
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 3-2021

JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting

Current Open-Source Embedding Programs Current Open-Source Embedding Programs

Charles A. Badami
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

 Part of the Databases and Information Systems Commons, Data Science Commons, and the Other

Computer Sciences Commons

Recommended Citation Recommended Citation
Badami, Charles A., "JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting Current Open-Source
Embedding Programs" (2021). Masters Theses & Doctoral Dissertations. 366.
https://scholar.dsu.edu/theses/366

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion
in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more
information, please contact repository@dsu.edu.

https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/366?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

A dissertation submitted to Dakota State University in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Cyber Operations

March 2021

By

Charles A. Badami

Dissertation Committee:

Dr. Wayne Pauli

Dr. Cody Welu

Dr. Christopher Olson

 iii

I would like to express my deepest appreciation to my doctoral committee, to all of my

professors and mentors at DSU, and to my friends and colleagues at Northwest Missouri State

University for all of your help and support throughout this process. I especially want to thank

my wife and children for putting up with me and tolerating my frequent disappearances while

I obsessed over this project.

 iv

Steganography in computer science refers to the hiding of messages or data within

other messages or data; the detection of these hidden messages is called steganalysis. Digital

steganography can be used to hide any type of file or data, including text, images, audio, and

video inside other text, image, audio, or video data. While steganography can be used to

legitimately hide data for non-malicious purposes, it is also frequently used in a malicious

manner. This paper proposes JRevealPEG, a software tool written in Python that will aid in

the detection of steganography in JPEG images with respect to identifying a targeted set of

open-source embedding tools. It is hoped that JRevealPEG will assist in furthering the

research into effective steganalysis techniques, to ultimately help identify the source of hidden

and possibly sensitive or malicious messages, as well as contribute to efforts at thwarting the

activities of bad actors.

 v

I hereby certify that this dissertation constitutes my own product, that where the

language of others is set forth, quotation marks so indicate, and that appropriate credit is given

where I have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Charles A. Badami

 vi

DISSERTATION APPROVAL FORM .. III

ACKNOWLEDGMENT .. III

ABSTRACT .. IV

DECLARATION ..V

TABLE OF CONTENTS ... VI

LIST OF TABLES ...IXI

LIST OF FIGURES .. IX

INTRODUCTION ... 1

PROBLEM STATEMENT ... 2

PURPOSE OF THE STUDY ... 3

MOTIVATION ... 4

SIGNIFICANCE AND CURRENT INTEREST .. 5

RESEARCH QUESTIONS ... 6

SCOPE AND LIMITATIONS ... 7

INTRODUCTION: SUMMARY .. 8

LITERATURE REVIEW ... 9

RECENT EFFORTS IN GENERAL IMAGE STEGANOGRAPHY/STEGANALYSIS .. 9

 STEGANOGRAPHY FOCUS .. 9

 STEGANALYSIS FOCUS ...10

JPEG COMPRESSION ..11

JPEG IMAGE STEGANALYSIS: RECENT TECHNIQUES ...13

 MACHINE LEARNING ...13

 DCT AND MACHINE LEARNING ...13

 CONTENT-ADAPTIVE STEGO, IMAGE FILTERS, AND MACHINE LEARNING ..15

 NON-MACHINE-LEARNING TECHNIQUES ...16

LITERATURE REVIEW: SUMMARY ..17

THEORY AND ARTIFACT DESIGN ..19

PROBLEM INVESTIGATION ...20

TREATMENT DESIGN ...20

JREVEALPEG ARCHITECTURE AND COMPONENTS ..22

 vii

 OVERVIEW OF JREVEALPEG STRUCTURE AND BEHAVIOR ..22

 THE MAIN MODULE: JRPEG.PY ..24

 CUSTOM JPEG PROCESSING: COEFX.PY ...26

 JSTEG AND JSDEC.PY ..32

 STEGANPEG AND SPDEC.PY ..34

 OUTGUESS AND OGDEC.PY ..39

THEORY AND ARTIFACT DESIGN: SUMMARY...46

EXPERIMENT RESULTS AND DISCUSSION ..47

DESIGN VALIDATION ...47

 CONTEXT AND RESEARCH PROBLEM ...47

 OBJECT OF STUDY ...48

 TREATMENT DESIGN..48

 MEASUREMENT DESIGN ..48

 INFERENCE DESIGN ...49

EXPERIMENT SETUP AND EXECUTION ..49

 SETUP ..50

 EXECUTION ..51

RESULTS AND DISCUSSION ..53

 DATA ANALYSIS ..53

 ANSWERS TO KNOWLEDGE QUESTIONS ...57

EXPERIMENT RESULTS AND DISCUSSION: SUMMARY ..60

CONCLUSION ..61

CONTRIBUTIONS AND APPLICATIONS ..61

LIMITATIONS OF JREVEALPEG..62

FUTURE RESEARCH DIRECTIONS ...63

SUMMARY ...64

REFERENCES ..66

APPENDIX A: LOG FILE 1: TEXT FILE ...70

APPENDIX B: LOG FILE 2: CSV FILE ..134

APPENDIX C: JREVEALPEG CODE ...136

JRPEG.PY ..136

COEFX.PY ...139

JSDEC.PY ..144

SPDEC.PY ...145

 viii

OGDEC.PY ..147

APPENDIX D: LINKS TO FREE JPEG IMAGES USED ...151

 ix

Table 1. List of Citations in Literature Review ... 18

Table 2. Hidden messages used in the experiment .. 50

Table 3. Master list of JPEG samples (excerpt) ... 51

Table 4. Descriptive statistics for selected experiment metrics 54

 x

Figure 1. Baseline JPEG Compression Stages ... 12

Figure 2. JRevealPEG Main Menu .. 22

Figure 3. Sample Output No Positive Result .. 23

Figure 4. Sample Output One Positive Result .. 24

Figure 5. Sample CSV file ... 24

Figure 6. Method Logger.lprint() from jrpeg.py .. 25

Figure 7. Beginning of function analyze() from jrpeg.py .. 26

Figure 8. One marker per group (left) vs. one marker per table (right) 28

Figure 9. JPEG.StartOfScan ... 29

Figure 10. DQT marker scanning in JPEG.decode() from coefx.py 30

Figure 11. JPEG.checkHtStructType from coefx.py ... 30

Figure 12. JPEG.BuildMatrix() from coefx.py .. 31

Figure 13. Function filterMCUs from jsdec.py .. 33

Figure 14. Jsteg signature detection in function magic() from jsdec.py 34

Figure 15. Function dataBytes() from spdec.py ... 36

Figure 16. Main decryption code from spdec.py ... 37

Figure 17. Checking data length in function detect() from spdec.py 38

Figure 18. Checksum calculation routine from spdec.py ... 38

Figure 19. Comparing checksums in function detect() from spdec.py 39

Figure 20. MCU Block Natural vs Zigzag Ordering .. 40

Figure 21. Function dezig() from ogdec.py ... 42

Figure 22. Function calcEdges() from ogdec.py .. 43

Figure 23. Excerpt of function trimEdges() from ogdec.py ... 43

Figure 24. Function extractHeaderInfo() from ogdec.py ... 45

Figure 25. Heuristics tests in function detect() from ogdec.py 46

Figure 26. Experiment execution running JRevealPEG with input samples 52

Figure 27. Experiment execution - excerpt from JRevealPEG text log file................. 52

Figure 28. Experiment execution excerpt from JRevealPEG CSV log file 53

Figure 29. Graphs of file size vs processing times .. 56

 xi

Figure 30. Graphs of square-pixel area vs processing times .. 56

1

Steganography in computer science refers to the hiding of messages or data within

other messages or data; the detection of these hidden messages is called steganalysis. Digital

steganography can be used to hide any type of file or data, including text, images, audio, and

video inside other text, image, audio, or video data. Zielinska, Mazurczyk, and Szczypiorski

(2014) point out that people sometimes confuse steganography with cryptography. The main

purpose of both is to ensure confidentiality of a message. They are distinguished, however, by

what exactly is being hidden. In cryptography, the message itself is being obfuscated

(meaning garbled, obscured, or made unclear) whether or not an observer knows it is being

sent. In steganography, the fact that the message is being sent is hidden; it is the channel of

communication that is being kept secret (Zielinska et al., 2014).

The practice of steganography in general has roots that go back millennia. Jamil

(1999) describes several historical examples, some very ancient, and some from within the

last century. There is the story of a nobleman in Medea hiding a message in the belly of an

unskinned hare, which was delivered by someone dressed as a hunter. Another account

involves a Persian tattooing a secret message

grow back, then sending the slave to the recipient, at which point he was to shave his head

and reveal the message. One commonly used historical technique is to write a message on

some sort of paper medium s.

The hidden message could then be revealed by subjecting the paper to heat. In more recent

history, the Nazi spy George Dasch used copper sulfate on a handkerchief as invisible ink that

only became visible when subjected to ammonia fumes. Another technique used by the

 A microdot was an

extremely small photograph about the size of a period; the receiver could blow up the

microdot to reveal a full page of information. Not to be outdone, the United States during

WWII employed Navajo speakers as so-

their native tongue. Only 28 non-Navajos (none of them German or Japanese) were thought to

2

be able to speak the language at the time, and the codetalkers made it even more difficult by

using slang. Even during the Gulf War in 1990 to 1991, some Navajos used a similar method

to bypass radio censors and send messages to their loved ones serving overseas (Jamil, 1999).

Burney (2018) cites two more historical steganography examples of interest. One

account, again from WWII, mentions the smuggling of Monopoly games into German prison

camps. Maps, files, and compasses were hidden in the game which were intended to aid

British prisoners in escaping. A second story involves a rumor regarding former British Prime

programmed to encode the identity of the writer in

cabinet ministers who may have been leaking documents to the press (Burney, 2018).

Steganography has been practiced throughout history, involving a variety of

techniques, and its use cases have ranged from personal errands to wartime tactics. The next

section discusses recent examples of the malicious use of steganography in the digital world,

which is among the primary concerns of this study.

Problem Statement

While steganography can be used in the digital world to legitimately hide data for non-

malicious purposes, it is also frequently used in a malicious manner. Burney (2018) notes that

one common, legitimate purpose for steganography includes secretly marking a document to

be able to trace its authenticity, in an effort to discourage stealing, unauthorized use, or

plagiarism. However, the malicious use of steganography is becoming more prevalent and can

have severe consequences. Shulmin and Krylova (2017) note the increasing use of

steganography by those creating malware and by perpetrators of cyber-espionage, while also

stating that most current anti-malware tools do not provide much protection. Vijayan (2017)

reports that image steganography in particular is of primary concern, as image files are

commonly used for command and control communications, for receiving and exfiltrating data.

Current research continually adds to the list of known malware that uses steganography, some

of which includes Powload, VeryMal, Novel, AdGholas, Fakem, and StegoLoader (Brunot,

2019). Examples of activity involving the use of this malware can be found relatively quickly

through Internet searches. One source reports that Powload had a surge in usage in the first

part of 2018, mainly distributed through email spam (Cisomag, 2019). Dunaway (2019)

3

platform and lasted about two days, affecting about a million users. A third article reports that

AdGholas was used to direct traffic to malicious advertising sites for over a year without

being detected (mid-2015 to mid-2016), drawing one to five million hits each day (Kafeine,

2016).

Given that malicious image steganography is becoming more prevalent and that anti-

malware tools are often inadequate to identify and protect against it, a clear need exists for

new and ongoing research into updated steganography detection methods, with the primary

goal of aiding security professionals and researchers in their efforts to mitigate this threat. To

that end, this study details the design of JRevealPEG, a software tool that assists in the

detection of steganography in JPEG images with respect to identifying a targeted set of open-

source embedding tools. It is intended that this improvement in the detection of

steganography and the tools used to create it will help researchers identify malicious content

and prevent breaches before they occur, as well as help authorities trace such content to its

origin and possibly expose the tools and adversaries responsible. This will, in turn, contribute

in general.

As mentioned above, incidents of digital steganography in conjunction with malware

and nefarious activities can be extremely pervasive, persistent, and reach a large number of

victims in a short amount of time. The design of JRevealPEG is intended as a response to this

problem, and the main purpose of this study is delineated in the following section.

Purpose of the Study

The purpose of this study was to help address the problem stated above by designing a

software artifact that detects steganography in JPEG images while focusing on a select group

of open-source tools. The artifact was programmed in the Python language, and a single-case

mechanism experiment (discussed in Chapter 4) was used to validate the program. Several

prepared JPEG samples were given to the program as input for the experiment under

controlled conditions. Measurements of accuracy, timing, and file size were taken and used in

analysis.

4

Design science was the methodology used for this study, as delineated by Weiringa

(2014) and explained in Chapter 3. The observations and lessons learned from the design

science process for this artifact, the results of the validation experiment, and certain statistical

measurements were documented and analyzed. The results of this study are hoped to yield a

direct contribution to steganalysis research and spawn practical applications for cyber security

personnel in all types of organizations.

The purpose of the study is focused on the design of JRevealPEG as a steganalysis

tool. The next section details the motivation behind this study in terms of what is lacking in

other existing detection tools and methods.

Motivation

 If the intent is to use digital steganography to embed and send hidden messages, files,

and other data, a cursory Internet search reveals that many free and easy-to-use tools are

readily available. Given the seriousness of the possible malicious use of these programs, some

of the current research in this domain focuses on evaluating the effectiveness of existing

methods that are meant to detect this steganography. A recent study by Serrano (2019) tested

steganalysis tools, i.e. software that detects steganography. The study investigated several

types of carrier files, including image, audio, and video files. In terms of image files, JPEGs

were tested, as well as GIFs and PNGs. The detection tools tested included VSL, StegSecret,

and StegDetect. Serrano found that the tools tested had two significant types of limitations:

first, the number of successfully detected image carrier files (those with hidden data) was

generally rather low, with an average detection rate of 3.75 images out of 15; second, several

tools lacked or had minimal ability to identify the tool that embedded the steganography,

resulting in an average identification rate of one tool out of six (Serrano, 2019). The artifact

proposed in the present study, JRevealPEG, is intended to address both of these shortcomings

of current steganalysis tools.

As described in the Literature Review, the vast majority of recent image

steganography detection methods depend upon supervised machine learning to make their

determinations. Supervised learning involves data that is classified by humans ahead of time

and often requires thousands of samples to be used as a training set. In addition, Qiao, Luo,

Wu, Xu, and Qian (2019) observe that there is a lack of modern research into steganalysis

5

methods that are unsupervised,

by humans beforehand. Unsupervised techniques find patterns based on the data points alone

and do not require training sets. Although it does not use machine learning, JRevealPEG is

nonetheless intended to help fill this gap by utilizing detection methods that have no need for

training sets.

Additionally, JPEG compression is acknowledged to be the most popular standard

among all image types, with several billion JPEGS created daily as of 2015 (JPEG, n.d.). This

fact combined with the prevalence of JPEG steganography research shown in the Literature

Review is a major reason why the proposed tool focuses on JPEG steganalysis.

As referenced above, existing image steganalysis tools can be shown to lack

effectiveness when it comes to attribution and specific embedding tools. It is also noted that

many detection methods rely on machine learning and large training data sets. This study

focuses on JPEG analysis due to its immense popularity as an image standard. The following

section focuses on the current interest and significance of this research area.

Significance and Current Interest

The practice of steganography for malicious purposes is a significant problem that has

been prevalent in recent research and continues to evolve. Brunot (2019) finds that current

types of malware delivered through steganography, especially malvertising and ransomware,

are costing organizations billions of dollars. Malvertising, or malicious advertising, is the

mixing of malware-

can be infected with malware by just having visited a page that contains malvertising

(Malvertising, n.d.). before

enabling decryption. Brunot also reports that the sophistication of attacks is constantly

increasing, which puts pressure on the demand for equally sophisticated detection tools. In

addition, other types of steganography threats continue to be a concern for organizations,

including insiders hiding sensitive company information, illicit material stored on company

resources, and criminal communications taking place on corporate websites (Brunot, 2019).

