
Bowling Green State University Bowling Green State University

ScholarWorks@BGSU ScholarWorks@BGSU

Honors Projects Honors College

Spring 5-25-2021

Can Parallel Gravitational Search Algorithm Effectively Choose Can Parallel Gravitational Search Algorithm Effectively Choose

Parameters for Photovoltaic Cell Current Voltage Characteristics? Parameters for Photovoltaic Cell Current Voltage Characteristics?

Alan Kirkpatrick
alanmk@bgsu.edu

Follow this and additional works at: https://scholarworks.bgsu.edu/honorsprojects

 Part of the Artificial Intelligence and Robotics Commons, and the Atomic, Molecular and Optical

Physics Commons

Repository Citation Repository Citation
Kirkpatrick, Alan, "Can Parallel Gravitational Search Algorithm Effectively Choose Parameters for
Photovoltaic Cell Current Voltage Characteristics?" (2021). Honors Projects. 622.
https://scholarworks.bgsu.edu/honorsprojects/622

This work is brought to you for free and open access by the Honors College at ScholarWorks@BGSU. It has been
accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@BGSU.

https://scholarworks.bgsu.edu/
https://scholarworks.bgsu.edu/honorsprojects
https://scholarworks.bgsu.edu/honors_college
https://scholarworks.bgsu.edu/honorsprojects?utm_source=scholarworks.bgsu.edu%2Fhonorsprojects%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.bgsu.edu%2Fhonorsprojects%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=scholarworks.bgsu.edu%2Fhonorsprojects%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=scholarworks.bgsu.edu%2Fhonorsprojects%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.bgsu.edu/honorsprojects/622?utm_source=scholarworks.bgsu.edu%2Fhonorsprojects%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages

Can Parallel Gravitational Search Algorithm Effectively Choose

Parameters for Photovoltaic Cell Current Voltage Characteristics?

Alan Kirkpatrick

Introduction

Sustainability and renewable energy are becoming more and more prevalent in today’s

world. This will only become truer as electric cars replace gasoline, the population increases, and

climate change increases the demand for heating and cooling capabilities. One of the alternatives

to fossil fuels is solar power. Photovoltaic (PV) cells take the photons emitted from the sun and

convert them into electricity.

PV cells have several characteristics that depend on the parameters of the cell. These

parameters are used to determine the Current Voltage (IV) curve. This curve relates the current

and voltage at various real-world conditions such as temperature and light levels. IV curves

provide the essential performance metrics of PV modules, including power conversion

efficiency, maximum power output, open circuit voltage, short circuit current density, and fill

factor.

The curve lets consumers apply real world conditions to solar cells to get an idea of the

true performance for the given application. This performance can then be used to determine the

best location, angle, and possibly active motion of the panel if used in the setup. All of these give

greater efficiency to the panel and allow for more electricity to be generated for a given area.

This study asks the question “Can parallel Gravitational Search Algorithm (GSA)

effectively choose parameters for photovoltaic cell current voltage characteristics?” These

parameters will be plugged into the Single Diode Model to create the IV curve. It will also

investigate Particle Swarm Optimization (PSO) and a population based random search (PBRS) to

see if GSA performs the search better and or more quickly than alternative algorithms.

Previous research into this topic has used several algorithms to solve the problem, such as

GSA and PSO. These papers have shown the algorithms are effective in finding an optimal

solution. Fitness scores are determined using Root Mean Squared Error (RMSE).

Photovoltaic Effect

The primary way solar cells generate electricity is though the Photovoltaic effect. When a

photon strikes the cell, an electron absorbs the photon. This photon is then excited to a higher

energy level, leaving a positive “hole” behind [1]. Normally, these would recombine fairly

quickly, resulting in no charge gained. In order to create current, there needs to be a separation of

the opposite charges. This separation is known as the potential barrier.

The potential barrier is a division of charges. This barrier separates the negative electrons

from the positive holes. To create this barrier, pure silicon materials must be doped with impurity

atoms with one more electrons. This is known as a n-type silicon with the majority charge

carriers being electrons. If doped with impurity atoms that have one less electron than Si atoms,

then p-type silicon is formed, and the majority charge carriers are holes. At the junction between

these silicon's, the electrons can freely jump from the n-type to the p-type [1]. Eventually enough

charges will have moved to where the potentials will be equal, and no more charges will flow.

This creates the potential barrier.

When light strikes the solar cell, if the wavelength is correct, an electron will absorb the

energy and move to a higher energy level, creating an electron-hole pair. Depending on which

side of the potential barrier the pair is created, the electron and hole will separate, with one of

them moving across the potential barrier and the other being repelled. Now there is a pair that are

unable to recombine, until an external load is placed, creating an electric current, completing the

PV cell’s generation of electricity [1].

In the single diode PV model, as shown in Fig. 1, there are 5 different parameters that determine

the relationship between voltage and current [2]. There are two currents, photocurrent (IPH) and

reverse saturation current (IO). There are also two resistors added to the model, resistive losses

due to metals natural resistance (RS) and shunt resistive losses (RSH). Note that this model is an

idealized one, and these resistors only sum up the resistance of other components, they are not

themselves parts of the cell. Finally, we have the diode ideality factor (n) which is the

relationship between the diode and an ideal diode. It is these 5 parameters that will be estimated.

