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Graph Laplacian-Based Sequential Smooth Estimator for
Three-Dimensional RSS Map

Takahiro MATSUDA†a), Senior Member, Fumie ONO††b), and Shinsuke HARA†††c), Members

SUMMARY In wireless links between ground stations and UAVs (Un-
manned Aerial Vehicles), wireless signals may be attenuated by obstruc-
tions such as buildings. A three-dimensional RSS (Received Signal
Strength) map (3D-RSS map), which represents a set of RSSs at various
reception points in a three-dimensional area, is a promising geographical
database that can be used to design reliable ground-to-air wireless links.
The construction of a 3D-RSS map requires higher computational com-
plexity, especially for a large 3D area. In order to sequentially estimate a
3D-RSS map from partial observations of RSS values in the 3D area, we
propose a graph Laplacian-based sequential smooth estimator. In the pro-
posed estimator, the 3D area is divided into voxels, and a UAV observes the
RSS values at the voxels along a predetermined path. By considering the
voxels as vertices in an undirected graph, a measurement graph is dynam-
ically constructed using vertices from which recent observations were ob-
tained and their neighboring vertices, and the 3D-RSS map is sequentially
estimated by performing graph Laplacian regularized least square estima-
tion.
key words: unmanned aerial vehicle, received signal strength, graph
Laplacian, least square estimation, sequential estimation

1. Introduction

Recent technological developments have enabled the use of
new infrastructures such as UAVs (Unmanned Aerial Ve-
hicles) in communication networks. So far, a variety of
UAV wireless networks such as flying base stations and
UAV multihop networks have been studied [1]–[8]. In order
to support heavy traffic applications such as high-definition
videos or to realize BVLOS (Beyond Visual Line-Of-Sight)
flights [9], it is important to design reliable wireless links
in the UAV networks. In this regard, there have been many
studies on channel measurement and modeling [10]–[16].

There are two types of wireless links in UAV networks,
namely air-to-air links between UAVs [10], [11] and ground-
to-air links between ground stations and UAVs [12], [14],
[17], [18]. Air-to-air links at a sufficiently high altitude can
be modeled using a Rician fading channel [10] because there
is a direct LOS (Line-Of-Sight) path between the UAVs. On
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the other hand, NLOS (Non-Line-Of-Sight) paths are used
in ground-to-air links because terrestrial obstructions such
as buildings between ground stations and UAVs cause shad-
owing losses [12].

We focus on large-scale fading in ground-to-air links,
i.e., path loss and shadowing loss, and try to construct
three-dimensional RSS (Received Signal Strength) (3D-
RSS) maps, which represent a set of RSSs at various recep-
tion points in a three-dimensional area. A 3D-RSS map can
be obtained by dividing the area into voxels and measuring
the RSS at each voxel. Obviously, this is a simple but less
cost-effective method.

In this paper, we propose a graph Laplacian-based se-
quential smooth estimator for 3D-RSS maps. By using the
denoising property of graph Laplacian [19], [20] and the
spatial correlation property of large-scale fading [21], [22],
the proposed estimator estimates large-scale fading instead
of small-scale fading. In the proposed estimator, a UAV
moves along a predetermined path in the three-dimensional
area and measures the RSS values on that path. By consider-
ing the voxels as vertices in an undirected graph, a measure-
ment graph is constructed dynamically using vertices from
which recent observations were obtained and their neigh-
boring vertices, and the graph Laplacian is obtained from
the measurement graph. The 3D-RSS map is then sequen-
tially estimated by graph Laplacian regularized least square
estimation.

The proposed estimator estimates a 3D-RSS map from
partial observations of RSS values in the three-dimensional
area. Although this approach has been considered in several
studies in the literature [23]–[31], which will be reviewed in
Sect. 2, we make the following contributions in this paper.

1. Because each measurement graph is constructed using
fewer vertices from among all the vertices in the three-
dimensional area, the computational cost for estimating
the 3D-RSS map is significantly reduced.

2. The positions and postures of UAVs sometimes fluc-
tuate due to wind disturbance; therefore, a finer esti-
mation of the 3D-RSS map does not always provide
useful information for reliable ground-to-air links. The
proposed estimator is capable of obtaining a rough es-
timation of the 3D-RSS map by using the smoothing
effect of the graph Laplacian.