The number of stakeholders and practical use cases that are related to this research is

potentially very large, since the illicit transfer of data affects virtually all private and public

organizations. In fact, Zielinska notes that in our current technological state, the type of

6

2014). As a direct application, the proposed tool could be used by computer security

technicians for regular data flow checkups, or to investigate specific incidents or suspicious

files. For example, if employees start reporting unexpected, similar emails that contain

random JPEG attachments, the security department might use the tool to attempt to identify a

common origin or telling characteristics of these files, or to monitor internal communications

that involve suspicious images, allowing early analysis before sensitive information can be

leaked. One incident illustrating this internal use of images was cited by Brunot (2019): in

2018 malware infected the Magento e-commerce system and hid payment details inside

product images published on its website. Finally, stakeholders such as general security

researchers would also potentially benefit from the proposed tool, as they may use the artifact

to test known steganography samples and possibly improve or replace the tool with something

researchers to develop more practical and immediately-usable steganalysis methods (Zielinska

et al., 2014).

The consequences and ramifications of the malicious use of digital steganography can

be serious and affect all stakeholders connected to an organization, and a clear need exists for

further research and refinement of solutions to this problem. As part of the response to these

issues, the current study is guided by the three research questions detailed in the next section.

Research Questions

The goals of design science research can be framed in terms of a design problem and

related knowledge questions (Weiringa, 2014). For this study, the design problem can be

stated as follows: Improve the area of JPEG steganalysis by designing a program that detects

hidden data in JPEGs embedded by known tools, in order to help security professionals thwart

malicious data-hiding activities. The following are knowledge questions related to this

problem that this research endeavored to answer:

7

1. Within the scope of the embedding tools targeted by this study, what level of accuracy

can be achieved by the program in terms of successfully detecting the presence of

steganography in a given JPEG?

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by the

program in terms of successfully identifying which target tool was used to hide the

data?

3. What kinds of obstacles and difficulties were encountered in terms of designing

successful detection methods for the steganographic tools and embedding methods

targeted by this study, and which (if any) of these obstacles were not overcome?

The documentation collected during the design process and validation experiment for

the artifact of this study was used to answer these questions, and those answers are discussed

in detail in Chapter 4. The next section describes the scope and limitations of this study.

Scope and Limitations

The scope of this study includes the design of a software tool (JRevealPEG) that

performs detection of steganography on JPEG images processed by a preselected group of

open-source embedding tools. The specific group of embedding tools that were included are

discussed in detail in Chapter 3. Through an experiment, the detection accuracy of

JRevealPEG was measured in relation to a selection of preprocessed JPEG images, and the

processing times that elapsed during the experiment were also recorded. Difficulties and

obstacles during the design process were also observed and documented.

There were several limitations to this study that should be noted. First, as a

steganalysis tool, the functionality of JRevealPEG in this study is limited to JPEG images

only. Other image types, such as Portable Network Graphics (PNG), Bitmap (BMP), and

Tagged Image File Format (TIFF) are not considered valid files for analysis. Audio, video,

and other file types are also excluded. Additionally, JRevealPEG is not intended as a

universal steganalysis tool. Only the selected group of steganography tools listed in Chapter 3

are meant to be within the scope of its detection capabilities. Finally, while this research did

involve implementation of steganography detection capability, the actual retrieval of hidden

messages was not considered within scope.

8

Introduction: Summary

This introduction began by providing stories about the use of steganography

throughout history and noting the variety of techniques employed. The main problem of this

study was identified, namely the ongoing use of steganography for malicious purposes and the

need for further research and solutions. The purpose of this study was described as the design

and analysis of a new steganalysis tool written in Python, called JRevealPEG. The lack of

effective existing tools and methods and the popularity of the JPEG image type were given as

the main motivating factors for this study. It was noted that malware steganography is still a

current and significant issue which costs organizations billions of dollars, and therefore

interest in this area of research and the need for solutions continues to grow. The research

questions stated for this study are concerned with the resultant accuracy of JRevealPEG in

detecting steganography, its accuracy in identifying the responsible tool, and also

documenting obstacles encountered during the research. Finally, only detection capability,

JPEG images, and a selected group of open-source embedding tools are included in this

outside the scope of this research.

Chapter 2 is a literature review surveying current research and methods in the realm of

image steganography and steganalysis. It also provides a brief background on the JPEG image

compression standard.

9

Recent Efforts in General Image Steganography/Steganalysis

 The art of hiding data in digital images in general, as well as its counterpart, the art of

detecting, extracting, and/or reconstructing such data, have become highly technical areas

recently, continually evolving with increasingly sophisticated techniques. This is evidenced

by certain relevant studies of the past few years. The next several examples do not focus on

particular image formats, but rather image steganography and steganalysis in general. The

JPEG image type is of particular interest to this study and the steganography world overall,

and many studies relating specifically to JPEG steganalysis will be addressed later.

Steganography Focus

 Recent research into image steganography/steganalysis tends to focus on either the

data hiding side (steganography), or the data detection and extraction side (steganalysis). On

the steganography side, in a study by Das and Dhara (2018), the well-known least-significant-

newly-proposed manner on gray-scale images, in combination with other techniques. In LSB,

the least significant bits in the cover (original) image are replaced by the bits of the message

that is to be hidden. The authors in this case first apply a custom extended local binary pattern

(ELBP), which is a way of encoding image pixel data using blocks of 3x3 pixel values in the

gray-scale image. First, ELBP converts each of the surrounding decimal pixel values in the

3x3 block (all but the center pixel) into a 3-bit binary code. After this, the secret message is

embedded by the LSB technique into those 3-bit codes and the pixel block is converted back

to decimal values. Finally, an algorithm called optimal pixel adjustment process (OPAP) is

applied to reduce the distortion caused by LSB and improve the final image quality. The

authors concluded that their technique allowed for a higher embedding rate than comparative

methods, resulted in better image quality, and presented a high resistance against statistical

steganalysis attacks (Das & Dhara, 2018).

10

 Another study on the steganography side (Sairam & Boopathybagan, 2019) also

attempts to improve hiding capacity and maintain good image quality, however that proposed

method also involves a layer of encryption of the data. The study examines a technique that

uses modulus values to find random locations for hiding bits of data in the cover image. The

LSB technique mentioned above is also employed here. In this case, the proposed modulus

method was found to be most effective when applied to the non-compressed bitmap image

type (BMP). Like the study above, the authors also used RS steganalysis to test the security of

their method (Sairam & Boopathybagan, 2019).

 A steganography technique using a curvelet transform method is proposed in a paper

by Subhedar and Mankar (2018), which tested grayscale images only. The curvelet transform

algorithm that was used looks at an image geometrically in an effort to hide data more

sparsely and effectively, ostensibly making it more resistant to detection. Additionally, the

study discusses the importance of choosing appropriate cover images for more secure

steganography and contributes a new technique for this purpose. The authors employ a

the best candidates. To evaluate the robustness of their proposed methods, the authors employ

machine learning, in this case a support vector machine (SVM) classifier (Subhedar &

Mankar, 2018).

Steganalysis Focus

 While the topic of finding new ways of hiding data in images is a current and

significant research area, equal if not greater research activity appears to be occurring in the

realm of detecting that hidden data through image steganalysis. Two recent studies focus on

data extraction targeting a well-known steganography technique called HUGO (Highly

Undetectable steGO). In one study by Gan, J. Liu, Luo, Yang, and Liu (2018), the authors

focus on an extraction technique to retrieve hidden data embedded by HUGO, but which has

also been encrypted. HUGO is an adaptive steganography technique that can select the best

pixels to use in order to create minimal distortion in the resulting image. The method

proposed by Gan et al. claims to extract an encrypted hidden message only when some of the

plain text is known, in this case the file format and length of the message. A key part of this

method is stated as making use of syndrome-trellis codes (STCs), a concept from information

11

coding theory that can be used to determine places to embed messages in a cover image (Gan

et al, 2018).

In the other paper targeting HUGO (Luo et al., 2016), the authors propose a blind

analysis method to extract the hidden data, also making use of STC data. The difference here

is that the hidden data is not encrypted, eliminating the need for known plain text. In this

study, the authors construct all possible STC parameters, which they compare to the identified

bits of hidden data in an effort to reconstruct the original message. Another notable part of

this process is that it also employs machine learning, here in the form of an estimator that

helps determine the relative payload (size of hidden message vs. size of cover image) of the

hidden data (Luo et al., 2016).

 A study by Malik, Subbalakshmi, and Chandramouli (2016) explores a statistical

approach to detecting steganography hidden by a particular technique. Their proposed method

examines a particular transformation of pixel data called quantization index modulation

(QIM), and implements a kind of randomness test to detect steganography. The technique

uses hypothesis testing in the form of decision rule formulas for the final determination of

which part of an image is cover, and which part is steganography (Malik et al., 2016).

 Machine learning appears yet again in a paper by Lu et al. (2019), which explores a

new method of hidden message detection in binary images. Binary images are black and white

images with two possible values (1 or 0) for each pixel. The proposed method first compiles

histograms of certain pixel structural element (SE) patterns based upon predetermined criteria.

From these SE patterns, a feature vector (set of relevant characteristics) is chosen to use with

an SVM classifier for final determination (Lu et al., 2019).

JPEG Compression

 Since the focus of the present study is the steganalysis of JPEG images, a brief

background on the standard JPEG compression algorithm will be helpful. All of the

steganalysis techniques discussed in later sections are focused on JPEG images, so a basic

familiarity with the standard should aid greatly in understanding the relevant concepts and

terminology.

 JPEG (Joint Photographic Experts Group) technically does not refer to an image file

format, but rather a compression method invented to be able to support continuous-tone

12

images. Continuous-tone images that have thousands (even millions) of colors resulting from

the real-world origins of the subjects (JPEG Compression, n.d.). Because of the need for such

a large number of colors, the image also has to be capable of large pixel depths, e.g. 24 bits

would equate to 2^24, or over 16 million colors. In addition, it is mainly a lossy compression

method, meaning it discards unnecessary data during encoding to reduce file size. In terms of

an image, this means that the algorithm discards certain image data that cannot be seen by the

human eye in any case (JPEG Compression, n.d.).

 In the core standard, called Baseline JPEG, encoding is based on a category of

mathematical operations called the Discrete Cosine Transform (DCT). In the third stage of

compression, the DCT is applied to image data that has been divided into 8x8 pixel blocks

(here, pixels are single values representing certain colors, rather than separate RGB values).

by values from a particular quantization

 n.d.). The quantization step is

final encoding step is lossless, since it only involves removing redundant information (JPEG

Compression, n.d.).

 For the JPEG steganalysis examples discussed below, the compression stages above

are the most relevant component of the JPEG algorithm. Overall, however, there are five

stages in Baseline JPEG compression. A simplified diagram is provided in Figure 1 to

illustrate this (JPEG Compression, n.d.). These steps are followed in reverse order to decode

and display a JPEG-compressed image.

Figure 1: Baseline JPEG Compression Stages

 Regarding the byte structure of a compressed JPEG image file, the most pertinent

aspects are addressed during discussions of the design of the artifact which is the object of

this study. However, it may be useful to note a few basic elements here. JPEG images contain

special two-byte markers, which mark the beginning of each particular segment of the file.

Each of these markers begins with the value 0xFF. Also, there may be several segments

before the segment containing the actual image bytes, such as those providing DCT-specific

13

information and the quantization tables used in the encoding (JPEG, n.d.). Analysis of the

byte organization of a JPEG image file can be relevant to many types of steganalysis

techniques.

JPEG Image Steganalysis: Recent Techniques

Machine Learning

The practice of employing machine learning algorithms and techniques to facilitate

JPEG image steganalysis appears to be the dominant trend in the literature of recent years,

probably due to its evident effectiveness. Often, a study will propose one or more new

techniques to aid in determining the appropriate features to extract from a JPEG image set,

then this data is fed to one or more machine learning classifiers for training and testing, and

finally accuracy analysis. The DCT domain that is part of JPEG compression is a major theme

and an important source of data for the majority of these steganalysis studies. Other common

themes include targeting content-adaptive JPEG steganography, as well as drawing upon

digital image filtering techniques when creating a steganalysis method.

DCT and Machine Learning

 A method proposed by Jia-Fa, Xin-Xin, Gang, Wei-Guo, and Na-Na (2016) targets

steganography that uses additive operations on AC coefficients to hide data. In a quantized

8x8 pixel block of a JPEG, there are two types of DCT coefficients that occupy those 64 cells:

one cell is labeled as DC, and the other 63 are labeled as AC. The study by Jia-Fa et al.

exploits the statistical changes in the AC coefficients that show up after steganography has

occurred. Their experiments made use of JPEG images for both the cover and the stego

(hidden) data. The feature vector they employed contained only three data points, and they

used a Fisher linear classifier. It was concluded that their method was simpler and resulted in

a lower false positive rate compared to other existing methods (Jia-Fa et al., 2016).

 Nouri and Mansouri (2017) explored a technique that models natural image statistics

using a method called singular value decomposition (SVD). SVD is a type of matrix

decomposition method used in signal processing. The singular values (SVs) are then used to

determine features for classification using an SVM binary classifier. For JPEGs analyzed in

14

this study, these features were extracted from the quantized DCT coefficients (Nouri &

Mansouri, 2017).

 Some JPEG images can be doubly compressed, which can cause issues for

steganalyzers. This is addressed in a study by Yang, Kong, and Feng (2018), which attempts

to improve detection performance by reducing the discrepancies between training and testing

sets that occur due to double compressio

the authors use a multi-classifier to detect the double compression initially. Through this they

determine what are referred to as quality factors, which help adjust the features used in the

training set that is fed to an SVM. The authors claim that in general, their technique is an

improvement over comparative methods (Yang et al., 2018).

 Another technique that analyzes DCT coefficients in a different manner was proposed

by Rabee, Mohamed, and Mahdy (2018). In what is described as a blind steganalysis

technique, the authors measure the differences between DCT coefficients that occur before

and after cropping the image. Essentially the procedure is this: the initial DCT coefficients are

extracted, the image is decompressed, it is cropped by four columns and four rows, it is

recompressed, the new coefficients are extracted, and finally they are compared. This method

uses an SVM classifier, and is tested against five known steganography algorithms. The

authors conclude that their method generally performed better than a comparative method

called Merged Features (Rabee et al., 2018).

 Butora and Fridrich (2020) put forth a method called Reverse JPEG Compatibility

Attack, which targets rounding errors in integer values used during the DCT stage of JPEG

compression. The proposed method was compatible with both color and grayscale JPEGs, but

limited to quality factors 99 and 100, which are the two highest compression qualities

available with the JPEG algorithm. The authors used statistical hypothesis testing to initially

evaluate their method, but stated that the best detection would result from the use of

classifiers. Hence, they also used three classifiers and tested against five known

steganography techniques. A notable observation was that the classifiers behaved somewhat

not seen (Butora and Fridrich, 2020).

15

Content-adaptive Stego, Image Filters, and Machine Learning

 One study by Denemark, Boroumand, and Fridrich (2016) focused on detection of

content-adaptive steganography in JPEGs. Content-adaptive steganography describes a means

of choosing the best locations for embedding hidden data in a cover image, as opposed to

more random methods. Denemark et al. proposed a way to incorporate selection-channel-

aware features into data for classifier training and steganography detection. The idea of a

selection channel refers to the probability of certain cover image locations being changed

during hidden data embedding. For small payloads in particular, the authors concluded that

their method resulted in significant detection improvement (Denemark et al., 2016).

