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CHAPTER 1 

INTRODUCTION 

Wetland Ecosystems 

Wetlands are unique systems to study as they arise through an interplay between the biota, 

climate, hydrology, geomorphology, and physical nature of terrestrial environments (Mitsch & Gosselink 

2007). Just as in rivers and streams (Hynes 1975; Vannote et al. 1980; Wallace et al. 1997), the 

surrounding environment influences, and is being influenced by the wetland (Higgins and Merritt 1999; 

Batzer et al. 2000; Palik et al. 2003), creating a well-connected system that can be highly impacted by any 

variation within each of its components. The diversity of environmental factors interplaying within a 

wetland make them an important habitat for both aquatic and terrestrial organisms, as well as the 

ecosystem functions that come to be from these interactions (e.g., nutrient recycling, carbon storing, flood 

mitigation) (Gopal & Junk 2000; Batzer & Sharitz 2006; Mitsch et al. 2015). Being depressional zones 

with highly saturated soils, wetlands are key in restoring surface water quality by storing nutrients (e.g., 

carbon, nitrogen, and phosphorus) and regulating their flows across upland and adjacent water systems 

(Reddy et al. 1999; Kayranli et al. 2010). For example, wetlands have been shown to store ~30% of 

global soil carbon while only covering ~8% of land cover (Nahlik & Fennessy 2016). This is outstanding 

when you consider that ~50% of all wetlands have been destroyed across the globe mostly due to 

anthropogenic influences (i.e., land use legacies) since historical governmental policies promoted their 

conversion to drained land (OECD 1996).  

Aquatic Macroinvertebrates 

Aquatic macroinvertebrates in wetlands play a key role in ecosystem processes by recycling 

nutrients across terrestrial and aquatic environments as they facilitate the decomposition of organic 

matter, contribute to secondary production and are prey sources for higher trophic levels (Wiley 1984; 

Hann 1991; Batzer et al. 1993). For example, aquatic insects serve as linkages between aquatic and 

terrestrial food-webs via the production of adults capable of emerging into the terrestrial environment 
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where they can be consumed by predators (e.g., avian, arachnids, amphibians) and vice-versa with 

allochthonous inputs being consumed and transferred across the aquatic food-web by collector-gatherers 

and shredders (Henschel et al. 2001; Sabo & Power 2002). These aquatic-terrestrial fluxes are dependent 

on the size of the body of water and its distance to shoreline as it not only controls the habitable area 

within them, but also the amount of allochthonous resources that can be introduced (Gratton et al. 2009). 

Thus, any variability that could alter a component of this aquatic-terrestrial flux (e.g., hydrological 

variation, surrounding landscape alteration) can have the potential of limiting the viability of these 

interconnected systems. 

Due to their apparent importance across aquatic ecosystems, aquatic macroinvertebrates are 

commonly used as indicators of ecological health and ecosystem functions, thus assessing these 

communities of ‘mid-level’ consumers can provide insight into the role of these experimental wetland 

ecosystems in mitigating natural wetland functions. Although assessment methods that target the 

physiochemical and biological components that help shape wetland communities continue to be 

developed, modified, or improved, these rarely incorporate manipulative studies of predicted scenarios to 

evaluate wetland condition. These typically only include measurements of water quality/chemistry instead 

of including detailed assessments of biotic communities. This is important to study because hydrological 

fluctuations in wetlands have been shown to influence greenhouse gas emissions and carbon sequestration 

(Ren et al. 2017) and consumers can be important mediators of these nutrient cycles. 

Hydrological Regimes 

The most influential factor governing wetlands is hydrology (Bataille & Baldassarre 1993; 

Wissinger & Gallagher 1999; Brooks 2000). Studies have compared ephemeral freshwater systems to 

permanent ones (Mitsch & Gosselink 2007; Porst & Irvine 2009), showing that water duration directly 

affects the diversity and richness within aquatic invertebrate communities. Furthermore, community 

richness in ephemeral ponds is also being influenced by the size of these ponds, with richness being 
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positively related to area covered by water (March & Bass 1995). With the major habitat variability 

imposed by hydrological fluctuations due to seasonal variation (flooding and drying events) on aquatic 

invertebrate communities in wetlands, a wide range of evolutionary adaptations have proliferated due to 

the predictable pattern of these seasonal fluctuations (Batzer & Sharitz 2006). Wiggins et al. (1980) 

classified wetland macroinvertebrates into 4 groups based on their adaptations to maintain stable 

populations after drying events. While not every species within each of these groups has an equal chance 

of establishing a population once ideal conditions are met, the most common wetland inhabitants would 

be the ones with the capacity to withstand the wetting and drying and maintain a stable population (Batzer 

et al. 2004). Common species such as fairy shrimps (Anostraca), which maintain stable populations by 

laying eggs that can subsist in desiccated areas for years and hatch when conditions are favorable 

(Wissinger & Gallagher 1999) or some water boatmen (Hemiptera: Corixidae), that migrate from 

temporary and permanent ponds to reproduce (Wissinger 1997), have found ways that might allow them 

to still proliferate in areas most impacted by prolonged drying events. On the contrary, rarer specimens 

that have been shown to not withstand seasonal hydrological fluctuations, should be the ones most 

impacted by extreme climate and weather variations as expected by climate models developed for this 

region (Anandhi & Bentley 2018). 

Impacts of Climate Change to Freshwater Ecosystems of the Southeastern US 

The southeastern US is a biodiversity hotspot (Cartwright & Wolfe 2016) and while the region 

normally receives high quantities of annual precipitation (Rose 2009), it has been subjected to prolonged 

periods of drought (Mitra & Srivastava 2017) while also experiencing its warmest temperature recorded 

to date, all within the past decade (Ingram et al. 2013). During the 20th century, precipitation increased 

during spring and decreased in the summer months (Mearnse et al. 2003), but models predict a change in 

the range of dry to wet periods during drier periods and an increase in wetter months as we get closer to 

the end of the 21st century (Anandhi & Bentley 2018). Studies have proposed a positive feedback 
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scenario, where precipitation will increase in wet areas and dry areas will become drier (Kirtman et al. 

2013). Thus, these climate models allude to a shift in climate extremes, with an intensification of summer 

conditions. Meaning that summers with expected above-average precipitation will see higher quantities, 

while summers with below-average precipitation will be subjected to these conditions for a longer period 

(Dore 2005; Li & Li 2014). The expected intensification of weather patterns during summer months is of 

interest, but even more so are wet summers since it is expected that the frequency of intense storms will 

increase due to higher water holding capacity in warm air (Karl & Knight 1998; Trenberth 2011). 

Subsequently, aquatic ecosystems (e.g., rivers, floodplains, and wetlands) in the southeastern US are 

expected to experience increased periods of severe drought interspersed with large flood events. Thus, the 

stability of the system and the environments that depends on this balance will be tested. 