The remainder of this paper is organized as follows. In
Sect. 2, we review some papers related to the RSS map es-
timation problem. In Sect. 3, we describe the graph Lapla-
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cian regularized least square estimation. In Sect. 4, we pro-
pose the sequential smooth estimator based on the graph
Laplacian-regularized least square. Finally, we evaluate the
performance of the proposed scheme with simulation exper-
iments in Sect. 5 and provide our conclusions in Sect. 6.

2. Related Work

RSS maps are useful for designing and managing several
wireless communication systems. In [23]–[27], spectrum
cartography techniques were considered in the context of
cognitive radio. In cognitive radio networks, secondary
users utilize frequency bands without disrupting the connec-
tions of primary users. In order to discover vacant frequency
bands, spectrum cartography is used to construct RSS maps
over a geographical area from RSS values sensed at a certain
number of sensors within the area. In [28]–[30], 3D-RSS
map estimation techniques for ground-to-air links, which is
our target application in this paper, were considered to de-
termine the optimal positions of UAVs. Mostofi [31] uti-
lized spatial cooperative mapping to estimate spatial fields
of interest such as the height map of mountains from mea-
surements obtained using UAVs.

In most of the above references, spatial maps were esti-
mated by utilizing their spatial correlation property. In [23],
[24], Kriging, a linear spatial interpolation technique was
used to estimate the missing values at unobserved locations.
In [25], [26], [31], compressive sampling [32] was applied
under the assumption that spatial maps are sparse in some
transform domains such as Fourier transform and DCT (Dis-
crete Cosine Transform). In [30], by considering a 3D-RSS
map as a third-order tensor, the 3D-RSS map was estimated
using a low-rank tensor completion technique [33]. In [27],
non-parametric estimators from quantized power measure-
ments were proposed using kernel-based learning. In [28],
a segmented regression method based on maximum likeli-
hood estimation was proposed. Esrafilian and Gesbert [29]
proposed a 3D city map reconstruction algorithm, which
uses a different approach from that of other methods. In
this algorithm, the users on the ground are classified into
LOS and NLOS categories, and the positions and heights of
buildings are estimated from the data of user positions.

As mentioned in Sect. 1, our proposed scheme em-
ploys a different approach from those mentioned above. It
uses graph Laplacian and performs sequential estimation
and smooth estimation based on graph Laplacian regular-
ized least square. In order to reduce the computational cost,
the proposed scheme performs sequential estimation of 3D-
RSS maps. A single UAV moves along a predetermined path
and measures the RSS values on that path. A fraction of the
3D-RSS map is estimated at each measurement time, and
the whole map is not estimated until the UAV reaches the
end of the path. Furthermore, the 3D-RSS map is smoothly
estimated by using the properties of the quadratic form of
the graph Laplacian. It should be noted that due to the com-
plex structure of the geographical maps, the 3D-RSS maps
may have local fluctuations even if there is no small-scale

fading effect. The proposed scheme can smooth these local
fluctuations.

3. Graph Laplacian Regularized Least Square Estima-
tion

Let G = (V,E) denote an undirected graph, whereV = {vn |

n = 1, 2, . . . ,N} and E ⊆ V × V represent a set of vertices
with the number N = |V| of nodes and a set of edges, re-
spectively. We define the adjacent matrix A = [ai, j]0≤i, j≤N
of G as a non-negative matrix, where ai, j (ai, j ≥ 0) rep-
resents the weight of edge (i, j) ∈ E. The degree matrix
D = diag{d1, d2, . . . , dN} is a diagonal matrix whose i-th el-
ement (i = 1, 2, . . . ,N) is given by

di =

N∑
j=1

ai, j.

Then, the graph Laplacian L is given by L = D − A [34],
[35].

Let a real vector x = (x1 x2 · · · xN)> denote a graph
signal, where the n-th element xn of x is associated with
vertex vn ∈ V and > denotes the transpose operator. The
quadratic form x>Lx is represented by

x>Lx =
∑

(n1,n2)∈E

an1,n2 (xn1 − xn2 )2. (1)

Because ai, j ≥ 0, L is non-negative definite. We now con-
sider a linear inverse problem to estimate x from a system
of equations:

y = Bx,

where y = (y1 y2 · · · yM)> and B ∈ RM×N denote the mea-
surement vector and the measurement matrix, respectively.
We assume M < N, which means that the above inverse
problem is under-determined, and estimate x by optimizing
the graph Laplacian regularized least square problem:

min
x

{
‖y − Bx‖22 + λx>Lx

}
, (2)

where λ (λ > 0) denotes a weighting parameter. ‖z‖2 repre-
sents the `2 norm of vector z, and for z = (z1 z2 · · · zN)> ∈
RN , ‖z‖2 is given by

‖z‖2 =

√√√ N∑
n=1

z2
n

By solving (2), the estimation x̂ of x is obtained as follows:

x̂ =
(
B>B + λL

)−1
B>y.