 Content-adaptive steganalysis and digital image filtering is combined in a study by

Song et al. (2017). The authors develop a characteristic called a Gabor Rich Feature (GRF),

which they based on two-dimensional Gabor image filtering, where the JPEG is filtered after

being decompressed. The final features are selected based on statistics, including histograms,

and merging of other features. Their technique is tested on three current steganography

methods using an ensemble classifier (multiple decision engines). The proposed GRF was

concluded to improve detection, when compared to other types of features being used in the

field (Song et al., 2017).

 Feng, Zhang, Ren, Qian, and Li (2020) devised a special combination of digital image

filtering techniques to compute JPEG image residuals, referring to traces of embedded hidden

data that can be used in steganalysis. The filters used in this case were base filters and cascade

filters, which have special properties in the signal processing domain. The computed residuals

were used to generate features to be fed to an ensemble classifier for analysis. This method

was tested against four known steganography methods, including a well-known one called J-

UNIWARD. Various results were reported, based on particular configurations of the filters

used (Feng et al., 2020).

 One final paper that made explicit use of machine learning (in this case, a neural

network) seemed to claim that using DCT data in the initial set up may actually hurt

efficiency, in terms of a neural network analyzer (Boroumand, Mo, & Fridrich, 2019). The

proposed method instead promoted deep learning from end to end, which means useful

features were to be learned by the analyzer instead of being fed to it ahead of time. The

authors developed what they called SRNet, or Steganalysis Residual Network. This technique

16

used grayscale images and targeted the UED-JC and J-UNIWARD embedding techniques.

The authors also claimed that SRNet was the first neural network steganalyzer that did not

require extra that information be given to it initially, considering other work referred to in the

paper (Boroumand et al., 2019).

Non-machine-learning Techniques

 Very few examples in recent literature appeared to propose JPEG steganalysis

techniques that did not make use of machine learning as a key component. This lack of

current research in JPEG steganalysis that does not involve large samples for machine

learning is part of the motivation for the software artifact being proposed in the present study.

The following two studies describe recent attempts at this type of JPEG steganalysis.

 Rather than detection, a study by Xu, Liu, Gan, and Luo (2018) explored a new

method to aid in the extraction of hidden messages in JPEGs. The authors propose a technique

to recover the stego key, which is a seed value for generating a pseudorandom number in

steganography. The seed leads to a random path being picked for embedding the bits of

detection method uses hypothesis testing to compare the statistics from different samples of

DCT coefficients, trying to recover the original embedding path and derive the stego key. The

stego key could then theoretically be used to extract the hidden data. The proposed method

was tested against F5 and OutGuess steganography methods and found to perform more

quickly and with less computational complexity, as compared to one other competing

detection method (Xu et al., 2018).

 Qiao et al. (2019) proposed an adaptive steganalysis framework for JPEG

steganography, based on a statistical model of quantized DCT coefficients. This framework

also relies on hypothesis testing to detect steganographic data, as opposed to a machine-

learning classifier. For the technique discussed in this study, the authors assume that the stego

data was embedded using LSB replacement in the quantized coefficients. In order for the

proposed framework to have the best performance, high accuracy is necessary concerning

three main factors: the statistical model used, the distribution parameters, and the payload size

framework to machine-learning classifiers in two types of scenarios. Tested against non-

17

adaptive embedding methods, the framework performed better than machine-learning

classifiers. However, tested against modern adaptive methods, such as J-UNIWARD, both the

framework and the classifiers were ineffective, especially with small payloads (Qiao et al.,

2019).

Literature Review: Summary

 This review has outlined the various efforts in recent research of image steganography

and steganalysis in general, a brief introduction highlighting the essential components of

JPEG compression, and a survey of recent steganalysis research focused specifically on JPEG

images. It was observed that the majority of current JPEG steganalysis techniques involve

some type of machine learning, as well as various JPEG-specific concepts, such as the DCT

domain, content-adaptive steganography, and signal processing techniques such as image

filtering. It was also noted that there is far less current research on JPEG steganalysis without

the use of machine learning, and that the methods that are proposed are limited as to the

steganographic methods they target, as well as the initial assumed conditions. It is clear that

much room exists for further research in the area of JPEG steganalysis without the aid of

machine learning, which is the focus of the present study.

 Table 1 lists and categorizes the cited references as they appear in this review:

Category Citation
Recent Efforts in General Image Steganography/Steganalysis

 Steganography Focus Das & Dhara, 2018
 Sairam & Boopathybagan, 2019
 Subhedar & Mankar, 2018

 Steganalysis Focus Gan et al, 2018
 Luo et al., 2016
 Malik et al., 2016
 Lu et al., 2019

JPEG Compression JPEG Compression, n.d.
 JPEG, n.d.

JPEG Image Steganalysis: Recent Techniques

 Machine Learning (ML)
 DCT and ML Jia-Fa et al., 2016

18

 Nouri & Mansouri, 2017
 Yang et al., 2018
 Rabee et al., 2018
 Butora and Fridrich, 2020

 Content-adaptive Stego, Image Filters, and ML Denemark et al., 2016
 Song et al., 2017
 Feng et al., 2020
 Boroumand et al., 2019

 Non-machine-learning Techniques Xu et al., 2018
 Qiao et al., 2019

Table 1: List of Citations in Literature Review

 The next chapter describes the methodology used to develop the JRevealPEG artifact,

which was design science. The Python-language architecture of the artifact and its features are

discussed in great detail, and the detection functionality of the program in relation to each of

the target steganography tools is explained thoroughly.

19

The main objective of this research was to design a software steganalysis artifact that

is able to detect hidden data in JPEG images, targeting a specific group of current, open-

source tools. The artifact should be able to detect the presence of steganography embedded by

the target tools, while at the same time identifying the tool that was used. The overall

methodology employed for this study is design science, referencing the framework explained

by Weiringa (2014).

 As stated in the introduction, Weiringa (2014) suggests that the main goal of design

science research can be thought of as a design problem and its related knowledge questions.

The design problem for this study was stated as follows: Improve the area of JPEG

steganalysis by designing a program that detects hidden data in JPEGs embedded by known

tools, in order to help security professionals thwart malicious data-hiding activities.

 The related knowledge questions are also restated below:

1. Within the scope of the embedding tools targeted by this study, what level of

accuracy can be achieved by the program in terms of successfully detecting the

presence of steganography in a given JPEG?

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by

the program in terms of successfully identifying which target tool was used to hide

the data?

3. What kinds of obstacles and difficulties were encountered in terms of designing

successful detection methods for the steganographic tools and embedding methods

targeted by this study, and which (if any) of these obstacles were not overcome?

 Within design science methodology, the design cycle can be divided into three

categories: problem investigation, treatment design, and treatment validation (Weiringa,

2014). The first two categories are discussed in this chapter in relation to the present study.

20

The third category, treatment validation, is addressed in Chapter 4 along with the discussion

of the results from a single-case mechanism experiment.

Problem Investigation

 According to Weiringa (2014), an important part of problem investigation involves

identifying a conceptual framework and key concepts related to the problem. Most of the

background information that would help establish a conceptual framework for the research

problem is discussed in the Introduction and Literature Review. However, the main relevant

concepts can be summarized here.

 One of the main higher-level concepts relevant to this project is steganalysis, along

with its sibling term, steganography. Steganography in general is the act of hiding messages

or other data inside of other messages or data, and steganalysis is the detection and/or

recovery of such hidden data. In terms of digital media, stenography can be performed with

text, image, audio, and video. This study focuses on image steganalysis, specifically JPEG

steganalysis. Hence, a good understanding of the JPEG image specification and related terms

(discussed in the Literature Review) is also essential to the research problem.

 There have been many steganographic algorithms developed for the JPEG format,

some of which are highly technical and difficult to understand. In response, a variety of

detection techniques have also been proposed that focus either on certain algorithms, or on

universal detection. Instead of delving deeply into several highly technical algorithms or

taking on the burden of developing another universal detection system, the program

developed in this research focuses on a small group of current, open-source software tools that

are freely available for anyone to use. The tools that were chosen for this study are listed in

the next section, and later each is examined and discussed in terms of its steganographic

technique and related program architecture. As will become apparent, an intimate

understanding of these target programs was essential to the successful design of the main

artifact of this study.

Treatment Design

21

proposed program interacting with JPEG input to detect hidden data (Weiringa, 2014, p. 28).

The resulting architecture of the treatment proposed in this study is meant to address the

determined requirements, and these are based on the design science research goals, as stated

above. For the development environment, the operating system used was Windows 10, and

the programming language was Python 3. The following is a list of the initial feature

requirements for the program, named JRevealPEG:

1. Must run through a command-line interface.

2. Must provide a menu for the user that lists all commands.

3. Must be able to take JPEG images of varying sizes and dimensions as input.

4. Must calculate processing times for each input file.

5. Must provide a detection report (detection positives and negatives with tools

identified, processing times, other relevant data) as output to the screen.

6. Must save reports to log files (text and csv).

7. Must implement user input validation and exception handling.

As is common for a program written in Python, the architecture involves multiple

Python script files. The program makes use of several custom functions and modules, as well

as a handful of standard Python libraries. The design and functionality of each component are

discussed in detail in the following section, including how JPEGs are processed and how

steganography is detected in relation to each of the target software tools.

The software tools targeted by the artifact in this study are Jsteg 0.3.0 as released on

8/16/2018, SteganPEG 1.0 as released on 1/5/2011, and OutGuess 0.2.2 as released on

1/20/2019 (Abhiram, 2011; Champine, 2018; Filho, 2019). This list was developed by first

choosing a group of several candidate programs through a moderately vigorous Internet

search, intended to simulate a selection of tools that would be freely available and appear for

any user to implement. From the initial list, some candidates were eliminated on account of

discovered incompatibilities with the required JPEG format. Others were removed because of

age, compilation problems, other bugs, or limited message-embedding capacity. Through

further analysis, the resulting list of target programs was found to include a promising variety

of complexities, challenges, and steganographic methods that would fit the scope and purpose

22

of this research appropriately. The specific methods employed by these programs are

addressed during the discussion of the JRevealPEG architecture, below.

 It is also worthwhile to clarify the scope of JRevealPEG by identifying some notable

functional limitations. First, many existing methods employ machine learning and classifiers

to detect steganography. This program does not use machine learning. Next, the tool does not

endeavor to have the ability to detect hidden data spread across multiple images. Third, visual

image inspection (by a human) is not a factor in hidden data detection, i.e. detection occurs

solely within the software. Finally, the program will not attempt to extract or reassemble the

hidden data, unless this becomes a byproduct of a particular detection algorithm.

JRevealPEG Architecture and Components

 In this section, the components and architecture of the artifact of this study,

JRevealPEG, are discussed. At the same time, the steganographic methods and structures of

the three targeted embedding tools are examined in relation to the corresponding detection

techniques developed in the artifact.

Overview of JRevealPEG Structure and Behavior

 JRevealPEG is composed of one main module, jrpeg.py, and four other custom

modules used as imports in the main module: coefx.py, jsdec.py, spdec.py, and ogdec.py. The

main module contains the entrance point for the program, which can be executed in a

command window and takes no arguments. Upon execution, a simple menu appears to the

user which allows the choice of entering the path to a single file, entering the path to a folder,

bringing up the help page, or quitting the program (see Figure 2).

Figure 2: JRevealPEG Main Menu

23

 If either analysis option is selected, the main detection sequence will begin for the

chosen input file(s). As each file is analyzed, a report is displayed to the console, which

includes information on the file currently being analyzed, the results of each stage of detection

per target program, and processing times for initial JPEG analysis and the total detection

sequence for that file. The detection sequence begins with the first target program (Jsteg), and

if detection is negative it moves on to the next target (SteganPEG), and if negative again, the

final target will be checked (OutGuess). The assumption is that once an input file tests

positive for steganography by one of the target tools, there is no need to check the other

targets, so the detection sequence will skip to completion for that file as soon as a positive

result is attained. If no positive result is found, there will be a message confirming that status

(see Figures 3 and 4).

Figure 3: Sample Output No Positive Result

24

Figure 4: Sample Output One Positive Result

 JRevealPEG also has a logging function which automatically saves the detection

sequence report to a text file. In addition, a CSV file is created that contains a list of all JPEG

files analyzed, their sizes and dimensions, positive and negative test results, and both types of

processing time (see Figure 5).

Figure 5: Sample CSV file

 The other four modules are imported into jrpeg.py and are responsible for the JPEG

processing and detection algorithms that occur during the main detection sequence. The

coefx.py module performs a partial decompression of the JPEG file and returns the relevant

bytes for steganography detection. The modules jsdec.py, spdec.py, and ogdec.py each

perform a customized detection algorithm targeting the steganography programs Jsteg,

SteganPEG, and OutGuess, respectively. All five modules are discussed in more detail below,

along with relevant analyses of the three target steganography tools.

The Main Module: jrpeg.py

 Since all of the costly processing is done by the custom external modules, the main

module of JRevealPEG is fairly lightweight. The two most important features of jrpeg.py are

its ability to coordinate the requisite files to be analyzed, and to populate and save the log

25

files. Along with the four custom modules mentioned above, jrpeg.py imports the standard

Python time and os modules for timestamping and filesystem manipulation purposes.

 In order to facilitate a specific kind of logging capability, a custom class called Logger

was created to save the two types of analysis reports mentioned above, in this case a text file

and a CSV file. Logger contains a method called lprint(), which is used to simultaneously

print to the screen and save to the log text file (see Figure 6).

Figure 6: Method Logger.lprint() from jrpeg.py

 The detection sequence is handled and directed by the function analyze() (see Figure

7). This function is set up to handle a list of one or more input files, depending on what has

been selected by the user beforehand. Exception handling is incorporated throughout the

detection sequence, the steps of which are as follows:

1. Save the starting time.

2. If the list is not empty, process the next input file using coefx.py.

a. Else, go to Step 11 to end analysis.

3. If no errors, save the JPEG processing time for current file.

a. Else, go to Step 1 for next input file.

4. Initialize all detection results to false.

5. Using jsdec.py, apply Jsteg detection algorithm to processed JPEG data.

6. If Jsteg result is false, apply SteganPEG detection algorithm using spdec.py.

a. Else, update result message, go to Step 8 to complete sequence for file.

7. If SteganPEG result is false, apply OutGuess detection algorithm using ogdec.py.

a. Else, update result message, go to Step 8 to complete sequence for file.

8. Save the total processing time for current file.

9. Update user on final result and write stats to CSV file.

10. Go to Step 1 for next input file.

11. Display completion message and names of log and CSV files.

12. Close log text and CSV files.

26

Figure 7: Beginning of function analyze() from jrpeg.py

Custom JPEG Processing: coefx.py

 JRevealPEG employs custom steganography detection algorithms which have been

tailored specifically for the three target programs of this study: Jsteg, SteganPEG, and

OutGuess. However, before those algorithms can be applied to a JPEG, a very particular set

of data must be decoded and extracted from the image file. Each of the steganography

programs used in this study employs the least-significant-bit (LSB) substitution technique

referenced in the Literature Review, which means the data to be hidden has to be placed into

the image data after the lossy compression stages (DCT and quantization), but before the

lossless compression step, namely the Huffman coding process (briefly explained below).

Therefore, each JPEG only needs to be partially decompressed to the pre-Huffman coding

state, the bytes of which contain the modified bits representing the hidden data, if any.

 Several Python libraries exist that perform various types of JPEG manipulation,

however it was found that most of the operations provided by these modules were not

granular enough to be useful in this case. Only fully-decompressed JPEG data was normally

available using the provided extraction functions. One recently-developed Python script was

found, though, that could potentially aid in the necessary partial decompression, but it would

need to be adapted and modified. The Baseline JPEG Decoder by Khalid (2019) is an

experimental JPEG decoder written in Python as a single script, and as such several of its

27

functions exhibited promising granularity and became the basis of the coefx.py module in

JRevealPEG.