Fig. 1. Model of an idealized photovoltaic cell using the single diode model.

The IV curve is the relationship between the voltage and current of a cell. This

relationship is complex and depends on many factors, such as those in the idealized model

above. The standard equation is a transcendental, meaning it cannot be solved in a closed form.

This equation is given as

𝐼𝑐𝑒𝑙𝑙 = 𝐼𝑝ℎ − 𝐼𝑂 ∗ [𝑒
𝑞(𝑉𝑐𝑒𝑙𝑙+𝐼𝑐𝑒𝑙𝑙∗𝑅𝑠)

𝑛∗𝑘∗𝑇𝑐 − 1] −
𝑉𝑐𝑒𝑙𝑙+𝐼𝑐𝑒𝑙𝑙∗𝑅𝑠

𝑅𝑝
 (1)

where k is the number of cells and Tc is the temperature in Celsius. This equation is known as the

modified single-diode model and is what will be used to solve for the current.

Metaheuristics

The chosen algorithm for this problem will be GSA [3]. GSA is inspired by Newton‘s

laws and the interaction of mass. Each particle has a set mass, with a higher mass equaling a

more optimum solution. A single particle is one estimation of parameters, which each dimension

being one variable that is being optimized. As opposed to traditional 3-D space, there is d

dimensions, which is dependent on the problem. Each mass moves throughout the search space

looking for the optimum solution to the objective function. So, in the case of single cell PV

estimation, there will be five dimensions to be estimated.

At each iteration in GSA a set of steps are taken. After the initial random distribution of

particles, the masses of each are calculated. Then the gravitational constant G(t) is updated. Next

the forces must be calculated between each mass, with a certain number of bodies (k) being

allowed to create force between the others. Then the acceleration and velocity are calculated for

each mass. Finally, the positions are updated according to the velocity. This process then repeats

until a mass reaches the desired solution [4].

In addition to GSA, there are numerous other metaheuristic algorithms that could be used

to estimate the PV cell parameters. Some have separated these algorithms into four distinct

groups, Evolutionary, Physics based, Swarm based, and Human based. I will be discussing the

algorithms used in Olivia’s article, “A review on meta-heuristics methods for estimating

parameters of solar cells [5].” Since the optimization problem they solve is the same as this study,

this will serve as an excellent comparison to test both the accuracy and reliability of my

algorithm compared to their results.

The first category of algorithms is Evolutionary algorithms. These follow the process of

evolution in which the population of samples gradually works their way towards the optimum

solution. Examples of evolutionary algorithms include Genetic algorithm (GA), Differential

evolution (DE), and Shuffled complex evolution (SCE). GA is modeled after evolution in nature,

where the fittest individuals have a better chance to survive and reproduce. Some also undergo

random mutations to prevent the population from being stuck in a local minim. DE also uses

crossover and mutation. However, it can also create additional trial vector comparing two

individuals [5]. This lets DE self-organize which GA cannot do. Finally, SCE uses a controlled

random search combined with shuffling. They also improved upon the traditional SCE by added

a few specifics to the solar cell problem, such as reflection absorbing bound handling.

Physics based algorithms are generally inspired by physical properties observed in the

world. These include Wind driven optimization (WDO), Flower pollination algorithm (FPA),

and Gravitational search algorithm (GSA). WDO simulates newtons 2nd law in air particles. It

also includes gravity, friction, and the Coriolis force all working together to find the optimum

solution [5]. FPA follows the pollination of flowers using both biotic and abiotic transfer

methods of pollen. This functions by allowing the fittest plants to survive, i.e. those that are able

to spread their pollen. GSA was previously discussed above.

Then, we have Swarm based algorithms. These involves many particles all affecting each

other following a set algorithm. Artificial bee colony (ABC), Particle swarm optimization (PSO),

Cat swarm optimization (CSO), and Whale optimization algorithm (WOA) are all examples of a

swarm algorithm. ABC simulates the process by which honeybees collect food. This depends on

the location of the food, the amount of nectar, and the classes of bee. The bees search and move

towards the highest amount of nectar for a given food location. PSO involves a random

displacement of particles with position and velocity. The particles influence each other based on

their fitness, which the swarm gradually coalescing at the optimum solution [5, p. 6]. CSO

involves a random displacement of cats which move in 2 modes, tracking and seeking. Seeking

the cats move slowly where tracking they move fast towards a new location. These combine to

locate the optimum solution. WOA simulates whale hunting and circling their prey. A ring of

bubbles is creating which the other whales move to as it slowly contracts. These two phases are

the exploration and exploitation phases.

Finally, we have one Human based algorithm, Harmony search (HS). HS is based on

musicians improvising music that is pleasing to hear. In place of improvisation, the variables are

modified by the algorithm to minimize the objective function. There are two different types,

grouping-based global harmony search (GGHS) and innovative global harmony search (IGHS).

Both are designed to improve performance and to avoid local minima.

Parallelization

 Parallelization involves taking code, which typically executes in a single thread,

procedurally and allows it to take advantage of multiple cores of a CPU or even multiple CPUs.

There are two main types. The first is shared memory. This is where a program is split up in a

way to take utilize more than 1 core of a single CPU that shares memory. One of the most

common methods in C++ is using a library called OpenMP [6]. Conversely, distributed memory

can use more than one CPU and memory stores that are physically distinct. This is done with a

library like MPI [7]. It is possible to combine OpenMP and MPI to enable parallel execution on

both multiple cores and multiple CPUs.

