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Abstract: The analysis of historical disaster events is a critical step towards understanding current
risk levels and changes in disaster risk over time. Disaster databases are potentially useful tools for
exploring trends, however, criteria for inclusion of events and for associated descriptive characteristics
is not standardized. For example, some databases include only primary disaster types, such as ‘flood’,
while others include subtypes, such as ‘coastal flood’ and ‘flash flood’. Here we outline a method to
identify candidate events for assignment of a specific disaster subtype—namely, ‘flash floods’—from
the corresponding primary disaster type—namely, ‘flood’. Geophysical data, including variables
derived from remote sensing, are integrated to develop an enhanced flash flood confidence index,
consisting of both a flash flood confidence index based on text mining of disaster reports and a
flash flood susceptibility index from remote sensing derived geophysical data. This method was
applied to a historical flood event dataset covering Ecuador. Results indicate the potential value of
disaggregating events labeled as a primary disaster type into events of a particular subtype. The
outputs are potentially useful for disaster risk reduction and vulnerability assessment if appropriately
evaluated for fitness of use.

Keywords: flash flood; disaster risk reduction; historical disaster database; flood characterization;
geomorphology; geospatial analysis; Ecuador; disaster management; text analytics; early warning
system; climate informed decision making; flood risk

1. Introduction

Weather-related disaster frequency and impacts are increasing globally due to climate
and human behavior changes [1,2]. Amongst flood types, flash floods are the most deadly,
causing more than 5000 fatalities worldwide annually [3,4]. While there is a lack of a
universally accepted definition of flash flood [5,6], the term most commonly refers to
rapid onset hydrological events triggered by localized, intense rainfall events, resulting
in unexpected, sudden and high velocity flow occurring in small streams or artificial
waterways, as well as surface runoff [7]. However, the term ‘flash flood’ can also refer to
events related to the collapse of sewage systems, river bank or dam failure, as well as any
pluvial flood events resulting in surface run-off happening far from the river network, in
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urban or rural environments [5,8]. Aggravated by steep topography, flash floods can modify
river courses, overtake livestock, propagate debris, and destroy or bury infrastructure
with sediment [4]. Flash floods are more challenging to monitor, document, characterize
and predict than other flood types due to their localized and sudden nature [9–12]. The
lack of documentation of historical flash flood events and their impacts, at sufficient
levels of granularity, has contributed to less predictability and limited the development of
services and programs to assess flash flood vulnerability and exposure [6,13,14]. This paper
addresses how combining records of historical flood event with remote sensing inputs
enriches our understanding and assessment of flash flood risk.

1.1. Historical Data for Disaster Events

Historical data that includes disaster magnitude, damage and extent—produced either
by disaster practitioners, media or remote sensing reports—are necessary to understand if
and to what extent risk for a specific disaster type (and subtype) is present in an area of
interest. Without historical data, under- and over-estimating both the static representations
of risk [15–17], as well as the potential impacts from a specific event, may occur [18–20].
Historical records of high impact and infrequent disaster types, such as flash floods, are of
particular value to improve risk assessment and predictability [21–23]. However, in many
locations, historical disaster data have insufficient spatiotemporal resolution for assessment
of risk [23].

Remote sensing is increasingly used for disaster monitoring and characterization at a
high spatial resolution [24–26]. However, some disaster subtypes, such as flash floods, are
not often captured by satellite monitoring systems [14,27,28]. To develop a climatology for
a specific disaster subtype, it is necessary to use datasets that include data over a sufficient
temporal range [29], at an appropriate level of granularity [30,31], and with a significant
sample size [32]. Multiple databases may lead to improved outputs, however, the quality
and fitness for use of each must be assessed [33,34] as inconsistencies may exist, such as
variations in standard operating procedures for event entry, in the description of detail and
differences in criteria for aggregation of events into a primary type and disaggregation into
subtypes [35,36]. For example, frequency of occurrence, magnitude and seasonality will
likely vary across databases [37], however, standards in integration, clearing and merging
data will contribute to more accessible products [38]. Remote sensing has shown value in
corroborating and enhancing historical disaster datasets [39], especially for specific types of
floods such as riverine [40], storm surge [41] and glacial lake outburst floods [42], however,
progress related to flash floods lags behind.

