
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

August 2021

TESTING LIBRARY FOR SMART DRIVING COMPANION TESTING LIBRARY FOR SMART DRIVING COMPANION

APPLICATIONS APPLICATIONS

Rafael Lima

Billy Lam

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Lima, Rafael and Lam, Billy, "TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS",
Technical Disclosure Commons, (August 24, 2021)
https://www.tdcommons.org/dpubs_series/4545

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4545?utm_source=www.tdcommons.org%2Fdpubs_series%2F4545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS

ABSTRACT

This publication describes systems and techniques for providing a testing library for

smart driving companion applications. A smart driving companion application may be an

application that executes at a mobile computing device, such as a smartphone, to project a

graphical user interface (GUI) to the head unit of a vehicle, such as by projecting its GUI to a

display device of an infotainment system of a car or truck. A developer may write a smart

driving companion application that uses a smart driving companion library that is specific to

smart driving companion applications.

A developer of a smart driving companion application can use a testing library to test the

use of such a smart driving companion library. The testing library may implement the internal

logic of the methods and classes of the smart driving companion library, and the developer may

use the testing library to test whether the application behaves correctly in response to user input

and as the application moves through different states of the application’s lifecycle.

DESCRIPTION

A vehicle, such as a car or truck, may include a so-called “head unit” that presents a GUI

by which to control vehicle systems, such as a heating, ventilation, and air conditioning (HVAC)

system, a lighting system (for controlling interior and/or exterior lights), an infotainment system,

a seating system (for controlling a position of a driver and/or passenger seat), etc. The GUI may

be presented via a console, such as an in-vehicle display.

2

Lima and Lam: TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS

Published by Technical Disclosure Commons, 2021

A mobile computing device can connect to the head unit of the vehicle via a wired (e.g.,

Universal Serial Bus) or wireless (e.g., BLUETOOTH, WIFI, etc.) connection. The mobile

computing device may execute smart driving companion applications to project the GUIs of the

applications to the in-vehicle display of the head unit so that the driver or passengers of the

vehicle may view and/or interact with the GUIs of the smart driving companion applications

projected to the in-vehicle display. Such smart driving companion applications may make use of

a smart driving companion library that enable the smart driving companion applications to

project GUIs of the applications to the in-vehicle display of the head unit. Examples of such

smart driving companion applications may include navigation applications that projects a map

GUI for providing turn-by-turn directions to help the driver of the vehicle navigate to a

destination, a music streaming application that plays music through the infotainment system of

the vehicle, a phone application that provides handsfree calling functionality for the driver of the

vehicle, and the like.

APPLICATION

104
PROJECTION

APPLICATION

105

119

FIG. 1

3

Defensive Publications Series, Art. 4545 [2021]

https://www.tdcommons.org/dpubs_series/4545

FIG. 1 is a block diagram that shows an example mobile computing device 100 that can

connect to an example vehicle head unit 102. As shown in FIG. 1, mobile computing device 100

can connect to vehicle head unit 102 via connection 119, which may be a wired or wireless

connection as discussed above. Mobile computing device 100 includes application 104,

projection application 105, display 106, and communication components 108A-108N.

Application 104 is an example of a smart driving companion application described in this

publication. Projection application 105 may represent an application that facilitates projection of

the GUI of application 104 to display 116 of vehicle head unit 102 (and providing a bridge

between approved additional applications 104 – e.g., for music streaming, navigation, telephone,

notifications, etc. – and projection of GUIs for these applications 104). Display 106 of mobile

computing device 100 may represent a presence-sensitive display that functions as an input

device and as an output device. Communication components 108A-108N may include wired

and/or wireless communication devices capable of transmitting and/or receiving communication

signals to and from vehicle head unit 102 to establish connection 119 with vehicle head unit 102.

Similarly, vehicle head unit 102 includes display 116 and communication components

108A-108N. Display 116 of vehicle head unit 102 may represent a presence-sensitive display

that functions as an input device and as an output device. Communication components 118A-

118N may include wired and/or wireless communication devices capable of transmitting and/or

receiving communication signals to and from mobile computing device 100 to establish

connection 119 with mobile computing device 100.

An application may use a smart driving companion library to function as a smart driving

companion application, such as application 104 shown in FIG. 1, that projects a GUI to the in-

vehicle display (e.g., display 116 of vehicle head unit 102). That is, the application may call

4

Lima and Lam: TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS

Published by Technical Disclosure Commons, 2021

functions of the library, implement classes specified by the library, and the like to enable the

application to control the GUI projected to the in-vehicle display. For example, the user interface

of a smart driving companion application is represented by a graph of model objects that can be

arranged together in different ways as allowed by a template that acts as a root in those graphs.

Models include the information, such as in the form of text and images, to be displayed to the

user, as well as attributes to configure aspects of the visual appearance of such information (e.g.,

text colors or image sizes).

Screen is a class provided by the library that the application may implement to manage

the user interface presented by the in-vehicle display. A Screen has a lifecycle and provides the

mechanism for the application to send the template to the in-vehicle display when the screen is

visible. Screen instances can also be pushed and popped to and from a Screen stack, which

ensures they adhere to any template flow restrictions.

A CarAppService is an abstract Service class provided by the library that the application

may implement and export in order to be discovered and managed by the Host. The

CarAppService is responsible for validating that a host connection can be trusted and

subsequently providing Session for the Application.

