
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

June 2021

Improved Security and Reliability in the DNS Provider Discovery Improved Security and Reliability in the DNS Provider Discovery

Mechanism of Domain Connect Protocol Mechanism of Domain Connect Protocol

Navneet Goel

Aditya Gopalakrishnan

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Goel, Navneet and Gopalakrishnan, Aditya, "Improved Security and Reliability in the DNS Provider
Discovery Mechanism of Domain Connect Protocol", Technical Disclosure Commons, (June 18, 2021)
https://www.tdcommons.org/dpubs_series/4390

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4390?utm_source=www.tdcommons.org%2Fdpubs_series%2F4390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Improved Security and Reliability in the DNS Provider Discovery Mechanism of Domain

Connect Protocol

ABSTRACT

Domain Connect is a publicly available standard that enables DNS Providers to provide a

mechanism for Service Providers to place DNS records on the domain, thus freeing the customer

from having to manually set the records. There however exist some security and reliability

challenges arising from the current Domain Connect specifications which Service Providers

might want to protect themselves from. Specifically the _domainconnect TXT record, in theory,

can be compromised to point to a server controlled by a bad actor; the protocol does not provide

a facility to shut down DNS Providers known to have downtime or other issues; and the

specification also doesn’t enforce URL fields from the settings call to be on the HTTPS scheme.

This disclosure describes an allow-list mechanism that mitigates the above-described security

and reliability challenges. A wildcard (or regular-expression) check is conducted on the initial

server URL returned from following the _domainconnect TXT record for a given domain, e.g., to

check the host name in the URL, etc. Subsequent wildcard checks also validate fields that are

returned in response to the settings call.

KEYWORDS

● Domain Connect specification

● Domain name system (DNS)

● DNS Provider

● Service Provider

● DNS records

● Wildcard check

● Regex check

● DNS Provider discovery

2

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

BACKGROUND

An internet domain name, e.g. example.com, makes it easy for customers to access

websites without having to memorize and enter numeric IP addresses for those websites.

Customers, such as individuals and businesses, purchase domain names from domain registrars.

The domain name system (DNS) is the phonebook of the internet, mapping domain names to

their IP addresses by looking up DNS records maintained at name servers. A customer can hire

one or more Service Providers to provide various services, e.g. email, documents storage, word

processing, advertisement serving etc. on their domain.

A DNS Provider (not to be confused with Service Provider) authoritatively hosts the

DNS records such as A, NS, CNAME, MX, TXT etc. [1]. For example, the A record stores the

actual IP address associated with the domain. The NS record shows the nameservers currently

used by the domain. The CNAME record is a type of resource record in the Domain Name

System (DNS) that maps one domain name to another (the canonical name). MX refers to mail

servers used by the domain. A TXT record (short for text record) is a type of resource record in

the Domain name System (DNS) used to provide the ability to associate arbitrary text with a host

or other name, such as human readable information.

Domain Connect is a standard that enables DNS Providers to provide a mechanism for

Service Providers to place DNS records on the domain, thus freeing the customer from having to

manually set the records [2]. The Service Provider might typically use heuristics or rules to guess

the DNS Provider for the domain they serve. The Domain Connect specification also enables the

Service Provider to discover the DNS Provider for a domain automatically by following the

public TXT record on the _domainconnect subdomain to get the address of a settings server. The

3

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

Service Provider can then fetch the settings of the DNS Provider for the domain using an HTTP

REST API call. The settings have a number of fields in the form of a JSON object e.g.

{

"providerId": "xyzdomains.com",

"providerName": "XYZ Domains",

"providerDisplayName": "XYZ Domains",

"urlSyncUX": "https://domainconnect.xyzdomains.com",

"urlAsyncUX": "https://domainconnect.xyzdomains.com",

"urlAPI": "https://api.domainconnect.xyzdomains.com",

"width": 750,

"height": 750,

"urlControlPanel": "https://domaincontrolpanel.xyzdomains.com/?domain=%domain%",

"nameServers": ["ns01.xyzdomainsdns.com", "ns02.xyzdomainsdns.com"]

}

Fig. 1: Synchronous flow with DNS Provider discovery

4

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

Fig. 1 illustrates an example workflow (known as synchronous flow) of DNS Provider

discovery by a Service Provider using the Domain Connect specification. Upon a customer

requesting a domain registration, the registrar provisions the domain and the nameservers. The

nameservers point to the DNS Provider. The customer signs up for services with the Service

Provider. The Service Provider enables services for the customer by requesting them for

permission to apply a Domain Connect template to update or add to the DNS records. The

customer authenticates themselves on the DNS Provider website and authorizes the Service

Provider to apply the Domain Connect template. Once the DNS records are added or updated

successfully, the Service Provider can provide services to the customer.