1.2. Flash Flood as a Disaster Subtype

Disaggregation of flood type is particularly important in geographic areas where
numerous types of floods can occur [43,44]. While some flash flood specific datasets
exist (such as HYDRATE and HANZE in Europe, FLASH in USA), spatial and temporal
coverage is limited [45,46]. In databases with records of floods, it is uncommon for criteria
on event inclusion to require a declaration of flood subtype [47–49]. Even in databases
that include subtypes, protocols are unlikely to exist for disaggregating, tagging [50,51]
or for attributing magnitude of direct and indirect impacts [52]. However, in a database
including only primary flood type, there are likely to be some attributes that allow for the
assignment of a subtype (such as ‘flash flood’) to some degree of confidence [53].

Appropriate and acceptable anticipatory action differs per flood type given the differ-
ence in their impact profile [14,54,55]. For example, with a 5-day lead time, an effective an-
ticipatory action for flash floods could include advanced clearing of sewage systems [56,57],
although this would not likely be a priority anticipatory action for riverine floods due to
the lower importance of sewage-system conditions related to riverine flood risk. While
potentially justified as a method for simplification, combining flood subtypes in histori-
cal databases can result in the loss of critical data that could lead to the dataset lacking
the specificity needed for meaningful inference related to flood type specific risk [58–61].
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These uncertainties and lack of specificity in flood type reporting propagate through to
applications of derived datasets, tools and services, such as those intended for disaster
resilience and risk reduction programs, and damage calculation [62].

1.3. An Index for Flood Type Classification

Various methods exist to differentiate between disaster types within a dataset, how-
ever, most consist of an ad hoc review for type-specific terms and phrases within an event
report [63,64]. This highlights the importance of identifying terms and phrases that are
representative of the subtype of interest [65]. Relative to enhancing disaster data, index-
based approaches have been employed to extract certain descriptors of disaster, such as
the sentiment of the affected populations and impact magnitude [66–68]. While historical
data for events noted only as ‘flood’ exists, a widely accepted approach to assign a flood
subtype to these events does not [69]. We acknowledge that assigning flood type will likely
be imperfect for some events, however, given the demand for historical data on flash floods,
we argue that using an index-based approach could provide a sufficient level of certainty
in event subtype classification.

Here, we developed an index to fill the gap in historical flash flood content using a
data mining approach. We calculated a numeric value representing the confidence that
an event is a flash flood based on its event description and the geophysical properties of
the location. The primary objective of this flash flood confidence index is to enhance flash
flood risk analyses by allowing users to extract likely flash flood events from datasets that
contain flood events labelled only as ‘flood’. The resultant subset of likely flash flood events
could be a valuable tool in developing flash flood specific risk assessments, climate services
and early warning systems. Here we describe a use case for developing anticipatory
humanitarian action protocols, however, the approach is designed to be applied to other
risk and vulnerability assessment processes.

2. Materials and Methods

Using remote sensing-derived geophysical data and descriptive records of disaster
events, we produced a subset of events that are likely to be flash floods. In this section,
a three-step method is outlined: (1) identification and compilation of historical data;
(2) development of a flash flood confidence index using identifiers from descriptive event
records; and (3) enhancement of the confidence index using event location and extracted
geophysical data into a flash flood susceptibility index.

2.1. Step 1—Identification and Compilation of Historical Data
2.1.1. Text-Based Data

Disaster reports can contain information on disaster type and impact critical for further
characterization of the event by subtype [70]. Examples of types of sources include [71]:
government (local and national); non-governmental (NGO) and humanitarian; private
sector and academic (including journal publications); and media (such as news reports,
crowdsourcing, and social media) [72–74]. Historical flood data are globally available in
various databases [75] such as DesInventar, the International Federation of Red Cross Red
Crescent Societies Go Platform, Dartmouth Flood Observatory [76] and the Emergency
Events Database (EM-DAT) [77]. However, these sources can have substantial inhomo-
geneities in spatial coverage, temporal range, and disaggregation of type and subtype [78].
Therefore, to compile data into a derived historical dataset, preprocessing is necessary,
including, but not limited to, collation and cleaning [6]. Doing so increases quality, com-
prehensiveness and consistency [79] and decreases the risk for event duplication [80]. If
available, a geographic feature, such as centroid or polygon of extent for each event should
be included in the ‘cleaned’ dataset. If geographic information does not exist within the
original record, geographic attribute data can be potentially manually assigned based on
location-specific geographical terms, such as community name or roadway, and expert
judgement [81,82].



