
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

July 2021

STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-

FREE NETWORKED BLOCK STORAGE ENVIRONMENTS FREE NETWORKED BLOCK STORAGE ENVIRONMENTS

Paresh Gupta

Harsha Bharadwaj

Arthur Scrimo

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Gupta, Paresh; Bharadwaj, Harsha; and Scrimo, Arthur, "STORAGE PERFORMANCE BOTTLENECK
DETECTION IN ERROR-FREE NETWORKED BLOCK STORAGE ENVIRONMENTS", Technical Disclosure
Commons, (July 26, 2021)
https://www.tdcommons.org/dpubs_series/4485

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/478469298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4485?utm_source=www.tdcommons.org%2Fdpubs_series%2F4485&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6661

STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-FREE
NETWORKED BLOCK STORAGE ENVIRONMENTS

AUTHORS:
Paresh Gupta

Harsha Bharadwaj
Arthur Scrimo

ABSTRACT

Enterprise data centers employ a distributed block storage architecture for their Tier

1 workloads. Business-critical applications are hosted on servers having local compute

and memory resources, but the storage is centralized within distributed storage devices.

Although a distributed block storage architecture helps an enterprise data center in

efficiently using storage, when an application slowdown is experienced, the

troubleshooting process becomes more difficult and manual. To address these types of

challenges, techniques are presented herein that support a data-driven and algorithmic

approach to pinpoint the exact root-cause (e.g., a host, a storage area network (SAN), or a

storage array) of a storage slowdown. The presented techniques are operable even when

no obvious errors are present (e.g., the storage access is sick-but-not-dead). The presented

techniques leverage the latency metrics Exchange Completion Time (ECT), Data Access

Latency (DAL), and Host Response Latency (HRL) to pinpoint the exact root-cause of the

storage slowdown in a distributed block storage architecture using Small Computer System

Interface (SCSI) and nonvolatile memory express (NVMe) over any transport (e.g., Fibre

Channel (FC), FC over Ethernet (FCoE), Internet Small Computer Systems Interface

(iSCSI), NVMe over Transmission Control Protocol (NVMe/TCP), remote direct memory

access (RDMA) over Converged Ethernet (RoCE), etc.).

DETAILED DESCRIPTION

Enterprise data centers employ a distributed block storage architecture for their Tier

1 workloads. Business-critical applications are hosted on servers having local compute

and memory resources, but the storage is centralized within distributed storage devices.

While the servers connect to these storage devices over a storage area network (SAN), the

applications remain unaware that the storage is physically outside of the server enclosure.

2

Gupta et al.: STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-FREE NETWORKED

Published by Technical Disclosure Commons, 2021

 2 6661

In virtualized environments, a hypervisor typically handles the operations for block

network storage. As a result, even the virtual machine operating system is unaware that

the storage is physically outside of the server enclosure. Overall, the storage access

requests by the applications are transported using block storage transactions within the

SAN. The application does not know that its storage requests are sent over a SAN nor does

the SAN need to know the details of the applications to transport the frames between the

servers and the storage device.

However, an unsolved problem remains – when a slowdown is experienced, it is

often difficult to determine what caused the slowdown. Although a distributed block

storage architecture may help enterprise data centers to efficiently use storage, the

troubleshooting process becomes more difficult and manual when an application slowdown

is experienced. The time that is taken for an application to respond, generally known as

the application response time, comprises a variety of elements.

One of the major contributors to an application response is the time that is taken to

access storage. At the infrastructure layer, the distributed storage has components within

servers (e.g., an operating system stack, drivers, adapters, etc.), components within a

network (e.g., SAN switches), and components within the storage array (e.g., a hard disk

drive or a solid-state drive (SSD), controllers, adapters, etc.). To an application owner, an

increase in storage response time may be the end of the troubleshooting, but at the

infrastructure layer finding the root cause may still be an unanswered question.