 -Huffman image

scan data, also known as the quantized DCT coefficients, for steganalysis. There were three

main modifications/additions that needed to be made when adapting the Baseline JPEG

Decoder for this purpose. The nature of each modification is introduced initially, then they are

discussed in conjunction with code examples.

First, it turns out

Baseline JPEGs with no chroma subsampling, which is a method of saving space when

encoding images by reducing the resolution of the color components, since humans do not

notice differences in color as well as they do differences in luminance, or brightness (Chroma

subsampling, n.d.). By contrast, two out of the three target steganography tools (Jsteg and

OutGuess) only output JPEGs with what is known as 4:2:0, or 2x2 subsampling, which is

common. Therefore, one necessary modification made for coefx.py was to ensure

compatibility with 2x2 subsampling.

Another discovery, related to JPEG file segment markers, prompted the need for a

second modification. It was mentioned in the Literature Review that JPEG files have varying

types of segments delineated by special two-byte markers, each beginning with 0xFF. During

decompression, it is necessary to recognize several of these markers in order to extract and

use essential decoding parameters and tables. One of the most pertinent of these markers

defines the quantization tables (DQT) and is made up of the bytes 0xFFDB; another defines

the Huffman tables (DHT) and is 0xFFC4. For nearly all the color JPEGs with three

components (Y, Cb, and Cr, for one luminance and two chrominance components) seen in this

research, two quantization tables and four Huffman tables exist, each table having its own

copy of the appropriate marker. However, it was observed that the JPEGs processed by the

Jsteg tool only have one mark

cannot process the type of marker organization used by Jsteg, this capability was included in

the code of coefx.py in relation to the DQT and DHT markers. Using 010 Editor, one can

easily see the difference between the two types of marker organization from each kind of

JPEG (see Figure 8).

28

Figure 8: One marker per group (left) vs. one marker per table (right)

 The third necessary modification has to do with extracting the partially-decompressed

image data, as opposed to the fully-decompressed image pixels. Specifically, the data bytes

right before the Huffman coding stage of JPEG compression were needed, since that is where

LSB steganography occurs. Huffman coding is an algorithm that performs lossless

compression of data by eliminating redundancies, thereby saving space without losing

information. Huffman-encoded data can be most easily understood as a binary tree data

structure, however implementing the decoding algorithm can be a bit more complicated.

even so, it is woven continuously into full JPEG decompression. It was necessary to add code

that extracts the pre-Huffman bytes before they are allowed to be fully decompressed.

stage of decompression, without needing to fully decompress and display the JPEG. The

modifications mentioned above are incorporated into existing and new functions, and the

bytes needed for steganography detection are exported. Regarding the first modification, that

29

which accommodates 2x2 chroma subsampling, the key was learning that the data bytes for

the image components (Y, Cb, and Cr) are stored in a specific manner that differs from other

subsampling specifications. Every luminance and two chrominance components (brightness

and color) is represented as an 8x8 grid of pixel values; these three channels combine to form

the full color image. Normally, each of these 8x8 combinations is a minimum coded unit

(MCU). Each MCU is converted to a linear array of bytes. These arrays are stored

sequentially from left to right and top to bottom as found in the displayed grid of a two-

dimensional image. This results in an image component storage pattern of (YCbCr)(YCbCr)-

etc. However, with 2x2 subsampling, the color components are sampled less often and

averaged. Specifically, the MCU is 16x16 instead of 8x8, where the storage pattern is

(YYYYCbCr)(YYYYCbCr)-etc. The existing method JPEG.StartOfScan() was heavily

modified to account for this, as shown in Figure 9. A nested for loop iterates through an image

grid, accounting for a 16x16 pixel MCU and the component pattern YYYYCbCr. The method

BuildMatrix() is discussed below. Note that unconventional capitalizations were retained from

preexisting code.

Figure 9: JPEG.StartOfScan

30

 In order to fix the problem related to JPEG segment markers, coefx.py needed the

ability to scan both styles of DQT and DHT marker organization, as mentioned above.

Essentially, code was added to check the length of the data chunk after each marker, and this

was used to determine the appropriate scanning algorithm for that segment. For the DQT case,

a few lines of code were added to JPEG.decode() (see Figure 10). It turns out that the

quantization tables were not essential to the functionality of the final artifact, but the code that

handles this was retained as it may become useful in future work. As there are four Huffman

tables to scan, the code that handles the DHT marker was more complex and seemed best as a

new method, JPEG.checkHtStructType() (see Figure 11).

Figure 10: DQT marker scanning in JPEG.decode() from coefx.py

Figure 11: JPEG.checkHtStructType from coefx.py

31

 In order to achieve the final goal of pre-Huffman MCU extraction, it was necessary to

identify that exact point of partial decompression in the original decoder, somewhere in the

middle of the full decompression algorithm. Analysis showed that this occurred in the existing

method JPEG.BuildMatrix(). Originally, JPEG.BuildMatrix() returned a fully-decompressed

MCU component which went on to become part of the image display. For the purposes of the

present artifact, the method was altered to stop decompression as soon as the pre-Huffman

values are retrieved for a given component, and the MCU component block is returned as a

one-dimensional list (see Figure 12).

Figure 12: JPEG.BuildMatrix() from coefx.py

 (2019) should be mentioned, which

was addressed in coefx.py. In the original decoder, only JPEGs with height and width

32

dimensions that are evenly divisible by eight could be decoded. The coefx.py module has the

ability to decode JPEGs of any height and width dimensions. This problem was solved by

simply rounding each dimension to the next higher multiple of sixteen, if not already

divisible, which accounts for how irregularly-sized JPEGs are compressed. This dimension

divisibility issue also has specific ramifications involving OutGuess in particular.

Finally, the main module of the artifact makes use of coefx.py by calling the

entrypoint function extract() during the detection sequence. Note that along with a list of lists

containing the MCU data, the height and width of the image is returned to the caller. These

values become useful later in the detection sequence.

Jsteg and jsdec.py

 Once the collection of pre-Huffman coefficients (the MCUs) is successfully extracted

from a JPEG file using coefx.py, it can be passed to the first detection algorithm of the

sequence, encapsulated by the module jsdec.py. The steganography tool targeted by jsdec.py

is Jsteg, and this was chosen to be first in the detection sequence because the detection

algorithm is the quickest and least complex of the three. First the relevant features and

behavior of Jsteg itself are discussed, followed by an explanation of the jsdec.py detection

module.

 Jsteg (Champine, 2018) is written in the Go programming language, an object-oriented

language invented by Google with C-like syntax (Go (programming language), n.d.). The

program contains several modules and runs with a command-line interface. Jsteg uses the

LSB substitution method for its steganography, as do the other two tools targeted in this

study. Code tracing revealed which bytes are used to hide data, and which bytes are avoided.

which bytes are used for embedding.

In Jste LSBs of Y-component bytes of an

There is further filtering inside each component as well. Recall that each

MCU component can be thought of as an 8x8 grid of values. Through mathematical

transformations, these values determine what is eventually displayed on a screen for each 8x8

image, and it is referred to as the DC coefficient. The other 63 values are called AC

33

coefficients (JPEG, n.d.). It is in the LSBs of the AC coefficients that Jsteg hides data, also

noting that any byte values of -1, 0, and 1 are skipped (Champine, 2018).

Since any useful steganography program needs to be able to retrieve the data it hides,

it has to have some method of identifying that data when it is time for extraction. Some tools

require or at least have the option of using a password, which is specially encoded along with

the hidden message; often the length of the message is embedded as well. The tool can then

check for that password when asked to decode the message, failing if not matched. Jsteg does

not require or have an option for

key, in th (Champine, 2018). Analysis shows that the ASCII values of

prepended as the first five bytes of the hidden message, the bits of

each byte stored in the order of least to most significant.

 Given the knowledge of which bytes are used by Jsteg for steganography, as well as

how the internal key is stored, the detection strategy to employ in the jsdec.py module became

fairly straightforward:

1. Extract the first 40 eligible LSBs from the MCU list, Y components only.

2.

a. If the bits match, return True.

b. Else, return False.

Initially, jsdec.py uses the function filterMCUs() to retain only the Jsteg-eligible bytes for

above (see Figure 13). All Cb and Cr

-1, 0, and 1 are filtered out.

Figure 13: Function filterMCUs from jsdec.py

34

Next, the function magic() collects the LSBs from the first 40 bytes in the filtered list and

compares them to

order (see Figure 14). If all the bits match, magic() returns a positive (true) detection result,

and this result is passed back to the main module.

Figure 14: Jsteg signature detection in function magic() from jsdec.py

SteganPEG and spdec.py

 If jsdec.py returns a negative result and Jsteg is not detected, the main detection

sequence passes the JPEG data to spdec.py, which contains the detection algorithm that

targets SteganPEG. This was chosen as the second target in the sequence because it has a

fairly concrete signature, but the detection strategy is more complex than for Jsteg. Also, it

makes sense for the third position to go to OutGuess, as it has the vaguest signature and its

detection algorithm should only be triggered if the first two come back negative.

 SteganPEG (Abhiram, 2011) is written in Visual Basic and runs through a graphical

a bit more complex than Jsteg, as it not only requires a password, but compresses and

encrypts the data before hiding it. Like both Jsteg and OutGuess, SteganPEG does use LSB

substitution to store the final data bits, however it does this in a slightly different manner than

the other two tools. Additionally, and unlike Jsteg and OutGuess, SteganPEG preserves the

35

subsampling ratio of the original cover image. However, for the best overall compatibility and

proof-of-concept purposes, it was decided that JRevealPEG will only process 2x2 subsampled

JPEGs in its initial incarnation.

 To prepare for encryption, SteganPEG applies a special encoding function to the

password received from the user that transforms it into an array of integers. This password

array is used to pseudo-randomly determine how each byte of data will be encrypted, via a bit

rotation sequence. Also, two special values are concatenated with the compressed message

data. First, a checksum is generated by a function involving the bytes of message data and

appended to the data. Then, the length of the message data is prepended to the message data

as four header bytes. The final result is then encrypted using the rotation sequence mentioned

above (Abhiram, 2011).

 As for which LSBs are modified during embedding, SteganPEG considers all MCU

components fair game (both luminance and chrominance), but it does skip the DC coefficients

and zero-value bytes. One last critical realization yielded by analysis was that the bit values of

the message data get flipped when embedded in negative bytes. In other words, when

decoding the message, negative odd and positive even bytes yield 0s, and the others yield 1s.

 The detection strategy employed in the spdec.py module needed to consider all the

mentioned complexities in SteganPEG

data, since full message extraction is not a goal in this study. Also, since SteganPEG requires

a password, it was decided this first version of the detector would assume the password is

from a known list; a fully-blind, brute-force version might be a possibility for future work and

is addressed in the Conclusion chapter.

 Because there were several layers of complexity that needed to be reversed in order to

identify a possible SteganPEG signature, much of the detection code in spdec.py was the

result of isolating and adapting key routines from the original Visual Basic source code, and

replicating and modifying it in Python. The overall detection strategy in spdec.py can be

summarized as follows:

1. Extract the eligible bytes that could contain embedded data from the MCU list.

2. Encode a list of known passwords for use in decrypting data bytes.

3. For each known password (until finished or positive result):

a. Decrypt the data length header (four bytes).

36

b. Check length against number of available bytes. If too large, go to next

password.

c. Decrypt the rest of the data and retrieve stored checksum (one byte).

d. Calculate fresh checksum using decrypted data bytes.

e. Compare checksums.

i. If checksums are equal, return True.

ii. Else, go to next password.

4. Return False.

Extracting the eligible cover bytes in spdec.py means first filtering the MCUs

according to SteganPEG specifications, detailed above. Then, a function called dataBytes()

reconstitutes the hidden bytes from the LSBs, tailoring itself to SteganPEG

system (see Figure 15).

Figure 15: Function dataBytes() from spdec.py

 The function encodePass() is essentially a Python transcription of SteganPEG

original routine. This is used in spdec.py to generate a list of known, encoded passwords that

will be needed to attempt decryption. As an initial proof of concept, the known list of

passwords used in this iteration of the artifact is the top 20 most common passwords used in

2020, according to NordPass (List of the most common passwords, n.d.).

 Next, each of the encoded passwords is used as a decryption key when trying to

identify data as having been processed by SteganPEG. Adapted from the Visual Basic source

37

code, the function decryptData() takes as arguments a list of bytes to decrypt (byteList), a

decryption key (passStore), and a special index number (rotChosen). Part of this decryption

process also involves a bit rotation function called rotateLeft() (see Figure 16).

Figure 16: Main decryption code from spdec.py

 Since SteganPEG prepends the hidden data with four bytes that store the data length,

those four bytes are decrypted first and the length value is compared with the total number of

available possible bytes. If the decrypted length value is greater than the number of available

bytes, it can be concluded that a match does not exist for SteganPEG using the current

password and analysis should move to the next password. The section of code in spdec.py that

handles this task is part of the entrypoint function detect() (see Figure 17).

38

Figure 17: Checking data length in function detect() from spdec.py

 If the data length does not disqualify the sample, the rest of the data is decrypted and

the last byte of the data is popped from the list, assumed to be the stored checksum. Finally,

the function calcChecksum(), another routine adapted from the original source code,

calculates a fresh checksum using the decrypted data (see Figure 18). Then, the last task in the

detect() function is to compare both checksum values, returning true if they are equal. If no

positive match is found, the detector will continue until all known passwords have been

checked (see Figure 19).

Figure 18: Checksum calculation routine from spdec.py

Figure 19: Comparing checksums in function detect() from spdec.py

39

OutGuess and ogdec.py

 A negative result from both jsdec.py and spdec.py triggers the final detection module,

ogdec.py, written to detect OutGuess. The algorithm used by OutGuess introduces

complexities not found in either Jsteg or SteganPEG, and the program leaves only a minimal

type of signature that makes it difficult to say conclusively that it has modified a JPEG,

although in some cases it can be eliminated as a possibility. Based on these observations, it is

shown below that the ogdec.py module uses two special values to implement a type of

heuristic detection strategy for OutGuess.

OutGuess (Filho, 2019) is written in the C language and the source code makes use of

many main component files and JPEG library modules, some of which are altered with

custom code. It is a command-line tool that only runs on Linux systems. The program allows

for an optional password, or it uses a default key value if one is not supplied. In addition,

OutGuess implements its own ARC4 pseudorandom number generator which it uses for both

encryption and for an iterator that chooses the bytes it uses for hiding data. ARC4 is a stream

extracts the eligible bytes from the cover image and stores them in an array. Statistical foiling

options are also available, but they have minimal relevance to the detection methods in this

study and are not considered here.

OutGuess uses two different ARC4 pseudorandom number streams in its algorithm.

One is used as the iterator that chooses which cover bytes will contain the hidden message

bits, and the other is used to encrypt the data by doing an XOR operation with the message

bytes. The password for a given encoding session is used to initialize both of these streams,

ensuring that OutGuess can find and decrypt the correct message during retrieval if the same

password is supplied. It is also essential to note that before encryption, a special header is

prepended to the main message data that contains the length of the message data, as well as a

retrieved. This prepending of information is reminiscent of SteganPEG

algorithms, and those two

strategy for OutGuess.

40

It was explained above how OutGuess selects cover bytes from the bitmap structure,

as well as how the data is encrypted. However, it is also essential to understand how the

bitmap itself is constructed, specifically which MCU bytes are selected and in what order.

Careful analysis of the source code shows that OutGuess makes use of all components (Y, Cb,

and Cr), including all coefficients, DC and AC. The values 0 and 1 are avoided. In addition,

three crucial points are observed. First, note that each 8x8 MCU block returned by coefx.py is

represented as a one-dimensional list in so-

(see Figure 20), which agrees with the JPEG standard (JPEG, n.d.). This is not an issue when

it comes to Jsteg and SteganPEG analysis, as the data in both of those programs is handled in

zigzag ordering. However, the bitmap structure in OutGuess stores the selected MCU bytes in

natural ordering.