Remote Sens. 2021, 13, 2764 4 of 21

2.1.2. Geophysical Data

Various remote-sensing-derived datasets are available globally at sufficient resolution
to support flash flood susceptibility analyses. Examples of Earth Observation data that
inform flash flood susceptibility are described in Section 2.3, including Digital Elevation
Models (DEMs) from NASA’s Shuttle Radar Topography Mission (SRTM), which are used
to measure hypsometric variables such as steepness of slope and terrain curvature [83].

2.2. Step 2—Development of a Flash Flood Confidence Index (FFCI)

Here, we created an index to assess the likelihood of a primary-level event (flood)
report having the characteristics of the subtype of interest (flash flood). We first defined
categories (meteorological, hydrological, environmental, and flood dynamic) of flash flood
drivers and characteristics based on previous research and expert knowledge on flash flood
processes and definition [5,6,8,84]. Primary categories (Table 1, column 1) were organized
into subcategories, such as ‘Heavy precipitation’ in ‘Meteorological’ and ‘Strong current’
in ‘Flood dynamics’ that are most commonly associated with flash flooding [85–87]. Local
flood and disaster experts participated in keyword selection for each subcategory (such as
‘strong’ and ‘intense’ in ‘Heavy precipitation’), as these lists of terms were used for mining
the historical report description (Table 1, column 2).

Table 1. Categories and subcategories of flash flood drivers. Flash flood keywords and score indicating a subcategory
relative contribution to flash flood risk.

Categories (and Subcategories) Keywords Score

A- Meteorological
A.1- Heavy precipitation Strong, intense, heavy precipitation and rainfall, stormy rain 2

A.2- Short duration precipitation Precipitation of a few hours, occurring at a specific moment of the
day (morning, afternoon, evening, night . . . ) 3

B- Hydrological
B.1- Small stream overflow Overflowing of streams, ravines, gullies 4

B.2- Artificial waterways overflow Ditch, canals, Irrigation channels, gutters, artificial waterways 1
B.3- River bank failure Failure, rupture of river banks 4

B.4- Surface runoff Mudflow, superficial, surface water, running water 6

C- Environmental
C.1- Urban Flooded streets, blocked drainage systems, sewage systems issues 1
C.2- Slope Water coming from the hills, steep terrain 5

D- Flood dynamics

D.1- Strong current Strong, fast moving water, torrential currents, dragging force,
sweeping away, collapsing walls, destructive, dangerous events 7

D.2- Short-duration flood Flash, unexpected, water level quickly returning to normal, water
evacuated within a few hours 7

The 10 sub-categories were ranked based on their relevance to the flash flood definition
and the frequency of occurrence in the report description [70,73]. As an example, nearly
all flash floods are triggered by heavy precipitation, but not all heavy precipitation events
trigger a flash flood, explaining the relative lower score for Subclass A.1. On the other
hand, keywords related to strong currents (D.1) and short-duration (D.2) floods are more
likely to represent flash flooding processes, and therefore, were assigned higher scores.

For a flood event report to be eligible for flash flood index scoring, it must first
satisfy the requirement to have at least one keyword in the report description. If yes, the
corresponding subcategories scores were summed, defining the event’s FFCI value, from
0–40. The FFCI value is interpreted as a diagnostic measure of an event being a flash flood.
For simplicity, the FFCI values were rescaled from 0 to 10, either using a limit at 10, or a
classification method, depending on the resulting FFCI distribution specific to the input
historical dataset.