Study Objectives 

This study aimed to understand if wetland consumer communities differ in structure and function 

based on length of hydroperiods and presumed ecosystem stability. To do so, I quantified 

macroinvertebrate community structure and function in experimental wetlands with manipulated 

hydroperiods (i.e., permanent vs. temporary). The findings generated from this study provide key insight 

on what communities of aquatic macroinvertebrates are supported by different conditions that can be 

associated with disturbance frequency, as well as what ecosystem functions will be the most impacted by 

predicted changes in precipitation patterns along the southeastern US. Furthermore, my study provides 

baseline datasets for the potential use of other ‘re-furbished’ sites (e.g., fish farms, hatcheries, etc.) to 

mitigate wetland losses.  

Predictions 

I hypothesized that if length (or duration) of flooding influences macroinvertebrate communities 

(i.e., colonization, composition, etc.) then permanent and temporary wetland habitats should differ in their 

macroinvertebrate diversity and community composition due to timing and duration of inundation. If so, 
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then permanent wetlands should harbor higher diversity of longer-lived taxa due to environmental 

stability and larger availability of colonizable area. Furthermore, ponds that experience flooding followed 

by rapid receding of water (i.e., temporary) would favor colonization by quick turnover (i.e., short-lived) 

taxa and support lower consumer diversity due to limited availability of space and decreasing water 

quality (e.g., lower dissolved oxygen concentrations and higher fluctuations in water temperatures).  
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CHAPTER 2 

METHODS 

Field Site 

The study was conducted at the former US Fish and Wildlife Service (FWS) Bo Ginn National 

Fish Hatchery in Jenkins County GA (Fig. 2.1). These former hatchery ponds were subjected to variable 

hydroperiod lengths (i.e., duration of flooding), allowing for the comparison of aquatic macroinvertebrate 

community composition and successional patterns of colonization between temporary or intermittent (i.e., 

resembling drying or drought conditions) and permanent (i.e., resembling continuously flooded or stable 

conditions) ponds. 

Experimental Design 

Experimental ponds were either already filled (i.e., inundated) prior to the start of the study (n = 

4; since February 2018) or at the onset of the study (n = 4; on January 1, 2019) (Fig. 2.2) and maintained 

with a continuous input of water to facilitate recirculation and account for any potential water losses due 

to evaporation and percolation through the soil (Table 2.1). After 14 days, water input was discontinued at 

half of the ponds (n = 4; temporary treatment) and these were allowed to recede until presumed entirely 

dry (~60-80d). This pattern of inundation and subsequent receding after 14 days was repeated two 

additional times in temporary ponds (January – March; March – July) for a total of two ‘intervals’ of 

flooding and drying. After the receding period for the March to July inundation of temporary ponds had 

concluded, all but one pond retained water in isolated pools. This allowed for that single pond to be 

sampled for an additional 2 months (i.e., until September). 

All permanent ponds (n = 4; permanent treatment) continued to receive water input for 

approximately 4-5 days per week. On June 17, 2019, one of the continuously flooded ponds experienced a 

substantial loss of water due to percolation which potentially resulted in altered conditions and thus was 
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removed from the permanent treatment after June 24, 2019, resulting in a total of 3 continuously flooded 

ponds from that day forward.  

Water Chemical Parameters 

I measured water chemistry parameters weekly at each pond using a YSI ProDSS multi-

parameter probe (Yellow Spring Instruments, Yellow Springs, OH) to assess for differences in water 

temperature (°C) and dissolved oxygen (DO; mgL-1) between ponds, all of which could be contributing 

factors for possible differences in macroinvertebrate abundance and biomass within treatments. In 

addition, Hobo® temperature loggers (Onset Computer Corporation, Bourne, MA) were deployed at each 

pond for the duration of the study (January 2019 – January 2020) to allow for continuous and localized 

measurements of temperature across the different ponds. Knowing that these water chemistry parameters 

are highly influenced by seasonal changes, I was interested in assessing for differences in temperature 

between seasons and its potential influence on macroinvertebrate abundance and biomass. Since the 

temporary ponds went through the flooding and drying period (~3-months) on 2 different occasions (i.e., 

intervals), I also observed and analyzed these separately to assess for potential seasonal differences in 

abundance and biomass across temporary ponds, while also allowing me to assess potential preliminary 

patterns associated with increased frequency of disturbance. Since one of the temporary ponds retained 

isolated wetted areas and was sampled beyond the July date when all other temporary ponds had dried. 

This allowed for sampling of a single temporary pond for a longer period of time. Hence, temporary 

treatment intervals (January – March, March – September) were also compared to permanent ponds. 

Aquatic Macroinvertebrate Sample Collection 

Collections of aquatic macroinvertebrates occurred at three points within each pond by walking 

~20ft to any direction within the pond’s access or entry point (i.e., bank). This sampling point selection 

was done in a haphazard manner due to the limitations imposed by the water depth in which our sampling 

equipment could function properly. Collections varied between permanent and temporary ponds, with 
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permanent ponds being sampled monthly and temporary ponds initially sampled weekly to capture the 

successional stages of macroinvertebrate colonization, then every two weeks during the receding or 

drying period (~60-80d) to capture potential variation associated to habitat loss. Macroinvertebrate 

sampling of permanent ponds occurred from January 2019 – January 2020 (13 consecutive months) to 

assess for potential changes in community structure over the course of a year (e.g., seasonal patterns). 

Samples were collected using a dip net (500-µm mesh) within an enclosed area of 0.0625 m2 with the 

sides of the enclosure also covered by a 500-µm mesh, creating a standardized area for every sample. The 

dip nets were initially used to disturb the sediment by jabbing it to the surface along the enclosed area, 

followed by three sweeps along the water column to collect any organisms displaced from the benthos. 

Once samples were obtained with the dip net, these were immediately placed in labeled plastic bags and 

preserved with ~95% ethanol. 

Laboratory Processing of Samples 

In the laboratory, samples were rinsed over stacked 500µm and 250µm sieves to separate coarse 

and fine contents, as well as remove excess sediment to facilitate sorting. After samples were washed, 

fine and coarse portions were stored in labeled jars with ~95% ethanol until further processing. 

Macroinvertebrates collected from samples were identified to the lowest taxonomic level possible 

(usually genus for most insects, and class, order, or family for non-insects) and categorized into by 

common functional traits describing aspects of the organism’s life history, dispersal, morphology, 

ecology (see Table 2.2; Twardochleb et al. 2021). Macroinvertebrates were counted to estimate 

abundance (ind./m2) and measured to the nearest 1-mm to estimate biomass (mg/m2) using published 

length-mass relationships (Benke et al. 1999).  