 In both cases the library handles the low-level commands required, but it is up to the

developer to split the workload in a way that avoids the most common problems. One of these

problems is a race condition, where two threads or processes attempt to access the same location

at the same time for writing. This problem can be eliminated by setting locks on data that must

be accessed by the same threads, or by splitting the data in such a way that each thread can

access its own copy of the data, which can then be recombined when the program finishes its

parallel processing.

 The better the code is split up the faster the execution time. A perfectly parallel algorithm

can be split among n threads, and the execution time will be 1/n. However, most code will have a

less than perfect split, either due to the data size or due to the calculations that must be done.

This leads to the speedup and efficiency metrics. Speedup (S = single-thread time /

multi-thread time) is how much faster the parallel version is compared to the single

version. Efficiency is speedup over the number of threads (E = S/n), showing how well the code

is parallelized. The higher efficiency the better scaling can be obtained with more cores.

 When creating parallel code, there will be a slight overhead, as the threads must be

created, private variables must be copied, and work must be distributed. This is more noticeable

when threads are repeatedly created and destroyed. This is why the code only creates threads

once and reuses them for the duration of the program. Another side effect of the overhead is the

single thread time will be slightly slower than if the code was not parallel, as the omp statements

must still execute and a single thread is still created.

Methodology

In order to solve for the optimal parameters of the PV cell, it is necessary to develop an

algorithm capable of determining them in an efficient and accurate manner. For this reason, this

study uses the GSA, PSO, and a random search. The first two are optimization algorithms

designed to solve problems like this, while the random is the generation of random solutions. If

the algorithms do not perform as well or better than the random then there is no need for an

advanced algorithm to determine the parameters.

The program will consist of several parts. The first part will consist of the

implementation of the three algorithms. Both GSA and PSO will be standard implementations

with no modifications made. The random algorithm will also be standard as it is just a repeated

random selection of values.

The only change made to all three is that they will be parallelized with OpenMP. This

will allow some sections of the code to run in parallel, increasing the performance and

decreasing the time it takes to get a result. All tests will be run with up to 16 cores on a Ryzen

5950X overclocked to 4.575 Ghz. The specific parallel improvements will be discussed further

below.

The second part will be the timing code, which will record the execution time of both the

whole program, and individual pieces to get an accurate idea of how well the speedup and

efficiency of the parallelization. This is critical as obtaining a high efficiency is just as important

as the accuracy of the estimated parameters. If two algorithms have a similar fitness score but

one runs much faster, than the faster algorithm is the better choice to use.

The third and final portion of the code will be the fitness function. While much smaller

than the other parts this is the most important. The function is what determines how close the

parameters are to the accepted values, or the fitness of the data. This is split into two functions.

The first will create the IV curve based on the known voltages and estimated parameters. The

second will use root mean squared error (RMSE) to find the difference between the estimated

and experimental curves.

The program (source code is publicly available here: https://github.com/Darth-

Falcon/GSA-solar) is operated with command line arguments. These control which algorithm

will be used, the number of particles, time steps, as well as the bounds for all 5 parameters. There

is also a parameter to control the number of dimensions, so a fitness function to be created for

use in double diode cells. However, there is no way to select the fitness function without

modifying the source code. More explanation of the arguments and the programs use will be

detailed in the README in the GitHub repository.

The results of this project will be an algorithm capable of estimating the parameters of a

solar cell. These parameters will be plugged into the Single Diode Model to create the IV curve.

Finally, this curve will be used to estimate the efficiency of solar cells in real world conditions.

Previous research into this have used several algorithms to solve the problem, such as

GSA and PSO. These papers have shown the algorithms are effective in finding an optimal

solution. This paper will verify those results and also compare them against a random selection,

to see if the algorithm is choosing the best values both in terms of computation time and final

fitness score.

https://github.com/Darth-Falcon/GSA-solar
https://github.com/Darth-Falcon/GSA-solar

Discussion of Code

The code was more difficult to create than I had initially anticipated. This is due to two

reasons. The first is the fitness function is a transcendental equation, which means the solution is

on both sides of the equation. This means that you cannot plug in the numbers to solve like a

traditional expression. After trying several functions to solve this including lambert and newtons

methods, I settled on a simpler approach. I took the experimental values for current and plugged

those into the right-hand side of the equation. Then the left side gives me the estimated current.

This meant it could be solved like a normal equation. In testing, it was found that this method

combined with the experimental parameters taken from [2] gives a fitness score of 0.028, which

is similar to the fitness score they got.

The second issue was with GSA. None of the papers that worked with GSA provided

their source code, meaning the algorithm had to be created from scratch, with only their notes on

the rough operation to guide me. Despite my efforts at combining the paper where GSA was

originally proposed and the papers which used it to solve the solar cell optimization problem, I

was not able to create an algorithm which would produce the results as accurate as those papers.

This is excellent proof that source code should be made public with the publication of a research

paper. No matter what language it was done it, this would allow other developers and researchers

to see how it was solved to not only verify the original papers findings, but to improve upon to

either achieve the same result in less time, or a more accurate result.