Remote Sens. 2021, 13, 2764 5 of 21

2.3. Step 3—Enhancement of the Index Using Location and Geophysical Susceptibility Data

Using location data within reports and satellite-derived geophysical data, we devel-
oped an enhanced FFCI (eFFCI), and subsequently applied it to assess the degree to which
an event is located in a polygon of relatively high or low flash flood susceptibility (Figure 1).
The eFFCI should be applied only to reports with location data.
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2.3.1. Flash-Food Susceptibility Index (FFSI) Development

Flash flood susceptibility assessments are driven by geospatial data [88,89] and pri-
marily implemented at sub-national and basin scales, as exemplified in Vietnam [90],
Iran [91,92], and Pakistan [93]. Hypsometry, drainage systems, and surface properties
influence catchment hydrologic response to rainfall, and thus runoff generation and ul-
timately, flash flood risk [94–96]. Various factors drive the flash flood susceptibility of a
catchment [93,97–99]; seven of the most common were selected for this approach. These
factors were classified into three categories: hypsometry, drainage network, and surface
properties [92,100–102] (see Table 2), and estimated or averaged over catchment areas (as
delineated by HydroSHEDS). A flash flood susceptibility index (FFSI) represents the poten-
tial of a catchment to generate a flash flood when significant local rainfall occurs [103–106].
The FFSI was calculated at the catchment scale using a weighted mean of each indicator ‘j’,
as presented in the workflow of Figure 2.
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Table 2. Flash flood susceptibility indicators calculated at catchment scale, and related information for hypsometry, drainage
network and surface properties.

Indicators Data Source Description

H
yp

so
m

et
ry

Mean slope (deg)

Global SRTM 90 m Digital
Elevation Model (DEM) v4.1 [107]

The mean slope is an indication of the flashiness of a watershed,
proportional to the flood susceptibility [108]. The slope is
computed in degrees from the DEM using 2nd degree polynomial
adjustment algorithm [109].

Mean profile
curvature (1/m)

The profile curvature of a terrain is the rate of change of the slope
gradient in the direction of steepest slope [110,111]. Negative
profile curvatures (convex landforms), also related to
erosion-dominated landscapes, are indicative of surface runoff and
torrential flood.

D
ra

in
ag

e
ne

tw
or

k

Upslope
contributing area

(km2)
WWF HydroSHEDS v1 global

datasets (15 arc-seconds
resolution): level 12 hydrological

basins [112] and river routing
network datasets [113].

The contributing area of a river point is correlated with its
discharge potential [114]. The Upslope contributing area [112] is
used to differentiate the upstream to more downstream catchment
position within a country, and therefore guide the type of flood
behavior to expect (from short onset flash floods to long onset
riverine floods).

Drainage density
Dd (km−1)

The drainage density Dd (Km−1) is a measure of the cumulative
river length over the catchment area. This has a direct correlation
with runoff potential, and therefore indirect correlation with
infiltration rate [115,116].

Mean Strahler
stream order

The Strahler hierarchical river stream order [117], averaged across
catchment, provides an indication of the basin mean stream order.
A lower basin order corresponds to a higher proportion of small
streams, and therefore higher flash flood potential [115,118].

Su
rf

ac
e

pr
op

er
ti

es Sand content

ISRIC SoilGrids global dataset
[119]. Sand fraction 250 m
resolution product of the

0–5 cm depth.

Sand content is used as a proxy for infiltration potential of soils.
The infiltration rate decreases with decreasing sand content,
increasing runoff and flash flood susceptibility [88,120]

Land use and
land cover

(LULC)

Copernicus Global Land
Operations, derived from

PROBA-V satellite observations,
at 100 m [121].

LULC directly impacts runoff generation and behavior [88,120,122].
Discrete LULC classes are reclassified into flash flood susceptibility
scores from 1 to 8, depending on potential to influence surface
runoff. Closed forest = score of 1, urban environment = score of 8.
(see Appendix A for more details)

Hypsometry characteristics, such as slope and curvature, are key elements in de-
scribing runoff acceleration of a catchment [108,110,123–125]. Terrain data were derived
from NASA’s Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation Model
(DEM) v4.1 [107], and cleaned using a 2nd-degree polynomial adjustment algorithm [109].
Available globally, the 90 m SRTM DEM data were used to derive terrain variables [126,127].

Drainage network characteristics were extracted from the World Wildlife Fund (WWF)
HydroSHEDS v1 global data, at a resolution of 15 arc-seconds. Level-12 hydrological
basins [112,128] and river routing networks data were used [113]. HydroSHEDS’ upslope
basin contributing area was used to discern upstream (shorter response time) from catch-
ments downstream (longer response time) [129–131]. Cumulative drainage density and
mean drainage order were derived from the river-routing network, complementing the
hypsometric variables [132,133].

