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Steganography in computer science refers to the hiding of messages or data within 

other messages or data; the detection of these hidden messages is called steganalysis. Digital 

steganography can be used to hide any type of file or data, including text, images, audio, and 

video inside other text, image, audio, or video data. While steganography can be used to 

legitimately hide data for non-malicious purposes, it is also frequently used in a malicious 

manner. This paper proposes JRevealPEG, a software tool written in Python that will aid in 

the detection of steganography in JPEG images with respect to identifying a targeted set of 

open-source embedding tools. It is hoped that JRevealPEG will assist in furthering the 

research into effective steganalysis techniques, to ultimately help identify the source of hidden 

and possibly sensitive or malicious messages, as well as contribute to efforts at thwarting the 

activities of bad actors. 



 v

 

I hereby certify that this dissertation constitutes my own product, that where the 

language of others is set forth, quotation marks so indicate, and that appropriate credit is given 

where I have used the language, ideas, expressions or writings of another. 

I declare that the dissertation describes original work that has not previously been 

presented for the award of any other degree of any institution. 

 

 

Signed,  

 

_____________________________ 

Charles A. Badami 



 vi

 

DISSERTATION APPROVAL FORM .............................................................................................. III

ACKNOWLEDGMENT ...................................................................................................................... III

ABSTRACT .......................................................................................................................................... IV

DECLARATION ....................................................................................................................................V

TABLE OF CONTENTS ..................................................................................................................... VI

LIST OF TABLES ...............................................................................................................................IXI

LIST OF FIGURES .............................................................................................................................. IX

INTRODUCTION ................................................................................................................................... 1

PROBLEM STATEMENT ........................................................................................................................... 2

PURPOSE OF THE STUDY ......................................................................................................................... 3

MOTIVATION ......................................................................................................................................... 4

SIGNIFICANCE AND CURRENT INTEREST ................................................................................................ 5

RESEARCH QUESTIONS ........................................................................................................................... 6

SCOPE AND LIMITATIONS ....................................................................................................................... 7

INTRODUCTION: SUMMARY .................................................................................................................... 8

LITERATURE REVIEW ....................................................................................................................... 9

RECENT EFFORTS IN GENERAL IMAGE STEGANOGRAPHY/STEGANALYSIS ............................................ 9

     STEGANOGRAPHY FOCUS .................................................................................................................. 9

     STEGANALYSIS FOCUS .....................................................................................................................10

JPEG COMPRESSION ............................................................................................................................11

JPEG IMAGE STEGANALYSIS: RECENT TECHNIQUES ...........................................................................13

     MACHINE LEARNING .......................................................................................................................13

     DCT AND MACHINE LEARNING .......................................................................................................13

     CONTENT-ADAPTIVE STEGO, IMAGE FILTERS, AND MACHINE LEARNING ........................................15

     NON-MACHINE-LEARNING TECHNIQUES .........................................................................................16

LITERATURE REVIEW: SUMMARY ........................................................................................................17

THEORY AND ARTIFACT DESIGN ................................................................................................19

PROBLEM INVESTIGATION ...................................................................................................................20

TREATMENT DESIGN ...........................................................................................................................20

JREVEALPEG ARCHITECTURE AND COMPONENTS ..............................................................................22



 vii

     OVERVIEW OF JREVEALPEG STRUCTURE AND BEHAVIOR ..............................................................22

     THE MAIN MODULE: JRPEG.PY ........................................................................................................24

     CUSTOM JPEG PROCESSING: COEFX.PY ...........................................................................................26

     JSTEG AND JSDEC.PY ........................................................................................................................32

     STEGANPEG AND SPDEC.PY ............................................................................................................34

     OUTGUESS AND OGDEC.PY ..............................................................................................................39

THEORY AND ARTIFACT DESIGN: SUMMARY.......................................................................................46

EXPERIMENT RESULTS AND DISCUSSION ................................................................................47

DESIGN VALIDATION ...........................................................................................................................47

     CONTEXT AND RESEARCH PROBLEM ...............................................................................................47

     OBJECT OF STUDY ...........................................................................................................................48

     TREATMENT DESIGN........................................................................................................................48

     MEASUREMENT DESIGN ..................................................................................................................48

     INFERENCE DESIGN .........................................................................................................................49

EXPERIMENT SETUP AND EXECUTION ..................................................................................................49

     SETUP ..............................................................................................................................................50

     EXECUTION ......................................................................................................................................51

RESULTS AND DISCUSSION ..................................................................................................................53

     DATA ANALYSIS ..............................................................................................................................53

     ANSWERS TO KNOWLEDGE QUESTIONS ...........................................................................................57

EXPERIMENT RESULTS AND DISCUSSION: SUMMARY ..........................................................................60

CONCLUSION ......................................................................................................................................61

CONTRIBUTIONS AND APPLICATIONS ..................................................................................................61

LIMITATIONS OF JREVEALPEG............................................................................................................62

FUTURE RESEARCH DIRECTIONS .........................................................................................................63

SUMMARY ...........................................................................................................................................64

REFERENCES ......................................................................................................................................66

APPENDIX A: LOG FILE 1: TEXT FILE .........................................................................................70

APPENDIX B: LOG FILE 2: CSV FILE ..........................................................................................134

APPENDIX C: JREVEALPEG CODE .............................................................................................136

JRPEG.PY ............................................................................................................................................136

COEFX.PY ...........................................................................................................................................139

JSDEC.PY ............................................................................................................................................144

SPDEC.PY ...........................................................................................................................................145



 viii

OGDEC.PY ..........................................................................................................................................147

APPENDIX D: LINKS TO FREE JPEG IMAGES USED  .............................................................151

 



 ix

 

Table 1. List of Citations in Literature Review ........................................................... 18

Table 2. Hidden messages used in the experiment ...................................................... 50

Table 3. Master list of JPEG samples (excerpt) ........................................................... 51

Table 4. Descriptive statistics for selected experiment metrics ................................... 54

 

 

 

  



 x

 

Figure 1. Baseline JPEG Compression Stages ............................................................. 12

Figure 2. JRevealPEG Main Menu .............................................................................. 22

Figure 3. Sample Output  No Positive Result ............................................................ 23

Figure 4. Sample Output  One Positive Result .......................................................... 24

Figure 5. Sample CSV file ........................................................................................... 24

Figure 6. Method Logger.lprint() from jrpeg.py .......................................................... 25

Figure 7. Beginning of function analyze() from jrpeg.py ............................................ 26

Figure 8. One marker per group (left) vs. one marker per table (right) ....................... 28

Figure 9. JPEG.StartOfScan ......................................................................................... 29

Figure 10. DQT marker scanning in JPEG.decode() from coefx.py ............................ 30

Figure 11. JPEG.checkHtStructType from coefx.py ................................................... 30

Figure 12. JPEG.BuildMatrix() from coefx.py ............................................................ 31

Figure 13. Function filterMCUs from jsdec.py ............................................................ 33

Figure 14. Jsteg signature detection in function magic() from jsdec.py ...................... 34

Figure 15. Function dataBytes() from spdec.py ........................................................... 36

Figure 16. Main decryption code from spdec.py ......................................................... 37

Figure 17. Checking data length in function detect() from spdec.py ........................... 38

Figure 18. Checksum calculation routine from spdec.py ............................................. 38

Figure 19. Comparing checksums in function detect() from spdec.py ........................ 39

Figure 20. MCU Block  Natural vs Zigzag Ordering ................................................ 40

Figure 21. Function dezig() from ogdec.py ................................................................. 42

Figure 22. Function calcEdges() from ogdec.py .......................................................... 43

Figure 23. Excerpt of function trimEdges() from ogdec.py ......................................... 43

Figure 24. Function extractHeaderInfo() from ogdec.py ............................................. 45

Figure 25. Heuristics tests in function detect() from ogdec.py .................................... 46

Figure 26. Experiment execution  running JRevealPEG with input samples ............ 52

Figure 27. Experiment execution - excerpt from JRevealPEG text log file................. 52

Figure 28. Experiment execution  excerpt from JRevealPEG CSV log file .............. 53

Figure 29. Graphs of file size vs processing times ...................................................... 56



 xi

Figure 30. Graphs of square-pixel area vs processing times ........................................ 56

 

 

 

 

 

 



1

 

 

Steganography in computer science refers to the hiding of messages or data within 

other messages or data; the detection of these hidden messages is called steganalysis. Digital 

steganography can be used to hide any type of file or data, including text, images, audio, and 

video inside other text, image, audio, or video data. Zielinska, Mazurczyk, and Szczypiorski 

(2014) point out that people sometimes confuse steganography with cryptography. The main 

purpose of both is to ensure confidentiality of a message. They are distinguished, however, by 

what exactly is being hidden. In cryptography, the message itself is being obfuscated 

(meaning garbled, obscured, or made unclear) whether or not an observer knows it is being 

sent. In steganography, the fact that the message is being sent is hidden; it is the channel of 

communication that is being kept secret (Zielinska et al., 2014). 

The practice of steganography in general has roots that go back millennia. Jamil 

(1999) describes several historical examples, some very ancient, and some from within the 

last century. There is the story of a nobleman in Medea hiding a message in the belly of an 

unskinned hare, which was delivered by someone dressed as a hunter. Another account 

involves a Persian tattooing a secret message 

grow back, then sending the slave to the recipient, at which point he was to shave his head 

and reveal the message. One commonly used historical technique is to write a message on 

some sort of paper medium s.

The hidden message could then be revealed by subjecting the paper to heat. In more recent 

history, the Nazi spy George Dasch used copper sulfate on a handkerchief as invisible ink that 

only became visible when subjected to ammonia fumes. Another technique used by the 

 A microdot was an 

extremely small photograph about the size of a period; the receiver could blow up the 

microdot to reveal a full page of information. Not to be outdone, the United States during 

WWII employed Navajo speakers as so-

their native tongue. Only 28 non-Navajos (none of them German or Japanese) were thought to 
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be able to speak the language at the time, and the codetalkers made it even more difficult by 

using slang. Even during the Gulf War in 1990 to 1991, some Navajos used a similar method 

to bypass radio censors and send messages to their loved ones serving overseas (Jamil, 1999).

Burney (2018) cites two more historical steganography examples of interest. One 

account, again from WWII, mentions the smuggling of Monopoly games into German prison 

camps. Maps, files, and compasses were hidden in the game which were intended to aid 

British prisoners in escaping. A second story involves a rumor regarding former British Prime 

programmed to encode the identity of the writer in 

cabinet ministers who may have been leaking documents to the press (Burney, 2018).

Steganography has been practiced throughout history, involving a variety of 

techniques, and its use cases have ranged from personal errands to wartime tactics. The next 

section discusses recent examples of the malicious use of steganography in the digital world, 

which is among the primary concerns of this study.  

Problem Statement 

While steganography can be used in the digital world to legitimately hide data for non-

malicious purposes, it is also frequently used in a malicious manner. Burney (2018) notes that 

one common, legitimate purpose for steganography includes secretly marking a document to 

be able to trace its authenticity, in an effort to discourage stealing, unauthorized use, or 

plagiarism. However, the malicious use of steganography is becoming more prevalent and can 

have severe consequences. Shulmin and Krylova (2017) note the increasing use of 

steganography by those creating malware and by perpetrators of cyber-espionage, while also 

stating that most current anti-malware tools do not provide much protection. Vijayan (2017) 

reports that image steganography in particular is of primary concern, as image files are 

commonly used for command and control communications, for receiving and exfiltrating data. 

Current research continually adds to the list of known malware that uses steganography, some 

of which includes Powload, VeryMal, Novel, AdGholas, Fakem, and StegoLoader (Brunot, 

2019). Examples of activity involving the use of this malware can be found relatively quickly 

through Internet searches. One source reports that Powload had a surge in usage in the first 

part of 2018, mainly distributed through email spam (Cisomag, 2019). Dunaway (2019) 



3

platform and lasted about two days, affecting about a million users. A third article reports that 

AdGholas was used to direct traffic to malicious advertising sites for over a year without 

being detected (mid-2015 to mid-2016), drawing one to five million hits each day (Kafeine, 

2016). 

Given that malicious image steganography is becoming more prevalent and that anti-

malware tools are often inadequate to identify and protect against it, a clear need exists for 

new and ongoing research into updated steganography detection methods, with the primary 

goal of aiding security professionals and researchers in their efforts to mitigate this threat. To 

that end, this study details the design of JRevealPEG, a software tool that assists in the 

detection of steganography in JPEG images with respect to identifying a targeted set of open-

source embedding tools. It is intended that this improvement in the detection of 

steganography and the tools used to create it will help researchers identify malicious content 

and prevent breaches before they occur, as well as help authorities trace such content to its 

origin and possibly expose the tools and adversaries responsible. This will, in turn, contribute 

in general. 

As mentioned above, incidents of digital steganography in conjunction with malware 

and nefarious activities can be extremely pervasive, persistent, and reach a large number of 

victims in a short amount of time. The design of JRevealPEG is intended as a response to this 

problem, and the main purpose of this study is delineated in the following section.   

Purpose of the Study 

The purpose of this study was to help address the problem stated above by designing a 

software artifact that detects steganography in JPEG images while focusing on a select group 

of open-source tools. The artifact was programmed in the Python language, and a single-case 

mechanism experiment (discussed in Chapter 4) was used to validate the program. Several 

prepared JPEG samples were given to the program as input for the experiment under 

controlled conditions. Measurements of accuracy, timing, and file size were taken and used in 

analysis. 
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Design science was the methodology used for this study, as delineated by Weiringa 

(2014) and explained in Chapter 3. The observations and lessons learned from the design 

science process for this artifact, the results of the validation experiment, and certain statistical 

measurements were documented and analyzed. The results of this study are hoped to yield a 

direct contribution to steganalysis research and spawn practical applications for cyber security 

personnel in all types of organizations. 

The purpose of the study is focused on the design of JRevealPEG as a steganalysis 

tool. The next section details the motivation behind this study in terms of what is lacking in 

other existing detection tools and methods. 

Motivation 

 If the intent is to use digital steganography to embed and send hidden messages, files, 

and other data, a cursory Internet search reveals that many free and easy-to-use tools are 

readily available. Given the seriousness of the possible malicious use of these programs, some 

of the current research in this domain focuses on evaluating the effectiveness of existing 

methods that are meant to detect this steganography. A recent study by Serrano (2019) tested 

steganalysis tools, i.e. software that detects steganography. The study investigated several 

types of carrier files, including image, audio, and video files. In terms of image files, JPEGs 

were tested, as well as GIFs and PNGs. The detection tools tested included VSL, StegSecret, 

and StegDetect. Serrano found that the tools tested had two significant types of limitations: 

first, the number of successfully detected image carrier files (those with hidden data) was 

generally rather low, with an average detection rate of 3.75 images out of 15; second, several 

tools lacked or had minimal ability to identify the tool that embedded the steganography, 

resulting in an average identification rate of one tool out of six (Serrano, 2019). The artifact 

proposed in the present study, JRevealPEG, is intended to address both of these shortcomings 

of current steganalysis tools. 

As described in the Literature Review, the vast majority of recent image 

steganography detection methods depend upon supervised machine learning to make their 

determinations. Supervised learning involves data that is classified by humans ahead of time 

and often requires thousands of samples to be used as a training set. In addition, Qiao, Luo, 

Wu, Xu, and Qian (2019) observe that there is a lack of modern research into steganalysis 
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methods that are unsupervised,

by humans beforehand. Unsupervised techniques find patterns based on the data points alone

and do not require training sets. Although it does not use machine learning, JRevealPEG is 

nonetheless intended to help fill this gap by utilizing detection methods that have no need for

training sets. 