From (1), the quadratic form x>Lx is small when the graph
signal x includes elements that have comparable values at
neighboring vertices. Therefore, x̂ is a smooth estimator
of x.
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4. Graph Laplacian-Based Sequential Smooth Estima-
tor

4.1 System Model

In ground-to-air links, the wireless signal transmitted from
a ground station is received by a UAV in air, and in addition
to the path loss, the signal is attenuated by obstructions such
as buildings (i.e., shadowing effect) as shown in Fig. 1. The
shadowing effect exhibits spatial correlation [22]; that is, the
wireless signals received at nearby locations have compara-
ble powers. By using this property, the proposed scheme es-
timates the RSS map from partially observed RSSs as shown
in Fig. 2. Suppose that there is one UAV and one ground sta-
tion in an area. The UAV flies within the area and measures
the RSSs at several locations on its path. From the measure-
ments, the RSS map of the area is sequentially estimated.
Although we consider a simple situation with one UAV and
one ground station in this study, we can apply the proposed
scheme to situations with multiple UAVs and ground sta-
tions.

Let R ⊂ Rp denote a P-dimensional sensing area (P ≤
3). We define Z(r) as the RSS at location r ∈ R. We divide
R into N voxels Q = {q1, q2, . . . , qN}, where each voxel qn
has a size of δP[mP] (δ > 0) and c(qn) ∈ R represents the
location of the center of qn. We assume that Z(r) is approxi-
mately constant within each voxel and define the RSS vector
z = (Z(c(q1)) Z(c(q2)) · · · Z(c(qN)))>.

4.2 Construction of Measurement Graph

LetG = (V,E) denote an undirected graph constructed from
Q, where vn ∈ V corresponds to qn ∈ Q (n = 1, 2, . . . ,N).
To avoid confusion, hereinafter, we refer to vn ∈ V and the
UAV used to measure RSSs as a vertex and node, respec-
tively. Let dist(ri, r j) represent the distance between ri and
r j defined as dist(ri, r j) = ‖ri − r j‖2. We set (vn, vn′ ) ∈ E
if dist(c(qn), c(qn′ )) ≤ dth (dth > 0). A = [ai, j]1≤i, j≤N repre-
sents an adjacent matrix of G, and the (i, j)-th element ai, j
of A is set to ai, j = 1 if (vi, v j) ∈ E and ai, j = 0 otherwise.

Let m (m = 1, 2, . . .) denote the measurement times.
We define the measurement graph G(m) = (V(m),E(m)) at
measurement time m, whereV(m) ⊆ V and E(m) ⊆ E, and
A(m) denotes the adjacent matrix ofG(m). The node obtains
one measurement at each measurement time.

G(m) is updated at each measurement time as follows.
Let q(m) ∈ Q denote the voxel in which the node exists at
measurement time m, which is referred to as a measurement
point. The set QM(m) of measurement points at measure-
ment time m is defined as

QM(m) = {q(m − k) ∈ Q | k = 0, 1, . . .K − 1} ,

where K = |QM(m)| for m = 1, 2, . . ., and the set QN(m) of
neighboring points is defined as

QN(m) = {qn ∈ Q | minhop(vn, vm) ≤ Hth,

Fig. 1 Ground-to-Air communication.

Fig. 2 Sequential estimation of RSS map. A UAV measures the RSSs at
several locations on its path, and the 3D-RSS map is sequentially estimated
from these measurements.

for ∀qm ∈ QM, qm , qn},

where minhop(vn, vm) is the minimum hop between vn and
vm on graph G. Namely, QN(m) represents the set of voxels
around those in QM(m). Let VM(m) ⊂ V and VN(m) ⊂ V
denote the sets of vertices corresponding to QM(m) and
QN(m), respectively, and N(m) denotes the number of vox-
els in QM(m) ∪ QN(m). V(m) is then given by V(m) =

VM(m)∪VN(m), and G(m) is defined as the vertex-induced
subgraph of G on V(m), where E(m) consists of edges
whose endpoints are in V(m) [36]. Figure 3 shows an ex-
ample of a measurement graph for a 2-dimensional region
R.

