , u0) be the unique path in G2 from ϕ(a) to r2. For each i ∈ {1, . . . ,m− 1}
put ϕ(ai) := ui−1.

• For each trivial a ∈ S1 \ Sdux put ϕ(a) := r2.

• For each dominated a ∈ S1 \ Sdux there exists c ∈ M1 ∪ s(1)(B1) such that a
dominates a vertex belonging to the unique path (cm, cm−1, . . . , c0) from c to r1 in G1,
therefore (a, ci) ∈ E1 for some i ∈ {1, . . . ,m−2}. For each dominated a ∈ S1 \ Sdux
choose such c and put ϕ(a) := ϕ(ci+1), which is determined in the first step.

• For each B ∈ B1 and a ∈ B \ Sdux put ϕ(a) := ϕ(s(1)(B)).

Firstly, we shall prove that the relation ϕ is defined correctly, i.e., ϕ is actually a function.
Assume that a, b ∈ Sdux, c ∈ V1 \ S1. Let (am, . . . , a0) be the unique path from a to r1 in
G1, (bn, . . . , b0) be the unique path from b to r1 in G1, (um−1, . . . , u0) be the unique path
from ϕ(a) to r2 in G2, and (vm−1, . . . , v0) be the unique path from ϕ(b) to r2 in G2. Assume
that k = levG1(c) ≤ FCD(a, b) = l < min{m,n}. Then ai = bi for all i ∈ {0, . . . , l}. By
(2), l − 1 ≤ levG2

(
FCD(ψ(a), ψ(b))

)
≤ l. So ui = vi for all i ∈ {0, . . . , l − 1}. Hence in

particular, ϕ(ak) = uk−1 = vk−1 = ϕ(bk). Thus the value ϕ(c) does not depend on the choice
of a ∈ Sdux such that c belongs to the unique path from a to r1.

We shall prove that ϕ satisfies conditions (R1)–(R4):

(R1) Fix any a, b ∈ V1 \ {r1} and assume that (a, b) ∈ E1. Then there exists c ∈ S1

such that a = cj for some j ∈ {2, . . . ,m}, where (cm, . . . , c0) is the unique path from
c to r1 in G1. Let (um−1, . . . , u0) be the unique path from ϕ(c) to r2 in G2. Then by
definition of ϕ, ϕ(ci) = ui−1 for all i ∈ {1 . . . ,m} and (ϕ(a), ϕ(b)) = (ϕ(cj), ϕ(cj−1)) =
(uj−1, uj−2) ∈ E2.

(R2) By definition, ϕ satisfies (R2).
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(R3) Fix any v ∈ V2 \ Im(ϕ). Suppose that v is not a source in G2. Then there exists
u ∈ Scomes such that v = ui for some i ∈ {1, . . . ,m − 1} where (um, . . . , u0) is the
unique path from u to r2 in G2. Let a := ψ−1(u) and (an, . . . , a0) be the unique path
from a to r1 in G1. Then a ∈ Sdux, and by (1), 0 ≤ n −m ≤ 1. By definition of ϕ,
ϕ(ai) = ui−1 for i ∈ {1, . . . , n}. Thus v ∈ Im(ϕ) – a contradiction. Therefore v is a
source in G2.

Firstly assume that v ∈ Scomes. Then a = ψ−1(v) ∈ Sdux and by definition of ϕ,
(v, ϕ(a)) ∈ E2.

Now assume that v ∈ S2 \ Scomes. If v is trivial, then (v, ϕ(a)) ∈ E2 for each
a ∈ V1 whose level equals 1. If v is a dominated source, then there exists u ∈ Scomes
such that (v, ui) ∈ E2 for some i ∈ {1, . . . ,m− 2}, where (um, . . . , u0) is the unique
path from u to r2 in G2. Let a := ψ−1(u) and (an, . . . , a0) be the unique path from a to
r1 in G1. Then a ∈ Sdux, and by (1), 0 ≤ n−m ≤ 1. By definition of ϕ, ϕ(aj) = uj−1
for j ∈ {1, . . . , n}. Thus (v, ϕ(ai+1)). The last possibility is that v is balanced. Then
v ∈ B for some B ∈ B2. Let u := s(2)(B) and (um, . . . , u0) be the unique path from
u to r2 in G2. Then u ∈ Scomes, a := ψ−1(u) ∈ Sdux and (v, um−1) ∈ E2. Let
(an, . . . , a0) be the unique path from a to r1 inG1, then by definition of ϕ, 0 ≤ n−m ≤ 1
and ϕ(aj) = uj−1 for j ∈ {1, . . . , n}, thus (v, ϕ(am)) ∈ E2.