Figure 20: MCU Block Natural vs Zigzag Ordering

 The second critical point has to do with JPEGs that have visual dimensions not evenly

divisible by 16. Recall that for these irregularly-sized JPEGs, the MCUs are padded so that

the stored version of the image is indeed divisible by 16, even though this padding is

discarded when the image is displayed. When OutGuess builds its steganography bitmap, the

padding bytes are not included. This is an important consideration for the detection algorithm,

which needs to rebuild this bitmap. Finally, t

embedding method results in even-valued bytes that decode to 0-bits, while odd values

decode to 1-bits.

 The ogdec.py module relies on byte analysis combined with special heuristics to

determine if a JPEG could possibly contain OutGuess steganography, or if it can be

41

disqualified as a candidate. The decision s

based on the analysis described above, in which the signature identified was not necessarily a

conclusive fingerprint of OutGuess, but more of an indication of likelihood. Also, for proof-

of-concept purposes, it is assumed that default settings were used for the steganography,

including the default password. The overall detection strategy of ogdec.py can be described

by the following steps:

1. Construct OutGuess-style bitmap list from JPEG MCUs (coefx.py output):

a. Put the coefficients in natural order.

b. Trim edge padding if necessary.

c.

d. Extract and save list of LSBs.

2. Extract seed value and data length from bitmap.

a. Use precalculated iterator and encryption key values.

b. Assume default password:

3. Run heuristic checks:

a. If data length is larger than half the size of the bitmap list, return False.

b. If seed value is greater than 255, return False.

4. If both heuristic checks pass, return True (OutGuess possible).

 The initial task of constructing an OutGuess-style bitmap list must be exact and is the

most involved process in ogdec.py, containing several subtasks. The first subtask of

converting the MCU blocks from zigzag to natural ordering occurs in dezig(), a fairly

straightforward function that re-maps the indexes of each block (see Figure 21).

42

Figure 21: Function dezig() from ogdec.py

 The second subtask of bitmap construction is to remove any padding bytes that may be

present in the MCU blocks of the right and bottom edges of the image matrix. For the JPEGs

accepted by the detector, this routine only needs to occur if either the height or the width

dimension is not divisible by 16. In ogdec.py, this process occurs in two functions:

calcEdges() and trimEdges(). First, the function calcEdges() determines the indexes of the

MCUs on the right and/or bottom edge, whichever has indivisible dimensions (modulo 16). A

list of lists containing these indexes is returned for use in trimEdges() (see Figure 22). Second,

the function trimEdges() must remove the padding bytes from the MCUs identified by

calcEdges(). It was determined through testing that removing only the extra bytes in the

appropriate Y components was sufficient in this case. However, the Cb and Cr components

may need to be considered in future iterations of the artifact. An example of how trimEdges()

calculates and removes the appropriate coefficients is shown in Figure 23. For a more in-

depth understanding of how the Y components in 2x2 subsampling are mapped to a JPEG s

pixel display, Hass (2018) provides an excellent explanation.

43

Figure 22: Function calcEdges() from ogdec.py

Figure 23: Excerpt of function trimEdges() from ogdec.py

44

 The last two subtasks of bitmap construction in ogdec.py are much more lightweight

than the first two. The 1s and 0s are filtered from the byte collection in much the same way as

in previous modules. The final bitmap list is then populated with the LSBs from the remaining

bytes by the bitmap() function, which decodes 0s from even bytes and 1s from odd bytes.

 Once the bitmap list has been prepared, ogdec.py looks for special header values (two

bytes each) that would have been embedded with the message data if the sample was indeed

and the length of the embedded message data. For the purposes of this study, it is assumed

that only default options were used in any OutGuess-modified JPEGs. This includes a default

 The password is used to initialize both the iterator that chooses the sequence of cover

bytes used, and the encryption key values. Fortunately, since it is assumed every sample only

uses the default password, it was not necessary try to adapt to Python all the C routines from

the source code that would replicate these values dynamically. Instead, the needed numbers

were extracted while executing a session of OutGuess through a debugger, and they have been

hardcoded in ogdec.py. The function extractHeaderInfo() first uses the 32 saved iterator

values to find the correct bits in the bitmap list, which are then used to assemble the four

supposed header bytes. The header bytes are each decrypted by an XOR operation with the

saved encryption key values. The first two header bytes become the seed value, and the last

two bytes become the data length, and these are returned for the next step (see Figure 24).

45

Figure 24: Function extractHeaderInfo() from ogdec.py

 The final task in the ogdec.py detection process is to perform two heuristic tests in

order to decide whether or not to disqualify the sample as OutGuess. If it is not disqualified

the detector will report the sample as a possible, but not conclusive match for the tool. These

tests occur at the end of the detect() function in ogdec.py (see Figure 25). The first test checks

the calculated data length. Analysis of Outguess shows that it does not embed a message that

is more than half the size of the bitmap list. Therefore, if the data length calculated by the

detector is larger than this value, it can rule out OutGuess for the sample and return False. If

the first test is passed, the seed value is checked to see if it is larger than 255, which is the

limit observed through OutGuess code analysis. If the seed is larger than the limit, the

detector can rule out OutGuess for the sample and return False. If these tests do not eliminate

OutGuess as a possibility, the detector concludes that it is a possibility, assuming default

options were used.

46

Figure 25: Heuristics tests in function detect() from ogdec.py

Theory and Artifact Design: Summary

 This chapter began by introducing the design problem and research questions

associated with the development of JRevealPEG, the artifact that is the object of this study.

The initial requirements of the artifact were stated, and the three steganography tools that are

the targets of JRevealPEG were also introduced. The architecture and behavior of each of the

five modules of JRevealPEG were then discussed, along with relevant analysis details

regarding the target steganography programs. The next chapter discusses the design and

results of a single-case mechanism experiment that was performed as validation for this

research.

47

 This chapter begins with a brief discussion of the phases of a single-case mechanism

experiment, which is the chosen design validation for this research. Next, the setup and

execution of the experiment itself is addressed under Experiment Setup and Execution.

Finally, the results of the experiment and data reports are discussed in the Results and

Discussion section which also includes the answers to the three knowledge questions.

Design Validation

 One means of validating design research is with a single-case mechanism experiment.

controlled stimuli and analyze in detail which mechanisms are responsible for the respons

(p. 64). This seems to apply well in the case of this study, particularly in terms of answering

the first two research questions, which pertain to finding levels of accuracy regarding hidden

data detection and tool identification.

 A single-case mechanism experiment consists of several pieces, most of which are

summarized below as they relate to this study. These pieces include context, research

problem, object of study, treatment design, measurement design, inference design, execution,

and data analysis (Weiringa, 2014). The execution phase is discussed under the Experiment

Setup and Execution section, and the data analysis is included in the Results and Discussion

section.

Context and Research Problem

In terms of the context and research problem, the conceptual framework and

knowledge questions for this study have been defined in the Introduction and other previous

sections, including the Literature Review. The relevant variables include the size and

dimensions of the JPEG file input, the processing time required to achieve a result, the

detected presence of hidden data (Boolean), and the identified steganography tool of origin

48

(Jsteg, SteganPEG, or OutGuess). The population related to this validation is all instances of

the detection tool being used by security professionals to detect JPEG steganography.

Object of Study

 As the object of study, the validation model utilized a Windows 10 operating system

environment with Python 3 and the artifact (the detection program) installed. The JPEG

samples used for input were developed from a selection of free-to-use images downloaded

from online sources. Some of these JPEGs were used as control samples and had no

steganography embedded, while the remaining samples were processed by the target tools

mentioned above and contained hidden data; specific details of the JPEG samples are

provided in the Experiment Setup and Execution section.

 The data generated include the output of the detection program itself, including the

sizes and dimensions of the JPEG input files, relevant processing time measurements, and

positive and negative detection results. It was expected that the validation model should

behave similarly to a real-world implementation, since the basic environment used was a

standard Windows 10 setup. There may be random variables that affect the validity of the

results, however, such as human error when using the software or unknown system settings

and environmental factors.

Treatment Design

 The treatment design in the context of the validation consisted of providing

pregenerated JPEG images as input to the detection program artifact. Other than the operating

system and related software mentioned above, no special instruments were needed. The

researcher had full knowledge and control of the JPEG images being used as input, however

in real-world conditions, the possibility of uncontrolled input exists with other unpredictable

conditions.

Measurement Design

 In terms of measurement design, the variables of interest include JPEG file size,

measured in bytes; JPEG image height and width dimensions, measured in pixels; detection

processing times, measured in seconds; and three Boolean variables to indicate the presence

49

or absence of steganography relating to each of the target tools. The sources of data from the

experiment were generated by the execution of the artifact itself. No special measurement

instruments were needed, and data was initially stored and analyzed using basic spreadsheet

software.

Inference Design

 The inference design for the data generated in this study included descriptive,

abductive, and analogic inferences. Descriptive summaries include charts, tables, and graphs

showing raw output as well analysis of results from the treatment process, e.g. scatterplots

showing the relationship between key metrics, such as input file size and processing time, and

tables containing raw results from artifact execution.

 As far as abductive inferences, any significant aberrations or inconsistencies in results

could be explained by malformed input, such as a corrupt image file, random interruptions in

the input and output streams to and from the artifact, or other software bugs.

 Finally, the main analogic inference for the study is that the experiment would easily

generalize to real-world cases, meaning security researchers using the artifact to analyze

JPEG images on similar operating systems should see similar results. In fact, since the

program is more dependent on a correctly-functioning language interpreter (Python) than a

particular operating system, it is likely that cases involving a variety of operating systems

would behave similarly.

Experiment Setup and Execution

 As described under Object of Study, the experiment used to validate this design

research consisted of a group of JPEG samples being passed as input to the artifact of the

study, the JRevealPEG program. The program generated as its output several measurements

per input sample, and this data was saved in log files for further analysis. Before the

experiment could be officially executed, however, an appropriate group of JPEG samples had

to be collected and prepared.

50

Setup

 The previous chapter discussed the fact that the initial iteration of JRevealPEG is only

configured to analyze color JPEGs that have Baseline compression and 2x2 chroma

subsampling, mainly due to the fact that two of the three target steganography programs only

output JPEGs with these specifications. When searching for random JPEGs online, there is no

easy way to predict if a sample will be a Baseline or a progressive scan image, or what the

subsampling ratio will be. Fortunately, it was found that the Paint3D program that comes with

Windows 10 automatically converts any JPEG opened and then re-saved within the

application to a Baseline, 2x2 image. Paint3D can also be used to vary the dimensions of a

JPEG if more variation is needed.

 In order to test for both positive and negative results, the JPEG samples needed to

include images with and without steganography embedding. In addition,

speed and handling of odd image dimensions, images within a wide range of file sizes,

dimensional proportions, and total square pixel area were selected. In terms of the hidden

messages used, two different types of files were chosen of relatively small size so they would

be compatible with all sizes of cover images and all three embedding programs (see Table 2).

However, the files are big enough to simulate a dangerous amount of sensitive data or a

malicious executable. The message files can be found in the Windows 10 System32 folder.

Table 2: Hidden messages used in the experiment

 Table 3 shows an excerpt from the master list of JPEGs prepared to serve as input for

the experiment. Ten different cover images of varying sizes and proportions were chosen to

contain the hidden data. Each cover image was used twice with each target steganography

program, once to hide msdxm.ocx, and once to hide security.dll. This generated 20 positive

samples for each target program, or 60 positive samples total. Finally, the ten original covers

were added to the list with no hidden data, and ten more random JPEGs were chosen and

added, also with no hidden data. Therefore, the final group contained 60 positive and 20

negative samples, for a total of 80 JPEGs.

51

Table 3: Master list of JPEG samples (excerpt)

 Also note that in Table 3 a password value exists where applicable with SteganPEG

SteganPEG algorithm, every sample processed with that tool used a different password from

that list.

 Finally, the sample JPEGs were stored in a dedicated folder, the path of which would

be passed to JRevealPEG during runtime. To facilitate command-line execution, the path to

Python 3 was added to the Windows system environment variables, and a command window

was opened to the directory containing the JRevealPEG scripts.

Execution

 Once the group of JPEG input samples had been compiled in an accessible directory,

executing the experiment was simply a matter of running the jrpeg.py script on a Windows 10

machine and entering the path to the input files at the appropriate time (see Figure 26). Once

the detection sequence started, it proceeded automatically, displaying output to the screen,

while also saving results to both log files, text and CSV. The text file is essentially a copy of

the results displayed to the console, and the CSV is a distilled version of important statistics.

Figures 27 and 28 show excerpts from both of the log files generated by the experiment, and

the full files can be found in Appendices A and B.

52

Figure 26: Experiment execution running JRevealPEG with input samples

Figure 27: Experiment execution - excerpt from JRevealPEG text log file

53

Figure 28: Experiment execution excerpt from JRevealPEG CSV log file

 The experiment ran uninterrupted for approximately 15.7 minutes until completion.

The next section analyzes the specific data results, as well as providing other observations of

interest. Finally, there is a discussion of the answers to the three knowledge questions.

Results and Discussion

 The following discussion begins with a selective analysis of the data generated by this

experiment, in terms of the variables of interest described under Measurement Design, as well

as any other interesting observations. Then, based upon these results and notes from the

development period, a discussion is provided that answers the three original knowledge

questions relating to this research.

Data Analysis

 Since the relevant metrics of interest produced by the experiment were saved in a CSV

log file, most of the data analysis related to these results could be derived using Microsoft

Excel. When considering the kinds of data analyses that would best align with the current

 goals, three useful perspectives of interest were identified: selected

descriptive statistics derived from the main numeric metrics, correlation analysis between

input file parameters and processing times, and accuracy of the Boolean detection results.

Basic descriptive statistics can serve multiple purposes, such as providing a compact summary

54

of experiment input parameters and artifact performance, or setting a baseline for future

experiments. Analysis of possible correlations between input samples and processing times

exhibited by the artifact can facilitate predictive formulas, which could help judge the

usefulness of the artifact in other experiments. Finally, calculating the accuracy of the

Boolean detection results not only evaluates the effectiveness of the most important function

of the artifact, but also provides the data necessary to answer the first two knowledge

questions.

 In terms of descriptive statistics, the raw output metrics considered included the size

of the input file in bytes, the coefficients-only processing time for each file in seconds

(coefx.py processing time), and the overall processing time for each file in seconds, including

detection processing. In addition, the derived metrics of area in square pixels (image height

times the width) and detection processing time (overall time minus coefficient time) were

analyzed. The descriptive statistics considered the most relevant to this experiment and data

set included, for each metric, the minimum and maximum, the range, and the mean. Table 4

provides a summary of these metrics in terms of the measured statistics.

Table 4: Descriptive statistics for selected experiment metrics

 The data in Table 4 shows that for the collection of input samples used in this

experiment, which had an average file size of about 950KB, the average overall processing

time for each file was close to 12 seconds. For 80 samples, this would mean a total execution

time of 16 minutes, which was approximately the full runtime of the experiment. Some files

only took about two seconds to process, while others took more than a minute. It can also be

observed that the coefficient processing time took more than twice as long as detection

processing on average and was about two-thirds of the overall processing time. The square-

pixel area values are also shown as an alternative JPEG size measurement, but from this table

there is no way of knowing if any specific correlations exist between size and area, or

between other pairs of metrics. Finally, the percentages of positive and negative

55

steganography samples used in the experiment are not shown here, nor are the relative

percentages of samples processed by each target tool. However, a good overall snapshot of

the experiment and processing performance of JRevealPEG can be assessed.