Data Analyses 

All statistical analysis were done in R statistical software version 3.5.2 (R Development Core 

Team 2015). To assess for differences in the abundance and biomass of macroinvertebrates across ponds 
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with varying hydrology, I used permutational multivariate analysis of variance (PERMANOVA) for each 

community with 10,000 permutations using the adonis function of the vegan package (Oksanen et al.  

2016). Data for PERMANOVA were calculated via Bray-Curtis dissimilarity matrix using the vegdist 

function. Non-metric multidimensional scaling (NMDS) ordination plots were generated with the 

metaMDS function to visualize the dissimilarities (i.e., distance) between permanent and temporary pond 

communities using both abundance and biomass estimates across treatments. Using the simper function 

from the vegan package, Similarity Percentages (SIMPER) analyses were used to determine which 

taxonomic groups were contributing the most to dissimilarities between treatments. Additional 

comparisons were conducted using PERMANOVA and NMDS to compare between temporary ponds 

inundated during different times of the year (i.e., intervals). Furthermore, the envfit function (also from 

the vegan package) was used to test the correlation between environmental factors and the 

abundance/biomass of macroinvertebrates. Lastly, the Pearson's product moment correlation coefficient 

test was done to test the association between days since last flooding event with abundance, biomass and 

richness follow independent normal distributions using the core.test function within the ggpubr package 

(Kassambara 2020). 
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Table 2.1. Experimental design with number of ponds receiving each treatment and date of flooding 

events. 

Treatment # of Ponds Inundation Date Description 

Permanent 4 3/14/2018 Inundated in prior project (see Schaffer 2019) 

Temporary 4 1/1/2019 Temporary ponds were flooded for the first time 

3/18/2019 Temporary ponds were flooded for second time 

* One of the permanent ponds was unable to retain water, thus was removed from the permanent

treatment on 6/17/2019. Beyond this date only three ponds were sampled as part of the permanent 

treatment. 
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Table 2.2. Macroinvertebrate functional traits describing features of the organism’s life history, dispersal 

strategies, ecology, and morphology. Modified from Twardochleb et al. 2021.   

Trait Feature Trait Category Trait Description 

Life history Generations per year Multivoltine Multiple generations per year 

Semivoltine Less than one generation per year 

Univoltine One generation per year 

Emergence 

synchrony 

Poorly Emergence happens weeks or months 

apart 

Well Emergence happens a few days apart 

Emergence season Fall Emerging between September and 

November 

Winter Emerging between December and 

February 

Spring Emerging between March and May 

Summer Emerging between June and August 

Dispersal Female dispersal 

(adult flying) 

High >1 km flight before laying eggs

Low <1 km flight before laying eggs 

Ecology Habit Burrower Inhabiting the fine sediments 
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Climber Adapted to moving vertically on stem-

type surfaces 

Clinger Adapted for attaching to surfaces 

Crawler Adapted for crawling on the surface of 

floating leaves of vascular hydrophytes 

or fine sediments on the bottom of 

water bodies 

Planktonic Inhabiting the open water limnetic 

zone of standing waters 

Skater Adapted for skating (gliding) on the 

water surface 

Sprawler Inhabiting the surface of floating 

leaves of vascular hydrophytes or fine 

sediments 

Swimmer Adapted for fish-like swimming in 

lotic or lentic habitats 

FFG Collector-filterer Insects that collect and filter living 

algal cells or detritus 

Collector-gatherer Insects that collect and consume 

decomposing organic matter 

Herbivore Insects that scrape algae or that shred 
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or pierce living aquatic plants 

Parasite Parasites that consume living animal 

tissue 

Predator Insects that ingest prey whole or in 

parts (engulfers) or that pierce prey 

tissues and suck fluids (piercers) 

Shredder Insects that shred decomposing 

vascular plant tissue (detritivores) 

Morphology Max body size Small <9 mm 

Medium 9–16 mm 

Large >16 mm

Respiration Gills A thin-walled structure with trachea, 

used for the absorption of oxygen 

Plastron, spiracle Oxygen is absorbed from the 

atmosphere, from aquatic plants or 

from a temporary air store, such as an 

air film or bubble on the surface of the 

body, or a permanent air store (a 

plastron) 
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Tegument An outer covering, outer enveloping 

cell layer or membrane used to acquire 

oxygen 
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Figure 2.1. Location of the US FWS Bo Ginn National Fish Hatchery in Jenkins County. The site is 

adjacent to Magnolia Springs State Park near Millen, GA. Permanent ponds are represented by green 

squares and triangles, while temporary ones are represented by black squares and triangles.  
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Figure 2.2. Timeline of study highlighting flooding and drying events, permanent ponds were flooded in 

February 2018 for a previous study and were kept filled until the end of the study (January 2020). 

Temporary ponds were first flooded in January 2019 and were left to dry after 4 weeks, once fully dried 

these temporary ponds were flooded again in March 2019. 
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CHAPTER 3 

RESULTS 

Environmental variables 

I found no variation in water quality between permanent and temporary ponds for neither the 

weekly nor the continuously recorded data across both temperature and dissolved oxygen concentration 

(Table 3.1).  

Macroinvertebrate Taxa Richness, Abundance, and Biomass 

I collected and identified a total of 16,388 individuals, within a total of 58 distinct taxa including 

family, genera, or tribe (e.g., Diptera: Chironomidae) of macroinvertebrates across all ponds. However, 

over 81% of all individuals collected belonged to only 5 of genera or tribes: Chironominae (27.48%), 

Caenis (26.54%), Daphnia (11.25%), Culicoides (8.80%) and Tanypodinae (7.15%). A total of 30 distinct 

taxa (genera and tribe) were found in permanent ponds with 4 of these accounting for almost 85% of all 

the individuals collected: Caenis (38.46%), Chironominae (28.35%), Culicoides (10.63%) and 

Tanypodinae (7.30%). While in temporary ponds only 27 taxa (genera and tribe) were collected and only 

2 out of the 5 dominant ones (~83% of individuals) were found in permanent ponds: Daphnia (33.03%), 

Chironominae (25.67%), Gammarus (10.31%), Physa (8.92 %) and Culicoides (5%). 