(R4) Assume that (a1, b1) ∈ E1, (a2, b2) ∈ E1 and b1 6= b2. Without loss of generality we can
assume that k = levG1(b1) ≤ levG1(b2) = l. Note that FCDG1(b1, b2) = k if and only if
there exists c ∈ Sdux such that both b1 and b2 belong to the unique path from c to r1
in G1. Therefore we shall consider two cases:

(a) Assume that FCDG1(b1, b2) = k. Let c ∈ Sdux be such that both b1 and b2 belong
to the unique path (cm, . . . , c0) from c to r1 in G1. Then b1 = ck, b2 = cl and
0 ≤ k < l < m, since b1 6= b2. Let (um−1, . . . , u0) be the unique path from ϕ(c) to
r2 in G2. Then by definition of ϕ, ϕ(a1) = ϕ(ck+1) = uk 6= ul = ϕ(cl+1) = ϕ(a2).

(b) Assume that FCDG1(b1, b2) = p < k. Let c, d ∈ Sdux be such that b1 belongs to the
unique path (cm, . . . , c0) from c to r1 and b2 belongs to the unique path (dn, . . . , d0)
from d to r1 in G1. Then b1 = ck and b2 = dl. Let (um−1, . . . , u0) be the unique
path from ϕ(c) to r2 and (vn−1, . . . , v0) be the unique path from ϕ(d) to r2 in G2.
Then by definition of ϕ, ϕ(a1) = ϕ(ck+1) = uk and ϕ(a2) = ϕ(dl+1) = vl. Suppose
that ϕ(a1) = ϕ(a2). Then k = l and ui = vi for all i ≤ k. So FCDG2(ψ(c), ψ(d)) ≥
k > p. On the other hand, FCDG1(c, d) = FCDG1(b1, b2) = p and by (2),
FCDG2(ψ(c), ψ(d)) ≤ p – a contradiction.

4 The Main Results

Now we have tools to settle the problem of the existence of a square root of a component of
a functional graph or the union of containing cycles of the same length two components of a
functional graph. Together with Theorem 2.1 the following results allow solving the problem
of the existence of a square root of a functional graph.
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4.1 Existence of a Square Root of a Component of a Functional
Graph

Theorem 4.1. Let G = (V,E) be a component of a functional graph, containing a cycle
ā := (a0, . . . , ak−1) and Gi = (Vi, Ei) denote the in-tree generated by element ai of the cycle ā
in graph G, for i ∈ {0, . . . , k−1}. Assume τ : {0, . . . , k−1} → {0, . . . , k−1} is the function
defined as follows: τ(i) :=

(
i+ k−1

2

)
mod k for an odd number k. Then there exists a

square root of G if and only if k is an odd number and there exists set I ⊂ {0, . . . , k − 1}
such that the following conditions are satisfied:

1. there exists a subgraph GD
i = (V D

i , E
D
i ) of Gi such that GD

i is a strictly nontrivial
in-tree with the root ai for all i ∈ I;

2. there exists a subgraph GC
τ(i) = (V C

τ(i), E
D
τ(i)) of Gτ(i) such that GC

τ(i) is a nontrivial in-tree

with the root aτ(i) and GC
τ(i) is a replica of GD

i for all i ∈ I;

3. V D
i ∩ V C

i ⊆ {ai} for all i ∈ I ∩ τ(I);

4. if t ∈ V \
⋃
i ∈ I

(
V D
i ∪ V C

τ(i)

)
, then t is a trivial source in Gi for some i ∈ Zi or

t ∈ {a0, . . . , ak−1} \
⋃
i ∈ I{ai, aτ(i)}.

Proof. Let k be an odd number and Zk := {0, . . . , k− 1}. Define function σ : Z→ Zk in the
following way: σ(i) :=

(
i · k+1

2

)
mod k for all i ∈ Z. Note that:

1. τ is an injection;

2. τ−1(j) =
(
j + k+1

2

)
mod k;

3. σ(i+ k) = σ(i) for all i ∈ Z;

4. σ|Zk is an injection;

5. σ(i) :=

{
i
2

if i is an even number
k+i
2

if i is an odd number
, for all i ∈ Zk;

6. σ−1(j) :=

{
2j if j ≤ k−1

2

2j − k if j ≥ k+1
2

, for all j ∈ Zk;

7. τ(σ(i+ 1)) = σ(i) for all i ∈ Z.

(=⇒)
Assume that G′ = (V,E ′) is a square root of G. By Proposition 2.1, k is an odd number

and G′ is a functional graph containing the cycle â := (aσ(0), . . . , aσ(k−1)). Note that G′ is
connected, since all vertices are connected in G, so by definition of a square root, they are
also connected in G′. Let G′i = (V ′i , E

′
i) be the in-tree generated by element aσ(i) of the cycle

â in graph G′, for i ∈ {0, . . . , k − 1}.
Define sets:

J := {j ∈ Zk : ∃v ∈ V ′j
levG′j(v) ≥ 3}
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and I := {σ(j + 1): j ∈ J} = τ−1(σ(J)).
Suppose that J = ∅. Then I = ∅. Moreover, levG′j(v) ≤ 2 for all v ∈ V ′j and all

j ∈ Zk, hence each vertex v ∈ V is a trivial source in Gj for some j ∈ Zk or it belongs to
{a0, . . . , ak−1}. So I satisfies conditions 1–4.