Because of this, I used my PSO algorithm from my parallel programming class two years

prior as a second algorithm to try and get better values. I also created a random function, since

there is no point in running a complex algorithm if picking random values will get a better fitness

score. Each of the 3 algorithms were parallelized with OpenMP. This allows the program to take

advantage of multiple threads on a single CPU. Each algorithm was parallelized slightly

differently depending on what could be accessed and modified at the same time. Any data that

depends on data from a previous run can’t be done in parallel.

The random algorithm was parallelized in two places. The first was the loop which

created the random values and the second is the loop which creates the fitness scores. These two

for loops are the only parts that can be made to run in parallel. The global best values can only be

done by a single thread. PSO was parallelized in a similar manner. The loops which calculate the

position, velocity, and fitness were made to run in parallel. Only the calculation of the global and

local best wasn’t parallelized. Any timing code was also not parallelized as only one thread

needs to start or stop the timing code. GSA was parallelized just like PSO, with everything

except the global bests being parallel. Each of the parallel statements were accomplished with a

#pragma omp for.

Any code that was to be executed by only a single thread was given either #pragma

omp single or #pragma omp master. The entire function was created inside a parallel

section to prevent the unneeded creation and deletion of threads.

Analysis of Code

Due to time constraints on completing the project, and the sizes of particles/time steps

chosen, not all GSA runs were completed. However, there is still enough data to make a

conclusion. Five runs were completed for each set of parameters and their averages taken to

minimize error. There were 1-16 threads used with 1,000, 5,000, and 10,000 particles, all with

50,000 timesteps. The exception to this was GSA, which was run with only 1,000 particles and

10,000 timesteps, as the only run done with 5,000 particles took 2 hours alone, and I did not have

the time for all 240 total runs at 5,000 particles. Below are the average speedup, efficiency, and

karp-flatt metric, as well as the percent difference between the best fitness score for that

algorithm.

TABLE I. SPEEDUP OF POPULATION BASED RANDOM SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1

1 1 1

2
1.817303145 1.779622 1.730642

3
2.438534287 2.320151 2.247501

4
2.970637193 2.891261 2.745701

5
3.506201619 3.289285 3.069835

6
3.889482702 3.625732 3.336928

7
4.21192357 3.865711 3.609828

8
4.556579936 4.112855 3.844505

9
4.768173158 4.304044 4.106554

10
5.011439962 4.58945 4.453124

11
5.190987883 4.691483 4.356624

12
5.377941579 4.923639 4.784494

13
5.577509594 5.057029 4.908425

14
5.756648799 5.210942 5.049197

15
5.862041276 5.354303 5.170072

16
6.083612319 5.500277 5.256688

TABLE II. EFFICIENCY OF POPULATION BASED RANDOM SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
1 1 1

2
0.908652 0.889811 0.865321

3
0.812845 0.773384 0.749167

4
0.742659 0.722815 0.686425

5
0.70124 0.657857 0.613967

6
0.648247 0.604289 0.556155

7
0.601703 0.552244 0.51569

8
0.569572 0.514107 0.480563

9
0.529797 0.478227 0.456284

10
0.501144 0.458945 0.445312

11
0.471908 0.426498 0.396057

12
0.448162 0.410303 0.398708

13
0.429039 0.389002 0.377571

14
0.411189 0.37221 0.360657

15
0.390803 0.356954 0.344671

16
0.380226 0.343767 0.328543

TABLE III. PERCENT DIFFERENCE OF POPULATION BASED RANDOM SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
27.68226497 12.19841 10.60797

2
26.5275876 12.15053 13.8724

3
28.32353435 10.63226 6.216174

4
28.02310509 22.3116 7.376512

5
27.60274416 12.68505 0

6
28.90496218 11.54703 3.162926

7
28.40686313 13.13106 8.544504

8
24.87118514 19.49323 6.142861

9
22.16427817 17.68206 13.53046

10
25.85680777 10.43002 7.310364

11
18.86207621 18.19691 5.492049

12
23.88818443 12.70775 11.92566

13
26.90566138 18.84172 9.036868

14
25.09795395 16.5662 15.90845

15
20.91298416 16.4841 10.52319

16
24.39565618 8.191426 4.238023

TABLE IV. KARP-FLATT FOR POPULATION BASED RANDOM SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
#DIV/0! #DIV/0! #DIV/0!

2
0.100532 0.123834 0.155641

3
0.115124 0.14651 0.167408

4
0.115504 0.127826 0.152274

5
0.106511 0.130022 0.157188

6
0.108524 0.130968 0.159612

7
0.110325 0.135132 0.156525

8
0.107958 0.135017 0.154413

9
0.110939 0.136382 0.148952

10
0.110604 0.13099 0.138402

11
0.111906 0.134467 0.152489

12
0.11194 0.130657 0.1371

13
0.110899 0.13089 0.137376

14
0.110152 0.129743 0.136363

15
0.111345 0.128677 0.135808

16
0.108668 0.127263 0.136249

TABLES I-IV show the random result suffers poorly from efficiency. Larger particle

sizes reduce the efficiency rather than increase it. This is most likely due to the sorting to find the

best fitness taking longer with more particles, and this being a non-parallel section of code. The

sort_indexes() function first creates a vector the same size as the number of particles, then sorts

that vector based on the fitness vector. Since increasing the number of threads does not decrease

the execution time of the function, the efficiency drops off. Same with more particles, it takes

longer to create and sort, further decreasing the efficiency. The fitness scores, however, are much

better with a larger particle count, with most of the best results being on the 10k particle test.