PROBLEMS

This works in the general case but there are certain challenges pertaining to security and

reliability which Service Providers might want to protect themselves from. These include:

● Problem 1: The _domainconnect TXT record can be compromised to point to a bad actor's

server. Subsequent settings call on the URL returned from _domainconnect record can then

also be compromised in such cases. As per the specification, the URL in the urlSyncUX

parameter from settings response is actually expected to load the DNS Provider’s user

interface (UI). A bad actor however can use this to show an arbitrary UI to the Service

Provider's customers.

● Problem 2: The protocol doesn't provide a mechanism to shut down DNS Providers by

Service Providers where DNS Providers are known to have downtime or other issues.

● Problem 3: The specification doesn't enforce or recommend URL scheme validation from

the settings call response e.g. checks to enforce URL fields e.g. urlSyncUX, urlAsyncUX,

urlApi, urlControlPanel etc. are hosted on the HTTPS scheme.

5

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

Each of these lead to specific scenarios, described in detail below with examples.

Problem 1: Compromising DNS Provider discovery using a corrupted TXT record

Fig. 2: Compromising DNS Provider discovery using a corrupted TXT record

Fig. 2 illustrates an example attack mode, e.g. when a bad actor corrupts the

_domainconnect record on the domain to compromise DNS Provider discovery settings

requested by a Service Provider. In such a case, as illustrated, the bad actor can gain the login

credentials of the customer etc. with the potential to cause substantial harm.

6

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

Example: An example is provided below that illustrates this problem:

1. Assume that the domain of the customer is “mydomain.com”

2. Assume that the _domainconnect record has been compromised to contain the hostname

“api.badactor.com”, unknown to the customer.

3. A Service Provider providing services to “mydomain.com” would query the

_domainconnect record in point 2 to get “api.badactor.com”

4. The Service Provider would then proceed to make a settings call for mydomain.com by

calling the URL https://api.badactor.com/v2/mydomain.com/settings

5. This would then contain bad URLs for integrating with Domain connect like so

{

"providerId": "badactor.com",

"providerName": "Bad actor",

"providerDisplayName": "Bad actor",

"urlSyncUX": "https://domainconnect.badactor.com",

"urlAsyncUX": "https://domainconnect.badactor.com",

"urlAPI": "https://api.domainconnect.badactor.com",

"width": 750,

"height": 750,

"urlControlPanel": "https://domaincontrolpanel.badactor.com/?domain=mydomain.com",

"nameServers": ["ns01.badactor.com", "ns02.badactor.com"]

}

6. When the Service Provider redirects to any of the URLs as part of the Domain Connect

protocol - the customer is now being redirected to bad actor’s URLs where they can

suffer loss of login credentials or PII or other possible attacks.

It is true that the customer’s domain is already in a compromised state at the beginning of the

flow. But these URLs might compromise aspects of the customer not yet compromised.

7

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

https://api.badactor.com/v2/mydomain.com/settings

Problem 2: An unknown DNS Provider or a DNS Provider suffering an outage/downtime

Fig. 3: A DNS Provider suffering an outage / downtime

Fig. 3 illustrates an example of how a DNS Provider going through downtime / service

outage can result in an unreliable experience for the Service Provider. The specification currently

has no recommendation for these scenarios. Furthermore, Service Providers might not want to

integrate with DNS Providers unknown to them for reliability or business reasons, while still

leveraging the benefits of the Domain Connect DNS Provider discovery specification.