Surface properties, such as vegetation cover, soil properties and land use, affect water
infiltration and runoff behavior, and thus, they are considered here as relevant factors for
flash flood risk assessment [88,94,134,135]. The Land Use Land Cover (LULC) product
from Copernicus Global Land Operation [121] represents these surface properties over a
variety of ecosystems (e.g., forests, grasslands, croplands, wetlands, urban areas), with the
ISRIC SoilGrid Sand Fraction accounting for the infiltration potential of soils [119].
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Various weighting methods for constructing composite indicators exist [136], includ-
ing equal weighting [137], weighting based on ranking of indicators [138], and variance-
analysis methods [139]. Here we estimated the weight of each indicator (wj) based on the
results from a principal component analysis (PCA) [140]. Geomorphological indicators
were normalized from 0 to 1, then set to the same direction of increasing susceptibility to
flash flooding and standardized, resulting in a mean of 0 and a standard deviation of 1,
before the calculation of the first principal component analysis scores [136,141]. A log trans-
formation was then used to adjust potential skewed distributions prior to the PCA [142].
The weight of each indicator was obtained from its absolute variance proportion in the
PCA equation following the principal component-based weighted indices method [140].
Next, the FFSI was attributed to each catchment (Equation (1)), resulting in a value from 0
to 1. The FFSI was then reclassified into discrete classes from 1 to 10 with the objective of
matching the FFCI structure. Depending on the FFSI geographic context such as the spatial
distribution of the input data, discretization methods using quantiles, equal intervals or
standard deviations could be considered [143,144], as well as rule-based discretization
specific to the case study.

2.3.2. Enhanced FFCI (eFFCI): FFCI Coupled with FFSI

After calculating a FFSI value for each event, the FFCI and FFSI values were combined
using a weighted mean approach [145] to produce an Enhanced FFCI (eFFCI) described in
Equation (1), where α represents the weight (from 0 to 1) assigned to FFCI relative to FFSI,
to be defined. Equal weighting (α = 0.5) methods are common, however, in doing so, a risk
for under and over representation of variables should be considered [146,147].

eFFCI i = α*FFCI i + (1 − α)*FFSI i (1)

with α = 1 for events with no coordinate location.

3. Results

We developed a historical dataset of flood events that are likely to be flash floods,
for continental Ecuador. Ecuador is located in northwestern South America from latitude
1.5◦ N to 5.0◦ S, and longitude 81.0◦ W to 75.0◦ W, excluding the Galapagos Islands,
which are not included in this study. Transected longitudinally by the Andes mountains,
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the geography of continental Ecuador is divided into three major natural regions; the
Coastal, the Andes and the Amazonian regions [148], each characterized by different
flood-risk dynamics [149]. West of the Andes, the coastal region features hills up to 800 m
elevation and interior silted valleys. Ecuador has nine climatic regimes, according to the
Köppen-Geiger classification [150], ranging from arid in some coastal areas, tropical in the
lowlands to polar in the Andes. The spatial and temporal distribution of rainfall differs
across regions [151], with a December–April rainy season on the coast and a longer season
(September–May) in the Andes. The Amazon region receives rainfall year-round, with the
highest amounts occurring in March–June [152]. Ecuador provides an ideal case study to
differentiate flood subtypes due to its complex topography and flood patterns.

3.1. Building an Historical Dataset for Ecuador

Two databases (see Table 3) of historical disasters in Ecuador include information on
individual flood-events, including location. The free and open DesInventar Database [153]
from the United Nations Office for Disaster Risk Reduction (UNDRR) aggregates reports at
administrative level 3 (Parroquia), since 2007. Servicio Nacional de Gestión de Riesgos y
Emergencias (SNGRE), the National Risk and Emergency Management Service of Ecuador
records impact and geographic coordinates since 2014. A four-step process was employed
to clean and merge the two datasets: (i) merging into a common template; (ii) identifying
duplicate events (same date and location); (iii) merging information for each SNGRE
duplicate events (description, location, impact) into DesInventar data; and (iv) deleting the
SNGRE duplicates. The derived dataset contains 3365 events, each with date, time, affected
administrative level 3, location name and description of impact; 2194 include coordinate
locations. The spatial distribution of the derived flood dataset of Ecuador is presented in
Figure 3.

