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Importance Sampling for Evaluation of Video Transcoder Performance 

ABSTRACT 

 Optimization of a video transcoder is performed, e.g., by fine-tuning their parameters, 

based on evaluation of the performance of a transcoder over a small, fixed video dataset. The use 

of a small, fixed video dataset enables reproducibility, fast evaluation, and regression testing. 

However, transcoders that are fine-tuned based on a small, fixed dataset can often deliver 

suboptimal transcoding performance when utilized to transcode videos from a much larger 

dataset, e.g., videos served by a video hosting and sharing service. This is because a small, fixed 

set of videos is not sufficiently representative of the total corpus of videos hosted by a video 

sharing service and does not cover the scale and diversity of such videos. This disclosure 

describes the use of importance sampling in the evaluation of video transcoders using a small 

dataset of videos. The techniques can deliver a high-performance transcoder even when the 

transcoder is optimized using a small dataset that is insufficiently representative of a large-scale 

video corpus. 
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BACKGROUND 

 Video hosting and sharing services compress and/or transcode videos such that they can 

be streamed to different client devices such as mobile devices, high-resolution TVs, desktop 

computers, etc. at resolutions, frame rates, and other attributes that are appropriate to the screens 

and the network connection quality of each device. Video compression has a substantial impact 

both on user experience and infrastructure costs for such services. Better video compression 

enables delivery of higher quality video at lower streaming bitrates. 

 Video transcoders are optimized, e.g., their parameters fine-tuned, by evaluating their 

compression performance over a small, fixed video dataset. The use of a small, fixed video 

dataset enables reproducibility, fast evaluation, and regression testing. Using the entire corpus of 

uploaded videos for evaluation purposes is infeasible. Also, use of such corpus may not be 

feasible due to security and/or privacy-related aspects. 

 Unfortunately, transcoders that are fine-tuned based on a small, fixed dataset can often 

deliver suboptimal transcoding performance. This is because a small, fixed set of videos is not 

sufficiently representative of the total corpus of videos hosted by a video sharing service and 

does not cover the scale and diversity of such videos. The characteristic distributions of the 

dataset and the corpus inevitably differ. For example, the dataset may have a preponderance of 

slow-moving, slide-sharing videos while the corpus may be dominated by fast-moving music 

videos. Furthermore, as more videos are uploaded to the video hosting service, the corpus 

changes in size and composition. Thus, a sampled dataset that was once representative might not 

remain so with the passage of time. Optimizing transcoders over a small dataset with improper 

aggregation yields suboptimal results when the transcoder is utilized for videos in the production 

corpus. 

3

Defensive Publications Series, Art. 4500 [2021]

https://www.tdcommons.org/dpubs_series/4500



 A common way to aggregate performance results - averaging performance over the small 

dataset- may not be a good estimate of the true transcoder performance. When optimizing video 

encoders using metrics averaged over a small dataset, over-tuning can take place for extreme 

cases, yielding suboptimal results on the actual corpus. 

Importance sampling 

  Importance sampling is a technique by which statistical measures (e.g., average 

performance) assessed over a small dataset with a certain probability density function (PDF) can 

be generalized to a larger dataset with a different PDF. Briefly, importance sampling works as 

follows. 

 Let the small dataset have a PDF q(x) over some (multi-dimensional) random variable x. 

For example, x can be a two-dimensional vector with entries representing spatial texture and 

temporal correlation of the videos in the dataset. In general, x is a property of the video that can 

impact a transcoder performance metric such as encoded bitrate, reconstructed quality, etc. Let 

the larger corpus of videos have a PDF p(x) over the random variable x. Let f be a performance 

metric of the transcoder, e.g., bitrate, video quality, etc. As mentioned before, f depends on x; 

this is denoted as f(x): f is a function of x. Per the principles of importance sampling, an estimate 

of the average (expected) performance over the larger corpus can be obtained by using n 

observations of f over the smaller dataset as follows.  

Expected value of f over the larger corpus = E(f) ≅
1

𝑛
∑𝑖 f(xi)

𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
, 

where the samples xi are drawn from the PDF q(x) of the smaller dataset. In this manner, 

assuming the availability of the ratio p(xi)/q(xi) for each xi, average performance over the larger 
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corpus can be obtained by sampling and averaging over the smaller dataset. The ratios p(xi)/q(xi) 

are known as importance weights, denoted wi. 

DESCRIPTION 

 This disclosure describes the evaluation of video transcoders using a small dataset of 

videos in such a manner that the evaluation remains true to a large-scale video corpus of which 

the small dataset is an imperfect representative. Such evaluations of transcoder performance can 

be used to fine-tune the transcoder using the small dataset, such that the transcoder provides 

sufficient performance when utilized for the large-scale video corpus.  

Content representation, e.g., modeling x and determining p(x) and q(x) 

 To use the importance sampling framework to obtain the importance weights wi, the 

random variable x is to be modeled, and estimates of the PDFs p(x) and q(x) are to be obtained. 

The characteristics (or representation) of x are optimally rich enough to define the content space 

for the application at hand (e.g., transcoding); good content characteristics are likely good 

predictors of the quality or the bitrate obtained by transcoding a particular piece of content. 

Using content category to model content 

 To model content using category, the content, x, is modeled as a discrete variable, e.g., a 

content category such as x ∈ {gaming, sports, music, ...}. The PDFs p(x) and q(x) are 

respectively the empirical probability of a particular content category in the larger corpus and the 

smaller dataset. 
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Example: Consider that there are three possible content categories: gaming, sports, and music. 

The production (corpus) probability distribution is measured as follows.  

P(gaming) = 0.3;  

P(sports)   = 0.1; and 

P(music)   = 0.6.  