Mean monthly abundance of the total macroinvertebrate community was 13.20 ind/m2 (± 2.47SE) 

in permanent ponds and 14.59 ind/m2 (± 4.57SE) in temporary ponds (Figure 3.1), whereas mean monthly 

total community biomass was 59.03 mg/m2 (± 6.44SE) in permanent ponds and 49.62 mg/m2 (± 10.89SE) 

in temporary ponds (Figure 3.2). While mean monthly macroinvertebrate total community abundance and 

biomass were relatively the same between treatments, looking at these parameters along the intervals of 

flooding shows quite the discrepancy within temporary ponds and between permanent and temporary 

ones (Figures 3.3 and 3.4). There was within treatment variation in the mean monthly abundance in 

temporary ponds, the first interval of flooding (January – March) was 24.78 ind/m2 (± 9.75SE) and 7.79 
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ind/m2 (± 1.31SE) for the second flooding interval (March – May). This same pattern of within treatment 

variation was also seen when looking at the mean monthly biomass between flooding intervals in which 

the first interval (January – March) had 33.99 mg/m2 (± 6.02SE), while the second interval of flooding 

(March – May) had 65.26 mg/m2 (± 19.35SE). These results show that permanent ponds had a lower 

mean monthly abundance community than temporary ponds between January and March, but higher 

between March and May (Figure 3.3). The opposite trend was seen for mean monthly biomass in which 

permanent ponds had more biomass than temporary ponds between January – March, but less than 

between March and May (Figure 3.4). Furthermore, of the dominant taxa observed, most revealed 

patterns of higher abundance and biomass consistently throughout the year, or at least in most months, in 

permanent over temporary ponds. Some of the most noticeable patterns could be observed for the various 

tribes of the dipteran family Chironomidae (Figures 3.5 and 3.6) and for the mayfly family Caenidae 

(Figures 3.7 and 3.8). 

By dividing the collections based on days since each pond was last flooded and attaching each 

collection done on that pond to see if there were any major differences in abundance, biomass and taxa 

richness (APPENDIX A). It is possible to see that permanent ponds have a more stable range across all 3 

variables, while there is more variation between each temporary pond. The results from the Pearson’s 

correlation test show that biomass (t = 2.1264, df = 80, p = 0.03655, r = 0.23129) and the number of taxa 

found (t = 3.4812, df = 80, p < 0.001, r = 0.36271) are positively correlated to the number of days since 

last flooding, but not abundance (t = 1.3632, df = 80, p = 0.1767, r = 0.15067) (Table 3.2). 

Macroinvertebrate community structure  

Nonmetric Multi-Dimensional Scaling (NMDS) plots based on abundance (N) and biomass (B) 

data across all ponds included twenty iterations in two-dimensional solutions resulting in stress estimates 

of 0.272 and 0.273, respectively (Figure 3.9-3.10). The results of the permutation test via the envfit 

function shows significant correlations between abundance (N) and biomass (B) by date (N, R2 = 0.3243, 
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p < 0.05; B, R2 = 0.3385, p < 0.05) as well as treatment type (N, R2 = 0.0242, p = 0.05; B, R2 = 0.0432, 

p < 0.05). I also found that that biomass had a significant correlation with the interval of flooding 

(January – March, March – May, Permanent) (R2 = 0. 1369, p < 0.05) and each pond (R2 = 0. 0995, p < 

0.05). Similarity percentages (SIMPER) analyses (APPENDIX B-5) found that 83.95% of the differences 

in abundance across treatment groups were driven by 6 families: Chironomidae (24.24%), 

Ceratopogonidae (14.99%), Daphnidae (13.02%), Caenidae (7.92%), Physidae (6.80%) and Gammaridae 

(4.65%). SIMPER analyses also revealed that 83.99% of the dissimilarities in biomass across treatments 

were also being influenced by 6 taxa: Hydrophilidae (21.39%), Chironomidae (18.26%), Ceratopogonidae 

(14.63%), Caenidae (10.62%), Elmidae (4.78%) and Coenagrionidae (4.06%). 

I also ran Nonmetric Multi-Dimensional Scaling (NMDS) for both abundance (N) and biomass 

(B) data for only temporary ponds with the same parameters as in the NMDS of all ponds, the stress

estimates were of 0.251and 0.253 respectively (Figure 3.9-3.10). The results of the permutation test 

(envfit) showed that only date (N, R2 = 0. 3659, p < 0.05; B, R2 = 0. 3154, p < 0.05) and flooding 

interval (N, R2 = 0. 0645, p = 0.05; B, R2 = 0. 0530, p < 0.05) had significant correlations, while each 

pond only had a slight correlation with biomass (R2 = 0. 0769, p = 0.067) in temporary ponds. Similarity 

percentages (SIMPER) analyses (APPENDIX B-5) found that 82.78% of the differences in abundance 

across flooding intervals in temporary ponds were driven by 5 families: Daphnidae (25.05%), 

Chironomidae (23.62%), Physidae (10.03%), Gammaridae (8.40%) and Ceratopogonidae (5.59%). 

SIMPER analyses also revealed that 82.11% of the dissimilarities in biomass across flooding intervals in 

temporary ponds were also being influenced by 5 taxa: Hydrophilidae (28.47%), Chironomidae (24.64%), 

Elmidae (7.98%), Ceratopogonidae (6.21%) and Coenagrionidae (5.29%). 

Since I found no variation in water quality parameters (temperature (℃) and dissolved oxygen 

concentration (mg/L)) across date and treatment (Table 3.1), Permutational Analysis of Variance 

(PERMANOVA) were performed individually to test the relations between abundance (N) and biomass 



29 

(B) to the treatments (permanent vs. temporary) in all ponds or by flooding intervals (January – March,

March – May) for temporary ones, sampling dates and sampling replicates as with each pond. The 

PERMANOVA results for all ponds show that sampling date (F = 11.917, p < 0.001) and sampling 

replicates (F = 5.808, p < 0.001) were significantly related to the abundance of macroinvertebrates when 

tested across treatments, while the treatment type had not relation (F = 0.8253, p = 0.6208) (Table 3.3). 

The results of the PERMANOVA testing the relation between each pond, sampling date and sampling 

interval with abundance across all ponds showed a significant relation with sampling date (F = 12.2746, p 

< 0.001) and pond F = 2.1836, p < 0.001), but not with the sampling replicates. (F = 0.9286, p = 0.5108). 

Looking at only temporary ponds, the results from the PERMANOVA show that abundance is 

significantly related to the sampling date (F = 4.9277, p < 0.001) and flooding interval (F = 6.0459, p < 

0.001), but not the pond (F = 1.1801, p = 0.2132). The PERMANOVA’s for biomass across all ponds 

show a significant relation with each pond (F = 1.882, p < 0.001), sampling date (F = 12.9008, p < 0.001) 

and treatment (F = 4.8557, p < 0.001). While in temporary ones, the PERMANOVA’s show that biomass 

is only statistically related to sampling date (F = 8.7374, p < 0.001) and flooding interval (F = 2.2316, p = 

0.0155). 

Community Traits 

I found noticeable differences in macroinvertebrate functional traits across treatments (Table 3.4). 