Since in random, the particles are only randomized, having more particles would give a higher

probability of having a favorable selection of parameters. It also shows that thread count does not

have an impact on the fitness score, meaning the parallelization did not affect the accuracy of the

results.

TABLE V. SPEEDUP OF PARTICLE SWARM OPTIMIZATION

Number of Threads
Number of Particles

1000 5000 10000

1

1 1 1

2
1.984906 1.984067 1.973952

3
2.908934 2.909571 2.7787

4
3.791924 3.792419 3.605523

5
4.588503 4.631802 4.333673

6
5.361996 5.471373 5.161054

7
6.038425 6.224631 5.797607

8
6.902542 7.020892 6.598619

9
7.726953 7.690315 7.809394

10
8.280902 8.492211 8.57297

11
9.076593 9.21226 9.420746

12
9.691964 10.04861 10.24597

13
10.35788 10.86712 10.96195

14
11.04018 11.57202 11.53917

15
11.67175 12.31159 12.61004

16
12.34589 13.04898 13.37828

TABLE VI. EFFICIENCY OF PARTICLE SWARM OPTIMIZATION

Number of Threads
Number of Particles

1000 5000 10000

1
1 1 1

2
0.992453 0.992034 0.986976

3
0.969645 0.969857 0.926233

4
0.947981 0.948105 0.901381

5
0.917701 0.92636 0.866735

6
0.893666 0.911896 0.860176

7
0.862632 0.889233 0.82823

8
0.862818 0.877612 0.824827

9
0.85855 0.854479 0.86771

10
0.82809 0.849221 0.857297

11
0.825145 0.837478 0.856431

12
0.807664 0.837384 0.853831

13
0.79676 0.835932 0.843227

14
0.788584 0.826573 0.824227

15
0.778116 0.820772 0.84067

16
0.771618 0.815562 0.836143

TABLE VII. PERCENT DIFFERENCE OF PARTICLE SWARM OPTIMIZATION

Number of Threads
Number of Particles

1000 5000 10000

1
27.68226497 12.19841 10.60797

2
26.5275876 12.15053 13.8724

3
28.32353435 10.63226 6.216174

4
27.28132 12.84748 10.98947

5
23.13056 10.84179 1.702854

6
20.65271 12.20088 5.378083

7
19.8418 16.51051 5.537406

8
27.887 12.82123 8.835138

9
22.4317 17.01068 11.56999

10
25.26885 13.72036 0

11
24.7233 11.15957 6.430317

12
22.28931 10.33769 7.79417

13
20.92834 12.24763 9.896238

14
23.51627 6.88614 8.127673

15
20.41172 6.090079 6.294

16
28.67067 15.18492 7.205673

TABLE VIII. KARP-FLATT FOR PARTICLE SWARM OPTIMIZATION

Number of Threads
Number of Particles

1000 5000 10000

1
#DIV/0! #DIV/0! #DIV/0!

2
0.007605 0.00803 0.013196

3
0.015653 0.01554 0.039821

4
0.018291 0.018245 0.03647

5
0.02242 0.019873 0.038439

6
0.023797 0.019323 0.032511

7
0.02654 0.020761 0.034566

8
0.022713 0.019922 0.030339

9
0.020594 0.021288 0.019057

10
0.023066 0.019728 0.018495

11
0.021191 0.019406 0.016764

12
0.021649 0.017654 0.015563

Number of Threads
Number of Particles

1000 5000 10000

13
0.021257 0.016356 0.015493

14
0.020623 0.01614 0.016405

15
0.020368 0.015597 0.013538

16
0.019732 0.015077 0.013065

TABLES V – VIII suggest that... with PSO, the algorithm scales much better with the

number of threads. It also becomes more efficient with the growing particle count. This is to be

expected as most of the code is parallelized and was optimized to be as efficient with multiple

threads as possible. The only parts which are not parallelized are quick in terms of execution

time compared to the longer parts, meaning overall the efficiency stays quite high, with even 16

threads staying about 75%. Similarly to the random test, more particles yield a better result, as

this gives the algorithm more data to work with when locating the optimum solution. The worst

solutions were with the smallest number of particles, and the best were with the highest, even

with the large number of time steps.

TABLE IX. SPEEDUP OF GRAVITATIONAL SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1

1 1

2
2.195564

3
3.30818

4
4.402756

5
5.563386

6
6.473704

7
7.448444

8
8.190317

9
9.104378

10
9.889294

11
10.98151

12
11.39476

13
12.24176

14
13.24038

15
13.78928

16
15.89791 9.463927

TABLE X. EFFICIENCY OF GRAVITATIONAL SEARCH ALGORITHM

TABLE XI.

Number of Threads
Number of Particles

1000 5000 10000

1
1 1

2
1.097782

3
1.102727

4
1.100689

5
1.112677

6
1.078951

7
1.064063

8
1.02379

9
1.011598

10
0.988929

11
0.998319

12
0.949563

13
0.941674

14
0.945741

15
0.919285

16
0.993619 0.591495

TABLE XII. PERCENT DIFFERENCE OF GRAVITATIONAL SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
1.913136 6.603032

2
5.474883

3
7.69871

4
3.442456

5
3.835169

6
2.678255

7
3.251674

8
3.149148

9
0.944752

10
4.500195

11
4.825286

12
2.763859

13
2.957494

14
3.724862

15
6.070027

16
15.89975 0

TABLE XIII. KARP-FLATT FOR GRAVITATIONAL SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
#DIV/0! #DIV/0!