Many factors can adversely affect an increase in the storage response time. For

instance, an issue with the storage stack of the server, an issue with a storage array, or an

issue within the network (for example, ongoing congestion) may be places to consider. In

most enterprise data centers, pinpointing the exact root-cause of a storage slowdown is

based on brute-force and trial and error methods. This is a long and manual process that

can lead to excessively long outages. Existing approaches are based on the obvious

symptoms of a slowdown, including for example timeout drops, errors, discards, aborts,

etc.

The problem, however, often remains unsolved in the absence of these obvious

symptoms. In such cases, the applications are slow but they continue to work. Similarly,

storage is accessible but slow. These sick-but-not-dead symptoms are becoming

3

Defensive Publications Series, Art. 4485 [2021]

https://www.tdcommons.org/dpubs_series/4485

 3 6661

unacceptable in modern all-flash and nonvolatile memory express (NVMe) storage

architectures.

A block storage input/output (IO) transaction has multiple steps, and every step

takes a finite amount of time. These delay values are known as IO latency metrics, of

which they are three types:

 Exchange Completion Time (ECT). The amount of time that it takes to

complete a read or write IO transaction.

 Data Access Latency (DAL). Latency that is introduced by a target.

 Host Response Latency (HRL). Latency that is introduced by a host.

To address the types of challenges that were described above, techniques are

presented herein that leverage the ECT, DAL, and HRL metrics to pinpoint the exact root-

cause of a storage slowdown. The presented techniques do not redefine the ECT, DAL,

and HRL metrics. Rather, the techniques construct a new method of using the metrics, as

will be described and illustrated in the narrative below. Aspects of the techniques presented

herein may be comprise a series of evaluation and decision steps which may be explicated

through the following description.

ECT indicates the overall storage access performance. When application response

time increases and ECT does not change, it is safe to assume that storage access is not the

reason for the application slowdown. On the contrary, when application response time

increases and ECT also increases, it means that the storage issue is the root cause of the

application slowdown. This represents a first level of pinpointing. Using this approach,

the root cause of the issue is narrowed firstly to infrastructure and further to the storage

layer. Read and write transactions have different ECT values. The read ECT values must

be analyzed first, followed by the write ECT values.

Next, if ECT increases and DAL also increases it indicates a slowdown within the

storage array. On the contrary, when ECT increases but DAL does not increase then the

storage array may be ruled out. This represents a second level of pinpointing. Read and

write transactions have different DAL values and they must be compared separately.

Similarly, if ECT increases and HRL also increases, this may be an indication of a

slowdown within the host. However, when ECT increases but HRL does not increase, then

4

Gupta et al.: STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-FREE NETWORKED

Published by Technical Disclosure Commons, 2021

 4 6661

the host may be ruled out. This represents a third level of pinpointing. This step is required

for the write transactions only as an HRL metric is not available for the read transactions.

Finally, if the ECT increases for both the read and the write transactions but the

respective DAL and HRL metrics do not increase, it indicates a slowdown due to SAN

issues (for example, SAN congestion).

In accordance with the techniques presented herein, the correlation between ECT,

DAL, and HRL must follow a unique sequence for the read and write transactions, as

depicted in the flowchart that is presented in Figure 1, below.

Figure 1: Illustrative Metrics Correlation Flowchart

The algorithm that as depicted in Figure 1 will, when implemented according to

aspects of the techniques presented herein, result in a conceptual representation of the ECT,

DAL, and HRL metrics as presented in Figure 2, below.

5

Defensive Publications Series, Art. 4485 [2021]

https://www.tdcommons.org/dpubs_series/4485

 5 6661

Figure 2: Illustrative Conceptual Metrics Representation

Further explication of aspects of the techniques presented herein may be made with

reference to the following four implementation details. First, the same and consistent

metric calculation location must be used. The IO latency metrics can be calculated

anywhere in the end-to-end IO path between applications and storage. Whatever metric

calculation location is selected, it must remain the same and consistent over time. For

example, if ECT is calculated at storage connected ports on a SAN switch, DAL and HRL

must be calculated at the exact same location. The metric calculation location must not

change over time so as to avoid a change (e.g., an increase) in the values.