Within the life history traits, most individuals across all ponds had multiple generations per year with a 

well synchronized emergence along every season. When divided by treatment types, the major differences 

for life history traits were in the emergence synchrony as permanent ponds were dominated by well 

synchronous taxa (78.25%) while temporary ones had an almost equal distribution between poor 

(45.06%) and well (54.94%) synchronous taxa. Across all ponds, adult dispersal had an almost equal 

chance of being high (44.72%) or low (55.28%). Again, the major differences were seen across treatments 

in which taxa in permanent ponds had lower (61.98%) dispersal while ones in temporary ponds had 
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higher (73.65%). Around half of all collected taxa across all ponds were burrowers (28.72%), planktonic 

(25.24%) or sprawlers (37.91%) with most of them being gatherers (70.10%) and a small subset being 

either predators (18.91%) or filterers (10.59%). In permanent ponds, most individuals were either 

burrowers (29.55%) or sprawlers (50.11%) that gathered (79.28%) or predated (19.64%) their food, while 

in temporary ponds many individuals either burrowed (26.96%) or were planktonic (50.35%) in their 

habit as they gathered (49.70%) or filtered (32.50%) their food. Regarding morphological traits, almost all 

individuals were small (88.09%) in body size across both treatments, but the respiration mechanism 

diverged across treatments with individuals in permanent ponds utilizing gills (42.46%) or teguments 

(55.91%) while in temporary ponds most individuals obtained oxygen utilizing a tegument (90.06%). 
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Table 3.1: Seasonal (Spring, Summer, Winter) estimates for water chemistry parameters including (mean 

± standard deviation) temperature (℃) and dissolved oxygen (DO) concentration (mg/L) across 

treatments (permanent and temporary).  

Season Treatment Temperature DO (mg/L) 

Winter Permanent 12.93±2.62 7.38±4.38 

Winter Temporary 12.4±2.84 7.80±3.90 

Spring Permanent 20.00±2.84 8.75±3.92 

Spring Temporary 19.25±2.47 8.35±5.76 

Summer Permanent 30.07±2.58 9.04±5.30 

Summer Temporary 30.77±2.86 8.79±5.76 
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Table 3.2. Pearson’s correlation results based on the association between the number of days since ponds 

were flooded and the total macroinvertebrate community abundance (ind/m2), biomass (mg/m2) and 

richness. 

t d.f.  p r 

Days since 

flooding 

Abundance 
1.3632 80 0.1767 0.150666 

Biomass 
2.1264 80 0.03655 0.231295 

Richness 
3.4812 80 < 0.001 0.362708 
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Table 3.3. Permutational Analyses of Variance (PERMANOVA) results based on total macroinvertebrate 

community abundance (ind/m2) and biomass (mg/m2) after 10,000 permutations were performed 

individually for each dataset (i.e., N, B) by treatment (permanent vs. temporary) in all ponds or by 

flooding intervals (January – March, March – May) for only temporary ones, sampling dates and 

sampling replicates. 

d.f. SS MS F R2 Pseudo-P 

N by Trmt. (All) 

Treatment 1 0.2680 0.2678 0.8253 0.0057 0.6208 

Date 1 3.8670 3.8674 11.9170 0.0821 < 0.001 

Replicates 1 1.8850 1.8849 5.8080 0.0400 < 0.001 

Replicate:Date 1 0.2830 0.2833 0.8728 0.0060 0.5745 

Replicate:Treatment 1 0.2480 0.2475 0.7627 0.0053 0.6971 

Date:Treatment 1 0.9180 0.9178 2.8280 0.0195 0.0016 

Replicate:Date:Treatment 1 0.3590 0.3587 1.1052 0.0076 0.3385 

Residuals 121 39.2680 0.3245 0.8338 

Total 128 47.0960 1 

N by Pond. (All) 

Pond 7 4.7480 0.6782 2.1836 0.1008 < 0.001 

Date 1 3.8130 3.8125 12.2746 0.0810 < 0.001 

Replicates 1 0.2880 0.2884 0.9286 0.0061 0.5108 

Replicate:Date 1 0.2720 0.2715 0.8742 0.0058 0.5748 

Replicate:Pond 7 2.1770 0.3111 1.0015 0.0462 0.4693 

Date:Pond 7 3.4590 0.4941 1.5907 0.0734 < 0.001 
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Replicate:Date:Pond 7 2.2110 0.3159 1.0171 0.0470 0.4443 

Residuals 97 30.1280 0.3106 0.640 

Total 128 47.096 1.000 

N by Pond. (Temp) 

Pond 3 1.1929 0.3976 1.1801 0.0429 0.2132 

Date 1 2.9977 2.9977 8.8970 0.1078 < 0.001 

Replicates 1 0.2374 0.2374 0.7045 0.0085 0.7496 

Replicate:Date 1 0.2522 0.2522 0.7485 0.0091 0.7051 

Replicate:Pond 3 1.0439 0.3480 1.0328 0.0375 0.4081 

Date:Pond 3 1.1414 0.3805 1.1292 0.0410 0.2663 

Replicate:Date:Pond 3 1.0710 0.3570 1.0595 0.0385 0.3707 

Residuals 59 19.8789 0.3369 0.7147 

Total 74 27.8154 1 

N by Intrvl. (Temp) 

Interval 1 2.0258 2.0258 6.0459 0.0728 < 0.001 

Date 1 1.6511 1.6511 4.9277 0.0594 < 0.001 

Replicates 1 0.1947 0.1947 0.5812 0.0070 0.8752 

Replicate:Date 1 0.3261 0.3261 0.9732 0.0117 0.4609 

Replicate: Interval 1 0.2916 0.2916 0.8702 0.0105 0.5674 

Date: Interval 1 0.6977 0.6977 2.0823 0.0251 0.0216 

Replicate:Date: Interval 1 0.1792 0.1792 0.5350 0.0064 0.9068 

Residuals 67 22.4492 0.3351 0.8071 

Total 74 27.8154 1 

B by Trmt. (All) 
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Treatment 1 1.6730 1.6729 4.8557 0.0336 < 0.001 

Date 1 4.3930 4.3928 12.7502 0.0882 < 0.001 

Replicates 1 0.1050 0.1055 0.3061 0.0021 0.9950 

Replicate:Date 1 0.2100 0.2096 0.6084 0.0042 0.8551 

Replicate:Treatment 1 0.5700 0.5702 1.6550 0.0115 0.0743 

Date:Treatment 1 0.7850 0.7849 2.2781 0.0158 0.0109 

Replicate:Date:Treatment 1 0.3870 0.3869 1.1230 0.0078 0.3168 

Residuals 121 41.6880 0.3445 0.8369 

Total 128 49.8110 1 

B by Pond. (All) 

Pond 7 4.4670 0.6382 1.8820 0.0896 < 0.001 

Date 1 4.3750 4.3746 12.9008 0.0877 < 0.001 

Replicates 1 0.1020 0.1016 0.2995 0.0020 0.9956 

Replicate:Date 1 0.1950 0.1947 0.5743 0.0039 0.8855 

Replicate:Pond 7 2.3840 0.3406 1.0045 0.0478 0.4680 

Date:Pond 7 3.4010 0.4858 1.4328 0.0682 0.0099 

Replicate:Date:Pond 7 2.0690 0.2956 0.8718 0.0415 0.8004 

Residuals 97 32.8920 0.3391 0.6594 

Total 128 49.8850 1.000 

B by Pond. (Temp) 