 Several interesting observations were made when analyzing possible correlations

between certain input file characteristics and the different processing time metrics. The

following pairs of metrics were analyzed as scatterplots with linear regression:

1. File Size vs Coefficient Processing Time

2. File Size vs Detection Time

3. File Size vs Overall Processing Time

4. Pixel Area vs Coefficient Processing Time

5. Pixel Area vs Detection Time

6. Pixel Area vs Overall Processing Time

 Figure 29 shows the three graphs with file size as the horizontal axis, and Figure 30

shows the three graphs with square-pixel area as the horizontal axis. Note that each scatterplot

has been superimposed with a regression line, the line of best fit for the given data. Also

included are the equations for each line, and the R-squared values (recall that the closer R-

squared is to 1, the stronger the correlation). If one examines the R-squared values first, it is

apparent that the strongest correlation occurs between the input file size and the coefficient

processing time, with a value of 0.9978. This value is not only the largest when compared

with the other R-squared values, but it is extremely close to 1. In terms of coefficient

processing time in future experiments, this would suggest that the file size of a particular

input JPEG may be the best predictor of that value. The file size does not seem quite as good

at predicting the overall processing time, with an R-squared of 0.9231, although still relatively

close to 1. The pixel area has a weaker relationship with coefficient and overall processing

time than file size does, but it does seem to carry more weight in determining the overall time

(R-squared being 0.8423). Another interesting observation is that neither file size nor pixel

area have a particularly strong correlation with the detection processing time metric, both

having relatively mediocre R-squared values (0.5333 and 0.6102). This suggests that other

factors exist which likely weigh in with importance, such as the relative presence or absence

of steganography in a set of samples, as well as the proportion of samples embedded with data

by a particular steganography tool.

56

Figure 29: Graphs of file size vs processing times

Figure 30: Graphs of square-pixel area vs processing times

57

 Since the main purpose of JRevealPEG as a software tool is to detect steganography,

the accuracy of its results when applied to a particular JPEG sample set is of paramount

importance when judging its success. There are three Boolean variables that account for

detection accuracy in JRevealPEG, one for each target steganography program and labeled

with the name of each tool (Jsteg, SteganPEG, and OutGuess). According to the CSV report

generated as part of the output of the experiment, JRevealPEG was correct in its classification

of all 80 samples (see Appendix B for the full CSV report). The filenames used for each JPEG

can be used to easily verify each result in the CSV file: JPEGs positive for Jsteg begin with

l letter; those of

 the remaining files should be negative for any

steganography.

 Of course, future iterations of the experiment with key factors adjusted to greater

extremes, such as size and variety of message payloads and of cover images, may expose

errors or inaccuracies not discovered during the execution of the experiment at the time of this

study. Additionally, as chitecture, there were

SteganPEG and OutGuess, such as use of known passwords. Future attempts to eliminate

these assumptions may reduce the level of accuracy of which the artifact currently appears to

be capable.

Answers to Knowledge Questions

 The original knowledge questions raised in Chapter 3 of this study are restated as

follows:

1. Within the scope of the embedding tools targeted by this study, what level of

accuracy can be achieved by the program in terms of successfully detecting the

presence of steganography in a given JPEG?

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by

the program in terms of successfully identifying which target tool was used to hide

the data?

58

3. What kinds of obstacles and difficulties were encountered in terms of designing

successful detection methods for the steganographic tools and embedding methods

targeted by this study, and which (if any) of these obstacles were not overcome?

 Answer to Question 1: According to the results of the experiment, out of 60 positive

samples and 20 negative samples, JRevealPEG detected the presence of steganography with

100% accuracy, i.e. no false positives and no false negatives occurred.

 Answer to Question 2: According to the results of the experiment, out of the 60

samples it classified as positive for steganography, JRevealPEG successfully identified the

target tool used with 100% accuracy, i.e. there were no false attributions for any of the

detected steganography.

 Answer to Question 3: The difficulties and obstacles encountered during the research

and design of the JRevealPEG artifact were many, varied, persistent, and often unexpected.

Fortunately, in virtually all cases a direct solution or workaround was found, which allowed

the research to progress and an artifact to be developed that was able to address the original

research goals. Most of the biggest obstacles arose during JPEG processing, and while reverse

engineering the target steganography programs.

 JPEG Processing: One of the main areas that spawned several challenges early in the

research period was JPEG processing in Python 3. Initially, it appeared that there may be one

or more existing Python libraries that contained JPEG processing functionality which could

be used in this project. Unfortunately, every library that was examined contained functions

needed was embedded deep within other, more global routines. The main problem was most

programs served to fully decompress JPEG images; the artifact in this study needed to extract

data from only partway through the decompression process. Eventually a single script was

found (mentioned in Chapter 3) that seemed to contain functionality close to that which was

needed for this research, or at least it seemed like it could be adapted.

 Now that a Python module was found that could be used as a starting point to aid in

JPEG processing, the challenge arose of adapting the code to the specific needs of this

59

artifact. This challenge had three main difficulties. First, the finer details of JPEG

compression are not trivial, and much related research had to be done to get up to speed with

sufficient expertise. Second, the only sure way to know if the extracted partially-

decompressed data was correct (the pre-Huffman scan bytes) was to allow the decompression

to go to completion during time-consuming debugging, then verify that the final image was

displayed correctly. Third, the script that was being adapted was not compatible with 2x2

subsampling, so much learning was needed and many modifications had to be made to fix

this. In the end, adapting that Python script to extract the needed data was a major milestone

in the study.

 Reversing the Target Programs: Another essential task that presented a wide variety

of challenges was the effort to reverse engineer the three target steganography programs. This

was a necessary step toward understanding the tools on a deep-enough level to be able to

detection algorithms. Some difficulties applied to all three programs, others were tool-

specific.

 One problem that initially became apparent was that each tool was written in a

different programming language (Go, Visual Basic, and C). This was not unexpected, but it

took time to become accustomed to the various syntax and data type differences of each.

Occasionally mistakes resulted from transcriptional

and Python 3. The disparity of programming languages and architectures also made tracing

each target program an adventure. Tracing OutGuess, in particular, involved going back and

forth through dozens of .h and .c source files.

 The target programs also had varying levels of documentation, and some of the

comments in the source code were rather cryptic. In terms of message-hiding capacity, it was

not clear initially how much data each program could hide in a cover image. Only through

experimentation and tracing were limitations in this area determined.

 As explained in Chapter 3, LSB steganography in a JPEG occurs in the partially-

compressed image bytes. A big challenge in this research was to be able to reconstruct exactly

which of those partially-compressed bytes each of the target programs chose when hiding

data. Jsteg was the most straightforward, in that the program essentially hid data in

consecutive bytes from those that were eligible. For SteganPEG, the main difficulty was

60

recognizing that the message data was compressed before it was hidden, which threw off size

comparisons during steganography analysis. The last program to be cracked in terms of its

chosen bytes was OutGuess. First, it took a while to realize that OutGuess stores the chosen

cover bytes in natural order, which is different than the zigzag order used by Jsteg and

SteganPEG. Then, much analysis was required to discover the special manner in which

OutGuess handles JPEGs with uneven dimensions (not divisible by 16), namely that it ignores

padding bytes.

Experiment Results and Discussion: Summary

 This chapter defined the components of a single-case mechanism experiment, which is

the form of treatment validation used for this design science research. It explained the setup

and execution of the experiment involving the artifact of the study, JRevealPEG. The results

of the experiment were then discussed in terms of analysis of the data generated. Finally,

answers to the three original knowledge questions were provided. The final chapter is the

Conclusion, which gives a summary of this paper, lists the expected scholarly contributions of

this research, identifies the primary limitations of the artifact developed in this study, and

recommends several possible future research directions related to this work.

61

 This work introduced the design of JRevealPEG, a steganalysis software tool written

in Python 3 that targets three popular, open-source steganography programs. A brief history of

steganography was provided, along with reasoning behind the motivation for this study and

the current significance, interest, and need for a steganalysis tool like JRevealPEG. Several

examples from current literature were presented, illustrating recent efforts in JPEG

steganalysis research, including techniques such as those involving machine learning. The

architecture and behavior of JRevealPEG was examined in relation to each of its five Python

modules, and its detection algorithms were discussed along with the steganography programs

that they target. Finally, the results of a single-case mechanism experiment used as treatment

validation were analyzed, and the three knowledge questions posed at the beginning of the

research were answered.

 The rest of this chapter identifies possible scholarly contributions and applications of

this research, discusses the primary limitations of the artifact developed in this study, and

recommends a number of future research directions related to this project.

Contributions and Applications

 The original motivation for this research was to contribute to the field of cyber

security as it relates to malicious activities involving the secret transmission of digital

material, specifically through the JPEG medium. It is intended that JRevealPEG will be made

freely available to the professional and academic cyber security community as a tool for both

research and practical applications.

 One area of cyber security research that should directly benefit from this research is

the study of JPEG steganography and steganalysis, and possibly that related to other types of

images as well. JRevealPEG can provide insight into current tools used for both

steganography and steganalysis, as its design research involved reverse engineering three

open-source tools that are also available for anyone to study.

62

 Another area of cyber security research to which this work contributes is that of

Python security tool development. It is hoped that insight will be gained as to how to take

advantage of Python in adapting code from other programming languages, as well as writing

other kinds of detection software in Python.

 Practical applications exist that could also benefit from the usage of JRevealPEG as a

detection tool. JRevealPEG is already equipped with some validation and exception handling,

so it should be robust enough to be exposed to multiple types of files. One possible

application could be to run JRevealPEG on an entire directory of files as a preliminary sweep,

just to see if any detection is triggered.

 Another application can be for security personnel to use JRevealPEG to help analyze

multiple data exfiltration incidents to see if they are related. It is possible that the program

could play a role in linking a group of stego images to a specific embedding tool.

 It is also possible that JRevealPEG can help identify the source of other types of

malicious attacks. For example, JPEGs can be used for surreptitious delivery of malware

ine, intending

to frame them for possessing illegal or unauthorized material. If one of the target tools was

used to hide the data, it could be specifically detected.

Limitations of JRevealPEG

 Although JRevealPEG was shown to function well when operating on input files

within the scope of this study and falling within certain assumptions and parameters, there are

several limitations on the functionality and usefulness of the program in its current version.

 The most obvious shortcoming of JRevealPEG is that it is only tailored to detect

steganography from the three target tools used in the study. Therefore, JPEGs carrying

messages hidden by a program other than those three will likely go undetected. It is possible

steganographic algorithms exist which are similar enough to one of the current targets that

they might be detectable by JRevealPEG, but the likelihood of that is not known.

 Another limitation is that JRevealPEG only analyzes Baseline JPEGs with 2x2 chroma

subsampling. But in fact, this is really only a limitation as it relates to one of the target tools,

SteganPEG, as the other two tools only output Baseline, 2x2 JPEGs in any case. However,

63

any image processed by SteganPEG (or any JPEG at all) that is not 2x2 subsampled would

not be detectable. JPEGs that are encoded as progressive scan would also be excluded.

 Even considering compatible JPEGs processed by one of the target tools, there are

when scanning a file under the SteganPEG detection algorithm, steganography will only be

detected if it was embedded with one of a group of known passwords. This means a stego

image that has used a password not on the list will escape detection. Similarly, the OutGuess

detector only works for images that utilize the default options, which include a password of

 One other possible limitation to note has to do with multiple payloads. Both

SteganPEG and OutGuess have the option of hiding multiple messages in a JPEG. After

preliminary analysis of these tools, it remains unclear if the current detection algorithms of

JRevealPEG would be able to detect an image processed by these tools that contains more

than one hidden message. Some indications show that it might, but this contingency was not

in the scope of this study and has not been tested.

Future Research Directions

 The work performed in designing JRevealPEG raises many opportunities for future

research in connection with this study. Some of these ideas are motivated by the desire to

address the limitations mentioned in the previous section, and others relate to exploring the

possibility of e other functionalities beyond that which was originally

intended.

 Adding detection functionality for other embedding tools would address the first

limitation mentioned above. Naturally one would start with tools that could be reverse

engineered most easily, probably programs where the source code is available. A detection

algorithm could conceivably be developed for a program without having the source code, but

an extra layer of difficulty would be present when trying to reverse that tool.

 To address the fact that JRevealPEG can only process JPEGs with 2x2 subsampling,

more decoding functionality would have to be added to coefx.py that takes this into

consideration. Practically speaking, this would probably not be a difficult task, but a natural

64

upgrade for further iterations of the program, since it would increase the range of SteganPEG

detection ability. The capability to process progressive scan JPEGs could also be added, but

this would only be necessary if new detection capabilities for a new tool merited the upgrade.

 The limitation requiring the use of known passwords with SteganPEG and OutGuess

would be a natural one to seek to eliminate, so that fully-blind detection could be

an efficient manner would have to be found to check all

valid password combinations until a valid checksum could be calculated. OutGuess would be

a bit more complicated, however, because the PRNG would have to be replicated inside the

detector, which could degrade performance

 One idea for a completely new feature upgrade for JRevealPEG is adding payload

extraction capability. In fact, much of the ground work has already been done for this since

the program already knows how to extract the pre-Huffman MCUs. These are the bytes that

contain the steganography. The journey to full payload extraction might not be much farther.

However, on some level it might be easiest just to decode an image inside the original

program, once it has been detected as the originator.

 One final idea for an extended feature for JRevealPEG would be to add detection

capability for image types other than JPEG. In fact, since steganography can be performed on

any file, audio and video files could perhaps be added in the future as well.

Summary

 This study detailed the rationale for and the design of JRevealPEG, a new steganalysis

software tool that detects steganography in JPEGs and identifies the responsible embedding

program out of a select open-source group. The study provided a brief background on digital

image steganography and steganalysis, focusing on the JPEG standard and literature that

illustrates the current state of JPEG and other image steganography detection tools and

techniques. The literature revealed that most of the current detection tools and methods use

machine learning and focus on general detection, while there is a lack of research and tools

that are not based on machine learning. JRevealPEG was designed to explore this research

gap and test the effectiveness of a tool designed without machine learning that has specific

targets of detection.

65

 The results of this study showed that a program can be written without machine

learning that effectively detects JPEG steganography and identifies the tools of origin. The

design process of JRevealPEG illustrated that Python can be a useful language for doing

JPEG analysis, but also that not many existing Python libraries facilitate low-level JPEG

manipulation, illustrating another opportunity for research. The outcome of the single-case

mechanism experiment performed with JRevealPEG showed that the tool proved highly

successful in a controlled environment with specific parameters and limitations, but plenty of

room exists for

make it a more universal tool.

66

Abhiram, K. (2011). SteganPEG (Version 1.0) [Computer software]. Retrieved from

https://www.softpedia.com/get/Security/Encrypting/SteganPEG.shtml

Boroumand, M., Mo, C., & Fridrich, J. (2019). Deep residual network for steganalysis of

digital images. IEEE Transactions on Information Forensics and Security, 14(5),

1181-1193. https://doi.org/10.1109/TIFS.2018.2871749

Brunot, J. (2019). The Increased Use of Steganography by Malware Creators to Obfuscate

Their Malicious Code. ProQuest Dissertations Publishing.

Burney, M. (2018). The History of Steganography and the Threat Posed to the United States

and the Rest of the International Community. ProQuest Dissertations Publishing.

Butora, J., & Fridrich, J. (2020). Reverse JPEG compatibility attack. IEEE Transactions on

Information Forensics and Security, 15, 1444-1454.

https://doi.org/10.1109/TIFS.2019.2940904

Champine, L. (2018). Jsteg (Version 0.3.0) [Computer software]. Retrieved from

https://github.com/lukechampine/jsteg/releases/tag/v0.3.0

Chroma subsampling. (n.d.). Retrieved from

https://en.wikipedia.org/wiki/Chroma_subsampling

Cisomag. (2019, March 26). Hackers using steganography to spread Powload malware:

Research. https://cisomag.eccouncil.org/hackers-using-steganography-to-spread-

powload-malware-research /

Das, S., & Dhara, B. (2018). An LSB based novel data hiding method using extended LBP.