The node measures the RSS value ym = Z(c(q(m)))
at measurement time m. We define the measurement vec-
tor y(m) at measurement time m, consisting of RSS val-
ues measured at the measurement points in QM(m), that is,
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Fig. 3 Example of measurement graph for 2-dimensional sensing area.
The left figure shows the voxels within the sensing area R. The middle fig-
ure shows the graph G for dth = δ. The right figure shows the measurement
graph G(m) with Hth = 2.

y(m) = (ym ym−1 · · · ym−K+1)>. We also define the temporal
RSS vector x(m) at measurement time m as

x(m) =
(
Z(c(qi1 )) Z(c(qi2 )) · · · Z(c(qiN(m) ))

)>
,

where qi j ∈ QM(m) ∪ QN(m) (i j ∈ {1, 2, . . . ,N}, j =

1, 2, . . . ,N(m)). The relationship between y(m) and x(m)
can be formulated as y(m) = F(m)x(m), where F(m) ∈
{0, 1}K×N(m) and the (k, l)-th element fk,l in F(m) (k =

1, 2, . . . ,K, l = 1, 2, . . . ,N(m)) is set to fk,l = 1 if q(m − k +

1) = qil , and fk,l = 0 otherwise. Furthermore, the relation-
ship between x(m) and z is formulated as x(m) = H(m)z,
where H(m) ∈ {0, 1}N(m)×N and the (l, n)-th element hl,n (l =

1, 2, . . . ,N(m), n = 1, 2, . . . ,N) in H(m) is set to hl,n = 1 if
qil = qn and hl,n = 0 otherwise. We then obtain the following
relationship:

y(m) = F(m)x(m) = F(m)H(m)z.

Note that for each row in H(m), there is only one element
with 1. Suppose that hl̃,ñ = 1 in H(m). We then de-
fine a function id(m, l) to identify the element as follows:
id(m, l̃) = ñ. Figure 4 shows the relationship between RSS
vector z, temporal RSS vector x(m), and measurement vec-
tor y(m).

4.3 Sequential Estimation

Our proposed RSS map estimator estimates the RSS vec-
tor z sequentially with {y(m) | m = 1, 2, . . .}. When y(m)
is obtained, the proposed estimator estimates x(m) by using
the graph Laplacian L(m) of G(m) and obtains the estimated
vector ẑ = (ẑ1 ẑ2 · · · ẑN)> of z by replacing some elements
in ẑ with those in x̂(m) = (x̂1(m) x̂2(m) · · · x̂N(m)(m))>,
which is an estimated vector of x(m). The measurement
graph G(m) is updated during each measurement time, and
QM(m) ∩ QM(m − 1) , ∅ (m ≥ 2), which means that G(m)
and G(m − 1) share some vertices. Therefore, when y(m) is
obtained, the RSS values at some voxels may have already
been estimated at some measurement times m′ (m′ < m).
In the proposed estimator, we utilize these estimated RSS
values as prior information to estimate the RSS values at
measurement time m.

Let S(m) = diag(s1 s2 · · · sN(m)) denote a diagonal ma-
trix containing voxels that have already been estimated at

Fig. 4 Relationship between RSS vector z, temporal RSS vector x(m),
and measurement vector y(m). z contains RSS values at all voxels. x(m)
contains RSS values at measurement points and their neighboring points.
y(m) contains RSS values at measurement points.

least once before the measurement time m. Namely, sn is
set to sn = 1 if xn(m) = Z(c(qin )) was estimated at measure-
ment time m′ (m′ < m), and sn = 0 otherwise. Given y(m),
F(m), H(m), L(m), and S(m), x(m) is estimated by solving
the following optimization problem:

min
x(m)

{
‖y(m) − F(m)x(m)‖22 + λx(m)>L(m)x(m)

+µ ‖S(m) (x(m) − H(m) ẑ)‖22
}
,

where λ > 0 and µ ≥ 0. Because this is a kind of regularized
least square problem, we can easily obtain x̂(m) as follows:

x̂(m) =
(
F(m)>F(m) + λL(m) + µS(m)

)−1

·
(
F(m)>y(m) + µS(m)H(m) ẑ

)
, (3)

if (F(m)>F(m) + λL(m) + µS(m)) is a non-singular matrix.
In order to prove the non-singularity of the matrix, we

introduce the following lemma:

Lemma 1 (Lemma 14.2.4 in [37]): Let A and B represent
square matrices. If either A or B is positive definite and the
other is non-negative definite, then A+B is positive definite.