Pond 3 1.1929 0.3976 1.1801 0.0429 0.2132 

Date 1 2.9977 2.9977 8.8970 0.1078 < 0.001 

Replicates 1 0.2374 0.2374 0.7045 0.0085 0.7496 

Replicate:Date 1 0.2522 0.2522 0.7485 0.0091 0.7051 
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Replicate:Pond 3 1.0439 0.3480 1.0328 0.0375 0.4081 

Date:Pond 3 1.1414 0.3805 1.1292 0.0410 0.2663 

Replicate:Date:Pond 3 1.0710 0.3570 1.0595 0.0385 0.3707 

Residuals 59 19.8789 0.3369 0.7147 

Total 74 27.8154 1 

B by Intrvl. (Temp) 

Interval 1 0.7742 0.7742 2.2316 0.0270 0.0155 

Date 1 3.0311 3.0311 8.7374 0.1057 < 0.001 

Replicates 1 0.2557 0.2557 0.7369 0.0089 0.6974 

Replicate:Date 1 0.2399 0.2399 0.6914 0.0084 0.7567 

Replicate: Interval 1 0.2895 0.2895 0.8346 0.0101 0.6088 

Date: Interval 1 0.5076 0.5076 1.4631 0.0177 0.1281 

Replicate:Date: Interval 1 0.3245 0.3245 0.9354 0.0113 0.4972 

Residuals 67 23.2433 0.3469 0.8108 

Total 74 28.6657 1 
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Table 3.4. Proportional distribution of macroinvertebrates by functional trait in all ponds sampled (All), 

permanent, and temporary ponds. 

Trait Feature Trait Category Trait           All   Permanent Temporary 

Life History Gen. per year Multivoltine 83.01% 83.74% 80.06% 

Semivoltine 0.79% 0.40% 2.38% 

Univoltine 16.20% 15.87% 17.56% 

Emerge sync. Poorly 25.04% 21.75% 45.06% 

Well 74.96% 78.25% 54.94% 

Emerge season Fall 26.28% 26.15% 26.82% 

Winter 22.27% 22.49% 21.32% 

Spring 23.92% 23.98% 23.69% 

Summer 27.53% 27.38% 28.17% 

Dispersal Fem. dispersal High 44.72% 38.02% 73.65% 

Low 55.28% 61.98% 26.35% 

Ecology Habit Burrower 28.72% 29.55% 26.96% 

Climber 2.58% 1.68% 4.48% 

Clinger 3.42% 4.04% 2.13% 

Crawler 0% 0% 0% 
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Planktonic 25.24% 13.32% 50.35% 

Skater 0.18% 0.24% 0.04% 

Sprawler 37.91% 50.11% 12.21% 

Swimmer 1.95% 1.06% 3.83% 

FFG Filterer 10.59% 0.73% 32.50% 

Gatherer 70.10% 79.28% 49.70% 

Herbivore 0% 0% 0% 

Parasite 0% 0% 0% 

Predator 18.91% 19.64% 17.29% 

Shredder 0.40% 0.35% 0.51% 

Morphology Max body size Small 88.09% 89.67% 82.04% 

Medium 9.53% 8.39% 13.91% 

Large 2.38% 1.95% 4.05% 

Respiration Gills 34.96% 42.46% 5.26% 

Plastron, spiracle 2.25% 1.63% 4.68% 

Tegument 62.80% 55.91% 90.06% 
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Figure 3.1. Mean-monthly abundance (ind./m2 ± SE) of macroinvertebrates by treatments (permanent vs. 

temporary). The boxes represent the middle fifty percent of the data, dots outside of box plots represent 

outliers for each group, red circles show the mean and the line within the box represents the median. 
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Figure 3.2: Mean-monthly biomass (mg/m2 ± SE) of macroinvertebrates by treatments (permanent vs. 

temporary). The boxes represent the middle fifty percent of the data, dots outside of box plots represent 

outliers for each group, red circles show the mean and the line within the box represents the median. 
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Figure 3.3: Mean-monthly abundance (ind/m2 ± SE) of macroinvertebrates by flooding interval, including 

the two intervals of flooding and drying of temporary ponds (January – March 2019, March – May 2019). 

The boxes represent the middle fifty percent of the data, dots outside of box plots represent outliers for 

each group, red circles show the mean and the line within the box represents the median. 
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Figure 3.4: Mean-monthly biomass (mg/m2 ± SE) of macroinvertebrates by flooding interval, including 

the two intervals of flooding and drying of temporary ponds (January – March 2019, March – May 2019). 

The boxes represent the middle fifty percent of the data, dots outside of box plots represent outliers for 

each group, red circles show the mean and the line within the box represents the median. 
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Figure 3.5: Mean-monthly abundance (ind/m2 ± SE) of Chironomidae by treatments. *Only one 

temporary pond retained water beyond July and until September 2019. 
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Figure 3.6: Mean-monthly biomass (mg/m2 ± SE) of Chironomidae by treatments. *Only one temporary 

pond retained water beyond July and until September 2019. 
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Figure 3.7: Mean-monthly abundance (ind/m2 ± SE) of Caenidae by treatments. *Only one temporary 

pond retained water beyond July and until September 2019. 
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Figure 3.8: Mean-monthly biomass (mg/m2 ± SE) of Caenidae by treatments (circles are permanent ponds 

and triangles are temporary ponds). *Only one temporary pond retained water beyond July and until 

September 2019. 
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Figure 3.9: Two-dimensional NMDS ordination plot based on macroinvertebrate abundance (ind/m2) by 

treatment (permanent vs. temporary). Different colored ellipses and symbols depict the macroinvertebrate 

composition clusters on different hydrological treatments. Stress = 0. 272. 
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Figure 3.10: Two-dimensional NMDS ordination plot based on macroinvertebrate biomass (mg/m2) by 

treatment (permanent vs. temporary). Different colored ellipses and symbols depict the macroinvertebrate 

composition clusters on different hydrological treatments. Stress = 0.273. 
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Figure 3.11: Two-dimensional NMDS ordination plot based on macroinvertebrate abundance (ind/m2) 

within temporary by flooding interval, including the two intervals of flooding and drying of temporary 

ponds (January – March 2019, March – May 2019). Different colored ellipses and symbols depict the 

macroinvertebrate composition clusters on different hydrological treatments. Stress = 0.251. 
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Figure 3.12: Two-dimensional NMDS ordination plot based on macroinvertebrate biomass (mg/m2) 

within temporary by flooding interval, including the two intervals of flooding and drying of temporary 

ponds (January – March 2019, March – May 2019). Different colored ellipses and symbols depict the 

macroinvertebrate composition clusters on different hydrological treatments. Stress = 0.253. 
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CHAPTER 4 

DISCUSSION 

This study was conducted to assess the responses of aquatic macroinvertebrate communities to 

habitat instability through hydrological variation and how these potential changes might influence key 

ecosystem functions in wetlands of the southeastern US. Because the experimental design used a set of 

pre-established ponds (~10 months full prior to starting the experiment) and another group of fully dried 

ones with the capacity to experience flooding and drying, I was able to manipulate wetland conditions in a 

replicable study. This scenario allowed me to conduct an ecosystem-level study with replicable, 

controllable, and repeatable conditions without many of the pitfalls that come with conducting a study in 

a natural system (e.g., loss in ecological complexity due to scale limitations) (Ahn & Mitsch 2002). 