Assume that J 6= ∅. For each j ∈ J let G′′j = (V ′′j , E
′′
j ) be the induced subgraph of

G′j on the set of vertices whose level in G′j is at least equal to 3 or for which there exists an
ancestor whose level in G′j is at least equal to 3, and let graph Hj := (Wj, Fj) be defined
as follows: Wj := V ′′j ∪ {aσ(j+1)} and Fj := E ′′j ∪ {(aσ(j), aσ(j+1))}. Note that G′′j is a
connected subgraph of G′ and an in-tree with the root aσ(j) as well as Hj is also a connected
subgraph of G′ and an in-tree with the root aσ(j+1). Let GD

σ(j+1) = (V D
σ(j+1), E

D
σ(j+1)) be the

induced subgraph of Gσ(j+1) on the set Vσ(j+1)∩Wj and GC
σ(j) = (V C

σ(j), E
C
σ(j)) be the induced

subgraph of Gσ(j) on the set Vσ(j) ∩ Wj for all j ∈ J . Note that GD
σ(j+1) is a strictly

nontrivial in-tree with the root aσ(j+1) for all j ∈ J : Fix a vertex v ∈ Wj such that
levHj(v) = m ≥ 4 and let (pm, . . . , p1, p0) be the unique path from v to aσ(j+1) in Hj. Then
by definition of the in-tree generated by element of cycle in G′ and definition of a square
root of graph, p1 = aσ(j), p2 ∈ Gσ(j+1), p3 ∈ Gσ(j), p4 ∈ Gσ(j+1) and (p4, p2, p0) is the
unique path in Gσ(j+1) from p4 to aσ(j+1), thus GD

σ(j+1) is strictly nontrivial in-tree with the

root aσ(j+1). Similarly (p3, p1) is the unique path in Gσ(j) from p3 to aσ(j) and thus GC
σ(j)

is a nontrivial in-tree with the root aσ(j). By definition of coil and square root of a graph,
Hj ∈ Coils(GD

σ(j+1), G
C
σ(j)), so by Theorem 3.1, GC

τ(i) is a replica of GD
i , where i := σ(j + 1)

for all j ∈ J .
Assume that i ∈ I ∩ τ(I). Then i = σ(j + 1) = σ(l) for some j, l ∈ J . Suppose that

v ∈ V D
σ(j+1) ∩ V C

σ(l) and v 6= ai. Then v ∈ G′j ∩G′l, hence j = l, since G′j ∩G′l = ∅ for all

j 6= l, therefore σ(j + 1) = σ(j) – a contradiction.
By definition of coil, V D

σ(j+1) ∪ V C
σ(j) = Wj for all j ∈ J , so if

t ∈ V \
⋃
j ∈ J

(
V D
σ(j+1) ∪ V C

σ(j)

)
,

then levG′j(t) ≤ 2 for some j ∈ Zk, so t is a trivial source in Gi for some i ∈ Zk or

t ∈ {a0, . . . , ak−1} \
⋃
j ∈ J{aσ(j+1), aσ(j)}.

(⇐=)
Assume that k is an odd number and there exists set I ⊂ {0, . . . , k − 1} such that the

following conditions are satisfied:

1. there exists a subgraph GD
i = (V D

i , E
D
i ) of Gi such that GD

i is a strictly nontrivial
in-tree with the root ai for all i ∈ I;

2. there exists a subgraph GC
τ(i) = (V C

τ(i), E
D
τ(i)) of Gτ(i) such that GC

τ(i) is a nontrivial

in-tree with the root aτ(i) and GC
τ(i) is a replica of GD

i for all i ∈ I;

3. V D
i ∩ V C

i ⊆ {ai} for all i ∈ I ∩ τ(I);

4. if t ∈ V \
⋃
i ∈ I

(
V D
i ∪ V C

τ(i)

)
, then t is a trivial source in Gi for some i ∈ Zi or

t ∈ {a0, . . . , ak−1} \
⋃
i ∈ I{ai, aτ(i)}.
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By properties (1) and (2) and Theorem 3.1, for each i ∈ I there exists a set of edges
E ′i ⊆ V D

i × V C
τ(i) ∪ V C

τ(i) × V D
i such that

Hi := (V D
i ∪ V C

τ(i), E
′
i) ∈ Coils(GD

i , G
C
τ(i)). By property (3), if i ∈ I ∩ τ(I), then in-trees

Hi and Hτ−1(i) have only one common vertex ai. Otherwise, if i, j ∈ I, j 6= i, j 6= τ(i)
and i 6= τ(j), then sets of vertices of graphs Hi and Hj are disjoint. Let Ti denote the set

of all trivial sources in Gi belonging to the set V \
⋃
i ∈ I

(
V D
i ∪ V C

τ(i)

)
for i ∈ Zk. By (4),

V = {a0, . . . , ak−1} ∪
⋃
i ∈ I

(
V D
i ∪ V C

τ(i)

)
∪

⋃
i∈Zk

Ti.