Additionally, JPEG compression is acknowledged to be the most popular standard 

among all image types, with several billion JPEGS created daily as of 2015 (JPEG, n.d.). This 

fact combined with the prevalence of JPEG steganography research shown in the Literature 

Review is a major reason why the proposed tool focuses on JPEG steganalysis. 

As referenced above, existing image steganalysis tools can be shown to lack 

effectiveness when it comes to attribution and specific embedding tools. It is also noted that

many detection methods rely on machine learning and large training data sets. This study 

focuses on JPEG analysis due to its immense popularity as an image standard. The following 

section focuses on the current interest and significance of this research area.   

Significance and Current Interest 

The practice of steganography for malicious purposes is a significant problem that has 

been prevalent in recent research and continues to evolve. Brunot (2019) finds that current 

types of malware delivered through steganography, especially malvertising and ransomware, 

are costing organizations billions of dollars. Malvertising, or malicious advertising, is the 

mixing of malware-

can be infected with malware by just having visited a page that contains malvertising 

(Malvertising, n.d.).  before 

enabling decryption. Brunot also reports that the sophistication of attacks is constantly 

increasing, which puts pressure on the demand for equally sophisticated detection tools. In 

addition, other types of steganography threats continue to be a concern for organizations, 

including insiders hiding sensitive company information, illicit material stored on company 

resources, and criminal communications taking place on corporate websites (Brunot, 2019).

The number of stakeholders and practical use cases that are related to this research is 

potentially very large, since the illicit transfer of data affects virtually all private and public 

organizations. In fact, Zielinska notes that in our current technological state, the type of 
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2014). As a direct application, the proposed tool could be used by computer security 

technicians for regular data flow checkups, or to investigate specific incidents or suspicious 

files. For example, if employees start reporting unexpected, similar emails that contain 

random JPEG attachments, the security department might use the tool to attempt to identify a 

common origin or telling characteristics of these files, or to monitor internal communications 

that involve suspicious images, allowing early analysis before sensitive information can be 

leaked. One incident illustrating this internal use of images was cited by Brunot (2019): in 

2018 malware infected the Magento e-commerce system and hid payment details inside 

product images published on its website. Finally, stakeholders such as general security 

researchers would also potentially benefit from the proposed tool, as they may use the artifact 

to test known steganography samples and possibly improve or replace the tool with something 

researchers to develop more practical and immediately-usable steganalysis methods (Zielinska 

et al., 2014). 

The consequences and ramifications of the malicious use of digital steganography can 

be serious and affect all stakeholders connected to an organization, and a clear need exists for 

further research and refinement of solutions to this problem. As part of the response to these 

issues, the current study is guided by the three research questions detailed in the next section.

Research Questions 

The goals of design science research can be framed in terms of a design problem and 

related knowledge questions (Weiringa, 2014). For this study, the design problem can be 

stated as follows: Improve the area of JPEG steganalysis by designing a program that detects 

hidden data in JPEGs embedded by known tools, in order to help security professionals thwart 

malicious data-hiding activities. The following are knowledge questions related to this 

problem that this research endeavored to answer: 
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1. Within the scope of the embedding tools targeted by this study, what level of accuracy 

can be achieved by the program in terms of successfully detecting the presence of 

steganography in a given JPEG? 

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by the 

program in terms of successfully identifying which target tool was used to hide the 

data? 

3. What kinds of obstacles and difficulties were encountered in terms of designing 

successful detection methods for the steganographic tools and embedding methods 

targeted by this study, and which (if any) of these obstacles were not overcome?

 

The documentation collected during the design process and validation experiment for 

the artifact of this study was used to answer these questions, and those answers are discussed 

in detail in Chapter 4. The next section describes the scope and limitations of this study. 

Scope and Limitations 

The scope of this study includes the design of a software tool (JRevealPEG) that 

performs detection of steganography on JPEG images processed by a preselected group of 

open-source embedding tools. The specific group of embedding tools that were included are 

discussed in detail in Chapter 3. Through an experiment, the detection accuracy of 

JRevealPEG was measured in relation to a selection of preprocessed JPEG images, and the 

processing times that elapsed during the experiment were also recorded. Difficulties and 

obstacles during the design process were also observed and documented. 

There were several limitations to this study that should be noted. First, as a 

steganalysis tool, the functionality of JRevealPEG in this study is limited to JPEG images 

only. Other image types, such as Portable Network Graphics (PNG), Bitmap (BMP), and 

Tagged Image File Format (TIFF) are not considered valid files for analysis. Audio, video, 

and other file types are also excluded. Additionally, JRevealPEG is not intended as a 

universal steganalysis tool. Only the selected group of steganography tools listed in Chapter 3 

are meant to be within the scope of its detection capabilities. Finally, while this research did 

involve implementation of steganography detection capability, the actual retrieval of hidden 

messages was not considered within scope. 
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Introduction: Summary 

This introduction began by providing stories about the use of steganography 

throughout history and noting the variety of techniques employed. The main problem of this 

study was identified, namely the ongoing use of steganography for malicious purposes and the 

need for further research and solutions. The purpose of this study was described as the design 

and analysis of a new steganalysis tool written in Python, called JRevealPEG. The lack of 

effective existing tools and methods and the popularity of the JPEG image type were given as 

the main motivating factors for this study. It was noted that malware steganography is still a 

current and significant issue which costs organizations billions of dollars, and therefore 

interest in this area of research and the need for solutions continues to grow. The research 

questions stated for this study are concerned with the resultant accuracy of JRevealPEG in 

detecting steganography, its accuracy in identifying the responsible tool, and also 

documenting obstacles encountered during the research. Finally, only detection capability, 

JPEG images, and a selected group of open-source embedding tools are included in this 

outside the scope of this research. 

Chapter 2 is a literature review surveying current research and methods in the realm of 

image steganography and steganalysis. It also provides a brief background on the JPEG image 

compression standard.  
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Recent Efforts in General Image Steganography/Steganalysis 

 The art of hiding data in digital images in general, as well as its counterpart, the art of 

detecting, extracting, and/or reconstructing such data, have become highly technical areas 

recently, continually evolving with increasingly sophisticated techniques. This is evidenced 

by certain relevant studies of the past few years. The next several examples do not focus on 

particular image formats, but rather image steganography and steganalysis in general. The 

JPEG image type is of particular interest to this study and the steganography world overall, 

and many studies relating specifically to JPEG steganalysis will be addressed later. 

 

Steganography Focus 

 Recent research into image steganography/steganalysis tends to focus on either the 

data hiding side (steganography), or the data detection and extraction side (steganalysis). On 

the steganography side, in a study by Das and Dhara (2018), the well-known least-significant-

newly-proposed manner on gray-scale images, in combination with other techniques. In LSB, 

the least significant bits in the cover (original) image are replaced by the bits of the message 

that is to be hidden. The authors in this case first apply a custom extended local binary pattern 

(ELBP), which is a way of encoding image pixel data using blocks of 3x3 pixel values in the 

gray-scale image. First, ELBP converts each of the surrounding decimal pixel values in the 

3x3 block (all but the center pixel) into a 3-bit binary code. After this, the secret message is 

embedded by the LSB technique into those 3-bit codes and the pixel block is converted back 

to decimal values. Finally, an algorithm called optimal pixel adjustment process (OPAP) is 

applied to reduce the distortion caused by LSB and improve the final image quality. The 

authors concluded that their technique allowed for a higher embedding rate than comparative 

methods, resulted in better image quality, and presented a high resistance against statistical 

steganalysis attacks (Das & Dhara, 2018).    
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  Another study on the steganography side (Sairam & Boopathybagan, 2019) also 

attempts to improve hiding capacity and maintain good image quality, however that proposed 

method also involves a layer of encryption of the data. The study examines a technique that 

uses modulus values to find random locations for hiding bits of data in the cover image. The 

LSB technique mentioned above is also employed here. In this case, the proposed modulus 

method was found to be most effective when applied to the non-compressed bitmap image 

type (BMP). Like the study above, the authors also used RS steganalysis to test the security of 

their method (Sairam & Boopathybagan, 2019). 

 A steganography technique using a curvelet transform method is proposed in a paper 

by Subhedar and Mankar (2018), which tested grayscale images only. The curvelet transform 

algorithm that was used looks at an image geometrically in an effort to hide data more 

sparsely and effectively, ostensibly making it more resistant to detection. Additionally, the 

study discusses the importance of choosing appropriate cover images for more secure 

steganography and contributes a new technique for this purpose. The authors employ a 

the best candidates. To evaluate the robustness of their proposed methods, the authors employ 

machine learning, in this case a support vector machine (SVM) classifier (Subhedar & 

Mankar, 2018).  

 

Steganalysis Focus 

 While the topic of finding new ways of hiding data in images is a current and 

significant research area, equal if not greater research activity appears to be occurring in the 

realm of detecting that hidden data through image steganalysis. Two recent studies focus on 

data extraction targeting a well-known steganography technique called HUGO (Highly 

Undetectable steGO). In one study by Gan, J. Liu, Luo, Yang, and Liu (2018), the authors 

focus on an extraction technique to retrieve hidden data embedded by HUGO, but which has 

also been encrypted. HUGO is an adaptive steganography technique that can select the best 

pixels to use in order to create minimal distortion in the resulting image. The method 

proposed by Gan et al. claims to extract an encrypted hidden message only when some of the 

plain text is known, in this case the file format and length of the message. A key part of this 

method is stated as making use of syndrome-trellis codes (STCs), a concept from information 
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coding theory that can be used to determine places to embed messages in a cover image (Gan 

et al, 2018).  

In the other paper targeting HUGO (Luo et al., 2016), the authors propose a blind 

analysis method to extract the hidden data, also making use of STC data. The difference here 

is that the hidden data is not encrypted, eliminating the need for known plain text. In this 

study, the authors construct all possible STC parameters, which they compare to the identified 

bits of hidden data in an effort to reconstruct the original message. Another notable part of 

this process is that it also employs machine learning, here in the form of an estimator that 

helps determine the relative payload (size of hidden message vs. size of cover image) of the 

hidden data (Luo et al., 2016). 

 A study by Malik, Subbalakshmi, and Chandramouli (2016) explores a statistical 

approach to detecting steganography hidden by a particular technique. Their proposed method 

examines a particular transformation of pixel data called quantization index modulation 

(QIM), and implements a kind of randomness test to detect steganography. The technique 

uses hypothesis testing in the form of decision rule formulas for the final determination of 

which part of an image is cover, and which part is steganography (Malik et al., 2016).

 Machine learning appears yet again in a paper by Lu et al. (2019), which explores a 

new method of hidden message detection in binary images. Binary images are black and white 

images with two possible values (1 or 0) for each pixel. The proposed method first compiles 

histograms of certain pixel structural element (SE) patterns based upon predetermined criteria. 

From these SE patterns, a feature vector (set of relevant characteristics) is chosen to use with 

an SVM classifier for final determination (Lu et al., 2019). 

 

JPEG Compression 

 Since the focus of the present study is the steganalysis of JPEG images, a brief 

background on the standard JPEG compression algorithm will be helpful. All of the 

steganalysis techniques discussed in later sections are focused on JPEG images, so a basic 

familiarity with the standard should aid greatly in understanding the relevant concepts and 

terminology. 

 JPEG (Joint Photographic Experts Group) technically does not refer to an image file 

format, but rather a compression method invented to be able to support continuous-tone 
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images. Continuous-tone images that have thousands (even millions) of colors resulting from 

the real-world origins of the subjects (JPEG Compression, n.d.). Because of the need for such 

a large number of colors, the image also has to be capable of large pixel depths, e.g. 24 bits 

would equate to 2^24, or over 16 million colors. In addition, it is mainly a lossy compression 

method, meaning it discards unnecessary data during encoding to reduce file size. In terms of 

an image, this means that the algorithm discards certain image data that cannot be seen by the 

human eye in any case (JPEG Compression, n.d.). 

 In the core standard, called Baseline JPEG, encoding is based on a category of 

mathematical operations called the Discrete Cosine Transform (DCT). In the third stage of 

compression, the DCT is applied to image data that has been divided into 8x8 pixel blocks 

(here, pixels are single values representing certain colors, rather than separate RGB values). 

by values from a particular quantization 

 n.d.). The quantization step is 

final encoding step is lossless, since it only involves removing redundant information (JPEG 

Compression, n.d.). 

 For the JPEG steganalysis examples discussed below, the compression stages above 

are the most relevant component of the JPEG algorithm. Overall, however, there are five 

stages in Baseline JPEG compression. A simplified diagram is provided in Figure 1 to 

illustrate this (JPEG Compression, n.d.). These steps are followed in reverse order to decode 

and display a JPEG-compressed image. 

 

Figure 1: Baseline JPEG Compression Stages 

 

 Regarding the byte structure of a compressed JPEG image file, the most pertinent 

aspects are addressed during discussions of the design of the artifact which is the object of 

this study. However, it may be useful to note a few basic elements here. JPEG images contain 

special two-byte markers, which mark the beginning of each particular segment of the file. 

Each of these markers begins with the value 0xFF. Also, there may be several segments 

before the segment containing the actual image bytes, such as those providing DCT-specific 
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information and the quantization tables used in the encoding (JPEG, n.d.). Analysis of the 

byte organization of a JPEG image file can be relevant to many types of steganalysis 

techniques.   

 

JPEG Image Steganalysis: Recent Techniques 

 

Machine Learning 

The practice of employing machine learning algorithms and techniques to facilitate 

JPEG image steganalysis appears to be the dominant trend in the literature of recent years, 

probably due to its evident effectiveness. Often, a study will propose one or more new 

techniques to aid in determining the appropriate features to extract from a JPEG image set, 

then this data is fed to one or more machine learning classifiers for training and testing, and 

finally accuracy analysis. The DCT domain that is part of JPEG compression is a major theme 

and an important source of data for the majority of these steganalysis studies. Other common 

themes include targeting content-adaptive JPEG steganography, as well as drawing upon 

digital image filtering techniques when creating a steganalysis method. 

   

DCT and Machine Learning 

 A method proposed by Jia-Fa, Xin-Xin, Gang, Wei-Guo, and Na-Na (2016) targets 

steganography that uses additive operations on AC coefficients to hide data. In a quantized 

8x8 pixel block of a JPEG, there are two types of DCT coefficients that occupy those 64 cells: 

one cell is labeled as DC, and the other 63 are labeled as AC. The study by Jia-Fa et al. 

exploits the statistical changes in the AC coefficients that show up after steganography has 

occurred. Their experiments made use of JPEG images for both the cover and the stego 

(hidden) data. The feature vector they employed contained only three data points, and they 

used a Fisher linear classifier. It was concluded that their method was simpler and resulted in 

a lower false positive rate compared to other existing methods (Jia-Fa et al., 2016). 

 Nouri and Mansouri (2017) explored a technique that models natural image statistics 

using a method called singular value decomposition (SVD). SVD is a type of matrix 

decomposition method used in signal processing. The singular values (SVs) are then used to 

determine features for classification using an SVM binary classifier. For JPEGs analyzed in 
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this study, these features were extracted from the quantized DCT coefficients (Nouri & 

Mansouri, 2017). 