The main findings of this study were that differences in macroinvertebrate communities between 

permanent and temporary ponds can be mostly explained by hydrology and the amount of time these were 

covered by water. I found differences in dominant taxa, species diversity as well as in behavioral and 

physiological traits between the two treatment groups. Since other studies had shown that permanent sites 

seem to have more taxa due to habitat stability, allowing poorly adapted taxa that would otherwise not 

have been able to survive in a more demanding environment to persist (Batzer et al. 2005). I expected to 

find more biomass and diversity of taxa within in ponds that retained water for a longer period of time, 

but I was surprised to see that the abundance of these macroinvertebrates did not show the same pattern 

was not significantly related to treatments.  

Cañedo-Argüelles & Rieradevall (2011) conducted a study analyzing the successional patterns of 

aquatic macroinvertebrate within a newly created lake in Barcelona, Spain and saw a positive correlation 

between colonization sequence and dispersal capacity of taxa, while also seeing a successional pattern in 

which fast colonizing generalist taxons (e.g., Chironomidae and Physidae) were being replaced by more 

specialist ones as new habitats arose. This same scenario of early colonization by highly productive 
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generalist (r-selected) which are replaced by longer lived and more competitive specialist (K-selected) 

taxa as the environment becomes more stable has been seen across a myriad of environments (Pianka 

1970; Reznick et al. 2002; Chiu & Kuo 2012). I found that across both treatments many individuals were 

generalist collector-gatherers of small body size inhabiting fine-sediments, the open limnetic zone or 

vascular plants having multiple generations per year (multivoltine) and emerging in a highly synchronous 

manner at all times of the season.  

When looking at divergent traits between treatments, it was interesting to find higher quantities of 

medium-larger sized individuals in temporary ponds than in permanent ones even though I expected that 

the more stable habitat would favor higher densities of larger taxa. While my study did not record non-

invertebrate predators (i.e., amphibians, birds, fishes), anecdotal data of the ponds showed that permanent 

ponds had more complex food-webs that might be acting as a negative selection pressure on larger 

macroinvertebrates which was not seen in the more unstable environment of temporary ponds. Another 

interesting scenario was seen in respiration traits across treatments. I did not find any major differences in 

temperature or dissolved oxygen concentrations across treatments, seeing that almost all the individuals in 

temporary ponds depend on obtaining atmospheric oxygen via their teguments compared to an almost 

equal likelihood of respiration occurring via gills or tegument in permanent ones, seems to suggest that in 

fact there are differences in water quality between these treatments that I was not able to show. 

By dividing up the temporary treatment into the into the two intervals of flooding and drying, I 

saw how the communities of these temporary ponds shifted and adapted to the disturbance pressures 

imposed by hydrological and temporal changes (Lake 2000). The repeated manipulations (i.e., flooding 

and drying) also demonstrate that even with habitat variation and disturbance frequency, 

macroinvertebrate assemblages in these wetlands are subset groups deriving from a larger source 

population in a higher quality environment (Pulliam 1988). This was interesting to see because it suggests 

that the amount of days these ponds retain water and the time of year in which these flooding events occur 
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can have major impacts on the natural succession of resettlement that temporary wetlands might take once 

conditions are met for the migration of “cyclic colonizers” from the local source population into the sink 

habitat dominated by egg-laying “fugitive” taxa (e.g., Daphnia and Gammarus) (Wissinger 1997). With 

wetlands battling a constant flux of disturbances derived by hydrological and temporal stages shaping 

ecological and physiochemical variables, predicted intensification of drier and wetter summer months 

within this century (Anandhi & Bentley 2018) could prove detrimental to the intricate balance in wetlands 

sustaining source populations.  

Recognizing that this work might not fully explain the variations seen across treatments, this 

study does provide supplemental data necessary to further understand what communities of aquatic 

macroinvertebrates are supported by different conditions (i.e., potential disturbances), as well as what 

ecosystem functions will be the most impacted by these changes along the wetlands of the southeastern 

Coastal Plain. Furthermore, these baseline datasets prove that ‘re-furbished’ sites (e.g., fish farms, 

hatcheries, etc.) could help mitigate wetland losses. Finally, the continuation of this study will prove 

beneficial as a long-term repository of knowledge in assessing the macroinvertebrate communities and 

associated functions necessary to understand the ecosystem responses to disturbances brought by a 

changing climate. 
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APPENDIX A 

MACROINVERTEBRATES BY TREATMENT 

Macroinvertebrate richness (S), abundance (N; ind./m2), and biomass (B; mg/m2) by pond (P#), treatment 

(P =Permanent, T =Temporary) and days since each pond was last inundated (Flooded). 

Pond Treatment Date Flooded S N B 

P1 T 1/21/2019 20 6 46.50 32.57 

T 1/28/2019 27 4 27.00 9.11 

T 2/11/2019 41 5 26.89 23.29 

T 3/24/2019 6 2 6.00 32.58 

T 4/1/2019 14 1 22.00 43.95 

T 4/8/2019 21 1 1.00 1.94 

T 4/22/2019 35 1 1.00 35.78 

T 5/9/2019 52 6 4.70 47.85 

T 5/13/2019 56 6 3.38 18.14 

P2 P 1/21/2019 313 4 18.25 33.21 

P 2/18/2019 341 10 19.07 62.23 

P 3/24/2019 375 7 3.00 30.90 



60 

P 4/22/2019 404 9 6.00 53.64 

P 5/13/2019 426 9 4.19 36.05 

P 6/17/2019 461 14 10.77 23.20 

P 7/29/2019 503 12 8.23 37.25 

P 8/9/2019 514 10 1.94 26.93 

P 9/29/2019 565 5 4.36 57.05 

P 10/29/2019 595 9 17.75 67.98 

P 11/22/2019 619 9 21.18 53.04 

P 12/16/2019 643 6 9.22 17.69 

P 1/28/2020 686 8 34.42 98.15 

P3 T 1/21/2019 20 6 116.18 105.37 

T 1/28/2019 27 8 35.18 32.97 

T 2/11/2019 41 4 24.25 7.22 

T 4/1/2019 14 1 12.33 21.14 

T 4/22/2019 35 1 7.00 32.54 

T 5/9/2019 52 8 5.27 110.97 

T 5/13/2019 56 5 2.83 51.22 

P4 P 1/21/2019 313 6 14.91 53.51 
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P 2/18/2019 341 5 14.60 85.87 