8

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

Example: An example is provided below that illustrates this problem:

1. Assume that the domain of the customer is “mydomain.com”

2. Assume that the _domainconnect record correctly points to the good DNS Provider

“MyAwesomeDNSProvider” with the URL “api.myawesomednsprovider.com

3. A Service Provider providing services to “mydomain.com” would query the

_domainconnect record in point 2 to get “api.myawesomednsprovider.com”

4. The Service Provider would then proceed to make a settings call for mydomain.com by

calling the URL https://api.myawesomednsprovider.com/v2/mydomain.com/settings

5. This would then contain URLs for integrating with Domain connect like so

{

"providerId": "myawesomednsprovider.com",

"providerName": "MyAwesomeDNSProvider",

"providerDisplayName": "MyAwesomeDNSProvider",

"urlSyncUX": "https://domainconnect.myawesomednsprovider.com",

"urlAsyncUX": "https://domainconnect.myawesomednsprovider.com",

"urlAPI": "https://api.domainconnect.myawesomednsprovider.com",

"width": 750,

"height": 750,

"urlControlPanel":

"https://domaincontrolpanel.myawesomednsprovider.com/?domain=mydomain.com",

"nameServers": ["ns01.myawesomednsprovider.com",

"ns02.myawesomednsprovider.com"]

}

6. However assume that MyAwesomeDNSProvider is having a known outage which the

Service Provider might want to guard against

7. Since there is no good way to detect MyAwesomeDNSProvider as per the current

specification, they would continue to integrate with the MyAwesomeDNSProvider and

the customer would see a failure on the UI, which could have been avoided.

9

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

https://api.myawesomednsprovider.com/v2/mydomain.com/settings

Problem 3: DNS Provider uses HTTP instead of HTTPS URLs in settings

Fig. 4: Illustration of an existing security issue if the DNS Provider uses HTTP URLs as

opposed to HTTPS

Fig. 4 illustrates an existing security issue in the traditional synchronous flow that arises

if the DNS Provider uses the HTTP protocol instead of the HTTPS protocol. The use of the less

secure HTTP protocol leaves open the possibility of a man-in-the-middle attack which eventually

will compromise the overall flow for the user.

10

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

Example: An example is provided below that illustrates this problem:

1. Assume that the domain of the customer is “mydomain.com”

2. Assume that the _domainconnect record contains the hostname

“api.gooddnsprovider.com” for “mydomain.com”

3. A Service Provider providing services to “mydomain.com” would query the

_domainconnect record in point 2 to get “api.gooddnsprovider.com”

4. The Service Provider would then proceed to make a settings call for “mydomain.com” by

calling the URL https://api.gooddnsprovider.com/v2/mydomain.com/settings

5. This response might look like this

{

"providerId": “gooddnsproviderid”,

"providerName": "gooddnsprovider name",

"providerDisplayName": "gooddnsprovider display name",

"urlSyncUX": "http://domainconnect.gooddnsprovider.com",

"urlAsyncUX": "http://domainconnect.gooddnsprovider.com",

"urlAPI": "http://api.domainconnect.gooddnsprovider.com",

"width": 750,

"height": 750,

"urlControlPanel":

"http://domaincontrolpanel.gooddnsprovider.com/?domain=mydomain.com",

"nameServers": ["ns01.gooddnsprovider.com", "ns02.gooddnsprovider.com"]

}

6. As shown in the above response, all the URLs returned are using HTTP scheme instead

of HTTPS. Now when a Service Provider initiates any call e.g. an apply template call

using one of the above URLs, the outgoing call will be insecure as it is hosted on HTTP

scheme instead of HTTPS and thus is prone to man-in-the-middle attack which eventually

will compromise the overall flow for the user.

11

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

https://api.gooddnsprovider.com/v2/mydomain.com/settings

SOLUTION

This disclosure describes an allow-list mechanism that mitigates the above described

security and reliability challenges. A wildcard (or regular-expression) check is conducted on the

initial URL returned from following the _domainconnect TXT record. Subsequent wildcard

checks also verify the fields such as: providerId, providerName, providerDisplayName,

urlSyncUX, urlAsyncUX, urlApi, urlControlPanel etc. which are returned in response to the

settings call. The URLs are additionally verified to be HTTPS, not HTTP.

These checks can be achieved in the following two steps:

1. Getting the pattern for each of the above parameters from the DNS Providers in advance.

The pattern type can be one of the pattern types SUBSTRING, STARTSWITH,

ENDSWITH, EXACT or any other regular expression based construct.

2. Validating each of these patterns against actual fields which are returned in response to

the real time settings JSON call.

