-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Archive Ouverte a LUniversite Lyon 2

archives-ouvertes

Software Engineering Education by Example

Nacer Boudjlida, Jean-Pierre Jacquot, Pascal Urso

» To cite this version:

Nacer Boudjlida, Jean-Pierre Jacquot, Pascal Urso. Software Engineering Education by Exam-
ple. 5th China - Europe International Symposium on Software Industry Oriented Education
(CEISIE 2009), May 2009, Bordeaux, France. Hermes publications, 4 p, 2009. <hal-00432755>

HAL Id: hal-00432755
https://hal.archives-ouvertes.fr /hal-00432755
Submitted on 17 Nov 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/47846945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00432755

Software Engineering Education by
Example

Nacer Boudjlida, Jean-Pierre Jacquot, Pascal Urso

Nancy Université, UHP Nancy I, LORIA, UMR 7503

Campus Scientifique, BP 70239

54506 Vandoeuvre Lés Nancy CEDEX, France
{Nacer.Boudjlida, Jean-Pierre.Jacquot, Pascal. Urso}@loria.fr

ABSTRACT: Based on the old but famous distinction between”in the small” and “in the large”
software development, at Nancy Université, UHP Nancy 1, we experience for a while
software engineering education thanks to actual project engineering. This education
method has the merit to enable students to discover and to overcome actual
problems when faced to a large project which may be conducted by a large
development team. The mode of education is a simulation of an actual software
engineering project as encountered in “‘real life” activities.

KEYWORDS: Software Engineering in the Large

1. Introduction

In this paper we claim that the education of software engineering processes
requires “non classical” education methods. Indeed, engineering of in the large
software reveals many non technical problems for which usual lectures are not
adequate. This “in the large” dimension enables students to scale-up in software
engineering. Our claim is that one of the success factors is to put students in a real
(or at least a realistic) large software development situation and to accompany them
by complementary professional lectures, like project management, quality
assessment and so on.

We report hereafter on the education process of this discipline as applied for
more than 15 years at Nancy University, University Henri Poincaré Nancy 1, at the
second level of a master degree in Computer Science (during the 3™ semester of the
master) dedicated to software engineering.

Software Engineering Education@uhp.fr 3

2. Pragmatic software engineering education: pre-requisite

The approach for educating in engineering of large software has as prerequisites,
scientific and technologic software basis that are supposed to be acquired and
experienced. These include programming and design fundamentals: software
systems design methods, programming paradigms and programming languages,
software systems architectures (like client/server architectures, distributed
applications, Web-based applications, etc.). Moreover, fundamentals properties of
programs are also supposed to be mastered: they include formal properties of
software programs, like correctness, completeness, termination and complexity.
Usually, these skills and knowledge are experimented against small-size projects.
But, going toward large-size projects, i.e. projects whose development requires more
than one or two persons, additional knowledge and skills are mandatory. In this
education program, these additions are twofold:

1. Computer science and technology lectures: they aim at fitting students with
state of the art and state of the practice in software engineering. This track is a
completion of the academic curricula in computer science and it includes lectures
and practice in emergent technologies. Currently they encompass component-based
programming, service oriented architectures, model driven architectures and model-
driven engineering.

2. Project management accompanying lectures: during the actual project
development additional lectures are provided to fit students with skills concerning
project management, project planning, human resource management, enterprise
organization and management and so on. These non technologic lectures are
supposed to bring to students professional competencies.

3. Pragmatic software engineering education: organization and roles

Considering that lecturing of this discipline is boring for the lecturer as well as
for the audience, its education is done thanks to practice. Indeed, a rough definition
of a project, usually provided by an industrial partner, is given to the students. The
project team is composed with all the registered students (the size of the project
team usually ranges from 15 to 20 members). An initial organization of the team
into groups is proposed to the students. This organization emphasizes two roles,
each of them being played by one student: (i) project manager and (ii) project
administrator. Additional suggested project groups concern requirement,
documentation, software specification, design and development, quality insurance
and software testing. However, the project team and especially the project manager
is free to re-organize the groups and the task assignments during the actual project
development. Further, the follow-up of the project is performed by two professors
who periodically meet the project manager and the project administrator, the role of
the industrial partner being a project customer role.

4 CEISIE-2009

One of the main recommendation that is made to the students is to be
autonomous, to take initiatives and to be responsible of their job and of the
associated logistics. Indeed, as computer resources, the students are provided with
their proper set of computers and network: They can install (and uninstall),
configure and exploit any technology that may be required by the project (like
version management systems, development frameworks, plug-ins, shared
repositories and so on). From the infrastructure quality insurance, the deontology
and the legal aspects, the whole exploitation of the infrastructure is under the
collective responsibility of the whole project team.

4. Pragmatic software engineering education: academic evaluation of the result

The ultimate aim of the education being giving grades to students, the evaluation
of this discipline is twofold (i) there is an “academic” evaluation which is provided
by the industrial project partner and the professors who performed the follow-up of
the project execution and (ii) every team member is invited to evaluate the other
team members and himself from different perspectives (technical skills, personal
involvement in the project, initiatives, communication skills, and so on). Both the
evaluations are then combined to get a unique and final grade.

5. Pragmatic software engineering education: learned lessons

Learned lessons are examined hereafter from various aspects:

= This type of education is experienced for a while with a very good feedback
from the students themselves, especially when they defend the industrial internship
work they have to perform during, at least, 4,5 months in an industrial context. Even
the industrial internship hosting partner provides us with a good feedback
concerning the abilities of our students in participating in large-scale projects.

= Basing the education on a real problem to solve and not, as usual, on a “toy
problem”, is very motivating for the students.

= In the early phases of the project, students fears responsibilities and autonomy
but they usually get very quickly used to them. For example, no notable incident
occurred regarding the quality insurance, the deontology and the legal aspects
relative to the exploitation of the computer infrastructure that is provided to the
students.

= By the end of the project, the students are aware of non technologic but very
important success factors like resource management, planning and the quality of the
human relationships among the project team’s members.

= Considering the self-evaluation of the results, students are usually reluctant to
evaluate their “friends” but we observed that they are very objective in their

Software Engineering Education@uhp.fr 5

evaluation since these evaluations very often meet the opinion the accompanying
professors and the industrial partner have on every student.

= Despite the fact that some project results did not meet the industrial partner
expectations, the overall benefits for the students is valuable.

= An observed important success factor is the existence of one or more students
fitted with a leadership spirit. Usually this type of character, not necessarily coming
from the student who plays the project manager role, deeply influences at the same
time the quality of the results, the project team cohesion and the atmosphere inside
the project team. Unfortunately, this type of personality is not revealed every year.

We are intimately convinced that in the large software engineering education in a
“non classical” way brings more knowledge, skills and experience than classical
lectures in the field. However, educating by example requires more effort from the
students than a traditional education of this discipline. This effort is especially
needed in the early phase of the guiding project example when they are invited to
perform a supervised self-learning of complementary subjects like quality insurance,
project management and so on. But a remarkable benefit is that students are more or
less obliged to become autonomous very rapidly and therefore to have a professional
behaviour rather than passive student behaviour.

References

Barry Boehm. “4 View of 20th and 21st Century Sofiware Engineering”. Keynote
Address at ICSE 2006, May 25, 2006, Shangai, China, ACM Press.

Ian Sommerville. “Software Engineering”, 8th Edition. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2007.