Define set

E ′ := {(aσ(i), aσ(i+1)) : i ∈ Zk} ∪
⋃
i ∈ I

E ′i ∪
⋃
i∈Zk

{(t, aτ(i)) : t ∈ Ti}

We shall show that G′ = (V,E ′) is a square root of graph G: G′ is a functional graph:

• If v = ai for some i ∈ Zk, then by definition of E ′ and properties of σ and τ ,
(ai, aτ−1(i)) ∈ E ′. It may happen that i ∈ τ(I). Then by definition of coil and
E ′, (ai, aτ−1(i)) ∈ E ′τ−1(i) ⊆ E ′. Either way, if (ai, x) ∈ E ′ then x = aτ−1(i).

• If v ∈ V D
i ∪ V C

τ(i) \ {ai, aτ(i)} for some i ∈ I, then there exists exactly one

w ∈ V D
i ∪ V C

τ(i) such that (v, w) ∈ E ′i ⊆ E ′, since Hi as a coil is an in-tree and by

property (3), v /∈ V D
j ∪ V C

τ(j) for all j ∈ I \ {i}.

• At last if v ∈ V \
⋃
i ∈ I

(
V D
i ∪ V C

τ(i)

)
and v is not element of the cycle ā, then

v ∈ Ti for exactly one i ∈ Zk and by definition of E ′, (v, aτ(i)) ∈ E ′.

Fix any u, v ∈ V . We shall prove that (u, v) ∈ E iff there exists w ∈ V such that
(u,w) ∈ E ′ and (w, v) ∈ E ′:

• Assume that u is an element of the cycle ā. Then u = ai for some i ∈ Zk.

If (u, v) ∈ E, then v = a(i+1) mod k. Moreover i = σ(j), where j = σ−1(i),
(ai, aσ(j+1)) ∈ E ′ and (aσ(j+1), aσ(j+2)) ∈ E ′. Note that σ(j + 1) = τ−1(i) and

σ(j + 2) =

(
j
k + 1

2
+ k + 1

)
mod k =

(
j
k + 1

2
+ 1

)
mod k

=

((
j
k + 1

2

)
mod k + 1

)
mod k = (i+ 1) mod k.

Therefore (u, aτ−1(i)) ∈ E ′ and (aτ−1(i), v) ∈ E ′.

If (u,w),(w, v) ∈ E ′, then w = aσ(j+1), v = aσ(j+2), where j = σ−1(i), so (u, v) ∈ E,
since σ(j + 2) = (i+ 1) mod k.
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• Assume that u ∈ V D
i ∪ V C

τ(i) \ {ai, aτ(i)} for some i ∈ I.

If (u, v) ∈ E, then v ∈ V D
i ∪ V C

τ(i) and by definition of the coil Hi, there exists

w ∈ V D
i ∪ V C

τ(i) such that (u,w),(w, v) ∈ E ′i ⊆ E ′.

If (u,w), (w, v) ∈ E ′, then by definition of E ′, (u,w), (w, v) ∈ E ′i, hence by definition
of Hi, (u, v) ∈ ED

i ⊆ E or (u, v) ∈ EC
τ(i) ⊂ E.

• Assume that u ∈ Ti for some i ∈ Zk. Then (u, ai) ∈ E and (u, aτ(i)) ∈ E ′ as well
as (aτ(i), ai) ∈ E ′, since if τ(i) = σ(j), then τ(i) = τ(σ(j + 1)), hence i = σ(j + 1),
since τ is an injection.

4.2 Existence of a Square Root of the Union of Two Components
of a Functional Graph

Theorem 4.2. Let G1 = (V 1, E1) and G2 = (V 2, E2) be components of a functional graph,
containing cycles a1 = (a10, . . . , a

1
k−1) and a2 = (a20, . . . , a

2
k−1), respectively, and let Gi

j =
(V i

j , E
i
j) denote the in-tree generated by element aij of the cycle ai in graph Gi for i ∈ {1, 2}

and j ∈ Zk. For each s ∈ Zk define functions: τ
(1)
s : Zk → Zk, τ

(2)
s : Zk → Zk and σ : {1, 2} →

{1, 2} as follows:

τ (1)s (j) := (j − 1− s) mod k

τ (2)s (j) := (j + s) mod k

σ(i) := 3− i

for all j ∈ Zk and i ∈ {1, 2}. Then there exists a connected square root G′ = (V,E ′) of graph
G = (V 1 ∪ V 2, E1 ∪ E2) if and only if there exist s ∈ Zk and subsets I1, I2 ⊆ Zk such that
the following conditions are satisfied:

1. there exists a subgraph Gi,D
j = (V i,D

j , Ei,D
j ) of graph Gi

j such that Gi,D
j is a strictly

nontrivial in-tree with the root aij for all j ∈ I i and for i ∈ {1, 2};

2. there exists a subgraph Gi,C

τ
(i)
s (j)

= (V i,C

τ
(i)
s (j)

, Ei,C

τ
(i)
s (j)

) of graph Gi

τ
(i)
s (j)

such that Gi,C

τ (i)(j)
is a

nontrivial in-tree with the root ai
τ
(i)
s (j)

and Gi,C

τ
(i)
s (j)

is a replica of G
σ(i),D
j for all j ∈ Iσ(i)

and for i ∈ {1, 2};

3. V i,D
j ∩ V i,C

j ⊆ {aij} for all j ∈ I i ∩ τ (i)s (Iσ(i)) and for i ∈ {1, 2};

4. if t ∈ V \
[⋃

j ∈ I1

(
V 1,D
j ∪ V 2,C

τ
(2)
s (j)

)
∪
⋃
j ∈ I2

(
V 2,D
j ∪ V 1,C

τ
(1)
s (j)

)]
, then t is a

trivial source in Gi
j for some i ∈ {1, 2} and j ∈ Zk or t is an element of cycles a1 or

a2.

Remark 4.1. τ
(1)
t (j) = τ

(2)
s (j) and τ

(2)
t (j) = τ

(1)
s (j) for all s, j ∈ Zk and t = k − 1 − s.

Moreover τ
(1)
s and τ

(2)
s are injections for all s ∈ Zk and τ

(1)
s

−1
(j) = (j + 1 + s) mod k and

τ
(2)
s

−1
(j) = (j − s) mod k for all s, j ∈ Zk.
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Proof. (=⇒)
Assume that G′ = (V,E ′) is a square root of G = (V 1 ∪ V 2, E1 ∪ E2) and G′ contains

only one component.
We shall show that there exists s ∈ Zk such that (a2

τ
(2)
s (j)

, a1j) ∈ E ′ and (a1
τ
(1)
s (j)

, a2j) ∈ E ′

for all j ∈ Zk: Assume that (a10, b) ∈ E ′. Then b ∈ V 2, since otherwise b = a1k+1
2

and there

would have to exist two components in G′. Suppose that b /∈ a2. Then b ∈ G2
j for some

j ∈ Zk. Let (bm, . . . , b1, b0) be the unique path from b to a2j . Then (a1m mod k, a
2
j) ∈ E ′,

so (a10, a
2
(j+k−m) mod k) ∈ E ′ – a contradiction, since G′ is a functional graph. Therefore

(a10, a
2
p) for some p ∈ Zk.

Put s := (p − 1) mod k. 0 = τ
(1)
s (j) for j = τ

(1)
s

−1
(0) = p and τ

(2)
s (1) = p, so in fact

(a1
τ
(1)
s (p)

, a2p) ∈ E ′ and (a2
τ
(2)
s (0)

, a10) ∈ E ′, therefore (a2
τ
(2)
s (j)

, a1j) ∈ E ′ and (a1
τ
(1)
s (j)

, a2j) ∈ E ′

for all j ∈ Zk, since (a1
τ
(1)
s (j)

, a1
τ
(1)
s (j+1)

) ∈ E1 and (a2
τ
(2)
s (j)

, a2
τ
(2)
s (j+1)

) ∈ E2 for all j ∈ Zk.
Let G′ij = (V ′ij , E

′i
j ) be the in-tree generated by element aij in graph G′ for i ∈ {1, 2} and

j ∈ Zk. Define sets:

J i := {j ∈ Zk : ∃v ∈ V ′ij
levG′ij (v) ≥ 3}

I i := τ (σ(i))s

−1
(Jσ(i))

for i ∈ {1, 2} and j ∈ Zk.
Suppose that J1 = J2 = ∅. Then levG′ij (v) ≤ 2 for i ∈ {1, 2}, for all j ∈ Zk and all

v ∈ V ′ij . Therefore each vertex v ∈ V is a trivial source in Gi
j or it belongs to the cycle

ai for some i ∈ {1, 2} and j ∈ Zk.
Assume that J1 6= ∅ or J2 6= ∅. For each i ∈ {1, 2} and j ∈ J i, let G′′ij = (V ′′ij , E

′′i
j ) be

the induced subgraph of G′ij on the set of all vertices whose level in G′ij is at least equal to 3 or
for which there exists an ancestor whose level in G′ij is at least equal to 3, and let graph H i

j =

(W i
j , F

i
j ) be defined as follows: W i

j := V ′′ij ∪ {aσ(i)
τ
(i)
s

−1
(j)
} and F i

j := E ′′ij ∪ {(aij, a
σ(i)

τ
(i)
s

−1
(j)

)}.