A DNS Provider is considered secure only if each of the above checks pass. Furthermore,

if a DNS Provider is identified as failing, default fallbacks can be agreed upon with the DNS

Provider, thereby mitigating the reliability related challenges. Such fallbacks can be e.g. URLs

for the settings urlSyncUX, urlAsyncUX, urlApi, urlControlPanel etc. Or in other cases, the

Service Provider can turn down traffic to the DNS provider which is suffering any outage or any

other issue.

12

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

Solution for problem 1: Hardening against a compromised _domainconnect record

Fig. 5: Hardening against a compromised _domainconnect record

 Fig. 5 illustrates hardening against a compromised _domainconnect record, per the

techniques of this disclosure. In contrast to Fig. 2, a Service Provider can detect, using the

described techniques, a compromised _domainconnect record and immediately end the flow,

shunting out the bad actor.

Example: An example is provided below that illustrates the solution.

1. Assume that the domain of the customer is “mydomain.com”

13

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

2. Assume that the _domainconnect record has been compromised to contain the hostname

“api.badactor.com”, unknown to the customer.

3. A Service Provider providing services to “mydomain.com” would query the

_domainconnect record in point 2 to get “api.badactor.com”

4. However, at this very point, the Service Provider would check this URL retrieved against

known wildcard patterns of all known good DNS Providers they wish to integrate with

e.g. consider the following database on the Service Provider side created with agreement

with DNS Providers.

DNS Provider Settings URL pattern Settings URL pattern type

MyAwesomeDNS “myawesomedns.com” SUBSTRING

MyAwesomeDNS2 “api.myawesomedns2.com” EXACT

5. At this point - the Service Provider checks the retrieved settings API server i.e.

api.badactor.com against both providers it has chosen to integrate with

a. MyAwesomeDNS’s pattern translates to the pattern “*myawesomedns.com*” -

which the retrieved URL doesn’t match against

b. MyAwesomeDNS2’s pattern is an exact match against “api.myawesomedns2.com”

the retrieved URL also doesn’t match against.

6. The Service Provider decides therefore to reject this settings URL and the customer is

therefore protected. While such rejection may result in blocking some good DNS

providers, it ensures that integrating with bad DNS providers is eliminated. This tradeoff

may be preferable than the high costs of integrating with a bad provider.

14

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

Solution for problem 2: Hardening against DNS Providers suffering outage/downtime

Fig. 6: Hardening against DNS Providers suffering outage/downtime

Fig. 6 illustrates hardening against DNS Providers which are experiencing known

downtime or suffering outages, per the techniques of this disclosure. In contrast to Fig. 3, the

Service Provider can detect, using the described techniques, a blocked DNS Provider and

immediately end the flow, thereby preventing existing reliability and security issues from

compounding.

Example: An example is provided below that illustrates the solution.

1. Assume that the domain of the customer is “mydomain.com”

2. Assume that the _domainconnect record correctly points to the good DNS Provider

“MyAwesomeDNSProvider” with the URL “api.myawesomednsprovider.com

15

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

3. A Service Provider providing services to “mydomain.com” would query the

_domainconnect record in point 2 to get “api.myawesomednsprovider.com”

4. The Service Provider would then proceed to make a settings call for mydomain.com by

calling the URL https://api.myawesomednsprovider.com/v2/mydomain.com/settings

5. This would then contain URLs for integrating with Domain connect like so

{

"providerId": "myawesomednsprovider.com",

"providerName": "MyAwesomeDNSProvider",

"providerDisplayName": "MyAwesomeDNSProvider",

"urlSyncUX": "https://domainconnect.myawesomednsprovider.com",

"urlAsyncUX": "https://domainconnect.myawesomednsprovider.com",

"urlAPI": "https://api.domainconnect.myawesomednsprovider.com",

"width": 750,

"height": 750,

"urlControlPanel":

"https://domaincontrolpanel.myawesomednsprovider.com/?domain=mydomain.com",

"nameServers": ["ns01.myawesomednsprovider.com",

"ns02.myawesomednsprovider.com"]

}

6. Now the Service Provider, in this proposed scheme would have already contained a list of

wildcards for the various values in this settings call to enable them to detect the DNS

Provider. For example, consider the below table of values on Service Provider side about

DNS Provider:

DNS Provider Settings part Settings part pattern Settings part pattern

type

MyAwesomeDNSProvi

der

providerId “myawesomednsprovid

er.com”