 Some JPEG images can be doubly compressed, which can cause issues for 

steganalyzers. This is addressed in a study by Yang, Kong, and Feng (2018), which attempts 

to improve detection performance by reducing the discrepancies between training and testing 

sets that occur due to double compressio

the authors use a multi-classifier to detect the double compression initially. Through this they 

determine what are referred to as quality factors, which help adjust the features used in the 

training set that is fed to an SVM. The authors claim that in general, their technique is an 

improvement over comparative methods (Yang et al., 2018). 

 Another technique that analyzes DCT coefficients in a different manner was proposed 

by Rabee, Mohamed, and Mahdy (2018). In what is described as a blind steganalysis 

technique, the authors measure the differences between DCT coefficients that occur before 

and after cropping the image. Essentially the procedure is this: the initial DCT coefficients are 

extracted, the image is decompressed, it is cropped by four columns and four rows, it is 

recompressed, the new coefficients are extracted, and finally they are compared. This method 

uses an SVM classifier, and is tested against five known steganography algorithms. The 

authors conclude that their method generally performed better than a comparative method 

called Merged Features (Rabee et al., 2018). 

 Butora and Fridrich (2020) put forth a method called Reverse JPEG Compatibility 

Attack, which targets rounding errors in integer values used during the DCT stage of JPEG 

compression. The proposed method was compatible with both color and grayscale JPEGs, but 

limited to quality factors 99 and 100, which are the two highest compression qualities 

available with the JPEG algorithm. The authors used statistical hypothesis testing to initially 

evaluate their method, but stated that the best detection would result from the use of 

classifiers. Hence, they also used three classifiers and tested against five known 

steganography techniques. A notable observation was that the classifiers behaved somewhat 

not seen (Butora and Fridrich, 2020). 
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Content-adaptive Stego, Image Filters, and Machine Learning    

 One study by Denemark, Boroumand, and Fridrich (2016) focused on detection of 

content-adaptive steganography in JPEGs. Content-adaptive steganography describes a means 

of choosing the best locations for embedding hidden data in a cover image, as opposed to 

more random methods. Denemark et al. proposed a way to incorporate selection-channel-

aware features into data for classifier training and steganography detection. The idea of a 

selection channel refers to the probability of certain cover image locations being changed 

during hidden data embedding. For small payloads in particular, the authors concluded that 

their method resulted in significant detection improvement (Denemark et al., 2016). 

 Content-adaptive steganalysis and digital image filtering is combined in a study by 

Song et al. (2017). The authors develop a characteristic called a Gabor Rich Feature (GRF), 

which they based on two-dimensional Gabor image filtering, where the JPEG is filtered after 

being decompressed. The final features are selected based on statistics, including histograms, 

and merging of other features. Their technique is tested on three current steganography 

methods using an ensemble classifier (multiple decision engines). The proposed GRF was 

concluded to improve detection, when compared to other types of features being used in the 

field (Song et al., 2017).  

 Feng, Zhang, Ren, Qian, and Li (2020) devised a special combination of digital image 

filtering techniques to compute JPEG image residuals, referring to traces of embedded hidden 

data that can be used in steganalysis. The filters used in this case were base filters and cascade 

filters, which have special properties in the signal processing domain. The computed residuals 

were used to generate features to be fed to an ensemble classifier for analysis. This method 

was tested against four known steganography methods, including a well-known one called J-

UNIWARD. Various results were reported, based on particular configurations of the filters 

used (Feng et al., 2020). 

 One final paper that made explicit use of machine learning (in this case, a neural 

network) seemed to claim that using DCT data in the initial set up may actually hurt 

efficiency, in terms of a neural network analyzer (Boroumand, Mo, & Fridrich, 2019). The 

proposed method instead promoted deep learning from end to end, which means useful 

features were to be learned by the analyzer instead of being fed to it ahead of time. The 

authors developed what they called SRNet, or Steganalysis Residual Network. This technique 
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used grayscale images and targeted the UED-JC and J-UNIWARD embedding techniques. 

The authors also claimed that SRNet was the first neural network steganalyzer that did not 

require extra that information be given to it initially, considering other work referred to in the 

paper (Boroumand et al., 2019). 

 

Non-machine-learning Techniques 

 Very few examples in recent literature appeared to propose JPEG steganalysis 

techniques that did not make use of machine learning as a key component. This lack of 

current research in JPEG steganalysis that does not involve large samples for machine 

learning is part of the motivation for the software artifact being proposed in the present study. 

The following two studies describe recent attempts at this type of JPEG steganalysis.

 Rather than detection, a study by Xu, Liu, Gan, and Luo (2018) explored a new 

method to aid in the extraction of hidden messages in JPEGs. The authors propose a technique 

to recover the stego key, which is a seed value for generating a pseudorandom number in 

steganography. The seed leads to a random path being picked for embedding the bits of 

detection method uses hypothesis testing to compare the statistics from different samples of 

DCT coefficients, trying to recover the original embedding path and derive the stego key. The 

stego key could then theoretically be used to extract the hidden data. The proposed method 

was tested against F5 and OutGuess steganography methods and found to perform more 

quickly and with less computational complexity, as compared to one other competing 

detection method (Xu et al., 2018). 

 Qiao et al. (2019) proposed an adaptive steganalysis framework for JPEG 

steganography, based on a statistical model of quantized DCT coefficients. This framework 

also relies on hypothesis testing to detect steganographic data, as opposed to a machine-

learning classifier. For the technique discussed in this study, the authors assume that the stego 

data was embedded using LSB replacement in the quantized coefficients. In order for the 

proposed framework to have the best performance, high accuracy is necessary concerning 

three main factors: the statistical model used, the distribution parameters, and the payload size 

framework to machine-learning classifiers in two types of scenarios. Tested against non-



17

adaptive embedding methods, the framework performed better than machine-learning 

classifiers. However, tested against modern adaptive methods, such as J-UNIWARD, both the 

framework and the classifiers were ineffective, especially with small payloads (Qiao et al., 

2019). 

 

Literature Review: Summary 

 This review has outlined the various efforts in recent research of image steganography 

and steganalysis in general, a brief introduction highlighting the essential components of 

JPEG compression, and a survey of recent steganalysis research focused specifically on JPEG 

images. It was observed that the majority of current JPEG steganalysis techniques involve 

some type of machine learning, as well as various JPEG-specific concepts, such as the DCT 

domain, content-adaptive steganography, and signal processing techniques such as image 

filtering. It was also noted that there is far less current research on JPEG steganalysis without 

the use of machine learning, and that the methods that are proposed are limited as to the 

steganographic methods they target, as well as the initial assumed conditions. It is clear that 

much room exists for further research in the area of JPEG steganalysis without the aid of 

machine learning, which is the focus of the present study. 

 

 Table 1 lists and categorizes the cited references as they appear in this review:

 

Category Citation 
Recent Efforts in General Image Steganography/Steganalysis  

 Steganography Focus Das & Dhara, 2018 
 Sairam & Boopathybagan, 2019 
 Subhedar & Mankar, 2018 
  

 Steganalysis Focus Gan et al, 2018 
 Luo et al., 2016 
 Malik et al., 2016 
 Lu et al., 2019 
  
JPEG Compression JPEG Compression, n.d. 
 JPEG, n.d. 
  
JPEG Image Steganalysis: Recent Techniques  

 Machine Learning (ML)  
 DCT and ML Jia-Fa et al., 2016 
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 Nouri & Mansouri, 2017 
 Yang et al., 2018 
 Rabee et al., 2018 
 Butora and Fridrich, 2020 
  

 Content-adaptive Stego, Image Filters, and ML    Denemark et al., 2016 
 Song et al., 2017 
 Feng et al., 2020 
 Boroumand et al., 2019 
  

 Non-machine-learning Techniques Xu et al., 2018 
 Qiao et al., 2019 

Table 1: List of Citations in Literature Review 
 

 The next chapter describes the methodology used to develop the JRevealPEG artifact, 

which was design science. The Python-language architecture of the artifact and its features are 

discussed in great detail, and the detection functionality of the program in relation to each of 

the target steganography tools is explained thoroughly. 
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The main objective of this research was to design a software steganalysis artifact that 

is able to detect hidden data in JPEG images, targeting a specific group of current, open-

source tools. The artifact should be able to detect the presence of steganography embedded by 

the target tools, while at the same time identifying the tool that was used. The overall 

methodology employed for this study is design science, referencing the framework explained 

by Weiringa (2014). 

 As stated in the introduction, Weiringa (2014) suggests that the main goal of design 

science research can be thought of as a design problem and its related knowledge questions. 

The design problem for this study was stated as follows: Improve the area of JPEG 

steganalysis by designing a program that detects hidden data in JPEGs embedded by known 

tools, in order to help security professionals thwart malicious data-hiding activities.  

 The related knowledge questions are also restated below: 

 

1. Within the scope of the embedding tools targeted by this study, what level of 

accuracy can be achieved by the program in terms of successfully detecting the 

presence of steganography in a given JPEG? 

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by 

the program in terms of successfully identifying which target tool was used to hide 

the data? 

3. What kinds of obstacles and difficulties were encountered in terms of designing 

successful detection methods for the steganographic tools and embedding methods 

targeted by this study, and which (if any) of these obstacles were not overcome?

 

 Within design science methodology, the design cycle can be divided into three 

categories: problem investigation, treatment design, and treatment validation (Weiringa, 

2014). The first two categories are discussed in this chapter in relation to the present study. 
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The third category, treatment validation, is addressed in Chapter 4 along with the discussion 

of the results from a single-case mechanism experiment. 

 

Problem Investigation 

 According to Weiringa (2014), an important part of problem investigation involves 

identifying a conceptual framework and key concepts related to the problem. Most of the 

background information that would help establish a conceptual framework for the research 

problem is discussed in the Introduction and Literature Review. However, the main relevant 

concepts can be summarized here. 

 One of the main higher-level concepts relevant to this project is steganalysis, along 

with its sibling term, steganography. Steganography in general is the act of hiding messages 

or other data inside of other messages or data, and steganalysis is the detection and/or 

recovery of such hidden data. In terms of digital media, stenography can be performed with 

text, image, audio, and video. This study focuses on image steganalysis, specifically JPEG 

steganalysis. Hence, a good understanding of the JPEG image specification and related terms 

(discussed in the Literature Review) is also essential to the research problem.  

 There have been many steganographic algorithms developed for the JPEG format, 

some of which are highly technical and difficult to understand. In response, a variety of 

detection techniques have also been proposed that focus either on certain algorithms, or on 

universal detection. Instead of delving deeply into several highly technical algorithms or 

taking on the burden of developing another universal detection system, the program 

developed in this research focuses on a small group of current, open-source software tools that 

are freely available for anyone to use. The tools that were chosen for this study are listed in 

the next section, and later each is examined and discussed in terms of its steganographic 

technique and related program architecture. As will become apparent, an intimate 

understanding of these target programs was essential to the successful design of the main 

artifact of this study. 

  

Treatment Design 
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proposed program interacting with JPEG input to detect hidden data (Weiringa, 2014, p. 28). 

The resulting architecture of the treatment proposed in this study is meant to address the 

determined requirements, and these are based on the design science research goals, as stated 

above. For the development environment, the operating system used was Windows 10, and 

the programming language was Python 3. The following is a list of the initial feature 

requirements for the program, named JRevealPEG: 

 

1. Must run through a command-line interface. 

2. Must provide a menu for the user that lists all commands. 

3. Must be able to take JPEG images of varying sizes and dimensions as input. 

4. Must calculate processing times for each input file. 

5. Must provide a detection report (detection positives and negatives with tools 

identified, processing times, other relevant data) as output to the screen.

6. Must save reports to log files (text and csv). 

7. Must implement user input validation and exception handling. 

 

As is common for a program written in Python, the architecture involves multiple

Python script files. The program makes use of several custom functions and modules, as well 

as a handful of standard Python libraries. The design and functionality of each component are 

discussed in detail in the following section, including how JPEGs are processed and how 

steganography is detected in relation to each of the target software tools.  

The software tools targeted by the artifact in this study are Jsteg 0.3.0 as released on 

8/16/2018, SteganPEG 1.0 as released on 1/5/2011, and OutGuess 0.2.2 as released on 

1/20/2019 (Abhiram, 2011; Champine, 2018; Filho, 2019). This list was developed by first 

choosing a group of several candidate programs through a moderately vigorous Internet 

search, intended to simulate a selection of tools that would be freely available and appear for 

any user to implement. From the initial list, some candidates were eliminated on account of 

discovered incompatibilities with the required JPEG format. Others were removed because of 

age, compilation problems, other bugs, or limited message-embedding capacity. Through 

further analysis, the resulting list of target programs was found to include a promising variety 

of complexities, challenges, and steganographic methods that would fit the scope and purpose 
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of this research appropriately. The specific methods employed by these programs are 

addressed during the discussion of the JRevealPEG architecture, below.     

 It is also worthwhile to clarify the scope of JRevealPEG by identifying some notable

functional limitations. First, many existing methods employ machine learning and classifiers 

to detect steganography. This program does not use machine learning. Next, the tool does not 

endeavor to have the ability to detect hidden data spread across multiple images. Third, visual 

image inspection (by a human) is not a factor in hidden data detection, i.e. detection occurs

solely within the software. Finally, the program will not attempt to extract or reassemble the 

hidden data, unless this becomes a byproduct of a particular detection algorithm. 

 

JRevealPEG Architecture and Components 

 In this section, the components and architecture of the artifact of this study, 

JRevealPEG, are discussed. At the same time, the steganographic methods and structures of 

the three targeted embedding tools are examined in relation to the corresponding detection 

techniques developed in the artifact.  

 

Overview of JRevealPEG Structure and Behavior 

 JRevealPEG is composed of one main module, jrpeg.py, and four other custom 

modules used as imports in the main module: coefx.py, jsdec.py, spdec.py, and ogdec.py. The 

main module contains the entrance point for the program, which can be executed in a 

command window and takes no arguments. Upon execution, a simple menu appears to the 

user which allows the choice of entering the path to a single file, entering the path to a folder, 

bringing up the help page, or quitting the program (see Figure 2). 

 

 
Figure 2: JRevealPEG Main Menu 
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 If either analysis option is selected, the main detection sequence will begin for the 

chosen input file(s). As each file is analyzed, a report is displayed to the console, which 

includes information on the file currently being analyzed, the results of each stage of detection 

per target program, and processing times for initial JPEG analysis and the total detection 

sequence for that file. The detection sequence begins with the first target program (Jsteg), and 

if detection is negative it moves on to the next target (SteganPEG), and if negative again, the 

final target will be checked (OutGuess). The assumption is that once an input file tests 

positive for steganography by one of the target tools, there is no need to check the other 

targets, so the detection sequence will skip to completion for that file as soon as a positive 

result is attained. If no positive result is found, there will be a message confirming that status

(see Figures 3 and 4).    

 

Figure 3: Sample Output  No Positive Result 
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Figure 4: Sample Output  One Positive Result 

 

 JRevealPEG also has a logging function which automatically saves the detection 

sequence report to a text file. In addition, a CSV file is created that contains a list of all JPEG 

files analyzed, their sizes and dimensions, positive and negative test results, and both types of 

processing time (see Figure 5). 

 

 
Figure 5: Sample CSV file 

 

 The other four modules are imported into jrpeg.py and are responsible for the JPEG 

processing and detection algorithms that occur during the main detection sequence. The 

coefx.py module performs a partial decompression of the JPEG file and returns the relevant 

bytes for steganography detection. The modules jsdec.py, spdec.py, and ogdec.py each 

perform a customized detection algorithm targeting the steganography programs Jsteg, 

SteganPEG, and OutGuess, respectively. All five modules are discussed in more detail below, 

along with relevant analyses of the three target steganography tools. 