Table 3. Attributes of historical flood datasets in Ecuador and for the derived dataset.

Dataset Name DesInventar SNGRE Derived Dataset

Time range 2007–2019 2014–2019 2007–2019

Number of reports 2859 2207 3365

Spatial resolution
characteristics

• Admin level 3
• no coordinate location

• Admin level 3
• 2194 reports with

coordinate location

• Admin level 3
• 2194 reports with

coordinate location

Flood and impact description Yes Yes Yes

3.2. Application of Flash Flood Confidence Index (FFCI) for Ecuador

The FFCI process was applied to the derived dataset of 3365 historical flood events.
An event is categorized as a potential flash flood if the FFCI is non-0, with higher values
indicating a higher likelihood of being a flash flood; 69.3% of flood events had at least one
flash flood identifier (Table 4).
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Figure 3. Historical flood events from the derived dataset (2007–2019): (a) Number of events per administrative level 3
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Table 4. Number of flash flood identifiers assigned per historical flood event.

No. Identifiers 0 1 2 3 4 5 6

No. reports 1033 1163 849 237 73 9 1

The distribution of FFCI for all flood events is presented in Table 5. Upon reviewing
the distribution, critical thresholds can be set depending on user intent to identify either a
quantity or percentage of events. This flexibility promotes transferability of the methods to
a variety of use cases and geographic areas [154]. For example, if from expert interpretation
a threshold at 5 is defined as critical for a specified use case, 1185 events are at or above the
threshold of 5, representing 35.2% of all events and 50.8% of all non-0 events. However, in
other use cases, a threshold of 5 may not be significant, therefore, this method is designed
to allow for a user to set a critical threshold based on their perception of what is best: either
a higher or lower percentage of events, or number of events [155,156].

Table 5. FFCI distribution historical flood events in Ecuador.

FFCI 0 1 2 3 4 5 6 7 8 9 10

No. reports 1033 155 596 259 137 385 180 158 72 141 249
% => FFCI - 100 93 68 57 51 34 27 20 17 11

3.3. Application of Enhanced FFCI (eFFCI) for Ecuador
3.3.1. FFSI

To administer the FFSI in Ecuador, the previously described (Section 2.3.1) prin-
cipal component analysis was applied to assess the weighting of each indicator. The
resulting weights are presented in Table 6. Proportionally, more weight was assigned to
drainage network and hypsometry, consistent with the understanding of surface properties
being less significant drivers of flash flood susceptibility than slope or drainage-basin
size [100,157,158]. The composite FFSI map of Ecuador catchments, resulting from the
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seven indicators is presented in Figure 4. The complete FFSI dataset for Ecuador, including
the raw indicator values, as well as the normalized and classified FFSI results for each
catchment are openly available on Zenodo [159].

Table 6. PCA-derived indicator weights.

Categories Hypsometry Drainage Network Surface
Properties

Indicators (Ij)
1

Mean
slope

2
Mean
profile

curvature

3
Upslope

contributing
area

4
Drainage
density

5
Mean

Strahler
stream
order

6
Mean
LULC

7
Sand
content

PCA resulting
weights (wj) 0.18 0.10 0.18 0.20 0.14 0.12 0.08
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composite map indicating relative susceptibility at the catchment level to flash flood.

3.3.2. eFFCI

To apply the eFFCI (Equation (1)) to the 2194 events with known locations, the pa-
rameter α (related to weighting for FFCI and FFSI) was estimated. The FFSI score was
weighted higher for lower-confidence FFCI events, based on consultation with both disaster
managers and scientists who are familiar with the context of flash floods in Ecuador, and
are based on Ecuador and the region. To do so, the normalized FFCI values were assigned
to the weight n Equation (2), and we used (1 − α) as a weighted factor for FFSI values. As
FFSI values were uniform for all events occurring in the same catchment, the variability of
flood type occurring within a catchment was addressed by this step.