Then G′′ij as a connected subgraph of G′ is an in-tree with the root aij and H i
j as connected

subgraph of G′ is also an in-tree with the root a
σ(i)

τ
(i)
s

−1
(j)

. Let G
σ(i),D

τ
(i)
s

−1
(j)

= (V
σ(i),D

τ
(i)
s

−1
(j)
, E

σ(i),D

τ
(i)
s

−1
(j)

)

be the induced subgraph of G
σ(i)

τ
(i)
s

−1
(j)

on the set W i
j ∩V

σ(i)

τ
(i)
s

−1
(j)

and Gi,C
j = (V i,C

j , Ei,C
j ) be the

induced subgraph of Gi
j on the set V i

j ∩W i
j for i ∈ {1, 2} and j ∈ J i. Then G

σ(i),D

τ
(i)
s

−1
(j)

is

a strictly nontrivial in-tree with the root a
σ(i)

τ
(i)
s

−1
(j)

, Gi,C
j is a nontrivial in-tree with the root

aij and by definition of a coil and the square root G′, H i
j ∈ Coils(G

σ(i),D

τ
(i)
s

−1
(j)
, Gi,C

j ), so by

Theorem 3.1, Gi,C
j is a replica of G

σ(i),D

τ
(i)
s

−1
(j)

for i ∈ {1, 2} and j ∈ J i.

Assume that j ∈ I i∩τ (i)s (Iσ(i)) for some i ∈ {1, 2}. Then V i,C
j ⊆ W i

j and V i,D
j ⊆ W

σ(i)

τ
σ(i)
s (j)

,

therefore V i,C
j ∩ V i,D

j ⊆ W i
j ∩W

σ(i)

τ
σ(i)
s (j)

= {aij}.

If t ∈ V \
[⋃

j ∈ I1

(
V 1,D
j ∪ V 2,C

τ
(2)
s (j)

)
∪
⋃
j ∈ I2

(
V 2,D
j ∪ V 1,C

τ
(1)
s (j)

)]
, then by definition

of coil, t ∈ V \
(⋃

j ∈ J1 W 1
j ∪

⋃
j ∈ J2 W 2

j

)
, so there exist i ∈ {1, 2} and j ∈ Zk such
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that levG′ij (t) ≤ 2, thus t is a trivial source in Gi
j for some i ∈ {1, 2} and j ∈ Zk or t is

element of cycles a1 or a2.
(⇐=)
Assume that there exist s ∈ Zk and subsets I1, I2 ⊆ Zk such that the following conditions

are satisfied:

1. there exists a subgraph Gi,D
j = (V i,D

j , Ei,D
j ) of graph Gi

j such that Gi,D
j is a strictly

nontrivial in-tree with the root aij for all j ∈ I i and for i ∈ {1, 2};

2. there exists a subgraph Gi,C

τ (i)(j)
= (V i,C

τ
(i)
s (j)

, V i,C

τ
(i)
s (j)

) of graph Gi

τ
(i)
s (j)

such that Gi,C

τ (i)(j)
is a

nontrivial in-tree with the root ai
τ
(i)
s (j)

and Gi,C

τ
(i)
s (j)

is a replica of G
σ(i),D
j for all j ∈ Iσ(i)

and for i ∈ {1, 2};

3. V i,D
j ∩ V i,C

j ⊆ {aij} for all j ∈ I i ∩ τ (i)s (Iσ(i)) and for i ∈ {1, 2};

4. if t ∈ V \
[⋃

j ∈ I1

(
V 1,D
j ∪ V 2,C

τ
(2)
s (j)

)
∪
⋃
j ∈ I2

(
V 2,D
j ∪ V 1,C

τ
(1)
s (j)

)]
, then t is a

trivial source in Gi
j for some i ∈ {1, 2} and j ∈ Zk or t is an element of cycles a1 or a2.

By properties (1), (2) and Theorem 3.1, for each j ∈ I i and i ∈ {1, 2} there ex-

ists a set of edges E ′ij ∈ V i,D
j × V

σ(i),C

τ
σ(i)
s (j)

∪ V
σ(i),C

τ
σ(i)
s (j)

× V i,D
j such that the graph H i

j =

(V i,D
j ∪ V

σ(i),C

τ
σ(i)
s (j)

, E ′ij ) ∈ Coils(Gi,D
j , G

σ(i),C

τ
σ(i)
s (j)

). By property (3), graphs H i
j and H

σ(i)