Multimed Tools Appl, 77(12), 15321-15351. https://doi.org/10.1007/s11042-017-5117-

8

Denemark, T., Boroumand, M., & Fridrich, J. (2016). Steganalysis features for content-

adaptive JPEG steganography. IEEE Transactions on Information Forensics and

Security, 11(8), 1736-1746. https://doi.org/10.1109/TIFS.2016.2555281

Dunaway, G. (2019, March 21). VeryMal strikes again with a new twist on its complex

redirect attack. AdMonsters. https://www.admonsters.com/verymal-strikes-new-twist-

complex-redirect-attack/

67

Feng, G., Zhang, X., Ren, Y., Qian, Z., & Li, S. (2020). Diversity-based cascade filters for

JPEG steganalysis. IEEE Transactions on Circuits and Systems for Video Technology,

30(2), 376-386. https://doi.org/10.1109/TCSVT.2019.2891778

Filho, J. (2019). OutGuess (Version 0.2.2) [Computer software]. Retrieved from

https://github.com/resurrecting-open-source-projects/outguess/releases/tag/0.2.2

Gan, J., Liu, J., Luo, X., Yang, C., & Liu, F. (2018). Reliable steganalysis of HUGO

steganography based on partially known plaintext. Multimed Tools Appl, 77(14),

18007-18027. https://doi.org/10.1007/s11042-017-5134-7

Go (programming language) (n.d.). Retrieved from

https://en.wikipedia.org/wiki/Go_(programming_language)

Hass, C. (2018). Designing a JPEG decoder & source code [Web log post]. Retrieved from

https://www.impulseadventure.com/photo/jpeg-decoder.html

Jamil, T. (1999). Steganography: the art of hiding information in plain sight. IEEE Potentials,

18(1), 10-12. https://doi.org/10.1109/45.747237

Jia-Fa, M., Xin-Xin, N., Gang, X., Wei-Guo, S., & Na-Na, Z. (2016). A steganalysis method

in the DCT domain. Multimedia Tools and Applications, 75(10), 5999-6019.

https://doi.org/10.1007/s11042-015-2708-0

JPEG (n.d.). Retrieved from https://en.wikipedia.org/wiki/JPEG

JPEG Compression (n.d.). Retrieved from

https://www.fileformat.info/mirror/egff/ch09_06.htm

Kafeine. (2016, July 28). Massive AdGholas malvertising campaigns use steganography and

file whitelisting to hide in plain sight [Web log post]. Retrieved from

https://www.proofpoint.com/us/threat-insight/post/massive-adgholas-malvertising-

campaigns-use-steganography-and-file-whitelisting-to-hide-in-plain-sight

Khalid, M. (2019). Baseline JPEG Decoder [Computer software]. Retrieved from

https://github.com/yasoob/Baseline-JPEG-Decoder

List of the most common passwords (n.d.). Retrieved from

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

Lu, W., Li, R., Zeng, L., Chen, J., Huang, J., & Shi, Y.-Q. (2019). Binary image steganalysis

based on histogram of structuring elements. IEEE Transactions on Circuits and

Systems for Video Technology, 1-1. https://doi.org/10.1109/TCSVT.2019.2936028

68

Luo, X., Song, X., Li, X., Zhang, W., Lu, J., Yang, C., & Liu, F. (2016). Steganalysis of

HUGO steganography based on parameter recognition of syndrome-trellis-codes.

Multimedia Tools and Applications, 75(21), 13557-13583.

https://doi.org/10.1007/s11042-015-2759-2

Malik, H., Subbalakshmi, K., & Chandramouli, R. (2016). Joint-channel modeling to attack

QIM steganography. Multimedia Tools and Applications, 75(21), 13585-13611.

https://doi.org/10.1007/s11042-015-3006-6

Malvertising (n.d.). Retrieved from https://en.wikipedia.org/wiki/Malvertising

Nouri, R., & Mansouri, A. (2017). Digital image steganalysis based on the reciprocal singular

value curve. Multimedia Tools and Applications, 76(6), 8745-8756.

https://doi.org/10.1007/s11042-016-3507-y

Qiao, T., Luo, X., Wu, T., Xu, M., & Qian, Z. (2019). Adaptive steganalysis based on

statistical model of quantized DCT coefficients for JPEG images. IEEE Transactions

on Dependable and Secure Computing, 1-1.

https://doi.org/10.1109/TDSC.2019.2962672

Rabee, A., Mohamed, M., & Mahdy, Y. (2018). Blind JPEG steganalysis based on DCT

coefficients differences. Multimed Tools Appl, 77(6), 7763-7777.

https://doi.org/10.1007/s11042-017-4676-z

RC4 (n.d.). Retrieved from https://en.wikipedia.org/wiki/RC4

Sairam, T., & Boopathybagan, K. (2019). Computational intelligence-based steganalysis

comparison for RCM-DWT and PVA-MOD methods. Automatika, 60(3), 293.

https://doi.org/10.1080/00051144.2019.1579434

Serrano, J. (2019). Steganalysis: a study on the effectiveness of steganalysis tools. In J.

Giordano & R. DeCarlo (Eds.): ProQuest Dissertations Publishing.

Shulmin, A., & Krylova, E. (2017). Steganography in contemporary cyberattacks. Retrieved

from https://securelist.com/steganography-in-contemporary-cyberattacks/79276/

Song, X., Liu, F., Zhang, Z., Yang, C., Luo, X., & Chen, L. (2017). 2D Gabor filters-based

steganalysis of content-adaptive JPEG steganography. Multimed Tools Appl, 76(24),

26391-26419. https://doi.org/10.1007/s11042-016-4157-9

69

Subhedar, M., & Mankar, V. (2018). Curvelet transform and cover selection for secure

steganography. Multimed Tools Appl, 77(7), 8115-8138.

https://doi.org/10.1007/s11042-017-4706-x

Wieringa, R. J. (2014). Design science methodology for information systems and software

engineering. Berlin: Springer.

Xu, C., Liu, J., Gan, J., & Luo, X. (2018). Stego key recovery based on the optimal hypothesis

test. Multimed Tools Appl, 77(14), 17973-17992. https://doi.org/10.1007/s11042-017-

4878-4

Yang, Y., Kong, X., & Feng, C. (2018). Double-compressed JPEG images steganalysis with

transferring feature. Multimed Tools Appl, 77(14), 17993-18005.

https://doi.org/10.1007/s11042-018-5734-x

Vijayan, J. (2017). Steganography use on the rise among cyber espionage, cybercrime groups.

Retrieved from https://www.darkreading.com/attacks-breaches/steganographyuse-on-

the-rise-among-cyber-espionage-cybercrime-groups/d/d-id/1329569

Communications of the ACM, 57(3), 86-95. https://doi.org/10.1145/2566590.2566610

70

Logged on []

Directory entered: stego samples

Number of files to be analyzed: 80

Extracting initial byte array from file 1, cactus.jpg. This could take several seconds...

Initial JPEG processing time: 4.97 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 1, cactus.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

71

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 1, cactus.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 1, cactus.jpg

None of the target steganography programs detected for file cactus.jpg

Total detection and processing time for file 1, cactus.jpg: 11.23 seconds

Extracting initial byte array from file 2, cow.jpg. This could take several seconds...

Initial JPEG processing time: 10.33 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 2, cow.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

72

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 2, cow.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 2, cow.jpg

None of the target steganography programs detected for file cow.jpg

Total detection and processing time for file 2, cow.jpg: 18.54 seconds

Extracting initial byte array from file 3, crater.jpg. This could take several seconds...

Initial JPEG processing time: 8.52 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 3, crater.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

73

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 3, crater.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 3, crater.jpg

None of the target steganography programs detected for file crater.jpg

Total detection and processing time for file 3, crater.jpg: 12.40 seconds

Extracting initial byte array from file 4, eagle.jpg. This could take several seconds...

Initial JPEG processing time: 5.97 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 4, eagle.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

74

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 4, eagle.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 4, eagle.jpg

None of the target steganography programs detected for file eagle.jpg

Total detection and processing time for file 4, eagle.jpg: 9.23 seconds

Extracting initial byte array from file 5, forest.jpg. This could take several seconds...

Initial JPEG processing time: 5.54 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 5, forest.jpg

75

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 5, forest.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 5, forest.jpg

None of the target steganography programs detected for file forest.jpg

Total detection and processing time for file 5, forest.jpg: 7.71 seconds

Extracting initial byte array from file 6, frog.jpg. This could take several seconds...

76

Initial JPEG processing time: 2.49 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 6, frog.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 6, frog.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 6, frog.jpg

None of the target steganography programs detected for file frog.jpg

77

Total detection and processing time for file 6, frog.jpg: 5.56 seconds

Extracting initial byte array from file 7, greentrees.jpg. This could take several seconds...

Initial JPEG processing time: 38.45 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 7, greentrees.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 7, greentrees.jpg

*****Final pass - OutGuess: attempting to find signature...

78

Seed too large...

OutGuess (with default options) not possible for file 7, greentrees.jpg

None of the target steganography programs detected for file greentrees.jpg

Total detection and processing time for file 7, greentrees.jpg: 62.32 seconds

Extracting initial byte array from file 8, houseplant.jpg. This could take several seconds...

Initial JPEG processing time: 2.42 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 8, houseplant.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

79

SteganPeg not detected for file 8, houseplant.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 8, houseplant.jpg

None of the target steganography programs detected for file houseplant.jpg

Total detection and processing time for file 8, houseplant.jpg: 3.79 seconds

Extracting initial byte array from file 9, jsCowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 7.01 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 9, jsCowMsd.jpg

Total detection and processing time for file 9, jsCowMsd.jpg: 8.61 seconds

Extracting initial byte array from file 10, jsCowSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.41 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 10, jsCowSec.jpg

Total detection and processing time for file 10, jsCowSec.jpg: 8.96 seconds

Extracting initial byte array from file 11, jsCraterMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.11 seconds

80

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 11, jsCraterMsd.jpg

Total detection and processing time for file 11, jsCraterMsd.jpg: 5.79 seconds

Extracting initial byte array from file 12, jsCraterSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.31 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 12, jsCraterSec.jpg

Total detection and processing time for file 12, jsCraterSec.jpg: 6.04 seconds

Extracting initial byte array from file 13, jsForestMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.78 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 13, jsForestMsd.jpg

Total detection and processing time for file 13, jsForestMsd.jpg: 4.18 seconds

Extracting initial byte array from file 14, jsForestSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.76 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 14, jsForestSec.jpg

Total detection and processing time for file 14, jsForestSec.jpg: 4.16 seconds

Extracting initial byte array from file 15, jsGreentreesMsd.jpg. This could take several seconds...

81

Initial JPEG processing time: 23.06 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 15, jsGreentreesMsd.jpg

Total detection and processing time for file 15, jsGreentreesMsd.jpg: 27.24 seconds

Extracting initial byte array from file 16, jsGreentreesSec.jpg. This could take several seconds...

Initial JPEG processing time: 23.52 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 16, jsGreentreesSec.jpg

Total detection and processing time for file 16, jsGreentreesSec.jpg: 27.83 seconds

Extracting initial byte array from file 17, jsHouseplantMsd.jpg. This could take several seconds...

Initial JPEG processing time: 1.95 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 17, jsHouseplantMsd.jpg

Total detection and processing time for file 17, jsHouseplantMsd.jpg: 2.22 seconds

Extracting initial byte array from file 18, jsHouseplantSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.20 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 18, jsHouseplantSec.jpg

82

Total detection and processing time for file 18, jsHouseplantSec.jpg: 2.46 seconds

Extracting initial byte array from file 19, jsPalmsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 1.79 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 19, jsPalmsMsd.jpg

Total detection and processing time for file 19, jsPalmsMsd.jpg: 2.08 seconds

Extracting initial byte array from file 20, jsPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 1.80 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 20, jsPalmsSec.jpg

Total detection and processing time for file 20, jsPalmsSec.jpg: 2.09 seconds

Extracting initial byte array from file 21, jsPenguinMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.03 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 21, jsPenguinMsd.jpg

Total detection and processing time for file 21, jsPenguinMsd.jpg: 6.04 seconds

Extracting initial byte array from file 22, jsPenguinSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.18 seconds

*****First pass - Jsteg: attempting to find signature...

83

Jsteg detected for file 22, jsPenguinSec.jpg

Total detection and processing time for file 22, jsPenguinSec.jpg: 6.28 seconds

Extracting initial byte array from file 23, jsPumpkinsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 8.01 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 23, jsPumpkinsMsd.jpg

Total detection and processing time for file 23, jsPumpkinsMsd.jpg: 9.40 seconds

Extracting initial byte array from file 24, jsPumpkinsSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.77 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 24, jsPumpkinsSec.jpg

Total detection and processing time for file 24, jsPumpkinsSec.jpg: 8.93 seconds

Extracting initial byte array from file 25, jsSpidersMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.73 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 25, jsSpidersMsd.jpg

Total detection and processing time for file 25, jsSpidersMsd.jpg: 4.48 seconds

Extracting initial byte array from file 26, jsSpidersSec.jpg. This could take several seconds...

84

Initial JPEG processing time: 3.69 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 26, jsSpidersSec.jpg

Total detection and processing time for file 26, jsSpidersSec.jpg: 4.47 seconds

Extracting initial byte array from file 27, jsYellowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.11 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 27, jsYellowMsd.jpg

Total detection and processing time for file 27, jsYellowMsd.jpg: 2.40 seconds

Extracting initial byte array from file 28, jsYellowSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.12 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 28, jsYellowSec.jpg

Total detection and processing time for file 28, jsYellowSec.jpg: 2.34 seconds

Extracting initial byte array from file 29, leaves.jpg. This could take several seconds...

Initial JPEG processing time: 2.23 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 29, leaves.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

85

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 29, leaves.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 29, leaves.jpg

None of the target steganography programs detected for file leaves.jpg

Total detection and processing time for file 29, leaves.jpg: 3.72 seconds

Extracting initial byte array from file 30, moon.jpg. This could take several seconds...

Initial JPEG processing time: 7.88 seconds

86

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 30, moon.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 30, moon.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 30, moon.jpg

None of the target steganography programs detected for file moon.jpg

Total detection and processing time for file 30, moon.jpg: 18.38 seconds

87

Extracting initial byte array from file 31, ogCowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 7.58 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 31, ogCowMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 31, ogCowMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

88

OutGuess (with default options) possible for file 31, ogCowMsd.jpg

Total detection and processing time for file 31, ogCowMsd.jpg: 15.84 seconds

Extracting initial byte array from file 32, ogCowSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.66 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 32, ogCowSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 32, ogCowSec.jpg

89

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 32, ogCowSec.jpg

Total detection and processing time for file 32, ogCowSec.jpg: 15.85 seconds

Extracting initial byte array from file 33, ogCraterMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.30 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 33, ogCraterMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

90

SteganPeg not detected for file 33, ogCraterMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 33, ogCraterMsd.jpg

Total detection and processing time for file 33, ogCraterMsd.jpg: 9.04 seconds

Extracting initial byte array from file 34, ogCraterSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.61 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 34, ogCraterSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

91

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 34, ogCraterSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 34, ogCraterSec.jpg

Total detection and processing time for file 34, ogCraterSec.jpg: 9.24 seconds

Extracting initial byte array from file 35, ogForestMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.88 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 35, ogForestMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

92

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 35, ogForestMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 35, ogForestMsd.jpg

Total detection and processing time for file 35, ogForestMsd.jpg: 5.93 seconds

Extracting initial byte array from file 36, ogForestSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.86 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 36, ogForestSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

93

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 36, ogForestSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 36, ogForestSec.jpg

Total detection and processing time for file 36, ogForestSec.jpg: 5.90 seconds

Extracting initial byte array from file 37, ogGreentreesMsd.jpg. This could take several seconds...