 

The Main Module: jrpeg.py 

 Since all of the costly processing is done by the custom external modules, the main 

module of JRevealPEG is fairly lightweight. The two most important features of jrpeg.py are 

its ability to coordinate the requisite files to be analyzed, and to populate and save the log



25

files. Along with the four custom modules mentioned above, jrpeg.py imports the standard 

Python time and os modules for timestamping and filesystem manipulation purposes.

 In order to facilitate a specific kind of logging capability, a custom class called Logger

was created to save the two types of analysis reports mentioned above, in this case a text file 

and a CSV file. Logger contains a method called lprint(), which is used to simultaneously 

print to the screen and save to the log text file (see Figure 6). 

 

 
Figure 6: Method Logger.lprint() from jrpeg.py 

 

 The detection sequence is handled and directed by the function analyze() (see Figure 

7). This function is set up to handle a list of one or more input files, depending on what has 

been selected by the user beforehand. Exception handling is incorporated throughout the 

detection sequence, the steps of which are as follows: 

1. Save the starting time. 

2. If the list is not empty, process the next input file using coefx.py. 

a. Else, go to Step 11 to end analysis. 

3. If no errors, save the JPEG processing time for current file. 

a. Else, go to Step 1 for next input file. 

4. Initialize all detection results to false. 

5. Using jsdec.py, apply Jsteg detection algorithm to processed JPEG data.  

6. If Jsteg result is false, apply SteganPEG detection algorithm using spdec.py.

a. Else, update result message, go to Step 8 to complete sequence for file.

7. If SteganPEG result is false, apply OutGuess detection algorithm using ogdec.py. 

a. Else, update result message, go to Step 8 to complete sequence for file.

8. Save the total processing time for current file. 

9. Update user on final result and write stats to CSV file. 

10. Go to Step 1 for next input file. 

11. Display completion message and names of log and CSV files. 

12. Close log text and CSV files. 
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Figure 7: Beginning of function analyze() from jrpeg.py  

 

Custom JPEG Processing: coefx.py 

 JRevealPEG employs custom steganography detection algorithms which have been 

tailored specifically for the three target programs of this study: Jsteg, SteganPEG, and 

OutGuess. However, before those algorithms can be applied to a JPEG, a very particular set

of data must be decoded and extracted from the image file. Each of the steganography 

programs used in this study employs the least-significant-bit (LSB) substitution technique 

referenced in the Literature Review, which means the data to be hidden has to be placed into 

the image data after the lossy compression stages (DCT and quantization), but before the 

lossless compression step, namely the Huffman coding process (briefly explained below). 

Therefore, each JPEG only needs to be partially decompressed to the pre-Huffman coding 

state, the bytes of which contain the modified bits representing the hidden data, if any.

 Several Python libraries exist that perform various types of JPEG manipulation, 

however it was found that most of the operations provided by these modules were not 

granular enough to be useful in this case. Only fully-decompressed JPEG data was normally 

available using the provided extraction functions. One recently-developed Python script was 

found, though, that could potentially aid in the necessary partial decompression, but it would 

need to be adapted and modified. The Baseline JPEG Decoder by Khalid (2019) is an 

experimental JPEG decoder written in Python as a single script, and as such several of its 
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functions exhibited promising granularity and became the basis of the coefx.py module in 

JRevealPEG. 

 -Huffman image 

scan data, also known as the quantized DCT coefficients, for steganalysis. There were three 

main modifications/additions that needed to be made when adapting the Baseline JPEG 

Decoder for this purpose. The nature of each modification is introduced initially, then they are 

discussed in conjunction with code examples. 

First, it turns out 

Baseline JPEGs with no chroma subsampling, which is a method of saving space when 

encoding images by reducing the resolution of the color components, since humans do not 

notice differences in color as well as they do differences in luminance, or brightness (Chroma 

subsampling, n.d.). By contrast, two out of the three target steganography tools (Jsteg and 

OutGuess) only output JPEGs with what is known as 4:2:0, or 2x2 subsampling, which is 

common. Therefore, one necessary modification made for coefx.py was to ensure 

compatibility with 2x2 subsampling.  

Another discovery, related to JPEG file segment markers, prompted the need for a 

second modification. It was mentioned in the Literature Review that JPEG files have varying 

types of segments delineated by special two-byte markers, each beginning with 0xFF. During 

decompression, it is necessary to recognize several of these markers in order to extract and 

use essential decoding parameters and tables. One of the most pertinent of these markers 

defines the quantization tables (DQT) and is made up of the bytes 0xFFDB; another defines 

the Huffman tables (DHT) and is 0xFFC4. For nearly all the color JPEGs with three 

components (Y, Cb, and Cr, for one luminance and two chrominance components) seen in this 

research, two quantization tables and four Huffman tables exist, each table having its own 

copy of the appropriate marker. However, it was observed that the JPEGs processed by the 

Jsteg tool only have one mark

cannot process the type of marker organization used by Jsteg, this capability was included in 

the code of coefx.py in relation to the DQT and DHT markers. Using 010 Editor, one can 

easily see the difference between the two types of marker organization from each kind of 

JPEG (see Figure 8).  
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Figure 8: One marker per group (left) vs. one marker per table (right)  

 

 The third necessary modification has to do with extracting the partially-decompressed 

image data, as opposed to the fully-decompressed image pixels. Specifically, the data bytes 

right before the Huffman coding stage of JPEG compression were needed, since that is where 

LSB steganography occurs. Huffman coding is an algorithm that performs lossless 

compression of data by eliminating redundancies, thereby saving space without losing 

information. Huffman-encoded data can be most easily understood as a binary tree data 

structure, however implementing the decoding algorithm can be a bit more complicated. 

even so, it is woven continuously into full JPEG decompression. It was necessary to add code 

that extracts the pre-Huffman bytes before they are allowed to be fully decompressed.

stage of decompression, without needing to fully decompress and display the JPEG. The 

modifications mentioned above are incorporated into existing and new functions, and the 

bytes needed for steganography detection are exported. Regarding the first modification, that 



29

which accommodates 2x2 chroma subsampling, the key was learning that the data bytes for 

the image components (Y, Cb, and Cr) are stored in a specific manner that differs from other 

subsampling specifications. Every luminance and two chrominance components (brightness 

and color) is represented as an 8x8 grid of pixel values; these three channels combine to form 

the full color image. Normally, each of these 8x8 combinations is a minimum coded unit 

(MCU). Each MCU is converted to a linear array of bytes. These arrays are stored 

sequentially from left to right and top to bottom as found in the displayed grid of a two-

dimensional image. This results in an image component storage pattern of (YCbCr)(YCbCr)-

etc. However, with 2x2 subsampling, the color components are sampled less often and 

averaged. Specifically, the MCU is 16x16 instead of 8x8, where the storage pattern is 

(YYYYCbCr)(YYYYCbCr)-etc. The existing method JPEG.StartOfScan() was heavily 

modified to account for this, as shown in Figure 9. A nested for loop iterates through an image 

grid, accounting for a 16x16 pixel MCU and the component pattern YYYYCbCr. The method 

BuildMatrix() is discussed below. Note that unconventional capitalizations were retained from 

preexisting code. 

 

 
Figure 9: JPEG.StartOfScan 
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 In order to fix the problem related to JPEG segment markers, coefx.py needed the 

ability to scan both styles of DQT and DHT marker organization, as mentioned above. 

Essentially, code was added to check the length of the data chunk after each marker, and this 

was used to determine the appropriate scanning algorithm for that segment. For the DQT case, 

a few lines of code were added to JPEG.decode() (see Figure 10). It turns out that the 

quantization tables were not essential to the functionality of the final artifact, but the code that 

handles this was retained as it may become useful in future work. As there are four Huffman 

tables to scan, the code that handles the DHT marker was more complex and seemed best as a 

new method, JPEG.checkHtStructType() (see Figure 11).  

 

 
Figure 10: DQT marker scanning in JPEG.decode() from coefx.py 

  

Figure 11: JPEG.checkHtStructType from coefx.py 
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 In order to achieve the final goal of pre-Huffman MCU extraction, it was necessary to 

identify that exact point of partial decompression in the original decoder, somewhere in the 

middle of the full decompression algorithm. Analysis showed that this occurred in the existing 

method JPEG.BuildMatrix(). Originally, JPEG.BuildMatrix() returned a fully-decompressed 

MCU component which went on to become part of the image display. For the purposes of the 

present artifact, the method was altered to stop decompression as soon as the pre-Huffman 

values are retrieved for a given component, and the MCU component block is returned as a 

one-dimensional list (see Figure 12).  

 

 
Figure 12: JPEG.BuildMatrix() from coefx.py 

 

 (2019) should be mentioned, which 

was addressed in coefx.py. In the original decoder, only JPEGs with height and width
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dimensions that are evenly divisible by eight could be decoded. The coefx.py module has the 

ability to decode JPEGs of any height and width dimensions. This problem was solved by

simply rounding each dimension to the next higher multiple of sixteen, if not already 

divisible, which accounts for how irregularly-sized JPEGs are compressed. This dimension 

divisibility issue also has specific ramifications involving OutGuess in particular. 

Finally, the main module of the artifact makes use of coefx.py by calling the 

entrypoint function extract() during the detection sequence. Note that along with a list of lists 

containing the MCU data, the height and width of the image is returned to the caller. These 

values become useful later in the detection sequence. 

 

Jsteg and jsdec.py 

 Once the collection of pre-Huffman coefficients (the MCUs) is successfully extracted 

from a JPEG file using coefx.py, it can be passed to the first detection algorithm of the 

sequence, encapsulated by the module jsdec.py. The steganography tool targeted by jsdec.py 

is Jsteg, and this was chosen to be first in the detection sequence because the detection 

algorithm is the quickest and least complex of the three. First the relevant features and 

behavior of Jsteg itself are discussed, followed by an explanation of the jsdec.py detection 

module. 

 Jsteg (Champine, 2018) is written in the Go programming language, an object-oriented 

language invented by Google with C-like syntax (Go (programming language), n.d.). The 

program contains several modules and runs with a command-line interface. Jsteg uses the 

LSB substitution method for its steganography, as do the other two tools targeted in this 

study. Code tracing revealed which bytes are used to hide data, and which bytes are avoided. 

which bytes are used for embedding. 

In Jste  LSBs of Y-component bytes of an 

There is further filtering inside each component as well. Recall that each 

MCU component can be thought of as an 8x8 grid of values. Through mathematical 

transformations, these values determine what is eventually displayed on a screen for each 8x8 

image, and it is referred to as the DC coefficient. The other 63 values are called AC 
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coefficients (JPEG, n.d.). It is in the LSBs of the AC coefficients that Jsteg hides data, also 

noting that any byte values of -1, 0, and 1 are skipped (Champine, 2018). 

Since any useful steganography program needs to be able to retrieve the data it hides, 

it has to have some method of identifying that data when it is time for extraction. Some tools 

require or at least have the option of using a password, which is specially encoded along with 

the hidden message; often the length of the message is embedded as well. The tool can then 

check for that password when asked to decode the message, failing if not matched. Jsteg does 

not require or have an option for 

key, in th  (Champine, 2018). Analysis shows that the ASCII values of 

prepended as the first five bytes of the hidden message, the bits of 

each byte stored in the order of least to most significant.    

 Given the knowledge of which bytes are used by Jsteg for steganography, as well as 

how the internal key is stored, the detection strategy to employ in the jsdec.py module became 

fairly straightforward:  

1. Extract the first 40 eligible LSBs from the MCU list, Y components only.

2.  

a. If the bits match, return True. 

b. Else, return False. 

Initially, jsdec.py uses the function filterMCUs() to retain only the Jsteg-eligible bytes for 

above (see Figure 13). All Cb and Cr 

-1, 0, and 1 are filtered out. 

 

Figure 13: Function filterMCUs from jsdec.py 
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Next, the function magic() collects the LSBs from the first 40 bytes in the filtered list and 

compares them to 

order (see Figure 14). If all the bits match, magic() returns a positive (true) detection result, 

and this result is passed back to the main module.  

 

 

 
Figure 14: Jsteg signature detection in function magic() from jsdec.py 

 

SteganPEG and spdec.py 

 If jsdec.py returns a negative result and Jsteg is not detected, the main detection 

sequence passes the JPEG data to spdec.py, which contains the detection algorithm that 

targets SteganPEG. This was chosen as the second target in the sequence because it has a 

fairly concrete signature, but the detection strategy is more complex than for Jsteg. Also, it 

makes sense for the third position to go to OutGuess, as it has the vaguest signature and its 

detection algorithm should only be triggered if the first two come back negative. 

  SteganPEG (Abhiram, 2011) is written in Visual Basic and runs through a graphical 

a bit more complex than Jsteg, as it not only requires a password, but compresses and 

encrypts the data before hiding it. Like both Jsteg and OutGuess, SteganPEG does use LSB 

substitution to store the final data bits, however it does this in a slightly different manner than 

the other two tools. Additionally, and unlike Jsteg and OutGuess, SteganPEG preserves the 
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subsampling ratio of the original cover image. However, for the best overall compatibility and

proof-of-concept purposes, it was decided that JRevealPEG will only process 2x2 subsampled 

JPEGs in its initial incarnation.   

 To prepare for encryption, SteganPEG applies a special encoding function to the 

password received from the user that transforms it into an array of integers. This password 

array is used to pseudo-randomly determine how each byte of data will be encrypted, via a bit 

rotation sequence. Also, two special values are concatenated with the compressed message 

data. First, a checksum is generated by a function involving the bytes of message data and 

appended to the data. Then, the length of the message data is prepended to the message data 

as four header bytes. The final result is then encrypted using the rotation sequence mentioned 

above (Abhiram, 2011).  

 As for which LSBs are modified during embedding, SteganPEG considers all MCU 

components fair game (both luminance and chrominance), but it does skip the DC coefficients 

and zero-value bytes. One last critical realization yielded by analysis was that the bit values of 

the message data get flipped when embedded in negative bytes. In other words, when 

decoding the message, negative odd and positive even bytes yield 0s, and the others yield 1s. 

 The detection strategy employed in the spdec.py module needed to consider all the 

mentioned complexities in SteganPEG

data, since full message extraction is not a goal in this study. Also, since SteganPEG requires 

a password, it was decided this first version of the detector would assume the password is 

from a known list; a fully-blind, brute-force version might be a possibility for future work and 

is addressed in the Conclusion chapter. 

 Because there were several layers of complexity that needed to be reversed in order to 

identify a possible SteganPEG signature, much of the detection code in spdec.py was the 

result of isolating and adapting key routines from the original Visual Basic source code, and 

replicating and modifying it in Python. The overall detection strategy in spdec.py can be 

summarized as follows: 

1. Extract the eligible bytes that could contain embedded data from the MCU list. 

2. Encode a list of known passwords for use in decrypting data bytes. 

3. For each known password (until finished or positive result): 

a. Decrypt the data length header (four bytes). 
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b. Check length against number of available bytes. If too large, go to next 

password. 

c. Decrypt the rest of the data and retrieve stored checksum (one byte).

d. Calculate fresh checksum using decrypted data bytes. 

e. Compare checksums. 

i. If checksums are equal, return True. 

ii. Else, go to next password. 