Second, absolute values of IO latency metrics are less relevant. The absolute values

of the ECT, DAL, and HRL metrics will be different at different locations. The values will

be lower when calculated closer to the storage, and higher when calculated closer to

applications. This is expected behavior. The presented techniques use a change in the

value and not the value itself. An ECT value of 500 milliseconds, for instance, is not good

or bad itself. But if the value increases to 1000 milliseconds after being stable at 500

6

Gupta et al.: STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-FREE NETWORKED

Published by Technical Disclosure Commons, 2021

 6 6661

milliseconds for a week, this would be considered a 100% increase and it indicates a

slowdown in storage access.

Third, DAL is the sum of all of the delays that are caused by storage. The block IO

transactions include multiple steps and delays are present at every step. It is important to

take the sum of all the delays that are caused by storage in calculating the DAL. For

example:

 A read IO transaction over a FC fabric has a delay between a command (CMND)

and a first data frame (referred to as CTFDT or Command to First Data Time)

and between the last data and an RSP frame (referred to as DTRT or Data to

RSP Time). The DAL value for the read transactions must be the sum of the

CTFDT and the DTRT. Additionally, this logic can be extended to calculate

the delay between two adjacent data frames.

 A write IO transaction over a FC fabric has a delay between a CMND and a

Transfer Ready frame (referred to as CTFDT) and the last data and an RSP

frame (referred to as DTRT). A write transaction has one or more sequences of

Transfer ready and data frames. The sum of all the delays must be calculated

when multiple instances of Transfer ready are involved.

Fourth, HRL is the sum of all the delays that are caused by the host. The block IO

transactions include multiple steps and delays are present at every step. It is important to

take the sum of all of the delays that are caused by the host in calculating the HRL. For

example, a write IO transaction over a FC fabric has a delay between a Transfer ready and

a data frame (referred to as RDYTDT or Transfer Ready to Data Time). A write transaction

has one or more sequences of Transfer ready and data frames. The sum of all of the delays

must be calculated when multiple instances of Transfer ready are involved. Additionally,

this logic can be extended to calculate the delay between two adjacent data frames also.

Figure 3, below, illustrates aspects of the different calculations that were described

in the above narrative.

7

Defensive Publications Series, Art. 4485 [2021]

https://www.tdcommons.org/dpubs_series/4485

 7 6661

Figure 3: Exemplary Metric Calculations

It is important to note that although the above examples considered FC transport,

the same logic will apply to any other transport carrying block storage traffic. Additionally,

various of the techniques presented herein, as described and illustrated above, may be

automated on a data platform for proactive alerting functionality.

The advantages that may arise from employing aspects of the techniques presented

herein may include, for example, that:

 The techniques do not require error counters. They work using existing latency

metrics.

 The techniques work even if no errors are observed between applications and

storage. They are specifically designed for slow-but-working or sick-but-not-

dead situations.

 The techniques work with or without SAN analytics and remain agnostic to the

approach of metrics collection.

8

Gupta et al.: STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-FREE NETWORKED

Published by Technical Disclosure Commons, 2021

 8 6661

 The techniques work with any transport carrying block storage traffic (e.g., FC,

FCoE, iSCSI, RoCE, and/or NVMe/TCP).

In summary, techniques have been presented herein that support a data-driven and

algorithmic approach to pinpoint the exact root-cause (e.g., a host, a SAN, or a storage

array) of a storage slowdown. The presented techniques work even when no obvious errors

are present (e.g., the storage access is sick-but-not-dead). The presented techniques

leverage the latency metrics ECT, DAL, and HRL to pinpoint the exact root-cause of the

storage slowdown in a distributed block storage architecture using Small Computer System

Interface (SCSI) and NVMe over any transport (e.g., FC, FCoE, iSCSI, NVMe/TCP, RoCE,

etc.).

9

Defensive Publications Series, Art. 4485 [2021]

https://www.tdcommons.org/dpubs_series/4485

	STORAGE PERFORMANCE BOTTLENECK DETECTION IN ERROR-FREE NETWORKED BLOCK STORAGE ENVIRONMENTS
	Recommended Citation

	Microsoft Word - 1438968_1