Initial JPEG processing time: 23.65 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 37, ogGreentreesMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

94

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 37, ogGreentreesMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 37, ogGreentreesMsd.jpg

Total detection and processing time for file 37, ogGreentreesMsd.jpg: 46.76 seconds

Extracting initial byte array from file 38, ogGreentreesSec.jpg. This could take several seconds...

Initial JPEG processing time: 23.76 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 38, ogGreentreesSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

95

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 38, ogGreentreesSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 38, ogGreentreesSec.jpg

Total detection and processing time for file 38, ogGreentreesSec.jpg: 46.33 seconds

Extracting initial byte array from file 39, ogHouseplantMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.25 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 39, ogHouseplantMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

96

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 39, ogHouseplantMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 39, ogHouseplantMsd.jpg

Total detection and processing time for file 39, ogHouseplantMsd.jpg: 3.65 seconds

Extracting initial byte array from file 40, ogHouseplantSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.11 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 40, ogHouseplantSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

97

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 40, ogHouseplantSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 40, ogHouseplantSec.jpg

Total detection and processing time for file 40, ogHouseplantSec.jpg: 3.46 seconds

Extracting initial byte array from file 41, ogPalmsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 1.90 seconds

*****First pass - Jsteg: attempting to find signature...

98

Jsteg not detected for file 41, ogPalmsMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 41, ogPalmsMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 41, ogPalmsMsd.jpg

Total detection and processing time for file 41, ogPalmsMsd.jpg: 3.33 seconds

Extracting initial byte array from file 42, ogPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 1.78 seconds

99

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 42, ogPalmsSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 42, ogPalmsSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 42, ogPalmsSec.jpg

Total detection and processing time for file 42, ogPalmsSec.jpg: 3.32 seconds

100

Extracting initial byte array from file 43, ogPenguinMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.08 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 43, ogPenguinMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 43, ogPenguinMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 43, ogPenguinMsd.jpg

101

Total detection and processing time for file 43, ogPenguinMsd.jpg: 10.01 seconds

Extracting initial byte array from file 44, ogPenguinSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.28 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 44, ogPenguinSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 44, ogPenguinSec.jpg

*****Final pass - OutGuess: attempting to find signature...

102

OutGuess (with default options) possible for file 44, ogPenguinSec.jpg

Total detection and processing time for file 44, ogPenguinSec.jpg: 10.40 seconds

Extracting initial byte array from file 45, ogPumpkinsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 7.77 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 45, ogPumpkinsMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

103

SteganPeg not detected for file 45, ogPumpkinsMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 45, ogPumpkinsMsd.jpg

Total detection and processing time for file 45, ogPumpkinsMsd.jpg: 13.90 seconds

Extracting initial byte array from file 46, ogPumpkinsSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.90 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 46, ogPumpkinsSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

104

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 46, ogPumpkinsSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 46, ogPumpkinsSec.jpg

Total detection and processing time for file 46, ogPumpkinsSec.jpg: 13.95 seconds

Extracting initial byte array from file 47, ogSpidersMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.81 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 47, ogSpidersMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

105

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 47, ogSpidersMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 47, ogSpidersMsd.jpg

Total detection and processing time for file 47, ogSpidersMsd.jpg: 7.67 seconds

Extracting initial byte array from file 48, ogSpidersSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.64 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 48, ogSpidersSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

106

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 48, ogSpidersSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 48, ogSpidersSec.jpg

Total detection and processing time for file 48, ogSpidersSec.jpg: 7.55 seconds

Extracting initial byte array from file 49, ogYellowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.12 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 49, ogYellowMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

107

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 49, ogYellowMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 49, ogYellowMsd.jpg

Total detection and processing time for file 49, ogYellowMsd.jpg: 3.35 seconds

Extracting initial byte array from file 50, ogYellowSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.11 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 50, ogYellowSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

108

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 50, ogYellowSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 50, ogYellowSec.jpg

Total detection and processing time for file 50, ogYellowSec.jpg: 3.24 seconds

Extracting initial byte array from file 51, palms.jpg. This could take several seconds...

Initial JPEG processing time: 3.22 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 51, palms.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

109

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 51, palms.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 51, palms.jpg

None of the target steganography programs detected for file palms.jpg

Total detection and processing time for file 51, palms.jpg: 4.77 seconds

Extracting initial byte array from file 52, penguin.jpg. This could take several seconds...

Initial JPEG processing time: 9.44 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 52, penguin.jpg

110

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 52, penguin.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 52, penguin.jpg

None of the target steganography programs detected for file penguin.jpg

Total detection and processing time for file 52, penguin.jpg: 14.67 seconds

Extracting initial byte array from file 53, pumpkins.jpg. This could take several seconds...

Initial JPEG processing time: 13.58 seconds

111

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 53, pumpkins.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 53, pumpkins.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 53, pumpkins.jpg

None of the target steganography programs detected for file pumpkins.jpg

112

Total detection and processing time for file 53, pumpkins.jpg: 20.19 seconds

Extracting initial byte array from file 54, snowhill.jpg. This could take several seconds...

Initial JPEG processing time: 25.85 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 54, snowhill.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 54, snowhill.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

113

OutGuess (with default options) not possible for file 54, snowhill.jpg

None of the target steganography programs detected for file snowhill.jpg

Total detection and processing time for file 54, snowhill.jpg: 36.96 seconds

Extracting initial byte array from file 55, spCowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 10.53 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 55, spCowMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Positive match!

SteganPeg detected for file 55, spCowMsd.jpg

Total detection and processing time for file 55, spCowMsd.jpg: 14.04 seconds

Extracting initial byte array from file 56, spCowSec.jpg. This could take several seconds...

Initial JPEG processing time: 10.67 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 56, spCowSec.jpg

114

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Positive match!

SteganPeg detected for file 56, spCowSec.jpg

Total detection and processing time for file 56, spCowSec.jpg: 14.41 seconds

Extracting initial byte array from file 57, spCraterMsd.jpg. This could take several seconds...

Initial JPEG processing time: 8.76 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 57, spCraterMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Positive match!

SteganPeg detected for file 57, spCraterMsd.jpg

115

Total detection and processing time for file 57, spCraterMsd.jpg: 10.62 seconds

Extracting initial byte array from file 58, spCraterSec.jpg. This could take several seconds...

Initial JPEG processing time: 8.75 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 58, spCraterSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Negative match...

Checking password 'Million2'... Positive match!

SteganPeg detected for file 58, spCraterSec.jpg

Total detection and processing time for file 58, spCraterSec.jpg: 11.10 seconds

Extracting initial byte array from file 59, spForestMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.89 seconds

*****First pass - Jsteg: attempting to find signature...

116

Jsteg not detected for file 59, spForestMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Positive match!

SteganPeg detected for file 59, spForestMsd.jpg

Total detection and processing time for file 59, spForestMsd.jpg: 6.96 seconds

Extracting initial byte array from file 60, spForestSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.84 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 60, spForestSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

117

Checking password 'abc123'... Negative match...

Checking password 'Million2'... Negative match...

Checking password '000000'... Negative match...

Checking password '1234'... Negative match...

Checking password 'iloveyou'... Negative match...

Checking password 'aaron431'... Negative match...

Checking password 'password1'... Positive match!

SteganPeg detected for file 60, spForestSec.jpg

Total detection and processing time for file 60, spForestSec.jpg: 7.43 seconds

Extracting initial byte array from file 61, spGreentreesMsd.jpg. This could take several seconds...

Initial JPEG processing time: 39.13 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 61, spGreentreesMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Negative match...

Checking password 'Million2'... Negative match...

Checking password '000000'... Positive match!

118

SteganPeg detected for file 61, spGreentreesMsd.jpg

Total detection and processing time for file 61, spGreentreesMsd.jpg: 48.92 seconds

Extracting initial byte array from file 62, spGreentreesSec.jpg. This could take several seconds...

Initial JPEG processing time: 39.92 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 62, spGreentreesSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Positive match!

SteganPeg detected for file 62, spGreentreesSec.jpg

Total detection and processing time for file 62, spGreentreesSec.jpg: 49.22 seconds

Extracting initial byte array from file 63, spHouseplantMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.46 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 63, spHouseplantMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

119

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Positive match!

SteganPeg detected for file 63, spHouseplantMsd.jpg

Total detection and processing time for file 63, spHouseplantMsd.jpg: 3.43 seconds

Extracting initial byte array from file 64, spHouseplantSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.37 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 64, spHouseplantSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Negative match...

120

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Negative match...

Checking password 'aaron431'... Negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Positive match!

SteganPeg detected for file 64, spHouseplantSec.jpg

Total detection and processing time for file 64, spHouseplantSec.jpg: 3.07 seconds

Extracting initial byte array from file 65, spiders.jpg. This could take several seconds...

Initial JPEG processing time: 5.44 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 65, spiders.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

121

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 65, spiders.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 65, spiders.jpg

None of the target steganography programs detected for file spiders.jpg

Total detection and processing time for file 65, spiders.jpg: 9.44 seconds

Extracting initial byte array from file 66, spPalmsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.11 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 66, spPalmsMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

122

Checking password 'qwerty'... Positive match!

SteganPeg detected for file 66, spPalmsMsd.jpg

Total detection and processing time for file 66, spPalmsMsd.jpg: 4.03 seconds

Extracting initial byte array from file 67, spPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.07 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 67, spPalmsSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Positive match!

SteganPeg detected for file 67, spPalmsSec.jpg

Total detection and processing time for file 67, spPalmsSec.jpg: 3.95 seconds

Extracting initial byte array from file 68, spPenguinMsd.jpg. This could take several seconds...

Initial JPEG processing time: 9.44 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 68, spPenguinMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

123

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Positive match!

SteganPeg detected for file 68, spPenguinMsd.jpg

Total detection and processing time for file 68, spPenguinMsd.jpg: 11.70 seconds

Extracting initial byte array from file 69, spPenguinSec.jpg. This could take several seconds...

Initial JPEG processing time: 9.47 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 69, spPenguinSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Positive match!

SteganPeg detected for file 69, spPenguinSec.jpg

Total detection and processing time for file 69, spPenguinSec.jpg: 11.75 seconds

Extracting initial byte array from file 70, spPumpkinsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 13.38 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 70, spPumpkinsMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

124

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Negative match...

Checking password 'Million2'... Negative match...

Checking password '000000'... Negative match...

Checking password '1234'... Negative match...

Checking password 'iloveyou'... Positive match!

SteganPeg detected for file 70, spPumpkinsMsd.jpg

Total detection and processing time for file 70, spPumpkinsMsd.jpg: 16.87 seconds

Extracting initial byte array from file 71, spPumpkinsSec.jpg. This could take several seconds...

Initial JPEG processing time: 13.80 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 71, spPumpkinsSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

125

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Negative match...

Checking password 'Million2'... Negative match...

Checking password '000000'... Negative match...

Checking password '1234'... Positive match!

SteganPeg detected for file 71, spPumpkinsSec.jpg

Total detection and processing time for file 71, spPumpkinsSec.jpg: 17.06 seconds

Extracting initial byte array from file 72, spSpidersMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.71 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 72, spSpidersMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Positive match!

SteganPeg detected for file 72, spSpidersMsd.jpg

Total detection and processing time for file 72, spSpidersMsd.jpg: 7.28 seconds

Extracting initial byte array from file 73, spSpidersSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.53 seconds

*****First pass - Jsteg: attempting to find signature...

126

Jsteg not detected for file 73, spSpidersSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Negative match...

Checking password 'Million2'... Negative match...

Checking password '000000'... Negative match...

Checking password '1234'... Negative match...

Checking password 'iloveyou'... Negative match...

Checking password 'aaron431'... Positive match!

SteganPeg detected for file 73, spSpidersSec.jpg

Total detection and processing time for file 73, spSpidersSec.jpg: 7.93 seconds

Extracting initial byte array from file 74, spYellowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.17 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 74, spYellowMsd.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

127

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Positive match!

SteganPeg detected for file 74, spYellowMsd.jpg

Total detection and processing time for file 74, spYellowMsd.jpg: 3.86 seconds

Extracting initial byte array from file 75, spYellowSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.22 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 75, spYellowSec.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...

Checking password 'picture1'... Negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Positive match!

128

SteganPeg detected for file 75, spYellowSec.jpg

Total detection and processing time for file 75, spYellowSec.jpg: 3.97 seconds

Extracting initial byte array from file 76, squirrel.jpg. This could take several seconds...

Initial JPEG processing time: 18.09 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 76, squirrel.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 76, squirrel.jpg

129

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 76, squirrel.jpg

None of the target steganography programs detected for file squirrel.jpg

Total detection and processing time for file 76, squirrel.jpg: 31.12 seconds

Extracting initial byte array from file 77, sunset.jpg. This could take several seconds...

Initial JPEG processing time: 1.96 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 77, sunset.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

130

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 77, sunset.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 77, sunset.jpg

None of the target steganography programs detected for file sunset.jpg

Total detection and processing time for file 77, sunset.jpg: 3.59 seconds

Extracting initial byte array from file 78, tiger.jpg. This could take several seconds...

Initial JPEG processing time: 4.69 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 78, tiger.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

131

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 78, tiger.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 78, tiger.jpg

None of the target steganography programs detected for file tiger.jpg

Total detection and processing time for file 78, tiger.jpg: 6.55 seconds

Extracting initial byte array from file 79, whitehouse.jpg. This could take several seconds...

Initial JPEG processing time: 10.99 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 79, whitehouse.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

132

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 79, whitehouse.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 79, whitehouse.jpg

None of the target steganography programs detected for file whitehouse.jpg

Total detection and processing time for file 79, whitehouse.jpg: 15.62 seconds

Extracting initial byte array from file 80, yellow.jpg. This could take several seconds...

Initial JPEG processing time: 3.27 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 80, yellow.jpg

*****Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picture1'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

133

Checking password '12345678'... Data length too big, negative match...

Checking password '111111'... Data length too big, negative match...

Checking password '123123'... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...

Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...

Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 80, yellow.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 80, yellow.jpg

None of the target steganography programs detected for file yellow.jpg

Total detection and processing time for file 80, yellow.jpg: 4.54 seconds

Analysis is complete. Log file is jrpegLog0.txt, and metrics are saved in jrpegStats0.csv

134

135

136

jrpeg.py

137

138

139

coefx.py

140

141

142

143

144

jsdec.py

145

spdec.py

146

147

ogdec.py

148

149

150

151

https://unsplash.com/photos/BOuggN1tMEk
https://unsplash.com/photos/LMU2w-K4J7k
https://unsplash.com/photos/0O4C9qtn_48
https://unsplash.com/photos/p9t7g5ORALs
https://www.freeimages.com/photo/houseplant-1640441
https://www.freeimages.com/photo/palm-and-pier-1390929
https://unsplash.com/photos/DE6yhZyG8bE
https://www.freeimages.com/photo/pumpkins-1363061
https://unsplash.com/photos/Bk5sT_CzOaQ
https://www.freeimages.com/photo/yellow-1640997
https://unsplash.com/photos/K2DT1Z_bthw
https://unsplash.com/photos/BUzjetL88RU
https://unsplash.com/photos/I8O58UfInLc
https://www.freeimages.com/photo/fall-in-qom-province-1640647
https://unsplash.com/photos/I9KqhcDU34c
https://unsplash.com/photos/coUZnech6qw
https://unsplash.com/photos/2BbwrlmIaX8
https://unsplash.com/photos/WZXROzZpftw
https://www.freeimages.com/photo/bengal-tiger-1521311
https://www.freeimages.com/photo/white-house-1221438

	JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting Current Open-Source Embedding Programs
	Recommended Citation

	Dissertation Final Cover.pdf
	Charles Badami Dissertation Approval 2021.pdf
	Dissertation Final Body.pdf