4. Return False. 

Extracting the eligible cover bytes in spdec.py means first filtering the MCUs 

according to SteganPEG specifications, detailed above. Then, a function called dataBytes() 

reconstitutes the hidden bytes from the LSBs, tailoring itself to SteganPEG

system (see Figure 15). 

 

 
Figure 15: Function dataBytes() from spdec.py 

 

 The function encodePass() is essentially a Python transcription of SteganPEG

original routine. This is used in spdec.py to generate a list of known, encoded passwords that 

will be needed to attempt decryption. As an initial proof of concept, the known list of 

passwords used in this iteration of the artifact is the top 20 most common passwords used in 

2020, according to NordPass (List of the most common passwords, n.d.).  

 Next, each of the encoded passwords is used as a decryption key when trying to 

identify data as having been processed by SteganPEG. Adapted from the Visual Basic source 
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code, the function decryptData() takes as arguments a list of bytes to decrypt (byteList), a 

decryption key (passStore), and a special index number (rotChosen). Part of this decryption 

process also involves a bit rotation function called rotateLeft() (see Figure 16).  

 

 
Figure 16: Main decryption code from spdec.py 

 

 Since SteganPEG prepends the hidden data with four bytes that store the data length, 

those four bytes are decrypted first and the length value is compared with the total number of 

available possible bytes. If the decrypted length value is greater than the number of available 

bytes, it can be concluded that a match does not exist for SteganPEG using the current 

password and analysis should move to the next password. The section of code in spdec.py that 

handles this task is part of the entrypoint function detect() (see Figure 17).    
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Figure 17: Checking data length in function detect() from spdec.py 

 

 If the data length does not disqualify the sample, the rest of the data is decrypted and 

the last byte of the data is popped from the list, assumed to be the stored checksum. Finally, 

the function calcChecksum(), another routine adapted from the original source code, 

calculates a fresh checksum using the decrypted data (see Figure 18). Then, the last task in the 

detect() function is to compare both checksum values, returning true if they are equal. If no 

positive match is found, the detector will continue until all known passwords have been 

checked (see Figure 19). 

 

Figure 18: Checksum calculation routine from spdec.py 

 

 

Figure 19: Comparing checksums in function detect() from spdec.py 
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OutGuess and ogdec.py 

 A negative result from both jsdec.py and spdec.py triggers the final detection module, 

ogdec.py, written to detect OutGuess. The algorithm used by OutGuess introduces 

complexities not found in either Jsteg or SteganPEG, and the program leaves only a minimal 

type of signature that makes it difficult to say conclusively that it has modified a JPEG, 

although in some cases it can be eliminated as a possibility. Based on these observations, it is 

shown below that the ogdec.py module uses two special values to implement a type of 

heuristic detection strategy for OutGuess. 

OutGuess (Filho, 2019) is written in the C language and the source code makes use of 

many main component files and JPEG library modules, some of which are altered with 

custom code. It is a command-line tool that only runs on Linux systems. The program allows 

for an optional password, or it uses a default key value if one is not supplied. In addition, 

OutGuess implements its own ARC4 pseudorandom number generator which it uses for both 

encryption and for an iterator that chooses the bytes it uses for hiding data. ARC4 is a stream 

extracts the eligible bytes from the cover image and stores them in an array. Statistical foiling 

options are also available, but they have minimal relevance to the detection methods in this 

study and are not considered here. 

OutGuess uses two different ARC4 pseudorandom number streams in its algorithm. 

One is used as the iterator that chooses which cover bytes will contain the hidden message 

bits, and the other is used to encrypt the data by doing an XOR operation with the message 

bytes. The password for a given encoding session is used to initialize both of these streams, 

ensuring that OutGuess can find and decrypt the correct message during retrieval if the same 

password is supplied. It is also essential to note that before encryption, a special header is 

prepended to the main message data that contains the length of the message data, as well as a 

retrieved. This prepending of information is reminiscent of SteganPEG

algorithms, and those two  

strategy for OutGuess. 
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It was explained above how OutGuess selects cover bytes from the bitmap structure, 

as well as how the data is encrypted. However, it is also essential to understand how the 

bitmap itself is constructed, specifically which MCU bytes are selected and in what order. 

Careful analysis of the source code shows that OutGuess makes use of all components (Y, Cb, 

and Cr), including all coefficients, DC and AC. The values 0 and 1 are avoided. In addition, 

three crucial points are observed. First, note that each 8x8 MCU block returned by coefx.py is 

represented as a one-dimensional list in so-

(see Figure 20), which agrees with the JPEG standard (JPEG, n.d.). This is not an issue when 

it comes to Jsteg and SteganPEG analysis, as the data in both of those programs is handled in 

zigzag ordering. However, the bitmap structure in OutGuess stores the selected MCU bytes in 

natural ordering.  

 

Figure 20: MCU Block  Natural vs Zigzag Ordering 

 

 The second critical point has to do with JPEGs that have visual dimensions not evenly 

divisible by 16. Recall that for these irregularly-sized JPEGs, the MCUs are padded so that 

the stored version of the image is indeed divisible by 16, even though this padding is 

discarded when the image is displayed. When OutGuess builds its steganography bitmap, the 

padding bytes are not included. This is an important consideration for the detection algorithm, 

which needs to rebuild this bitmap. Finally, t

embedding method results in even-valued bytes that decode to 0-bits, while odd values 

decode to 1-bits. 

 The ogdec.py module relies on byte analysis combined with special heuristics to 

determine if a JPEG could possibly contain OutGuess steganography, or if it can be 
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disqualified as a candidate. The decision s 

based on the analysis described above, in which the signature identified was not necessarily a 

conclusive fingerprint of OutGuess, but more of an indication of likelihood. Also, for proof-

of-concept purposes, it is assumed that default settings were used for the steganography, 

including the default password. The overall detection strategy of ogdec.py can be described 

by the following steps: 

 

1. Construct OutGuess-style bitmap list from JPEG MCUs (coefx.py output): 

a. Put the coefficients in natural order. 

b. Trim edge padding if necessary. 

c.  

d. Extract and save list of LSBs. 

2. Extract seed value and data length from bitmap. 

a. Use precalculated iterator and encryption key values. 

b. Assume default password:   

3. Run heuristic checks: 

a. If data length is larger than half the size of the bitmap list, return False. 

b. If seed value is greater than 255, return False. 

4. If both heuristic checks pass, return True (OutGuess possible). 

 The initial task of constructing an OutGuess-style bitmap list must be exact and is the 

most involved process in ogdec.py, containing several subtasks. The first subtask of 

converting the MCU blocks from zigzag to natural ordering occurs in dezig(), a fairly 

straightforward function that re-maps the indexes of each block (see Figure 21). 
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Figure 21: Function dezig() from ogdec.py 

 

 The second subtask of bitmap construction is to remove any padding bytes that may be 

present in the MCU blocks of the right and bottom edges of the image matrix. For the JPEGs 

accepted by the detector, this routine only needs to occur if either the height or the width 

dimension is not divisible by 16. In ogdec.py, this process occurs in two functions: 

calcEdges() and trimEdges(). First, the function calcEdges() determines the indexes of the 

MCUs on the right and/or bottom edge, whichever has indivisible dimensions (modulo 16). A 

list of lists containing these indexes is returned for use in trimEdges() (see Figure 22). Second, 

the function trimEdges() must remove the padding bytes from the MCUs identified by 

calcEdges(). It was determined through testing that removing only the extra bytes in the 

appropriate Y components was sufficient in this case. However, the Cb and Cr components 

may need to be considered in future iterations of the artifact. An example of how trimEdges() 

calculates and removes the appropriate coefficients is shown in Figure 23. For a more in-

depth understanding of how the Y components in 2x2 subsampling are mapped to a JPEG s 

pixel display, Hass (2018) provides an excellent explanation.    
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Figure 22: Function calcEdges() from ogdec.py 

 

 

 
Figure 23: Excerpt of function trimEdges() from ogdec.py 
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 The last two subtasks of bitmap construction in ogdec.py are much more lightweight 

than the first two. The 1s and 0s are filtered from the byte collection in much the same way as  

in previous modules. The final bitmap list is then populated with the LSBs from the remaining 

bytes by the bitmap() function, which decodes 0s from even bytes and 1s from odd bytes. 

 Once the bitmap list has been prepared, ogdec.py looks for special header values (two 

bytes each) that would have been embedded with the message data if the sample was indeed 

and the length of the embedded message data. For the purposes of this study, it is assumed 

that only default options were used in any OutGuess-modified JPEGs. This includes a default 

 

 The password is used to initialize both the iterator that chooses the sequence of cover 

bytes used, and the encryption key values. Fortunately, since it is assumed every sample only 

uses the default password, it was not necessary try to adapt to Python all the C routines from 

the source code that would replicate these values dynamically. Instead, the needed numbers 

were extracted while executing a session of OutGuess through a debugger, and they have been 

hardcoded in ogdec.py. The function extractHeaderInfo() first uses the 32 saved iterator 

values to find the correct bits in the bitmap list, which are then used to assemble the four 

supposed header bytes. The header bytes are each decrypted by an XOR operation with the 

saved encryption key values. The first two header bytes become the seed value, and the last 

two bytes become the data length, and these are returned for the next step (see Figure 24).
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Figure 24: Function extractHeaderInfo() from ogdec.py 

 

 The final task in the ogdec.py detection process is to perform two heuristic tests in 

order to decide whether or not to disqualify the sample as OutGuess. If it is not disqualified 

the detector will report the sample as a possible, but not conclusive match for the tool. These 

tests occur at the end of the detect() function in ogdec.py (see Figure 25). The first test checks 

the calculated data length. Analysis of Outguess shows that it does not embed a message that 

is more than half the size of the bitmap list. Therefore, if the data length calculated by the 

detector is larger than this value, it can rule out OutGuess for the sample and return False. If 

the first test is passed, the seed value is checked to see if it is larger than 255, which is the 

limit observed through OutGuess code analysis. If the seed is larger than the limit, the 

detector can rule out OutGuess for the sample and return False. If these tests do not eliminate 

OutGuess as a possibility, the detector concludes that it is a possibility, assuming default 

options were used. 
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Figure 25: Heuristics tests in function detect() from ogdec.py 

 

Theory and Artifact Design: Summary 

 This chapter began by introducing the design problem and research questions 

associated with the development of JRevealPEG, the artifact that is the object of this study.

The initial requirements of the artifact were stated, and the three steganography tools that are 

the targets of JRevealPEG were also introduced. The architecture and behavior of each of the 

five modules of JRevealPEG were then discussed, along with relevant analysis details 

regarding the target steganography programs. The next chapter discusses the design and 

results of a single-case mechanism experiment that was performed as validation for this 

research.    

 

 

 



47

 

 

 This chapter begins with a brief discussion of the phases of a single-case mechanism 

experiment, which is the chosen design validation for this research. Next, the setup and 

execution of the experiment itself is addressed under Experiment Setup and Execution. 

Finally, the results of the experiment and data reports are discussed in the Results and 

Discussion section which also includes the answers to the three knowledge questions.

  

Design Validation 

 One means of validating design research is with a single-case mechanism experiment. 

controlled stimuli and analyze in detail which mechanisms are responsible for the respons

(p. 64). This seems to apply well in the case of this study, particularly in terms of answering 

the first two research questions, which pertain to finding levels of accuracy regarding hidden 

data detection and tool identification.  

  A single-case mechanism experiment consists of several pieces, most of which are

summarized below as they relate to this study. These pieces include context, research 

problem, object of study, treatment design, measurement design, inference design, execution, 

and data analysis (Weiringa, 2014). The execution phase is discussed under the Experiment 

Setup and Execution section, and the data analysis is included in the Results and Discussion 

section. 

 

Context and Research Problem 

In terms of the context and research problem, the conceptual framework and 

knowledge questions for this study have been defined in the Introduction and other previous 

sections, including the Literature Review. The relevant variables include the size and 

dimensions of the JPEG file input, the processing time required to achieve a result, the 

detected presence of hidden data (Boolean), and the identified steganography tool of origin 
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(Jsteg, SteganPEG, or OutGuess). The population related to this validation is all instances of 

the detection tool being used by security professionals to detect JPEG steganography.

 

Object of Study 

 As the object of study, the validation model utilized a Windows 10 operating system 

environment with Python 3 and the artifact (the detection program) installed. The JPEG

samples used for input were developed from a selection of free-to-use images downloaded

from online sources. Some of these JPEGs were used as control samples and had no 

steganography embedded, while the remaining samples were processed by the target tools 

mentioned above and contained hidden data; specific details of the JPEG samples are

provided in the Experiment Setup and Execution section.  

 The data generated include the output of the detection program itself, including the

sizes and dimensions of the JPEG input files, relevant processing time measurements, and 

positive and negative detection results. It was expected that the validation model should 

behave similarly to a real-world implementation, since the basic environment used was a 

standard Windows 10 setup. There may be random variables that affect the validity of the 

results, however, such as human error when using the software or unknown system settings 

and environmental factors. 

 

Treatment Design 

 The treatment design in the context of the validation consisted of providing 

pregenerated JPEG images as input to the detection program artifact. Other than the operating 

system and related software mentioned above, no special instruments were needed. The 

researcher had full knowledge and control of the JPEG images being used as input, however 

in real-world conditions, the possibility of uncontrolled input exists with other unpredictable

conditions. 

 

Measurement Design 

 In terms of measurement design, the variables of interest include JPEG file size, 

measured in bytes; JPEG image height and width dimensions, measured in pixels; detection 

processing times, measured in seconds; and three Boolean variables to indicate the presence 
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or absence of steganography relating to each of the target tools. The sources of data from the 

experiment were generated by the execution of the artifact itself. No special measurement 

instruments were needed, and data was initially stored and analyzed using basic spreadsheet 

software. 

 

Inference Design 

 The inference design for the data generated in this study included descriptive, 

abductive, and analogic inferences. Descriptive summaries include charts, tables, and graphs 

showing raw output as well analysis of results from the treatment process, e.g. scatterplots 

showing the relationship between key metrics, such as input file size and processing time, and 

tables containing raw results from artifact execution.  

 As far as abductive inferences, any significant aberrations or inconsistencies in results 

could be explained by malformed input, such as a corrupt image file, random interruptions in 

the input and output streams to and from the artifact, or other software bugs.  

 Finally, the main analogic inference for the study is that the experiment would easily 

generalize to real-world cases, meaning security researchers using the artifact to analyze 

JPEG images on similar operating systems should see similar results. In fact, since the

program is more dependent on a correctly-functioning language interpreter (Python) than a 

particular operating system, it is likely that cases involving a variety of operating systems 

would behave similarly. 

 

Experiment Setup and Execution 

 As described under Object of Study, the experiment used to validate this design 

research consisted of a group of JPEG samples being passed as input to the artifact of the 

study, the JRevealPEG program. The program generated as its output several measurements 

per input sample, and this data was saved in log files for further analysis. Before the 

experiment could be officially executed, however, an appropriate group of JPEG samples had 

to be collected and prepared. 
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Setup 

 The previous chapter discussed the fact that the initial iteration of JRevealPEG is only 

configured to analyze color JPEGs that have Baseline compression and 2x2 chroma 

subsampling, mainly due to the fact that two of the three target steganography programs only 

output JPEGs with these specifications. When searching for random JPEGs online, there is no 

easy way to predict if a sample will be a Baseline or a progressive scan image, or what the 

subsampling ratio will be. Fortunately, it was found that the Paint3D program that comes with 

Windows 10 automatically converts any JPEG opened and then re-saved within the 

application to a Baseline, 2x2 image. Paint3D can also be used to vary the dimensions of a 

JPEG if more variation is needed. 