α = (FFCI max − FFCI i)/(FFCI max − FFCI min) (2)

The eFFCI was then calculated for the 2332 historical events with at least one flash
flood identifier. For the 753 events with no coordinates, n was assigned to 1 so that
eFFCI = FFCI. For the remaining 1579 events with coordinates, eFFCI was calculated with
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Equations (1) and (2). Table 7 shows the distribution of eFFCI results, indicating the
percentage of events in the derived dataset that would be identified as ‘likely flash flood
events’ for a given eFFCI threshold. For example, an eFFCI threshold of 5 would define
1369 events as ‘most likely’ to be flash floods (59% of the 2332 events). Figure 5 shows the
count of FFCI and eFFCI events per score. eFFCI leads to an increase, compared to FFCI, in
event count for higher score values (6–10), and a decrease for lower values (1–3).

Table 7. eFFCI distribution of Ecuador historical flood events.

eFFCI 0 1 2 3 4 5 6 7 8 9 10

No. reports - 68 432 227 236 307 256 222 150 163 271
% => eFFCI - 100 97 79 69 59 46 35 25 19 12
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4. Discussion
4.1. Interpretation of the FFCI

The FFCI values can be used as a discrete confidence index to analyze correlations
between other parameters including hydro-meteorological (such as precipitation) and
impact-related. The critical values within the FFCI that are used to define bins that relate to
confidence levels must be independent of the application, however, the application context
may lead to selection of different ‘critical levels’ of flash flood confidence. For example, in
the humanitarian anticipatory action context, the tolerance to uncertainty may be lower
than other use cases, and as such may necessitate a lower critical threshold to be selected.
Alternatively, if the tolerance to uncertainty is higher for a particular use case, perhaps for
applications beyond the humanitarian context such as in energy and financial sectors, the
critical threshold could be raised [160,161].

In Figure 6, based on discussions with stakeholders in Ecuador, the critical threshold
of 5 is defined to differentiate events that are ‘more-likely’ or ‘less-likely’ to be flash floods.
At this level, the proportion of flash floods is higher in the Andes than the Coastal areas
regardless of the month, with relative maxima for flash flood proportion in the Andes
occurring in May, October, November and December (65%, 62%, 67%, 61%, respectively).
However, the quantity of likely flash floods reports is higher in other months, such as
April. In the Amazon, while the count is highest in April, the proportion of flash flood to
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non-flash flood is highest in January and October (both equal to 52%), with February next
at 50%. Further, the seasonality for total flood events, total flash flood (and non-flash flood)
events and proportion of flash flood events is shown. The Coastal areas experiences the
highest proportion of flash flood events in months where relatively low total counts of flood
events occur (December, October, June). This pattern is also seen (albeit less prominently)
in the Andes with 3 of the 4 months with a proportion of flash flood greater than 60% being
months with low counts of total events (October, November, December). This potentially
indicates how seasonality of flood-type likelihood can be integrated into the design of early
warning and anticipatory action programming to include contingencies to prioritize (or de-
prioritize) certain flood types, in certain regions, on a seasonal time scale [162]. Additional
questions arise related to the degree to which areas that are considered to be at ‘low risk’
to ‘flood’ in certain seasons/months may actually be at a higher level of risk for a ‘flash
flood’, relative to other months. This may be useful in developing uncertainty and risk
communication programs as well as educational outreach strategies to build community
resilience [163–166].
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4.2. Benefit of FFCI

The FFCI approach filters likely flash flood events from historical disaster databases
that currently do not assign a flood subtype. If the FFCI-derived dataset of ‘likely’ flash
floods did not exist, it would add considerable difficulty and require additional resources
to delineate flash flood risk across Ecuador—a task that is a critical step in developing
early warning and anticipatory action triggers and standard operating procedures for the
Ecuador Red Cross and other organizations involved with disaster management [167].
Without this dataset, an anticipatory action program for flash floods would be potentially
designed inappropriately as it would likely be conditioned on: a small sample size (the
six ‘flood’ events within the input datasets that were assigned a type of ‘flash flood’;
the perceptions of a small group of decision makers, potentially not representing the
interests of the most vulnerable populations; and an overfitted representation of extreme
precipitation risk rather than for risk of flash flood occurrence and associated impact on
lives and livelihoods.