2
-0.08907

3
-0.04658

4
-0.03049

5
-0.02532

6
-0.01463

7
-0.01003

8
-0.00332

9
-0.00143

10
0.001244

11
0.000168

12
0.004829

13
0.005162

14
0.004413

15
0.006272

16
0.000428 0.046042

 TABLES IX – XIII show GSA scales super linearly, meaning it gains more than 100%

speedup for each additional thread. This means that less work was done with multiple threads,

indicating an error with the parallelization. With the limited testing at 5000 particles, this was no

longer true. This anomaly will be discussed more later. Looking at the percent differences we

can see that the test with 5000 particles was the best, which lines up with the results of the other

two algorithms. Interestingly, the 1000 particle 16 thread gave the worst fitness score by far,

which could be due to the error in calculation. There were, however, scores within 1% of the best

when using multiple threads.

 In order to fully understand the results, we must look at the fitness scores and execution

times of all 3 algorithms together. This will show which algorithm can find the best parameters,

and which can run the fastest. Below are the average times and fitness of each run for all 3

algorithms.

 Random

TABLE XIV. AVERAGE TIME OF POPULATION BASED RANDOM SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
75.77638 389.875 790.6932

2
41.69716 219.0774 456.8786

3
31.07456 168.0386 351.81

4
25.50846 134.846 287.975

5
21.6121 118.5288 257.5686

6
19.48238 107.53 236.9524

7
17.99092 100.8546 219.039

8
16.6301 94.79424 205.6684

9
15.89212 90.58342 192.5442

10
15.12068 84.95026 177.5592

11
14.59768 83.10272 181.4922

12
14.09022 79.18432 165.2616

13
13.58606 77.09566 161.089

14
13.16328 74.81852 156.5978

15
12.92662 72.81526 152.9366

16
12.45582 70.8828 150.4166

TABLE XV. AVERAGE FITNESS OF POPULATION BASED RANDOM SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
0.089382 0.04225194 0.03950926

2
0.083722 0.042166 0.04539956

3
0.092786 0.03954948 0.03297046

4
0.091166 0.06706372 0.034567072

5
0.088973 0.04313786 0.02567896

6
0.096051 0.04110122 0.02914718

7
0.093243 0.04397034 0.03626448

8
0.07651 0.05849566 0.03287242

9
0.066573 0.05377834 0.04473312

10
0.080682 0.0392161 0.03447372

11
0.056789 0.05506464 0.03201626

12
0.072663 0.04317974 0.0417653

13
0.085513 0.0567356 0.03700902

14
0.077441 0.05112642 0.04964458

15
0.062604 0.05093828 0.03936926

16
0.074612 0.03574136 0.030435224

TABLE XVI. AVERAGE TIME OF PARTICLE SWARM OPTIMIZATION

Number of Threads
Number of Particles

1000 5000 10000

1
72.89526 364.0886 729.6172

2
36.7248 183.5062 369.6226

3
25.0591 125.1348 262.575

4
19.22382 96.00432 202.361

5
15.8865 78.60626 168.36

6
13.5948 66.54428 141.3698

7
12.0719 58.4916 125.848

8
10.56064 51.85788 110.5712

9
9.433894 47.34378 93.42814

10
8.802816 42.87324 85.1067

11
8.031126 39.52218 77.44792

12
7.521206 36.23274 71.21018

13
7.037664 33.5037 66.55906

14
6.602724 31.46284 63.2296

15
6.245446 29.57284 57.86

16
5.904416 27.90168 54.53744

TABLE XVII. AVERAGE FITNESS OF PARTICLE SWARM OPTIMIZATION

Number of Threads
Number of Particles

1000 5000 10000

1
0.230209 0.11448 0.105804

2
0.184192 0.10515 0.072448

3
0.162927 0.111364 0.083989

4
0.156726 0.134404 0.084532

5
0.238368 0.114352 0.096726

6
0.177807 0.137468 0.108425

7
0.205969 0.118863 0.067675

8
0.200063 0.106564 0.087651

9
0.176546 0.102954 0.092671

10
0.165113 0.111586 0.101075

11
0.18786 0.089294 0.093948

12
0.161048 0.086448 0.087167

13
0.249613 0.12671 0.090466

14
0.17598 0.097657 0.083373

15
0.193309 0.083376 0.106779

16
0.178007 0.09892 0.087226

TABLE XVIII. AVERAGE TIME OF GRAVITATIONAL SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
190.1464 6542.81

2
86.60482

3
57.47764

4
43.18804

5
34.17818

6
29.37212

7
25.52834

8
23.216

9
20.88516

10
19.2275

11
17.31514

12
16.68718

13
15.5326

14
14.3611

15
13.78944

16
11.96047 691.342

TABLE XIX. AVERAGE FITNESS OF GRAVITATIONAL SEARCH ALGORITHM

Number of Threads
Number of Particles

1000 5000 10000

1
0.21351 0.257957

2
0.24641

3
0.269761

4
0.22702

5
0.230633

6
0.22016

7
0.225286

8
0.22436

9
0.205391

10
0.236895

11
0.240023

12
0.220917

13
0.22264

14
0.229612

15
0.252428

16
0.382202 0.197773

 TABLES XIV – XIX show PSO runs in half the time or better at high thread counts

compared to random. At low counts, the difference is much smaller, only a few percent. This

shows the efficiency of PSO and the benefit of parallelization. GSA also runs substantially faster,

but as stated previously, this is likely due to an error where calculations are skipped. At 5000

particles you can see how GSA becomes substantially less efficient, as the effect of n-body

calculations is exponential with more particles. This is why the runs were shortened and not all

tests completed, due to the exponentially longer time GSA takes vs both PSO and random.