τ
(i)
s

−1
(j)

have one common vertex aij for j ∈ I i ∩ τ (i)s (Iσ(i)) and for i ∈ {1, 2}. If j1, j2 ∈ I i and
j1 6= j2, then the sets of vertices of graphs H i

j1
and H i

j2
are disjoint for i ∈ {1, 2}. Similarly

if j1 ∈ I i, j2 ∈ Iσ(i), j1 6= j2, j1 6= τ
(i)
s (j2) and j2 6= τ

(i)
s (j1), then the sets of vertices of

graphs H i
j1

and H i
j2

are also disjoint for i ∈ {1, 2}, since the sets of vertices of in-trees Gi1
j1

and Gi2
j2

are disjoint, if i1 6= i2 or j1 6= j2. Let T ij be the set of all trivial sources in Gi
j

which do not belong to the set
⋃
j ∈ I1

(
V 1,D
j ∪ V 2,C

τ
(2)
s (j)

)
∪
⋃
j ∈ I2

(
V 2,D
j ∪ V 1,C

τ
(1)
s (j)

)
for

all i ∈ {1, 2} and j ∈ Zk. By property (4),

V = {a10, . . . , a1k−1} ∪ {a20, . . . , a2k−1}

∪
⋃

j ∈ I1

(
V 1,D
j ∪ V 2,C

τ
(2)
s (j)

)
∪

⋃
j ∈ I2

(
V 2,D
j ∪ V 1,C

τ
(1)
s (j)

)
∪

⋃
i∈{1,2}
j∈Zk

T ij

Define

E ′ = {(ai
τ
(i)
s (j)

, a
σ(i)
j ) : i ∈ {1, 2}, j ∈ Zk}

∪
⋃

i∈{1,2}
j ∈ Ii

E ′ij ∪
⋃

i∈{1,2}
j∈Zk

{(t, aσ(i)
τ
σ(i)
s (j)

) : t ∈ T ij}.

It can be proved analogously like in the proof of Theorem 4.1 that G′ = (V 1 ∪ V 2, E ′) is a
square root of G.
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Figure 2: 4 components containing cycles of length 1

4.3 Discussion

Consider the following sequence

α = (146, 26, 142, 27, 78, 101, 44, 70, 75, 27, 18, 12, 147, 132, 94, 142, 29, 101, 68,

25, 56, 73, 52, 61, 114, 30, 46, 4, 29, 34, 88, 61, 111, 109, 44, 149, 57, 12, 7, 40, 1,

144, 36, 85, 31, 143, 63, 44, 51, 132, 83, 67, 109, 13, 121, 69, 76, 114, 101, 20, 121,

16, 124, 93, 103, 44, 15, 131, 134, 124, 71, 40, 1, 71, 46, 140, 40, 26, 61, 134, 116,

39, 29, 22, 44, 149, 56, 99, 63, 45, 30, 59, 131, 61, 51, 68, 11, 93, 93, 137, 69, 111,

134, 114, 39, 51, 52, 81, 20, 109, 99, 86, 63, 13, 101, 143, 68, 76, 147, 1, 40, 21,

77, 134, 31, 103, 132, 78, 44, 29, 93, 139, 20, 56, 110, 108, 102, 49, 39, 138, 120,

105, 146, 80, 52, 116, 26, 52, 143, 118)

and its functional graph G = (V,E) whose nine components are presented in figures 2 – 5.
We shall find a square root G′ of G using Theorems 3.2, 4.1 and 4.2.

Note that both the component with cycle 12 and the component containing cycle 71 from
figure 2 have a square root separately and there also exists a connected square root of these
two components. The greater in-tree generated by 40 in the fourth component (C4) contain-
ing cycle 40 is a replica of the greater in-tree generated by 29 in the third component (C3)
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Figure 3: 2 components containing cycles of length 2
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Figure 4: 2 components containing cycles of length 3
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Figure 5: Component containing a cycle of length 9

containing cycle 29, since 37, 150 are maximal sources in in−treeC3(29), 145, 23, 148, 107 are
balanced sources in in−treeC4(40), lev(150) = lev(37) = 8, lev(145) = lev(23) = lev(148) =
lev(107) = 7, lev(FCD(150, 37)) = lev(76) = 6 and lev(FCD(145, 23, 148, 107)) = lev(52) =
6, so the assumptions of Theorem 3.2 are satisfied. The smaller in-tree generated by 40 in
C4 has replicas in C3 in the form of the in-tree induced on the set {17, 29} or the in-tree
induced on the set {130, 29}.

In figure 3 the greater in-tree generated by 93 in the second component (C2) is a replica of
the greater in-tree generated by 44 in the first component (C1), since 62 is maximal source
and 50, 14, 127 are balanced sources in in − treeC1(44), 90, 100 are maximal sources in
in − treeC2(93), lev(62) = 6, lev(50) = 5, lev(90) = lev(100) = 5, lev(FCD(50, 62)) =
lev(39) = 2 and lev(FCD(90, 100)) = lev(99) = 1. Obviously the smaller in-tree generated
by 44 in C1 is a replica of the smaller in-tree generated by 131 in C2.