4.3. Limitations

The approach outlined here supports the use of designing early warning and humani-
tarian anticipatory action programming in Ecuador, however, other potential applications
should be considered carefully. More specifically, the weighted mean approach for each
indicator (described in Section 2.3.1) should be evaluated for fitness of use before being
applied to other contexts. We suggest that increased attention be given to establishing
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guidelines that specify the weighting of the flash flood geographical and description-
derived confidence factors. Further, challenges remain related to the evaluation of the FFCI
and eFFCI. The FFCI and eFFCI approaches were developed to build historical flash flood
datasets when they are not available. However, with the intention to increase confidence
in our approach, we compiled online media and newspaper reports on flash flood events
to compare to the FFCI results in the study area. The flash flood content retrieved from
the news media are reports for a specific day at one specific administrative level. The
same specific day and administrative level can correspond to multiple flood records in our
dataset, as the dataset is produced at a higher spatial resolution, with flooding indicated at
latitude-longitude coordinates. From our dataset, we extracted all flood entries matching
the specific day and administrative level mentioned in the media report, and estimated the
fraction of those entries with an eFFCI > 5. Six of the nine flash flood-related media reports
that we collected in Ecuador had corresponding entries in our dataset associated with that
event in that district and day. As seen in Figure 7, all of the 6 corresponding media reports
have at least one matching flash-flood entry in our database with eFFCI > 5, with 5 of the
events having more than 60% of the matching flood entries with eFFCI > 5.
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4.4. Recommendations

We recommend that resources are allocated for more precise reporting of all flood
events, but most importantly for flash floods. We acknowledge that this will require a
review of standard operating procedures, and likely additional capacity building, for
disaster managers, the media, and (due to the increased importance of social media in
disaster reporting) the general public, to characterize flood by subtypes and with to include
details on impact. More type-specific data will improve flash flood model development,
forecast production, early-warning systems and resilience programs [168]. There is a need
for a coordinated effort to document and detect flash flood events through satellite remote
sensing to improve the understanding of risk. Subsequently, we should consider the extent
to which future satellite missions and research programs can be designed to inform specific
applications within the disaster management and humanitarian communities. Further
progress should continue, and ramp up, in developing satellite-data driven methods
not only to monitor flash floods and other sudden onset and/or short-duration events,
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but also to aid in the characterization, assessment of risk and forecasting of flood and
disaster subtypes.

5. Conclusions

There is a need to enhance risk-assessment protocols for flash floods, as well as risk
management and reduction activities including the development of standard operating
procedures for early warning and anticipatory action, and long-term resilience strate-
gies [167,169,170]. However, in comparison to other flood types, data required to enable
policy and climate service development, such as timing, duration, location and impact level,
is largely absent on a global scale for flash floods [171,172]. In particular, in many areas
where an enhanced flash flood risk and vulnerability assessment could be of significant
value, the necessary in situ data is more likely to be sparse [173,174]. Using information
on non-flash floods (such as information on riverine floods) to drive flash flood specific
applications, such as flash flood risk modelling and flash flood disaster management, could
lead to significant biases that will further propagate through the subsequent elements of
the application, such as the development of policy and services related to flash flood risk
reduction and resilience including developing flood-type specific financial instruments and
insurance mechanisms [175,176]. Here, we demonstrate that flood events can be assigned
the subtype of flash flood with different levels of confidence. The approach is designed
in acknowledgment of the differences in user type across use cases, thus, flexibility is
built in, allowing for local and subject matter experts to identify appropriate thresholds
of confidence related to flash flood likelihood. Those with various types of domain spe-
cific expertise, such as demonstrated here with the humanitarian community, should be
involved throughout all steps of this process. The methods outlined here could add sig-
nificant value to disaster risk management related to flash flooding if integrated within a
cross-disciplinary approach, and if aligned with disaster management and climate service
governance structures.
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Appendix A

Table A1. Discrete classification of Copernicus Land Use Land Cover (LULC) classes related to
increased flash flood susceptibility.

Copernicus LULC Discrete Classes Classification (Values Increase with Increased Flash
Flood Susceptibility)

Closed forest 1
Open forest 2

Snow and ice 3
Shrubs 3

Moss and lichen 3
Herbaceous wetland 4

Herbaceous vegetation 5
CroplandCropland 6

Bare/sparse vegetation 7
Urban/Built-up 8
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