From this lemma, we have the following theorem:

Theorem 1: For λ > 0 and µ ≥ 0, F(m)>F(m) +

λL(m) + µS(m) is a positive definite matrix. Therefore,
(F(m)>F(m) + λL(m) + µS(m))−1 always exists.

Proof: Because S(m) = diag(s1 s2 · · · sN) is a diagonal
matrix with sn ∈ {0, 1} (n = 1, 2, . . . ,N), S(m) is a non-
negative matrix. Let x denote a non-null real vector (i.e.,
x , 0) with length N(m). From (1), L(m) is non-negative
definite for every x = (x1 x2 · · · xN(m))>, and x>L(m)x = 0
if and only if x1 = x2 = · · · = xN(m). Suppose that x =

α1 = (α α · · · α)> for α , 0. From the definition of F(m),
F(m)>F(m) = diag( f ′1 f ′2 · · · f ′N(m)), where f ′l = 1 (l =

1, 2, . . . ,N(m)) if fk,l = 1 for ∃k ∈ {1, 2, . . . ,K}, and f ′l = 0
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Fig. 5 Example of a basic set containing a measurement vertex and its
neighboring vertices for Hth = 2.

otherwise. Then, x>F(m)>F(m)x > 0. Therefore, if λ > 0,
F(m)>F(m) + λL(m) is a positive definite matrix for every
real vector x, and from the lemma, F(m)>F(m) + λL(m) +

µS(m) is positive definite for λ > 0 and µ ≥ 0. �

4.4 Sampling

Sampling involves assigning measurement points to some
vertices to determine VM(m). In the proposed estimator,
some vertices may not be in any measurement graph if they
are included in neither VM(m) nor VN(m) for ∀m. There-
fore, we propose a sampling scheme to avoid these missing
vertices.

We define a basic setU(v) for v ∈ V as

U(v) = {u ∈ V | minhop(u, v) ≤ Hth}.

That is, U(v) includes the vertex v as well as the vertices
within Hth hops. Figure 5 shows an example of a basic set
U(v) for Hth = 2.

The objective of sampling is to find a set Ṽ of vertices
such that the union of the basic sets of the vertices cover the
setV. We can consider an optimization problem to find the
minimum number of measurement points as follows:

min
Ṽ

|Ṽ|

subject to
⋃
v∈Ṽ

U(v) = V.

This problem can be regarded as a minimum set covering
problem, which is known to be an NP-hard problem [38,
Sect. 16.1].

Therefore, we propose a heuristic sampling algorithm
to find Ṽ as follows. Without loss of generality, we assume
that the dimension p of the sensing area R is p = 3 and
that R is composed of NL two-dimensional layers, where
each layer contains voxels placed at the same height. Let
R(l) ⊂ Rp denote the sensing area in the l-th layer. Figure 6
shows an example of the measurement points obtained using
the proposed sampling scheme for Nth = 2 and NL = 2.

1. Find the minimum rectangular area Rmin covering R(l)

for ∀l = 1, 2, . . . ,NL, and set the virtual area R̃(l) in the

l-th layer as R̃(l) = Rmin (Fig. 6(a)).
2. Divide R̃(l) (l = 1, 2, . . . ,NL) into a set Q̃(l) contain-

ing voxels having the same size δp, and assign a vertex
to each voxel (Fig. 6(b)). Let Ṽ(l) denote the set of
vertices on the l-th layer and V(l) ⊆ Ṽ(l) denote the
set of vertices within R(l). Because each virtual area is
rectangular, the vertices on each layer are placed on a
grid. We assume that there are N1N2 vertices on each
layer, representing the (i, j)-th vertex (i = 1, 2, . . . ,N1,
j = 1, 2, . . . ,N2) on the l-th layer with v(l)

i, j.

3. Set the set Q̃(l)
M of measurement points in the virtual area

on the l-th layer as shown in (4) (Fig. 6(c)).
4. Set the set Q(l)

M of measurement points in the l-the layer
and QM as

Q(l)
M = Q̃(l)

M ∩ Q(l), QM =

NL⋃
l=1

Q(l)
M

where Q(l) denotes the set of voxels corresponding to
V(l) (Fig. 6(d)).