A Session is an abstract class that the application may implement to serve as the entry

point to display information at the in-vehicle display. A Session may have a lifecycle that

informs the current state of the application’s user interface at the in-vehicle display, such as

when the user interface of the application is visible at the in-vehicle display or is hidden..

A mobile computing device may execute a back-end component (e.g., projection

application 105), referred to herein as the host, that implements the functionality offered by the

library’s application programming interfaces (APIs) in order for the application to function as a

5

Defensive Publications Series, Art. 4545 [2021]

https://www.tdcommons.org/dpubs_series/4545

smart driving companion application that projects a GUI to the in-vehicle display. The

responsibilities of the host range from discovering the application and managing the

application’s lifecycle, to converting models defined by the application into views and notifying

the application of user interactions with the application’s user interface.

A developer of an application for a mobile computing device may create unit tests to test

the functionality of the application. Such unit tests may include local unit tests, which may

execute at a desktop or laptop computer rather than at the mobile computing device. For

example, such unit tests may execute in a Java Virtual Machine (JVM) at a desktop or laptop

computer. If the application depends on frameworks provided by the operating system of the

mobile computing device, the developer may use a testing framework, such as Roboelectric, that

executes the internal logic of such frameworks, to create local unit tests for the application that

executes at a desktop or laptop computer. However, current testing frameworks, such as

Roboelectric, may not support testing of smart driving companion applications that depend on a

smart driving companion library because such testing frameworks may not implement the

internal logic of the smart driving companion library on which smart driving companion

applications may depend.

As such, this publication describes a smart driving companion testing library may

implement the internal logic of the methods and classes of a smart driving companion library that

is used to build smart driving companion applications that executes at mobile computing devices.

A developer may use the smart driving companion testing library to enable the developer to

create and execute local unit tests to test the functionality of a smart driving companion

application at a desktop or laptop computer rather than at the mobile computing device. For

example, the developer may use the smart driving companion testing library to create and

6

Lima and Lam: TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS

Published by Technical Disclosure Commons, 2021

execute local unit tests to test whether the application behaves correctly in response to user input

and as the application moves through different states of the application’s lifecycle.

In some examples, the smart driving companion testing library may allow a smart driving

companion application to set up a Screen object for testing and provide APIs to allow moving a

Screen through different lifecycle states. In some examples, the smart driving companion testing

library may enable the developer to test the CarAppService object of the smart driving

companion application and may provide APIs to allow the smart driving companion application

to move the CarAppService object through different lifecycle states.

In some examples, the smart driving companion testing library may enable the developer

to retrieve Template objects from Screen objects of the smart driving companion application and

to access the internal values of the Template objects during testing of the smart driving

companion application. Such internal values may be in the form of a primitive, such as a string

or an integer, or in the form of a controller of the internal value. Returning controllers for the

internal values may enable the developer to chain getter method calls when writing the unit tests.

In some examples, the smart driving companion testing library may provide APIs for

performing user actions, such as user interactions with the user interface of the smart driving

companion application. The developer may use such APIs to test the behavior of the application

in response to user actions. For example, the developer may test that proper callbacks take place

in response to user actions and/or may monitor internal state changes of the application in

response to user actions.

The smart driving companion testing library may enable the developer to test the

behavior of the smart driving companion application given specific user input and/or state

changes to test whether the application performs certain actions in response to a specific user

7

Defensive Publications Series, Art. 4545 [2021]

https://www.tdcommons.org/dpubs_series/4545

input and/or state change. For example, the smart driving companion testing library may enable

the developer to test whether the application is displaying a Toast, which is a small pop-up user

interface element that provides simple feedback about an operation, whether the application is

requesting a Surface, and/or whether the application is pushing a new Screen.

Because the application may call the APIs of different managers of each of these actions,

the smart driving companion testing library may implement corresponding test classes of such

managers that can be used by the developer to test whether the application performs these actions

in response to a specific user input and/or state change. The smart driving companion testing

library may implement the corresponding test classes of such managers as static singletons that

track the last actions taken on each of the classes and store the values passed to the classes, so

that the developer may track these values for the purposes of testing the application.

In some examples, the smart driving companion testing library may also introduce a class

that enables testing of actions that could be performed by the host, such as setting the night mode

of the in-vehicle display.

It is noted that the techniques of this disclosure may be combined with any other suitable

technique or combination of techniques. As one example, the techniques of this disclosure may

be combined with the techniques described in U.S. Patent Application Publication No.

2019/0179734 A1. As another example the techniques of this disclosure may be combined with

the techniques described in “TestAppManager”, 15 October, 2020, available online at

https://developer.android.com/reference/com/google/android/libraries/car/app/testing/TestAppM

anager. As another example the techniques of this disclosure may be combined with the

techniques described in Walton, Philip, “Page Lifecycle API”, 28 May, 2020, available online at

https://developers.google.com/web/updates/2018/07/page-lifecycle-api.

8

Lima and Lam: TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS

Published by Technical Disclosure Commons, 2021

https://developer.android.com/reference/com/google/android/libraries/car/app/testing/TestAppManager
https://developer.android.com/reference/com/google/android/libraries/car/app/testing/TestAppManager
https://developers.google.com/web/updates/2018/07/page-lifecycle-api

9

Defensive Publications Series, Art. 4545 [2021]

https://www.tdcommons.org/dpubs_series/4545

	TESTING LIBRARY FOR SMART DRIVING COMPANION APPLICATIONS
	Recommended Citation

	tmp.1629380369.pdf.nYKPV