Comparing the algorithms in terms of fitness reveals a different story. Random had

substantially better fitness scores, with even the 1000 particle tests having better scores than

some of the 10k PSO runs. GSA had the worst scores, with no score dropping below 0.19, more

than double the fitness of the worst random score and worst than all but a few of the worst PSO

scores. This shows two things. Firstly, that my implementation of GSA was flawed. Given the

impossible speedup, and the terrible fitness, the algorithm is not successfully converging on an

optimal solution, but rather getting stuck somewhere. It is difficult to say why GSA is not

working. No sources I was able to find for the literature review provide their source code. This

meant that I had to create the algorithm going only off their diagrams, equations, and

pseudocode. Even if the code has been posted in a language I was unfamiliar with, I would have

been able to translate it or use it to see where my algorithm is failing.

 The second and more major issue is that the random results were always better than either

algorithm. This means that you are better off randomly guessing values vs using an algorithm to

traverse possible solutions. The random produced results which were always better than either

algorithm by a large margin, especially at lower particle counts. PSO with 10k particles and 16

threads gives a fitness score of 0.087226 found in 63.2296 seconds. Random can produce a

fitness score of 0.089382 in 75.77638 seconds with only 1 thread. At 16 threads the fitness was

0.074612 and the time was reduced to just 12.45582 seconds. Given this information, there is no

reason to develop and algorithm when randomly picking values produces a better result in less

time. The best score made by the random selection was 0.02567896, done in 257.5686 seconds,

as it was not a 16-thread run. This is better than the ~0.028 that I based a good run on from [2].

 Random being better than GSA was to be expected, given the known limitations of my

GSA implementation. However, the PSO algorithm had been tested and verified with rastrigin to

find known good values. Even with an algorithm as good as PSO, picking random values still

yielded much better results, albeit taking more time to do so.

Looking at other algorithms we can see that their results are substantially better than the

ones shown here. Using several different algorithms, they are all able to achieve a fitness score

more than 10x better. These fitness scores were ~ 9.84e-04 [8, pp. 6-7]. This shows that while

the solutions presented in this paper are effective, there are both better and worse alternatives

available.

Application of Results

 The application of the results found in this research are interesting. Given the limited

scope of the testing, this may not necessarily apply to all algorithms, but in our results using a

random search proved more effective at finding a solution than an optimization algorithm. Even

an algorithm as efficient and well known as PSO could not produce a result better than random

with the same samples, and in fact was much worse.

Given the GSA algorithm has unknown issues, it is not suitable to be used in other problems.

However, both the random and PSO could easily be modified to suit a different problem set. A

few changes would need to be made to the algorithm, such as allowing to fitness function to be

modified, and changing how the bounds are input to the program.

Conclusion

Fig. 2. Best and worst IV curves of various algorithms, along with baseline

TABLE XX. ESITMATED PARAMETERS FOR VARIOUS ALGORITHMS

Algorithm & Run
Parameter

IPh IO RS Rsh n

Worst Random 0.788184 9.85E-07 0.0900957 61.79 1.66269

Best Random 0.748417 6.02E-06 0.0104458 57.893 1.86124

Worst PSO 0.7015 7.84E-07 0.029655 44.4558 1.86433

Best PSO 0.743657 6.04E-06 0.0146951 34.6244 1.84881

Worst GSA 0.551209 3.73E-05 0.0883014 51.6216 1.99729

Best GSA 0.570781 3.84E-06 0.0742547 50.6512 1.85838

As shown in Fig. 2 and table XX, the results vary quite wildly from best to worst each algorithm.

Interestingly, the best random seems to be further away from the baseline vs the best PSO yet has

a better fitness score. These plots show not only the flaws with GSA, but also with estimating the

parameters. Especially towards the end of the curve at high voltages the curves deviate wildly

from the baseline. Until this point, no matter where they start, they remain more or less parallel

-2

-1.5

-1

-0.5

0

0.5

1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
u

rr
en

t

Voltage

IV Curve

worst random

best random

worst PSO

best PSO

worst GSA

best GSA

baseline

until ~0.3v, when they start to deviate. This is further proof that experiments need to be

repeatable, and in order for this to be true, source code or other more detailed documentation that

would allow others to repeat the experiment is needed.

Several things could be done in the future. One would be the addition of the ability to

change the fitness function to make the algorithms more adaptable. There are also a few

parameters that were not exposed in the command line for PSO and GSA that could be added to

further increase the adaptability of the program. I also did not have time to run all of the GSA, so

it is possible, although highly unlikely from previous testing, that the results would look

different. Finally, outputting the best timestep would be useful to know if all 10,000 timesteps

were really needed, as it is possible that the solution was found much sooner, but no exit

condition for a “good enough” solution was created, or was the best timestep recorded in the

files, only in the terminal output, which was not saved.