5. Obtain the set Q̄ of uncovered points in Q̄ := Q \
{
⋃NL

l=1(Q(l)
M ∪ Q(l)

N }), which are vertices included in nei-
ther Q(l)

M nor Q(l)
N for ∀l = 1, 2, . . . ,NL (Fig. 6(d)).

6. If Q̄ , ∅, find q ∈ Q̄ such that the maximum number of
vertices in Q̄ is covered by the basic set U(q), and set
QM := QM ∪ {q} (Fig. 6(e)).

7. Repeat step 6) until Q̄ = ∅.

4.5 Path Establishment

From QM, a path along which the UAV node moves is estab-
lished. On each layer, one path that visits all the measure-
ment points and has the minimum path length is established
as shown in Fig. 7. We define a path path(l) on the l-th layer
as

path(l) =

{
qi1 , qi2 , . . . , qi

N(l)
path

}
,

where N(l)
path = |Q

(l)
M |, and [i1, i2, . . . , iNpath ] is a permutation

of [1, 2, . . . ,Npath]. We also define the length len(path(l)) of
path(l) as

len(path(l)) =

Npath(l)∑
j=1

minhop(qi j , qi j+1 ),

where iN(l)
path+1 = i1. The problem of finding a path with

the minimum length is equivalent to the travelling salesman
problem (TSP), which is a typical NP-hard problem [38,
Theorem 15.43.]. In the proposed estimator, we solve this
problem using the Genetic Algorithm (GA).

4.6 Computational Cost

When the LUP decomposition is used, the computational
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Fig. 6 Example of sampling for Hth = 2 and NL = 2. (a) The virtual area R̃(l) (l = 1, 2, . . . ,NL is set
in the l-th layer. (b) A vertex is assigned to each voxel. (c) The set Q̃(l) of measurement points is set to
the vertices in Ṽ(l). (d) The set Q(l) is obtained from Q̃(l). (e) The set Q̄ of uncovered points, which are
vertices included in neither Q(l)

M nor Q(l)
N , is obtained. (f) The measurement points are added to cover the

uncovered points. (g) Finally, a measurement graph is obtained.

Q̃(l)
M =



{
v(l)

2(i−1)Hth+1,2( j−1)Hth+1

∣∣∣∣∣ i = 1, 2, . . . ,
⌊

N1 − 1
2Hth

⌋
, j = 1, 2, . . . ,

⌊
N2 − 1
2Hth

⌋}
∪

{
v(l)

(2i−1)Hth+1,(2 j−1)Hth+1

∣∣∣∣∣ i = 1, 2, . . . ,
⌊

N1 + Hth − 1
2Hth

⌋
, j = 1, 2, . . . ,

⌊
N2 + Hth − 1

2Hth

⌋}
for l = 1, 3, . . .{

v(l)
2(i−1)Hth+1,(2 j−1)Hth+1

∣∣∣∣∣ i = 1, 2, . . . ,
⌊

N1 − 1
2Hth

⌋
, j = 1, 2, . . . ,

⌊
N2 + Hth − 1

2Hth

⌋}
∪

{
v(l)

(2i−1)Hth+1,2( j−1)Hth+1

∣∣∣∣∣ i = 1, 2, . . . ,
⌊

N1 + Hth − 1
2Hth

⌋
, j = 1, 2, . . . ,

⌊
N2 − 1
2Hth

⌋}
for l = 2, 4, . . .

(4)
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Fig. 7 By means of GA (genetic algorithm), a path that visits all the
measurement points has the minimum path length is established.

cost to solve a system y = Ax of n linear equations and n
unknowns is Θ(n3) [39]. Therefore, the computational cost
to compute (3) is given by Θ(N3(m))†. In the simulation
experiment in Sect. 5, we will use the 3D-RSS map with N =

2616 voxels. As shown in Fig. 5, there are 24 neighboring
points when Hth = 2. Therefore, in the proposed estimator
for Hth = 2 and K = 4, the measurement graph G(m) has at
most N(m) = 25 × K = 100 vertices, which means that the
computational cost is significantly reduced by the sequential
estimation.

Note that the above discussion excludes the computa-
tional cost of the path establishment, while GA requires a
heavy computational cost. The reason is that the path length
is not an important factor in the estimation capability of the
proposed estimator, which indicates that we can use other
heuristic algorithms for path establishment. However, if we
need to consider the battery consumption of the UAV, the
path length would be an important factor to design the pro-
posed estimator.

5. Performance Evaluation

In this section, we evaluate the performance of the proposed
estimator using simulation experiments.