 In order to test for both positive and negative results, the JPEG samples needed to 

include images with and without steganography embedding. In addition, 

speed and handling of odd image dimensions, images within a wide range of file sizes, 

dimensional proportions, and total square pixel area were selected. In terms of the hidden 

messages used, two different types of files were chosen of relatively small size so they would 

be compatible with all sizes of cover images and all three embedding programs (see Table 2).

However, the files are big enough to simulate a dangerous amount of sensitive data or a 

malicious executable. The message files can be found in the Windows 10 System32 folder.

 

 
Table 2: Hidden messages used in the experiment 

  

 Table 3 shows an excerpt from the master list of JPEGs prepared to serve as input for 

the experiment. Ten different cover images of varying sizes and proportions were chosen to 

contain the hidden data. Each cover image was used twice with each target steganography 

program, once to hide msdxm.ocx, and once to hide security.dll. This generated 20 positive 

samples for each target program, or 60 positive samples total. Finally, the ten original covers 

were added to the list with no hidden data, and ten more random JPEGs were chosen and 

added, also with no hidden data. Therefore, the final group contained 60 positive and 20 

negative samples, for a total of 80 JPEGs.  
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Table 3: Master list of JPEG samples (excerpt) 

 

 Also note that in Table 3 a password value exists where applicable with SteganPEG

SteganPEG algorithm, every sample processed with that tool used a different password from 

that list. 

 Finally, the sample JPEGs were stored in a dedicated folder, the path of which would 

be passed to JRevealPEG during runtime. To facilitate command-line execution, the path to 

Python 3 was added to the Windows system environment variables, and a command window 

was opened to the directory containing the JRevealPEG scripts.     

 

Execution 

 Once the group of JPEG input samples had been compiled in an accessible directory,

executing the experiment was simply a matter of running the jrpeg.py script on a Windows 10 

machine and entering the path to the input files at the appropriate time (see Figure 26). Once 

the detection sequence started, it proceeded automatically, displaying output to the screen, 

while also saving results to both log files, text and CSV. The text file is essentially a copy of 

the results displayed to the console, and the CSV is a distilled version of important statistics.

Figures 27 and 28 show excerpts from both of the log files generated by the experiment, and 

the full files can be found in Appendices A and B. 
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Figure 26: Experiment execution  running JRevealPEG with input samples 

 

 
Figure 27: Experiment execution - excerpt from JRevealPEG text log file 
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Figure 28: Experiment execution  excerpt from JRevealPEG CSV log file 

 

  The experiment ran uninterrupted for approximately 15.7 minutes until completion. 

The next section analyzes the specific data results, as well as providing other observations of 

interest. Finally, there is a discussion of the answers to the three knowledge questions. 

 

Results and Discussion 

 The following discussion begins with a selective analysis of the data generated by this 

experiment, in terms of the variables of interest described under Measurement Design, as well 

as any other interesting observations. Then, based upon these results and notes from the 

development period, a discussion is provided that answers the three original knowledge 

questions relating to this research. 

 

Data Analysis 

 Since the relevant metrics of interest produced by the experiment were saved in a CSV 

log file, most of the data analysis related to these results could be derived using Microsoft 

Excel. When considering the kinds of data analyses that would best align with the current 

 goals, three useful perspectives of interest were identified: selected 

descriptive statistics derived from the main numeric metrics, correlation analysis between 

input file parameters and processing times, and accuracy of the Boolean detection results. 

Basic descriptive statistics can serve multiple purposes, such as providing a compact summary 
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of experiment input parameters and artifact performance, or setting a baseline for future 

experiments. Analysis of possible correlations between input samples and processing times 

exhibited by the artifact can facilitate predictive formulas, which could help judge the 

usefulness of the artifact in other experiments. Finally, calculating the accuracy of the 

Boolean detection results not only evaluates the effectiveness of the most important function 

of the artifact, but also provides the data necessary to answer the first two knowledge 

questions. 

 In terms of descriptive statistics, the raw output metrics considered included the size 

of the input file in bytes, the coefficients-only processing time for each file in seconds 

(coefx.py processing time), and the overall processing time for each file in seconds, including 

detection processing. In addition, the derived metrics of area in square pixels (image height 

times the width) and detection processing time (overall time minus coefficient time) were 

analyzed. The descriptive statistics considered the most relevant to this experiment and data 

set included, for each metric, the minimum and maximum, the range, and the mean. Table 4

provides a summary of these metrics in terms of the measured statistics.  

 
Table 4: Descriptive statistics for selected experiment metrics 

 

 The data in Table 4 shows that for the collection of input samples used in this 

experiment, which had an average file size of about 950KB, the average overall processing 

time for each file was close to 12 seconds. For 80 samples, this would mean a total execution 

time of 16 minutes, which was approximately the full runtime of the experiment. Some files 

only took about two seconds to process, while others took more than a minute. It can also be 

observed that the coefficient processing time took more than twice as long as detection 

processing on average and was about two-thirds of the overall processing time. The square-

pixel area values are also shown as an alternative JPEG size measurement, but from this table 

there is no way of knowing if any specific correlations exist between size and area, or 

between other pairs of metrics. Finally, the percentages of positive and negative 
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steganography samples used in the experiment are not shown here, nor are the relative 

percentages of samples processed by each target tool. However, a good overall snapshot of 

the experiment and processing performance of JRevealPEG can be assessed. 

 Several interesting observations were made when analyzing possible correlations 

between certain input file characteristics and the different processing time metrics. The 

following pairs of metrics were analyzed as scatterplots with linear regression: 

1. File Size vs Coefficient Processing Time 

2. File Size vs Detection Time 

3. File Size vs Overall Processing Time 

4. Pixel Area vs Coefficient Processing Time 

5. Pixel Area vs Detection Time 

6. Pixel Area vs Overall Processing Time 

 Figure 29 shows the three graphs with file size as the horizontal axis, and Figure 30

shows the three graphs with square-pixel area as the horizontal axis. Note that each scatterplot 

has been superimposed with a regression line, the line of best fit for the given data. Also 

included are the equations for each line, and the R-squared values (recall that the closer R-

squared is to 1, the stronger the correlation). If one examines the R-squared values first, it is 

apparent that the strongest correlation occurs between the input file size and the coefficient 

processing time, with a value of 0.9978. This value is not only the largest when compared 

with the other R-squared values, but it is extremely close to 1. In terms of coefficient 

processing time in future experiments, this would suggest that the file size of a particular 

input JPEG may be the best predictor of that value. The file size does not seem quite as good 

at predicting the overall processing time, with an R-squared of 0.9231, although still relatively 

close to 1. The pixel area has a weaker relationship with coefficient and overall processing 

time than file size does, but it does seem to carry more weight in determining the overall time 

(R-squared being 0.8423). Another interesting observation is that neither file size nor pixel 

area have a particularly strong correlation with the detection processing time metric, both 

having relatively mediocre R-squared values (0.5333 and 0.6102). This suggests that other 

factors exist which likely weigh in with importance, such as the relative presence or absence 

of steganography in a set of samples, as well as the proportion of samples embedded with data 

by a particular steganography tool.    
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Figure 29: Graphs of file size vs processing times 

 

 
Figure 30: Graphs of square-pixel area vs processing times 
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 Since the main purpose of JRevealPEG as a software tool is to detect steganography, 

the accuracy of its results when applied to a particular JPEG sample set is of paramount 

importance when judging its success. There are three Boolean variables that account for 

detection accuracy in JRevealPEG, one for each target steganography program and labeled 

with the name of each tool (Jsteg, SteganPEG, and OutGuess). According to the CSV report 

generated as part of the output of the experiment, JRevealPEG was correct in its classification 

of all 80 samples (see Appendix B for the full CSV report). The filenames used for each JPEG 

can be used to easily verify each result in the CSV file: JPEGs positive for Jsteg begin with 

l letter; those of 

 the remaining files should be negative for any 

steganography.  

 Of course, future iterations of the experiment with key factors adjusted to greater 

extremes, such as size and variety of message payloads and of cover images, may expose 

errors or inaccuracies not discovered during the execution of the experiment at the time of this 

study. Additionally, as chitecture, there were 

SteganPEG and OutGuess, such as use of known passwords. Future attempts to eliminate 

these assumptions may reduce the level of accuracy of which the artifact currently appears to 

be capable. 

 

Answers to Knowledge Questions 

 The original knowledge questions raised in Chapter 3 of this study are restated as 

follows: 

1. Within the scope of the embedding tools targeted by this study, what level of 

accuracy can be achieved by the program in terms of successfully detecting the 

presence of steganography in a given JPEG? 

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by 

the program in terms of successfully identifying which target tool was used to hide 

the data? 
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3. What kinds of obstacles and difficulties were encountered in terms of designing 

successful detection methods for the steganographic tools and embedding methods 

targeted by this study, and which (if any) of these obstacles were not overcome?

 

 Answer to Question 1: According to the results of the experiment, out of 60 positive 

samples and 20 negative samples, JRevealPEG detected the presence of steganography with 

100% accuracy, i.e. no false positives and no false negatives occurred. 

  

 Answer to Question 2: According to the results of the experiment, out of the 60 

samples it classified as positive for steganography, JRevealPEG successfully identified the 

target tool used with 100% accuracy, i.e. there were no false attributions for any of the 

detected steganography. 

 

 Answer to Question 3: The difficulties and obstacles encountered during the research 

and design of the JRevealPEG artifact were many, varied, persistent, and often unexpected. 

Fortunately, in virtually all cases a direct solution or workaround was found, which allowed 

the research to progress and an artifact to be developed that was able to address the original 

research goals. Most of the biggest obstacles arose during JPEG processing, and while reverse

engineering the target steganography programs.  

 JPEG Processing: One of the main areas that spawned several challenges early in the 

research period was JPEG processing in Python 3. Initially, it appeared that there may be one 

or more existing Python libraries that contained JPEG processing functionality which could 

be used in this project. Unfortunately, every library that was examined contained functions 

needed was embedded deep within other, more global routines. The main problem was most 

programs served to fully decompress JPEG images; the artifact in this study needed to extract 

data from only partway through the decompression process. Eventually a single script was 

found (mentioned in Chapter 3) that seemed to contain functionality close to that which was 

needed for this research, or at least it seemed like it could be adapted. 

 Now that a Python module was found that could be used as a starting point to aid in 

JPEG processing, the challenge arose of adapting the code to the specific needs of this 



59

artifact. This challenge had three main difficulties. First, the finer details of JPEG 

compression are not trivial, and much related research had to be done to get up to speed with 

sufficient expertise. Second, the only sure way to know if the extracted partially-

decompressed data was correct (the pre-Huffman scan bytes) was to allow the decompression 

to go to completion during time-consuming debugging, then verify that the final image was 

displayed correctly. Third, the script that was being adapted was not compatible with 2x2 

subsampling, so much learning was needed and many modifications had to be made to fix 

this. In the end, adapting that Python script to extract the needed data was a major milestone 

in the study. 

 Reversing the Target Programs: Another essential task that presented a wide variety 

of challenges was the effort to reverse engineer the three target steganography programs. This 

was a necessary step toward understanding the tools on a deep-enough level to be able to 

detection algorithms. Some difficulties applied to all three programs, others were tool-

specific. 

 One problem that initially became apparent was that each tool was written in a 

different programming language (Go, Visual Basic, and C). This was not unexpected, but it 

took time to become accustomed to the various syntax and data type differences of each. 

Occasionally mistakes resulted from transcriptional 

and Python 3. The disparity of programming languages and architectures also made tracing 

each target program an adventure. Tracing OutGuess, in particular, involved going back and 

forth through dozens of .h and .c source files. 

 The target programs also had varying levels of documentation, and some of the 

comments in the source code were rather cryptic. In terms of message-hiding capacity, it was 

not clear initially how much data each program could hide in a cover image. Only through 

experimentation and tracing were limitations in this area determined. 

 As explained in Chapter 3, LSB steganography in a JPEG occurs in the partially-

compressed image bytes. A big challenge in this research was to be able to reconstruct exactly 

which of those partially-compressed bytes each of the target programs chose when hiding 

data. Jsteg was the most straightforward, in that the program essentially hid data in 

consecutive bytes from those that were eligible. For SteganPEG, the main difficulty was  
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recognizing that the message data was compressed before it was hidden, which threw off size 

comparisons during steganography analysis. The last program to be cracked in terms of its 

chosen bytes was OutGuess. First, it took a while to realize that OutGuess stores the chosen 

cover bytes in natural order, which is different than the zigzag order used by Jsteg and 

SteganPEG. Then, much analysis was required to discover the special manner in which 

OutGuess handles JPEGs with uneven dimensions (not divisible by 16), namely that it ignores 

padding bytes.  

 

Experiment Results and Discussion: Summary 

 This chapter defined the components of a single-case mechanism experiment, which is 

the form of treatment validation used for this design science research. It explained the setup 

and execution of the experiment involving the artifact of the study, JRevealPEG. The results 

of the experiment were then discussed in terms of analysis of the data generated. Finally, 

answers to the three original knowledge questions were provided. The final chapter is the 

Conclusion, which gives a summary of this paper, lists the expected scholarly contributions of 

this research, identifies the primary limitations of the artifact developed in this study, and 

recommends several possible future research directions related to this work.   
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 This work introduced the design of JRevealPEG, a steganalysis software tool written 

in Python 3 that targets three popular, open-source steganography programs. A brief history of 

steganography was provided, along with reasoning behind the motivation for this study and 

the current significance, interest, and need for a steganalysis tool like JRevealPEG. Several 

examples from current literature were presented, illustrating recent efforts in JPEG 

steganalysis research, including techniques such as those involving machine learning. The 

architecture and behavior of JRevealPEG was examined in relation to each of its five Python 

modules, and its detection algorithms were discussed along with the steganography programs 

that they target. Finally, the results of a single-case mechanism experiment used as treatment 

validation were analyzed, and the three knowledge questions posed at the beginning of the 

research were answered. 

 The rest of this chapter identifies possible scholarly contributions and applications of 

this research, discusses the primary limitations of the artifact developed in this study, and 

recommends a number of future research directions related to this project.   

 

Contributions and Applications 

 The original motivation for this research was to contribute to the field of cyber 

security as it relates to malicious activities involving the secret transmission of digital 

material, specifically through the JPEG medium. It is intended that JRevealPEG will be made 

freely available to the professional and academic cyber security community as a tool for both 

research and practical applications. 

 One area of cyber security research that should directly benefit from this research is 

the study of JPEG steganography and steganalysis, and possibly that related to other types of 

images as well. JRevealPEG can provide insight into current tools used for both 

steganography and steganalysis, as its design research involved reverse engineering three 

open-source tools that are also available for anyone to study.  
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 Another area of cyber security research to which this work contributes is that of 

Python security tool development. It is hoped that insight will be gained as to how to take 

advantage of Python in adapting code from other programming languages, as well as writing 

other kinds of detection software in Python. 

 Practical applications exist that could also benefit from the usage of JRevealPEG as a 

detection tool. JRevealPEG is already equipped with some validation and exception handling, 

so it should be robust enough to be exposed to multiple types of files. One possible 

application could be to run JRevealPEG on an entire directory of files as a preliminary sweep, 

just to see if any detection is triggered. 