As for the parameter estimation, it is difficult to say why the results I got were much

worse than the results of other experiments. I hope this shows the need to release the source code

of future research projects. As with any field of science, an experiment should be repeatable.

Steps in other fields are detailed enough that the experiment can be repeated. Yet with all of the

sources used in the literature review, none of them provided their source code. This means that

anyone wishing to recreate and validate the papers findings must recreate the code from scratch,

likely running into the same errors that the original researchers did, as well as making

assumptions to fill in the missing pieces.

References

[1] P. Hersch and K. Zweibel, Basic Photovoltaic Principles and Methods, Washington, DC: Technical

information Office, 1982, p. 71.

[2] A. Valdivia-González, D. Zaldívar, E. Cuevas, M. Pérez-Cisneros, F. Fausto and A. González, "A

Chaos-Embedded Gravitational Search Algorithm for the identification of Electrical Parameters of

Photovoltaic Cells," Energies, 2017.

[3] K. G. Ing, H. Monkhlis, H. A. Illias, M. M. Aman and J. J. Jamian, "Gravitational Search Algorithm and

Selection Approach for Optimal Distribution Network Configuration Based on Daily Photovoltaic

and Loading Variation," Nature-Inspired Algorithms for Real-World Optimization Problems, vol.

2015, 2015.

[4] E. Rashedi, E. Rashedi and H. Nezamabadi-pour, "A comprehensive survey on gravitational search

algorithm," Swarm and Evolutionary Computation, vol. 41, pp. 141-158, August 2018.

[5] D. Oliva, M. A. Elaziz, A. H. Elisheikh and A. A. Ewwes, "A review on meta-heuristics methods for

estimating parameters of solar cells," Journal of Power Sources, vol. 435, September 2019.

[6] O. A. R. Board, "OpenMP Specifications," November 2018. [Online]. Available:

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.

[7] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B.

Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham and T. S. Woodall, "Open MPI: Goals,

Concept, and Design of aNext Generation MPI Implementation," in 11th European PVM/MPI Users'

Group Meeting, 2004, 2004.

[8] D. Yousri, M. A. Elaziz, D. Oliva, L. Abualigah, M. A. Al-qaness and A. A. Ewees, "Reliable applied

objective for identifying simple and detailed photovoltaic models using modern metaheuristics:

Comparative study," Energy Conversion and Management, vol. 223, November 2020.

[9] A. Ramadan, S. Kamel, A. Korashy and J. Yu, "Photovoltaic Cells Parameter Estimation Using an

Enhanced Teaching–Learning-Based Optimization Algorithm," Iranian Journal of Science and

Technology, Transactions of Electrical Engineering, vol. 44, pp. 767-779, August 2019.

[10] A. Al-Shubhi, "Parameters estimation of photovoltaic cells using simple and efficient mathematical

models," Solar Energy, vol. 209, pp. 245-257, 2020.

[11] K. R. Mahmoud and S. Hamad, "Parallel Implementation of Hybrid GSA-NM Algorithm for

AdaptiveBeam-Forming Applications," Progress In Electromagnetics Research B, vol. 58, pp. 44-57,

2017.

[12] C. Saravanan and K. Srinivasan, "Optimal Extraction of Photovoltaic Model Parameters Using

Gravitational Search Algorithm Approach," Circuits and Systems, vol. 7, p. 13, September 2016.

[13] A. Zarrabi, K. Samsudin and E. K. Karuppiah, "Gravitational search algorithm using CUDA: a case

study in high-performance metaheuristics," The Journal of Supercomputing, vol. 71, pp. 1277-1296,

December 2014.

[14] A. Zarrabi, E. . K. Karuppiah, Y. . K. Kok, N. C. Hai and S. See, "Gravitational Search Algorithm using

CUDA," in 15th International Conference on Parallel and Distributed Computing, Applications and

Technologies, Hong Kong, 2014.

[15] S. Oliver, 2020. [Online]. Available: https://www.iwomp2020.org/wp-content/uploads/iwomp-

2020-P7-task-unbalanced.pdf.

[16] B. Yang, J. Wang, X. Zhang, T. Yu, W. Yao, H. Shu, F. Zeng and L. Sun, "Comprehensive overview of

meta-heuristic algorithm applications on PV cell parameter identification," Energy Conservation

and Management, vol. 208, March 2020.

[17] A. Kumar and D. B. Das, "Comparative Analysis of Metaheuristic Algorithms for the

Implementation of Photovoltaic Solar Panel Model in MATLAB/Simulink," Advances in Systems

Engineering, pp. 369-378, January 2021.

[18] P. Tharawetcharak, T. Karot and C. Pornsing, "An Improved Gravitational Coefficient Functionfor

Enhancing Gravitational Search Algorithm’s Performance," International Journal of Machine

Learning and Computing, vol. 9, no. 3, June 2019.

	Can Parallel Gravitational Search Algorithm Effectively Choose Parameters for Photovoltaic Cell Current Voltage Characteristics?
	Repository Citation

	tmp.1629227899.pdf.kgmTq