5.1 Simulation Setup

Figure 8(a) shows the 3D city map, which is used to obtain
the true 3D-RSS map and find paths in the simulation ex-
periments, and Fig. 8(b) shows the city map projected onto
a 2D space. In the map, one ground station is deployed
with an antenna height of 1.5 [m]. Figures 8(c), 8(d), and
8(e) show the 3D-RSS map obtained using WinProp [40],
which is a ray-tracing wireless propagation simulator. The
3D-RSS map has three layers, namely layer 1, layer 2, and
layer 3 with heights of 50 [m], 60 [m], and 70 [m], respec-
tively. Each layer has 30 × 30 voxels, and the white voxels
correspond to the areas in which RSS values are not mea-
sured due to the presence of buildings. Consequently, there
are 2616 voxels in the RSS map. We use the RSS map as

†The computational cost does not include the cost to obtain
matrices in (3) such as F(m)>F(m).

Fig. 8 (a) and (b) show 3D city map used in the simulation experiments).
(c), (d), and (e) show the 3D RSS map. The white voxels correspond to
buildings, where RSS values are not estimated.

the ground truth to validate the proposed estimator and im-
plement the proposed estimator using MATLAB [41]. To
establish the paths, we use the GA solver in the MATLAB
global optimization toolbox with a crossover probability of
0.8 and a mutation probability of 0.01. We do not consider
the parameter optimization of GA, because it is beyond the
scope of this paper. Figure 9 shows examples of the mea-
surement points and the established paths when using the
proposed sampling scheme for Hth = 2, 3. When Hth = 2
and 3, 329 and 167 measurement points are assigned to the
voxels, respectively.

In this study, we assume that the UAV can control
its position and posture perfectly, and RSS values at mea-
surements points are measured at the centers of the vox-
els. In practical environments, some errors in the position
and posture may occur due to wind disturbance and capa-
bility of localization. If the errors exceed the size of each
voxel (10× 10× 10 [m3] in the simulation experiment), they
may affect the performance of the proposed estimator and in
such a case, the size of each voxel should be set to a larger
size. However, the proposed estimator is robust against the
errors because it aims at roughly estimating the RSS map.

In the proposed estimator, the 3D-RSS map is esti-
mated by interpolating RSS values with the graph-Laplacian
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Fig. 9 Measurement points and established paths for Hth = 2 ((a), (b),
and (c)) and Hth = 3 ((e), (f), and (g)). The red circles represent the mea-
surement points.

regularized least square estimation. Some techniques use a
similar idea such as Kriging-based interpolation [23], [24].
The proposed estimator is different from these techniques in
the sense that it estimates the RSS map sequentially. In par-
ticular, it cannot obtain the whole RSS map until the node
measures RSS values at all measurement points. To the best
of our knowledge, no existing method uses a technique sim-
ilar to that of the proposed estimator. Therefore, we do not
compare the performance of the proposed estimator with
that of any other method.

In order to evaluate the performance of the estimator,
we evaluate the classes of vertices. In the 3D-RSS map, we
classify each vertex into two classes, and the class cl(vn) of
vertex vn ∈ V is defined as cl(vn) = 0 if Z(c(qn)) < Pth and
cl(vn) = 1 otherwise. In this study, we set Pth = −70 [dBm].
We also define the estimated class ĉl(vn) = 0 if Ẑ(c(qn)) <
Pth and ĉl(vn) = 1 otherwise. The class estimation error ε is
given by

ε =
∑
vn∈V

|ĉl(vn) − cl(vn)|
|V|

.

5.2 Simulation Results

Figure 10 shows the 3D-RSS map estimated using the pro-
posed estimator for Hth = 2 and K = 4. It can be observed
that the 3D-RSS map is estimated sequentially, and after the
final measurement, the RSS values at all the voxels are es-
timated. Because the finally obtained RSS maps of all the
layers are similar, we will show the RSS map at layer 1 in
what follows.

Figure 11 shows the average class estimation error ε̄
for Hth = 2, K = 4 (Fig. 11(a)) and Hth = 3, K =

4 (Fig. 11(b)). We set the parameters λ and µ to λ =

0.0005, 0.005, 0.05, 0.5, 5 and µ = 0, 0.05, 0.55, respec-
tively. For a given parameter set of H, K, λ, and µ, ε̄ is
obtained by

Fig. 10 The 3D-RSS map estimated sequentially using the proposed es-
timator for Hth = 2. The figures on the left ((a), (d), and (g)) show the
estimated RSS map after obtaining the 10-th measurement point. The fig-
ures in the middle ((b), (e), and (h)) show the estimated RSS map after
obtaining the 150-th measurement point. The figures on the right ((c), (f),
and (i)) show the estimated RSS map after obtaining the final measurement
point (the 329-th measurement point).