SUBSTRING

MyAwesomeDNSProvi

der

urlSyncUx “domainconnect.myawe

somednsprovider.com”

ENDSWITH

7. Now the Service Provider would match the returned settings call against the known

information about providers - since the providerId for MyAwesomeDNSProvider is

16

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

https://api.myawesomednsprovider.com/v2/mydomain.com/settings

“*myawesomednsprovider.com*” and the urlSyncUx is

“*domainconnect.myawesomednsprovider.com” and both patterns match - the DNS

Provider is correctly identified as MyAwesomeDNSProvider

8. At this point, since the Service Provider would know which DNS Provider is involved -

and any policy or engineering decision about this provider can now be applied, e.g., block

it for the duration of the known downtime, outage etc. between the Service Provider and

DNS Provider.

9. Another policy decision which can be made is to fallback to settings URLs agreed upon

between the Service Provider and the DNS Provider as mentioned earlier in this

disclosure.

17

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

Solution for problem 3: Hardening against the use of HTTP URLs in settings

Fig. 7: Hardening against the use of HTTP URLs in settings

 Fig. 7 illustrates hardening against the use of HTTP URLs in settings. In contrast to Fig.

4, the Service Provider can detect the use of the HTTP (rather than https) protocol and end the

flow, thereby mitigating risk and preventing existing security issues from compounding.

Example: An example is provided below that illustrates the solution.

1. Assume that the domain of the customer is “mydomain.com”

2. Assume that the _domainconnect record contains the hostname

“api.gooddnsprovider.com” for “mydomain.com”

18

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

3. A Service Provider providing services to “mydomain.com” would query the

_domainconnect record in point 2 to get “api.gooddnsprovider.com”

4. The Service Provider would then proceed to make a settings call for “mydomain.com” by

calling the URL https://api.gooddnsprovider.com/v2/mydomain.com/settings

5. This response might look like this:

{

"providerId": “gooddnsproviderid”,

"providerName": "gooddnsprovider name",

"providerDisplayName": "gooddnsprovider display name",

"urlSyncUX": "http://domainconnect.gooddnsprovider.com",

"urlAsyncUX": "http://domainconnect.gooddnsprovider.com",

"urlAPI": "http://api.domainconnect.gooddnsprovider.com",

"width": 750,

"height": 750,

"urlControlPanel":

"http://domaincontrolpanel.gooddnsprovider.com/?domain=mydomain.com",

"nameServers": ["ns01.gooddnsprovider.com", "ns02.gooddnsprovider.com"]

}

6. However, at this very point the Service Provider would check the URLs retrieved in

settings call response to ensure that URL follows the HTTPS scheme instead of HTTP.

Since the URL scheme is HTTP the Service Provider will not make any subsequent calls-

effectively thwarting any man-in-the-middle-attacks before such attacks even start.

CONCLUSION

This disclosure describes an allow-list mechanism that mitigates security and reliability

related challenges arising from the current Domain Connect specification. A wildcard (or

regular-expression) check is conducted on the initial server URL returned from following the

_domainconnect TXT record for a given domain. Subsequent wildcard checks also validate

fields that are returned in response to the settings call.

19

Defensive Publications Series, Art. 4390 [2021]

https://www.tdcommons.org/dpubs_series/4390

https://api.gooddnsprovider.com/v2/mydomain.com/settings

REFERENCES

[1] “List of DNS record types” https://en.wikipedia.org/wiki/List_of_DNS_record_types

accessed May 26, 2021.

[2] “Domain Connect 2.2,” available online at https://github.com/Domain-

Connect/spec/blob/master/Domain%20Connect%20Spec%20Draft.adoc accessed May 18, 2021.

20

Goel and Gopalakrishnan: Improved Security and Reliability in the DNS Provider Discovery M

Published by Technical Disclosure Commons, 2021

https://en.wikipedia.org/wiki/List_of_DNS_record_types
https://github.com/Domain-Connect/spec/blob/master/Domain%20Connect%20Spec%20Draft.adoc
https://github.com/Domain-Connect/spec/blob/master/Domain%20Connect%20Spec%20Draft.adoc

	Improved Security and Reliability in the DNS Provider Discovery Mechanism of Domain Connect Protocol
	Recommended Citation

	tmp.1623751013.pdf.j_Q0F