In figure 4 the in-tree generated by 146 in the second component (C2), has no replica
in the form of the in-tree generated by 116 in the same component. Similarly this in-
tree is not a replica of the in-tree generated by 143. Therefore in order to find a square
root of these two components from figure 4, denoted here by C1 and C2, we must use
Theorem 4.2 and determine their connected square root. We also use Theorem 3.2 to deduce
the form of this square root. Note that in − treeC1(56) has no replica in C2 and it is a
replica of in − treeC2(116), since 122 and 136 are maximal sources in in − treeC1(56) and
in−treeC2(116), respectively, lev(136) = 3 and lev(122) = 2. Therefore if a connected square
root of C1 and C2 exists, then its cycle has the following form (56, 116, 69, 143, 134, 146). So
in− treeC2(116) can not be a replica of in− treeC1(69). Note that in− treeC1(69) is a replica
of the induced subgraph C2({28, 4, 10, 27, 9, 75, 46, 143}) of in− treeC2(143), since 97, 92 are
maximal sources in in− treeC1(69), 28, 9 are maximal sources in in− treeC2(143), lev(97) =
4 = lev(28), lev(92) = lev(9) = 3, lev(FCD(28, 9)) = lev(46) = 1 and lev(FCD(97, 92)) =
lev(101) = 1. Moreover in − treeC1(69) can not be a replica of the induced subgraph
C2({112, 43, 86, 36, 149, 143}) of in−treeC2(143) since lev(97) = 4 > 3 = lev(43) = lev(112).
The induced subgraph C2({112, 43, 86, 36, 149, 143}) of in − treeC2(143) is a replica of the
induced subgraph C1({8, 47, 113, 89, 70, 63, 124, 134}) of in − treeC1(134), since 112, 43 are
maximal sources in in − treeC2(143), 8 is a maximal source and 47, 113, 89 are balanced
sources in in− treeC1(134), lev(112) = lev(43) = 3 = lev(8) = lev(47) = lev(113) = lev(89),
lev(FCD(8, 47)) = lev(124) = 1 and lev(FCD(112, 43)) = lev(149) = 1. Moreover the
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Figure 7: The unique component containing cycle of length 4

induced subgraph C2({112, 43, 86, 36, 149, 143}) of in − treeC2(143) can not be a replica of
the induced subgraph C1({42, 144, 126, 65, 80, 103, 134}) of in−treeC1(134), since lev(112) =
lev(43) = 3 > 2 = lev(65) = lev(126). The induced subgraph C1({42, 144, 126, 65, 80, 103,
134}) of in − treeC1(134) is a replica of in − treeC2(146), since 42 is a maximal source, 65,
126 are balanced in in− treeC1(134) and 84 and 141 are maximal sources in in− treeC2(146),
lev(42) = 3 = lev(84) − 1, lev(65) = lev(126) = 2 = lev(141) − 1, lev(FCD(84, 141)) =
lev(1) = 1 and lev(FCD(42, 65)) = lev(134) = 0.

In figure 5 in − tree(20) is a replica of in − tree(26) and in − tree(13) is a replica of
in− tree(109), therefore by Theorem 4.1, there exists a square root of component in figure
5.

In figures 6–9 components of a square root formed according to the above description are
presented.

From these graphs by Theorem 2.1, one can determine the form of a half iterate β of α,
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namely

β = (134, 20, 137, 18, 60, 27, 93, 36, 59, 18, 4, 71, 109, 45, 138, 137, 40, 27, 35, 26,

81, 144, 57, 49, 30, 25, 101, 11, 40, 114, 139, 49, 105, 13, 68, 70, 145, 71, 99, 29,

103, 22, 8, 131, 132, 69, 86, 68, 61, 45, 121, 76, 13, 110, 51, 116, 52, 30, 75, 78,

51, 100, 149, 7, 120, 68, 140, 44, 143, 149, 12, 29, 80, 12, 101, 67, 29, 20, 49, 1,

56, 88, 40, 42, 93, 63, 81, 39, 86, 14, 25, 9, 44, 49, 61, 48, 28, 7, 7, 16, 46, 105, 1,

30, 111, 61, 118, 21, 147, 13, 39, 89, 86, 34, 75, 69, 66, 52, 109, 103, 83, 108,

130, 143, 132, 120, 45, 60, 68, 77, 85, 31, 147, 146, 54, 122, 142, 94, 88, 15, 126,

102, 134, 73, 57, 56, 20, 118, 124, 148).

5 Conclusion

In the above example, it can be seen that the concept of a replica introduced in this article
allows presenting results concerning the problem of the existence of half iterates of finite
functions concisely and neatly. This key notion has also a deep characterization by sources
of an in-tree, which facilitates checking the conditions in theorems presented in the section
’The Main Results’. Thus, this work enables us to settle, whether for a given function from
a finite domain to itself there exists its half iterate, and if it exists the above theorems allow
us to determine a half iterate of this function in a relatively clear and simple manner. An
interesting direction for future research is to generalize the methods described in this article
to identify nth roots of a functional graph.
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