ε̄ =
1

Nsim

Nsim∑
i=1

ε(i),

where ε(i) and Nsim = 10 denote the class estimation error
obtained by the i-th simulation experiment and the number
of simulation experiments conducted for each parameter set,
respectively. From the figures, it can be seen that the class
estimation error is an increasing function of λ for λ > 0.05.
It can also be seen that although the class estimation error
is not sensitive to µ for smaller λ, it is considerably affected
by µ for larger λ. The reason is that while λ is related to
the smoothness of vertices within a measurement graph, µ
is related to the smoothness between different measurement
graphs. Namely, when µ is small, the estimated 3D-RSS
map is not smoothed even with larger λ. On the other hand,
when µ is large, a more smoothed 3D-RSS map is obtained
because the temporal RSS vectors estimated using different
measurement graphs are strongly connected.

Figure 12 shows the estimated RSS maps and classes
obtained from the maps for different values of µ. We ob-
serve that more smoothed RSS maps and classes are ob-
tained for larger µ. It is difficult to set the parameters in
the proposed estimator because the performance of the pro-
posed estimator depends on several factors such as the po-
sitions of buildings, the size of the area to be estimated, the
number of layers, etc. Because the objective of this paper
is to provide an idea of the proposed smooth estimator and
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Fig. 11 Average class estimation error ε̄ vs. parameter λ for Hth = 2, 3.
For each plot, the 95% confidence interval is presented.

demonstrate its basic behavior, we do not consider the pa-
rameter optimization problem in this paper. However, it
is worth mentioning that the parameters, λ and µ, rely on
parameters K and Hth. Larger K and/or smaller Hth result
in constructing larger measurement graphs. From the dis-
cussion in Fig. 11, λ and µ affect the smoothness within a
measurement graph and between measurement graphs, re-
spectively. Therefore, for a given three-dimensional area,
λ is more important for larger measurement graphs and µ
is more important for smaller ones. Furthermore, the num-
ber of classes, where two classes (i.e., cl(vn) ∈ {0, 1}) are
considered in this study, also affects the parameter setting.
Because a more smoothed RSS map is estimated with larger
µ, smaller µ should be used to evaluate the RSS map with
finer resolution of more than two classes.

In the true 3D-RSS map used in the simulation exper-
iments, all three layers have similar spatial distributions of
RSS values, and therefore, almost all temporal graphs (ex-
cept a measurement time when the UAV moves to an upper
layer) are constructed by measurement points on the same
layer. Although we leave the performance evaluation re-
garding environments where the layers have different spatial
distributions for the future work, we consider that the pro-
posed estimator can be applied to such an environment by

Fig. 12 Estimated RSS maps and classes for different values of µ. (a) and
(b) show the true RSS map and the classes obtained from the map. (c), (e),
(g) show the estimated RSS maps for µ = 0, 0.05, and 5, respectively. (d),
(f), and (g) show the estimated classes for µ = 0, 0.05, and 5, respectively.

constructing temporal graphs including measurement points
on different layers.

6. Conclusion

In this study, we considered a 3D-RSS map for ground-to-air
wireless communication and proposed a graph Laplacian-
based sequential smooth estimator for the 3D-RSS map. In
the proposed estimator, a UAV measures the RSS values
at positions along an established path and a measurement
graph is constructed dynamically according to the measure-
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ment points. By performing graph-Laplacian regularized
least square estimation, the 3D-RSS map is sequentially es-
timated. Through simulation experiments, we showed that
the proposed estimator can obtain a smooth estimation of
the 3D-RSS map with much fewer measurement points than
the number of voxels in the 3D-RSS map.

In this study, we focused on the case in which there
is one UAV and one ground station. When there are mul-
tiple UAVs and ground stations, we need to consider the
path establishment problem for UAVs to efficiently estimate
the 3D-RSS map. Furthermore, in this study, we did not
consider the battery consumption problem; we assumed that
the UAV could obtain all measurements without the battery
constraint. This problem is also related to the path establish-
ment problem. We will study these problems in the future
work.
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