 Another application can be for security personnel to use JRevealPEG to help analyze 

multiple data exfiltration incidents to see if they are related. It is possible that the program 

could play a role in linking a group of stego images to a specific embedding tool. 

 It is also possible that JRevealPEG can help identify the source of other types of 

malicious attacks. For example, JPEGs can be used for surreptitious delivery of malware 

ine, intending 

to frame them for possessing illegal or unauthorized material. If one of the target tools was 

used to hide the data, it could be specifically detected. 

 

Limitations of JRevealPEG 

  Although JRevealPEG was shown to function well when operating on input files 

within the scope of this study and falling within certain assumptions and parameters, there are 

several limitations on the functionality and usefulness of the program in its current version.

 The most obvious shortcoming of JRevealPEG is that it is only tailored to detect 

steganography from the three target tools used in the study. Therefore, JPEGs carrying 

messages hidden by a program other than those three will likely go undetected. It is possible  

steganographic algorithms exist which are similar enough to one of the current targets that 

they might be detectable by JRevealPEG, but the likelihood of that is not known. 

 Another limitation is that JRevealPEG only analyzes Baseline JPEGs with 2x2 chroma 

subsampling. But in fact, this is really only a limitation as it relates to one of the target tools, 

SteganPEG, as the other two tools only output Baseline, 2x2 JPEGs in any case. However, 
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any image processed by SteganPEG (or any JPEG at all) that is not 2x2 subsampled would 

not be detectable. JPEGs that are encoded as progressive scan would also be excluded.

 Even considering compatible JPEGs processed by one of the target tools, there are 

when scanning a file under the SteganPEG detection algorithm, steganography will only be 

detected if it was embedded with one of a group of known passwords. This means a stego 

image that has used a password not on the list will escape detection. Similarly, the OutGuess 

detector only works for images that utilize the default options, which include a password of 

 

 One other possible limitation to note has to do with multiple payloads. Both 

SteganPEG and OutGuess have the option of hiding multiple messages in a JPEG. After 

preliminary analysis of these tools, it remains unclear if the current detection algorithms of 

JRevealPEG would be able to detect an image processed by these tools that contains more 

than one hidden message. Some indications show that it might, but this contingency was not 

in the scope of this study and has not been tested.     

 

Future Research Directions 

 The work performed in designing JRevealPEG raises many opportunities for future 

research in connection with this study. Some of these ideas are motivated by the desire to 

address the limitations mentioned in the previous section, and others relate to exploring the 

possibility of e other functionalities beyond that which was originally 

intended. 

 Adding detection functionality for other embedding tools would address the first 

limitation mentioned above. Naturally one would start with tools that could be reverse 

engineered most easily, probably programs where the source code is available. A detection 

algorithm could conceivably be developed for a program without having the source code, but 

an extra layer of difficulty would be present when trying to reverse that tool. 

 To address the fact that JRevealPEG can only process JPEGs with 2x2 subsampling, 

more decoding functionality would have to be added to coefx.py that takes this into 

consideration. Practically speaking, this would probably not be a difficult task, but a natural 
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upgrade for further iterations of the program, since it would increase the range of SteganPEG 

detection ability. The capability to process progressive scan JPEGs could also be added, but 

this would only be necessary if new detection capabilities for a new tool merited the upgrade.

 The limitation requiring the use of known passwords with SteganPEG and OutGuess 

would be a natural one to seek to eliminate, so that fully-blind detection could be 

an efficient manner would have to be found to check all 

valid password combinations until a valid checksum could be calculated. OutGuess would be 

a bit more complicated, however, because the PRNG would have to be replicated inside the 

detector, which could degrade performance 

 One idea for a completely new feature upgrade for JRevealPEG is adding payload 

extraction capability. In fact, much of the ground work has already been done for this since 

the program already knows how to extract the pre-Huffman MCUs. These are the bytes that 

contain the steganography. The journey to full payload extraction might not be much farther. 

However, on some level it might be easiest just to decode an image inside the original 

program, once it has been detected as the originator. 

 One final idea for an extended feature for JRevealPEG would be to add detection 

capability for image types other than JPEG. In fact, since steganography can be performed on 

any file, audio and video files could perhaps be added in the future as well. 

 

Summary 

 This study detailed the rationale for and the design of JRevealPEG, a new steganalysis 

software tool that detects steganography in JPEGs and identifies the responsible embedding 

program out of a select open-source group. The study provided a brief background on digital 

image steganography and steganalysis, focusing on the JPEG standard and literature that 

illustrates the current state of JPEG and other image steganography detection tools and 

techniques. The literature revealed that most of the current detection tools and methods use 

machine learning and focus on general detection, while there is a lack of research and tools 

that are not based on machine learning. JRevealPEG was designed to explore this research 

gap and test the effectiveness of a tool designed without machine learning that has specific 

targets of detection. 
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 The results of this study showed that a program can be written without machine 

learning that effectively detects JPEG steganography and identifies the tools of origin. The 

design process of JRevealPEG illustrated that Python can be a useful language for doing 

JPEG analysis, but also that not many existing Python libraries facilitate low-level JPEG 

manipulation, illustrating another opportunity for research. The outcome of the single-case 

mechanism experiment performed with JRevealPEG showed that the tool proved highly 

successful in a controlled environment with specific parameters and limitations, but plenty of 

room exists for 

make it a more universal tool. 
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Logged on [                              ] 

Directory entered: stego samples 

Number of files to be analyzed: 80 

 

Extracting initial byte array from file 1, cactus.jpg. This could take several seconds... 

 

Initial JPEG processing time: 4.97 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 1, cactus.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 
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Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 1, cactus.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 1, cactus.jpg 

 

None of the target steganography programs detected for file cactus.jpg 

 

Total detection and processing time for file 1, cactus.jpg: 11.23 seconds 

 

Extracting initial byte array from file 2, cow.jpg. This could take several seconds... 

 

Initial JPEG processing time: 10.33 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 2, cow.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 
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Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 2, cow.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 2, cow.jpg 

 

None of the target steganography programs detected for file cow.jpg 

 

Total detection and processing time for file 2, cow.jpg: 18.54 seconds 

 

Extracting initial byte array from file 3, crater.jpg. This could take several seconds... 

 

Initial JPEG processing time: 8.52 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 3, crater.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 
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Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 3, crater.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 3, crater.jpg 

 

None of the target steganography programs detected for file crater.jpg 

 

Total detection and processing time for file 3, crater.jpg: 12.40 seconds 

 

Extracting initial byte array from file 4, eagle.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.97 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 4, eagle.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 
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Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 4, eagle.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 4, eagle.jpg 

 

None of the target steganography programs detected for file eagle.jpg 

 

Total detection and processing time for file 4, eagle.jpg: 9.23 seconds 

 

Extracting initial byte array from file 5, forest.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.54 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 5, forest.jpg 
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*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 5, forest.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 5, forest.jpg 

 

None of the target steganography programs detected for file forest.jpg 

 

Total detection and processing time for file 5, forest.jpg: 7.71 seconds 

 

Extracting initial byte array from file 6, frog.jpg. This could take several seconds... 

 



76

Initial JPEG processing time: 2.49 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 6, frog.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 6, frog.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 6, frog.jpg 

 

None of the target steganography programs detected for file frog.jpg 
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Total detection and processing time for file 6, frog.jpg: 5.56 seconds 

 

Extracting initial byte array from file 7, greentrees.jpg. This could take several seconds... 

 

Initial JPEG processing time: 38.45 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 7, greentrees.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 7, greentrees.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 
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Seed too large... 

 

OutGuess (with default options) not possible for file 7, greentrees.jpg 

 

None of the target steganography programs detected for file greentrees.jpg 

 

Total detection and processing time for file 7, greentrees.jpg: 62.32 seconds 

 

Extracting initial byte array from file 8, houseplant.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.42 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 8, houseplant.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 
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SteganPeg not detected for file 8, houseplant.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 8, houseplant.jpg 

 

None of the target steganography programs detected for file houseplant.jpg 

 

Total detection and processing time for file 8, houseplant.jpg: 3.79 seconds 

 

Extracting initial byte array from file 9, jsCowMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.01 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 9, jsCowMsd.jpg 

 

Total detection and processing time for file 9, jsCowMsd.jpg: 8.61 seconds 

 

Extracting initial byte array from file 10, jsCowSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.41 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 10, jsCowSec.jpg 

 

Total detection and processing time for file 10, jsCowSec.jpg: 8.96 seconds 

 

Extracting initial byte array from file 11, jsCraterMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.11 seconds 
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*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 11, jsCraterMsd.jpg 

 

Total detection and processing time for file 11, jsCraterMsd.jpg: 5.79 seconds 

 

Extracting initial byte array from file 12, jsCraterSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.31 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 12, jsCraterSec.jpg 

 

Total detection and processing time for file 12, jsCraterSec.jpg: 6.04 seconds 

 

Extracting initial byte array from file 13, jsForestMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.78 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 13, jsForestMsd.jpg 

 

Total detection and processing time for file 13, jsForestMsd.jpg: 4.18 seconds 

 

Extracting initial byte array from file 14, jsForestSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.76 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 14, jsForestSec.jpg 

 

Total detection and processing time for file 14, jsForestSec.jpg: 4.16 seconds 

 

Extracting initial byte array from file 15, jsGreentreesMsd.jpg. This could take several seconds... 



81

 

Initial JPEG processing time: 23.06 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 15, jsGreentreesMsd.jpg 

 

Total detection and processing time for file 15, jsGreentreesMsd.jpg: 27.24 seconds 

 

Extracting initial byte array from file 16, jsGreentreesSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 23.52 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 16, jsGreentreesSec.jpg 

 

Total detection and processing time for file 16, jsGreentreesSec.jpg: 27.83 seconds 

 

Extracting initial byte array from file 17, jsHouseplantMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 1.95 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 17, jsHouseplantMsd.jpg 

 

Total detection and processing time for file 17, jsHouseplantMsd.jpg: 2.22 seconds 

 

Extracting initial byte array from file 18, jsHouseplantSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.20 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 18, jsHouseplantSec.jpg 
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Total detection and processing time for file 18, jsHouseplantSec.jpg: 2.46 seconds 

 

Extracting initial byte array from file 19, jsPalmsMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 1.79 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 19, jsPalmsMsd.jpg 

 

Total detection and processing time for file 19, jsPalmsMsd.jpg: 2.08 seconds 

 

Extracting initial byte array from file 20, jsPalmsSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 1.80 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 20, jsPalmsSec.jpg 

 

Total detection and processing time for file 20, jsPalmsSec.jpg: 2.09 seconds 

 

Extracting initial byte array from file 21, jsPenguinMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.03 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 21, jsPenguinMsd.jpg 

 

Total detection and processing time for file 21, jsPenguinMsd.jpg: 6.04 seconds 

 

Extracting initial byte array from file 22, jsPenguinSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.18 seconds 

 

*****First pass - Jsteg: attempting to find signature... 
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Jsteg detected for file 22, jsPenguinSec.jpg 

 

Total detection and processing time for file 22, jsPenguinSec.jpg: 6.28 seconds 

 

Extracting initial byte array from file 23, jsPumpkinsMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 8.01 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 23, jsPumpkinsMsd.jpg 

 

Total detection and processing time for file 23, jsPumpkinsMsd.jpg: 9.40 seconds 

 

Extracting initial byte array from file 24, jsPumpkinsSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.77 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 24, jsPumpkinsSec.jpg 

 

Total detection and processing time for file 24, jsPumpkinsSec.jpg: 8.93 seconds 

 

Extracting initial byte array from file 25, jsSpidersMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.73 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 25, jsSpidersMsd.jpg 

 

Total detection and processing time for file 25, jsSpidersMsd.jpg: 4.48 seconds 

 

Extracting initial byte array from file 26, jsSpidersSec.jpg. This could take several seconds... 
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Initial JPEG processing time: 3.69 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 26, jsSpidersSec.jpg 

 

Total detection and processing time for file 26, jsSpidersSec.jpg: 4.47 seconds 

 

Extracting initial byte array from file 27, jsYellowMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.11 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 27, jsYellowMsd.jpg 

 

Total detection and processing time for file 27, jsYellowMsd.jpg: 2.40 seconds 

 

Extracting initial byte array from file 28, jsYellowSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.12 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg detected for file 28, jsYellowSec.jpg 

 

Total detection and processing time for file 28, jsYellowSec.jpg: 2.34 seconds 

 

Extracting initial byte array from file 29, leaves.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.23 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 29, leaves.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 
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Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 29, leaves.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 29, leaves.jpg 

 

None of the target steganography programs detected for file leaves.jpg 

 

Total detection and processing time for file 29, leaves.jpg: 3.72 seconds 

 

Extracting initial byte array from file 30, moon.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.88 seconds 
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*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 30, moon.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 30, moon.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 30, moon.jpg 

 

None of the target steganography programs detected for file moon.jpg 

 

Total detection and processing time for file 30, moon.jpg: 18.38 seconds 
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Extracting initial byte array from file 31, ogCowMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.58 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 31, ogCowMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 31, ogCowMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 
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OutGuess (with default options) possible for file 31, ogCowMsd.jpg 

 

Total detection and processing time for file 31, ogCowMsd.jpg: 15.84 seconds 

 

Extracting initial byte array from file 32, ogCowSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.66 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 32, ogCowSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 32, ogCowSec.jpg 
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*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 32, ogCowSec.jpg 

 

Total detection and processing time for file 32, ogCowSec.jpg: 15.85 seconds 

 

Extracting initial byte array from file 33, ogCraterMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.30 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 33, ogCraterMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 
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SteganPeg not detected for file 33, ogCraterMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 33, ogCraterMsd.jpg 

 

Total detection and processing time for file 33, ogCraterMsd.jpg: 9.04 seconds 

 

Extracting initial byte array from file 34, ogCraterSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.61 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 34, ogCraterSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 
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Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 34, ogCraterSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 34, ogCraterSec.jpg 

 

Total detection and processing time for file 34, ogCraterSec.jpg: 9.24 seconds 

 

Extracting initial byte array from file 35, ogForestMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.88 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 35, ogForestMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 
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Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 35, ogForestMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 35, ogForestMsd.jpg 

 

Total detection and processing time for file 35, ogForestMsd.jpg: 5.93 seconds 

 

Extracting initial byte array from file 36, ogForestSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.86 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 36, ogForestSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 
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Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 36, ogForestSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 36, ogForestSec.jpg 

 

Total detection and processing time for file 36, ogForestSec.jpg: 5.90 seconds 

 

Extracting initial byte array from file 37, ogGreentreesMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 23.65 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 37, ogGreentreesMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 
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Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 37, ogGreentreesMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 37, ogGreentreesMsd.jpg 

 

Total detection and processing time for file 37, ogGreentreesMsd.jpg: 46.76 seconds 

 

Extracting initial byte array from file 38, ogGreentreesSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 23.76 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 38, ogGreentreesSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 
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Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 38, ogGreentreesSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 38, ogGreentreesSec.jpg 

 

Total detection and processing time for file 38, ogGreentreesSec.jpg: 46.33 seconds 

 

Extracting initial byte array from file 39, ogHouseplantMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.25 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 39, ogHouseplantMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 
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Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 39, ogHouseplantMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 39, ogHouseplantMsd.jpg 

 

Total detection and processing time for file 39, ogHouseplantMsd.jpg: 3.65 seconds 

 

Extracting initial byte array from file 40, ogHouseplantSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.11 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 40, ogHouseplantSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 
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Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 40, ogHouseplantSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 40, ogHouseplantSec.jpg 