P 3/24/2019 375 9 2.75 7.35 

P 4/22/2019 404 4 7.22 85.30 

P 5/13/2019 426 6 9.63 66.26 

P 6/17/2019 461 5 3.64 16.80 

P5 T 1/21/2019 20 11 27.00 53.00 

T 1/28/2019 27 5 8.00 75.09 

T 2/11/2019 41 9 9.91 26.99 

T 3/24/2019 6 4 1.00 21.28 

T 4/1/2019 14 5 6.00 16.90 

T 4/8/2019 21 3 2.33 10.69 

T 4/22/2019 35 5 4.67 8.01 

T 5/9/2019 52 4 4.20 165.04 

T 5/13/2019 56 7 10.06 54.58 

T 9/29/2019 188 13 12.75 171.34 

P7 P 1/21/2019 313 11 14.37 64.79 

P 2/18/2019 341 8 27.00 77.44 

P 3/4/2019 355 4 12.25 68.23 
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P 3/24/2019 375 10 8.53 54.96 

P 4/22/2019 404 5 5.33 13.07 

P 5/13/2019 426 9 26.00 84.84 

P 6/17/2019 461 7 24.23 55.97 

P 7/29/2019 503 7 5.77 15.42 

P 8/9/2019 514 11 11.10 116.33 

P 9/29/2019 565 8 18.80 58.07 

P 10/29/2019 595 5 17.43 70.40 

P 11/22/2019 619 5 13.44 39.37 

P 12/16/2019 643 8 116.71 419.20 

P 1/28/2020 686 6 77.33 217.82 

P10 P 1/21/2019 313 11 29.84 115.72 

P 2/18/2019 341 5 24.38 98.42 

P 3/24/2019 375 8 20.70 67.60 

P 4/22/2019 404 5 3.50 22.15 

P 5/13/2019 426 7 8.64 30.55 

P 6/17/2019 461 6 15.50 39.74 

P 7/29/2019 503 6 4.00 8.46 
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P 8/9/2019 514 10 8.88 38.71 

P 9/29/2019 565 6 12.91 74.82 

P 10/29/2019 595 8 34.46 243.85 

P 11/22/2019 619 7 25.09 98.69 

P 12/16/2019 643 4 25.22 51.73 

P 1/28/2020 686 7 23.46 129.25 

P11 T 1/21/2019 20 3 20.50 21.53 

T 1/28/2019 27 4 18.00 13.13 

T 2/11/2019 41 7 8.09 46.95 

T 3/4/2019 62 8 7.26 40.19 

T 3/24/2019 6 1 5.00 0.02 

T 4/1/2019 14 1 1.00 1.23 

T 4/8/2019 21 7 29.63 145.72 

T 4/22/2019 35 8 9.50 54.38 

T 5/9/2019 52 11 6.40 67.83 

T 5/13/2019 56 8 26.67 364.41 
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APPENDIX B 

SIMPER RESULTS FOR ABUNDANCES BY TREATMENT 

SIMPER results for abundance by treatment showing average dissimilarities by taxa with an 80% 

cumulative contribution cutoff. Mean individuals per meter2 by taxa included for each flooding interval. 

Taxon 
Av. 

Dissimilarity 
Contribution % Cumulative % 

Mean 

Permanent 

Mean 

Temporary 

Chironomidae 24.24% 19.68% 28.41% 27.56 19.81 

Ceratopogonidae 14.99% 18.76% 45.98% 14.98 2.73 

Daphnidae 13.02% 19.82% 61.24% 3.28 26.73 

Caenidae      7.92% 13.52% 70.53% 9.78 0.75 

Physidae 6.80% 14.92% 78.50% 1.57 6.19 

Gammaridae 4.65% 9.15% 83.95% 1.39 7.71 
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APPENDIX C 

SIMPER RESULTS FOR BIOMASS BY TREATMENT 

SIMPER results for biomass by treatment showing average dissimilarities by taxa with an 80% 

cumulative contribution cutoff. Mean grams per meter2 by taxa included for each treatment. 

Taxon 
Av. 

Dissimilarity 
Contribution % Cumulative % 

Mean 

Permanent 

Mean 

Temporary 

Hydrophilidae 21.39% 28.79% 24.36% 52.03 93.34 

Chironomidae 18.26% 20.23% 45.16% 58.27 47.29 

Ceratopogonidae 14.63% 20.28% 61.83% 52.73 9.28 

Caenidae      10.62% 18.76% 73.92% 50.63 2.92 

Elmidae         4.78% 12.86% 79.37% 11.38 19.54 

Coenagrionidae 4.06% 12.22% 83.99% 9.94 8.00 
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APPENDIX D 

SIMPER RESULTS FOR ABUNDANCES BY FLOODING INTERVAL 

SIMPER results for abundance by flooding interval showing average dissimilarities by taxa with an 80% 

cumulative contribution cutoff. Mean individuals per meter2 by taxa included for each flooding interval. 

Taxon 
Av. 

Dissimilarity 

Contribution 

% 

Cumulative 

% 

Mean 

January - 

March 

Mean 

March - 

September 

Daphnidae 25.05% 24.40% 28.53% 52.78 1.37 

Chironomidae 23.62% 19.37% 55.44% 30.08 9.82 

Physidae 10.03% 18.38% 66.86% 2.81 9.47 

Gammaridae 8.40% 12.70% 76.42% 15.43 0.18 

Ceratopogonidae 5.59% 10.76% 82.78% 1.30 4.13 
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APPENDIX E 

SIMPER RESULTS FOR BIOMASS BY FLOODING INTERVAL 

SIMPER results for biomass by flooding interval showing average dissimilarities by taxa with an 80% 

cumulative contribution cutoff. Mean grams per meter2 by taxa included for each flooding interval. 

Taxon 
Av. 

Dissimilarity 

Contribution 

% 

Cumulative 

% 

Mean 

January - 

March 

Mean 

March - 

September 

Hydrophilidae 28.47% 32.83% 32.21% 9.61 174.90 

Chironomidae 24.64% 26.38% 60.08% 75.01 20.31 

Elmidae 7.98% 18.80% 69.10% 10.73 28.11 

Ceratopogonidae 6.21% 13.86% 76.12% 3.42 14.99 

Coenagrionidae  5.29% 13.47% 82.11% 12.48 3.63 
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APPENDIX F 

FUNCTIONAL TRAIT BY TAXONS 

Mean monthly total macroinvertebrate abundance (N; ind./m2), and biomass (B; mg/m2) from permanent 

(Perm) and temporary (Temp) by taxon and functional trait. 
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