The smaller dataset is evenly sampled, e.g., it has 100 gaming clips, 100 sports clips, and 100 

music clips. The weights for gaming, sports, and music are respectively proportional to  

wgaming = 0.3 / (100 / 300) = 0.9;  

wsports  = 0.1 / (100 / 300) = 0.3; and  

wmusic = 0.6 / (100 / 300) = 1.8.  

Essentially, since music content is relatively more prevalent in the corpus than in the smaller 

dataset, it receives a higher weighting. 

Using content characteristics to model content 

  Content can be represented in an m-dimensional (m≥2) content-complexity space, the 

dimensions of which comprise, e.g., spatial complexity (texture), temporal complexity (time-

correlation); two-dimensional complexity space derived from rate-distortion curves; etc. The 

PDFs p(x) and q(x) can be approximated from samples, e.g., a scatter plot, using a kernel density 

estimator. 
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(a) (b) 

Fig. 1 (a) Content complexity of a large video corpus represented as a scatter plot of spatial 

complexity (X-axis, C0) and temporal complexity (Y-axis, C1). (b) The corresponding PDF 

p(x), where x is a two-dimensional vector with indices C0 and C1, generated using kernel 

density estimation  

 

(a) (b) 

 

Fig. 2 (a) Content complexity of a small dataset represented as a scatter plot of spatial 

complexity (X-axis, C0) and temporal complexity (Y-axis, C1). (b) The corresponding PDF 

q(x), where x is a two-dimensional vector with indices C0 and C1, generated using kernel 

density estimation 
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 For example, Figures 1 and 2 illustrate the use of a kernel density estimator to estimate 

the PDFs p(x) and q(x) from samples, e.g., scatter plots, of their respective two-dimensional 

content representation space. As mentioned before, the PDF q(x) of the smaller dataset can be 

relatively stationary, whereas the PDF p(x) of the large corpus can vary with uploaded content, 

e.g., the PDF p(x) of Fig. 1(b) is in effect a snapshot at a particular time of a changing 

distribution.  

 While content in a given category can have some similarity in content characteristics, 

different content items can in fact have differing weights (densities) in differing regions of 

content-complexity space. Further, perceptual studies indicate that content with similar content 

characteristics is rated similarly by human raters, even if the content is from different categories. 

For this reason, it can be better to represent content in an m-dimensional content-complexity 

space than by category. 

 Aside from spatial and temporal correlation of the video and categorical classification of 

the video, other examples of x, the content representation of the video, include the input quality 

in bits per frame, a video encoder parameter of interest, a deep-learned embedding of the video, 

or in general, any feature of the video that can impact a performance metric of interest. For 

example, higher spatial and/or temporal complexity costs more bits to encode and is hence 

correlated with the performance metric of encoded bitrate. 
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Example Workflow 

 

Fig. 3: An example workflow to determine average performance over a large-scale video 

corpus from a smaller dataset 

 Fig. 3 illustrates an example workflow to determine average performance of a transcoder 

over a large-scale video corpus, e.g., of videos uploaded by users of a video hosting and sharing 

service, from a smaller dataset. Video characteristics are extracted for videos in a small dataset 

(302). A distribution q(x) of video characteristics in the small dataset is obtained (304) using, 

e.g., kernel density estimation as explained above.  
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The performance f(xi) of the transcoder under evaluation is obtained of every video i in 

the small dataset (306). Some example performance metrics include encoded bitrates, 

reconstructed quality measurements such as peak signal-to-noise ratio (PSNR), structural 

similarity index measure (SSIM), video multimethod assessment fusion (VMAF), etc. A service 

in the video pipeline extracts video characteristics from every (or randomly sampled) uploaded 

video in the corpus (308).  

The distribution p(x) of video characteristics over the corpus is estimated using both the 

recently extracted video characteristic and the thus-far obtained and stored corpus video 

characteristics (310). For each video i in the small dataset, we estimate its importance weight wi 

= p(xi) / q(xi) using the distributions p(x) of the corpus and q(x) of the small dataset (312). 

Weighted averages of evaluation metrics over the small dataset are the estimated metrics against 

the video corpus (314). The procedure is repeated for the next uploaded video (316) which may 

be selected by randomization. 

 

(a) (b) 

Fig. 4: Estimate of average bitrate savings (percentage) for two transcoders 
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 Fig. 4 illustrates that for two transcoders, the estimate of a certain performance metric, 

the average bitrate savings, converges faster with increasing sample size to its ground truth when 

computed using importance sampling rather than naive averaging. 

 In this manner, the techniques of this disclosure leverage importance sampling to assign a 

weight for each video in a small video dataset. The performance of a transcoder for a larger 

corpus of uploaded videos is estimated using a weighted average of the performance of the 

transcoder for videos in the small video dataset. As compared to naive averaging over the small 

dataset, performance metrics estimated using the described weighted averaging are closer to the 

true performance when the transcoder is utilized for the larger video corpus. 

 Performance evaluation can be tailored towards storage or streaming costs. While the 

described techniques apply directly to storage, for streaming, each video may have different 

contributions to the network traffic. For example, popular videos may be viewed millions of 

times, while some videos may have a very small number of views. In this case, the video 

characteristics distribution can be sampled from network traffic to yield another set of weights. 

 The techniques can be applied to automatic performance tracking, in which weightings 

are sampled and updated to trigger re-optimization of encoders, either periodically or when the 

change to the video corpus meets a threshold. 

CONCLUSION 

 This disclosure describes the use of importance sampling in the evaluation of video 

transcoders using a small dataset of videos. The techniques can deliver a high-performance 

transcoder even when the transcoder is optimized using a small dataset that is insufficiently 

representative of a large-scale video corpus. 
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