 

Total detection and processing time for file 40, ogHouseplantSec.jpg: 3.46 seconds 

 

Extracting initial byte array from file 41, ogPalmsMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 1.90 seconds 

 

*****First pass - Jsteg: attempting to find signature... 
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Jsteg not detected for file 41, ogPalmsMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 41, ogPalmsMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 41, ogPalmsMsd.jpg 

 

Total detection and processing time for file 41, ogPalmsMsd.jpg: 3.33 seconds 

 

Extracting initial byte array from file 42, ogPalmsSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 1.78 seconds 
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*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 42, ogPalmsSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 42, ogPalmsSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 42, ogPalmsSec.jpg 

 

Total detection and processing time for file 42, ogPalmsSec.jpg: 3.32 seconds 
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Extracting initial byte array from file 43, ogPenguinMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.08 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 43, ogPenguinMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 43, ogPenguinMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 43, ogPenguinMsd.jpg 
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Total detection and processing time for file 43, ogPenguinMsd.jpg: 10.01 seconds 

 

Extracting initial byte array from file 44, ogPenguinSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.28 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 44, ogPenguinSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 44, ogPenguinSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 
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OutGuess (with default options) possible for file 44, ogPenguinSec.jpg 

 

Total detection and processing time for file 44, ogPenguinSec.jpg: 10.40 seconds 

 

Extracting initial byte array from file 45, ogPumpkinsMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.77 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 45, ogPumpkinsMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 
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SteganPeg not detected for file 45, ogPumpkinsMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 45, ogPumpkinsMsd.jpg 

 

Total detection and processing time for file 45, ogPumpkinsMsd.jpg: 13.90 seconds 

 

Extracting initial byte array from file 46, ogPumpkinsSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 7.90 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 46, ogPumpkinsSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 
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Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 46, ogPumpkinsSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 46, ogPumpkinsSec.jpg 

 

Total detection and processing time for file 46, ogPumpkinsSec.jpg: 13.95 seconds 

 

Extracting initial byte array from file 47, ogSpidersMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.81 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 47, ogSpidersMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 
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Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 47, ogSpidersMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 47, ogSpidersMsd.jpg 

 

Total detection and processing time for file 47, ogSpidersMsd.jpg: 7.67 seconds 

 

Extracting initial byte array from file 48, ogSpidersSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.64 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 48, ogSpidersSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 
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Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 48, ogSpidersSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 48, ogSpidersSec.jpg 

 

Total detection and processing time for file 48, ogSpidersSec.jpg: 7.55 seconds 

 

Extracting initial byte array from file 49, ogYellowMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.12 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 49, ogYellowMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 
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Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 49, ogYellowMsd.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 49, ogYellowMsd.jpg 

 

Total detection and processing time for file 49, ogYellowMsd.jpg: 3.35 seconds 

 

Extracting initial byte array from file 50, ogYellowSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.11 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 50, ogYellowSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 
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Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 50, ogYellowSec.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

 

 

OutGuess (with default options) possible for file 50, ogYellowSec.jpg 

 

Total detection and processing time for file 50, ogYellowSec.jpg: 3.24 seconds 

 

Extracting initial byte array from file 51, palms.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.22 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 51, palms.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 
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Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 51, palms.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 51, palms.jpg 

 

None of the target steganography programs detected for file palms.jpg 

 

Total detection and processing time for file 51, palms.jpg: 4.77 seconds 

 

Extracting initial byte array from file 52, penguin.jpg. This could take several seconds... 

 

Initial JPEG processing time: 9.44 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 52, penguin.jpg 
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*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 52, penguin.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 52, penguin.jpg 

 

None of the target steganography programs detected for file penguin.jpg 

 

Total detection and processing time for file 52, penguin.jpg: 14.67 seconds 

 

Extracting initial byte array from file 53, pumpkins.jpg. This could take several seconds... 

 

Initial JPEG processing time: 13.58 seconds 
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*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 53, pumpkins.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 53, pumpkins.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 53, pumpkins.jpg 

 

None of the target steganography programs detected for file pumpkins.jpg 
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Total detection and processing time for file 53, pumpkins.jpg: 20.19 seconds 

 

Extracting initial byte array from file 54, snowhill.jpg. This could take several seconds... 

 

Initial JPEG processing time: 25.85 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 54, snowhill.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 54, snowhill.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 
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OutGuess (with default options) not possible for file 54, snowhill.jpg 

 

None of the target steganography programs detected for file snowhill.jpg 

 

Total detection and processing time for file 54, snowhill.jpg: 36.96 seconds 

 

Extracting initial byte array from file 55, spCowMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 10.53 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 55, spCowMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Positive match! 

 

 

SteganPeg detected for file 55, spCowMsd.jpg 

 

Total detection and processing time for file 55, spCowMsd.jpg: 14.04 seconds 

 

Extracting initial byte array from file 56, spCowSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 10.67 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 56, spCowSec.jpg 
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*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Positive match! 

 

 

SteganPeg detected for file 56, spCowSec.jpg 

 

Total detection and processing time for file 56, spCowSec.jpg: 14.41 seconds 

 

Extracting initial byte array from file 57, spCraterMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 8.76 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 57, spCraterMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Positive match! 

 

 

SteganPeg detected for file 57, spCraterMsd.jpg 
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Total detection and processing time for file 57, spCraterMsd.jpg: 10.62 seconds 

 

Extracting initial byte array from file 58, spCraterSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 8.75 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 58, spCraterSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 

Checking password 'abc123'... Negative match... 

Checking password 'Million2'... Positive match! 

 

 

SteganPeg detected for file 58, spCraterSec.jpg 

 

Total detection and processing time for file 58, spCraterSec.jpg: 11.10 seconds 

 

Extracting initial byte array from file 59, spForestMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.89 seconds 

 

*****First pass - Jsteg: attempting to find signature... 
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Jsteg not detected for file 59, spForestMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Positive match! 

 

 

SteganPeg detected for file 59, spForestMsd.jpg 

 

Total detection and processing time for file 59, spForestMsd.jpg: 6.96 seconds 

 

Extracting initial byte array from file 60, spForestSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.84 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 60, spForestSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 
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Checking password 'abc123'... Negative match... 

Checking password 'Million2'... Negative match... 

Checking password '000000'... Negative match... 

Checking password '1234'... Negative match... 

Checking password 'iloveyou'... Negative match... 

Checking password 'aaron431'... Negative match... 

Checking password 'password1'... Positive match! 

 

 

SteganPeg detected for file 60, spForestSec.jpg 

 

Total detection and processing time for file 60, spForestSec.jpg: 7.43 seconds 

 

Extracting initial byte array from file 61, spGreentreesMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 39.13 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 61, spGreentreesMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 

Checking password 'abc123'... Negative match... 

Checking password 'Million2'... Negative match... 

Checking password '000000'... Positive match! 
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SteganPeg detected for file 61, spGreentreesMsd.jpg 

 

Total detection and processing time for file 61, spGreentreesMsd.jpg: 48.92 seconds 

 

Extracting initial byte array from file 62, spGreentreesSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 39.92 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 62, spGreentreesSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Positive match! 

 

 

SteganPeg detected for file 62, spGreentreesSec.jpg 

 

Total detection and processing time for file 62, spGreentreesSec.jpg: 49.22 seconds 

 

Extracting initial byte array from file 63, spHouseplantMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.46 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 63, spHouseplantMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 
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Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 

Checking password 'abc123'... Positive match! 

 

 

SteganPeg detected for file 63, spHouseplantMsd.jpg 

 

Total detection and processing time for file 63, spHouseplantMsd.jpg: 3.43 seconds 

 

Extracting initial byte array from file 64, spHouseplantSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 2.37 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 64, spHouseplantSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Negative match... 
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Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Negative match... 

Checking password 'aaron431'... Negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Positive match! 

 

 

SteganPeg detected for file 64, spHouseplantSec.jpg 

 

Total detection and processing time for file 64, spHouseplantSec.jpg: 3.07 seconds 

 

Extracting initial byte array from file 65, spiders.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.44 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 65, spiders.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 
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Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 65, spiders.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 65, spiders.jpg 

 

None of the target steganography programs detected for file spiders.jpg 

 

Total detection and processing time for file 65, spiders.jpg: 9.44 seconds 

 

Extracting initial byte array from file 66, spPalmsMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.11 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 66, spPalmsMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 
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Checking password 'qwerty'... Positive match! 

 

 

SteganPeg detected for file 66, spPalmsMsd.jpg 

 

Total detection and processing time for file 66, spPalmsMsd.jpg: 4.03 seconds 

 

Extracting initial byte array from file 67, spPalmsSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.07 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 67, spPalmsSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Positive match! 

 

 

SteganPeg detected for file 67, spPalmsSec.jpg 

 

Total detection and processing time for file 67, spPalmsSec.jpg: 3.95 seconds 

 

Extracting initial byte array from file 68, spPenguinMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 9.44 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 68, spPenguinMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 
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Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Positive match! 

 

 

SteganPeg detected for file 68, spPenguinMsd.jpg 

 

Total detection and processing time for file 68, spPenguinMsd.jpg: 11.70 seconds 

 

Extracting initial byte array from file 69, spPenguinSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 9.47 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 69, spPenguinSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Positive match! 

 

 

SteganPeg detected for file 69, spPenguinSec.jpg 

 

Total detection and processing time for file 69, spPenguinSec.jpg: 11.75 seconds 

 

Extracting initial byte array from file 70, spPumpkinsMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 13.38 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 70, spPumpkinsMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 
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Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 

Checking password 'abc123'... Negative match... 

Checking password 'Million2'... Negative match... 

Checking password '000000'... Negative match... 

Checking password '1234'... Negative match... 

Checking password 'iloveyou'... Positive match! 

 

 

SteganPeg detected for file 70, spPumpkinsMsd.jpg 

 

Total detection and processing time for file 70, spPumpkinsMsd.jpg: 16.87 seconds 

 

Extracting initial byte array from file 71, spPumpkinsSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 13.80 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 71, spPumpkinsSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 
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Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 

Checking password 'abc123'... Negative match... 

Checking password 'Million2'... Negative match... 

Checking password '000000'... Negative match... 

Checking password '1234'... Positive match! 

 

 

SteganPeg detected for file 71, spPumpkinsSec.jpg 

 

Total detection and processing time for file 71, spPumpkinsSec.jpg: 17.06 seconds 

 

Extracting initial byte array from file 72, spSpidersMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.71 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 72, spSpidersMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Positive match! 

 

 

SteganPeg detected for file 72, spSpidersMsd.jpg 

 

Total detection and processing time for file 72, spSpidersMsd.jpg: 7.28 seconds 

 

Extracting initial byte array from file 73, spSpidersSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 5.53 seconds 

 

*****First pass - Jsteg: attempting to find signature... 
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Jsteg not detected for file 73, spSpidersSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Negative match... 

Checking password '1234567'... Negative match... 

Checking password 'qwerty'... Negative match... 

Checking password 'abc123'... Negative match... 

Checking password 'Million2'... Negative match... 

Checking password '000000'... Negative match... 

Checking password '1234'... Negative match... 

Checking password 'iloveyou'... Negative match... 

Checking password 'aaron431'... Positive match! 

 

 

SteganPeg detected for file 73, spSpidersSec.jpg 

 

Total detection and processing time for file 73, spSpidersSec.jpg: 7.93 seconds 

 

Extracting initial byte array from file 74, spYellowMsd.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.17 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 74, spYellowMsd.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 
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Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Positive match! 

 

 

SteganPeg detected for file 74, spYellowMsd.jpg 

 

Total detection and processing time for file 74, spYellowMsd.jpg: 3.86 seconds 

 

Extracting initial byte array from file 75, spYellowSec.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.22 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 75, spYellowSec.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Negative match... 

Checking password '123456789'... Negative match... 

Checking password 'picture1'... Negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Negative match... 

Checking password '111111'... Negative match... 

Checking password '123123'... Negative match... 

Checking password '12345'... Negative match... 

Checking password '1234567890'... Negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Positive match! 
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SteganPeg detected for file 75, spYellowSec.jpg 

 

Total detection and processing time for file 75, spYellowSec.jpg: 3.97 seconds 

 

Extracting initial byte array from file 76, squirrel.jpg. This could take several seconds... 

 

Initial JPEG processing time: 18.09 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 76, squirrel.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 76, squirrel.jpg 
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*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 76, squirrel.jpg 

 

None of the target steganography programs detected for file squirrel.jpg 

 

Total detection and processing time for file 76, squirrel.jpg: 31.12 seconds 

 

Extracting initial byte array from file 77, sunset.jpg. This could take several seconds... 

 

Initial JPEG processing time: 1.96 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 77, sunset.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 
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Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 77, sunset.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 77, sunset.jpg 

 

None of the target steganography programs detected for file sunset.jpg 

 

Total detection and processing time for file 77, sunset.jpg: 3.59 seconds 

 

Extracting initial byte array from file 78, tiger.jpg. This could take several seconds... 

 

Initial JPEG processing time: 4.69 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 78, tiger.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 
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Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 78, tiger.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 78, tiger.jpg 

 

None of the target steganography programs detected for file tiger.jpg 

 

Total detection and processing time for file 78, tiger.jpg: 6.55 seconds 

 

Extracting initial byte array from file 79, whitehouse.jpg. This could take several seconds... 

 

Initial JPEG processing time: 10.99 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 79, whitehouse.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 

Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 
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Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 79, whitehouse.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 79, whitehouse.jpg 

 

None of the target steganography programs detected for file whitehouse.jpg 

 

Total detection and processing time for file 79, whitehouse.jpg: 15.62 seconds 

 

Extracting initial byte array from file 80, yellow.jpg. This could take several seconds... 

 

Initial JPEG processing time: 3.27 seconds 

 

*****First pass - Jsteg: attempting to find signature... 

 

Jsteg not detected for file 80, yellow.jpg 

 

*****Second pass - SteganPeg: attempting to find signature using common passwords... 

Checking password '123456'... Data length too big, negative match... 

Checking password '123456789'... Data length too big, negative match... 

Checking password 'picture1'... Data length too big, negative match... 

Checking password 'password'... Data length too big, negative match... 
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Checking password '12345678'... Data length too big, negative match... 

Checking password '111111'... Data length too big, negative match... 

Checking password '123123'... Data length too big, negative match... 

Checking password '12345'... Data length too big, negative match... 

Checking password '1234567890'... Data length too big, negative match... 

Checking password 'senha'... Data length too big, negative match... 

Checking password '1234567'... Data length too big, negative match... 

Checking password 'qwerty'... Data length too big, negative match... 

Checking password 'abc123'... Data length too big, negative match... 

Checking password 'Million2'... Data length too big, negative match... 

Checking password '000000'... Data length too big, negative match... 

Checking password '1234'... Data length too big, negative match... 

Checking password 'iloveyou'... Data length too big, negative match... 

Checking password 'aaron431'... Data length too big, negative match... 

Checking password 'password1'... Data length too big, negative match... 

Checking password 'qqww1122'... Data length too big, negative match... 

 

 

SteganPeg not detected for file 80, yellow.jpg 

 

*****Final pass - OutGuess: attempting to find signature... 

Seed too large... 

 

OutGuess (with default options) not possible for file 80, yellow.jpg 

 

None of the target steganography programs detected for file yellow.jpg 

 

Total detection and processing time for file 80, yellow.jpg: 4.54 seconds 

 

Analysis is complete. Log file is jrpegLog0.txt, and metrics are saved in jrpegStats0.csv 
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