Dakota State University
Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 3-2021

JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting
Current Open-Source Embedding Programs

Charles A. Badami
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

b Part of the Databases and Information Systems Commons, Data Science Commons, and the Other
Computer Sciences Commons

Recommended Citation

Badami, Charles A., "JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting Current Open-Source
Embedding Programs" (2021). Masters Theses & Doctoral Dissertations. 366.
https://scholar.dsu.edu/theses/366

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion
in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more
information, please contact repository@dsu.edu.

https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/366?utm_source=scholar.dsu.edu%2Ftheses%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

DAKOTA STATE

JREVEALPEG: A SEMI-BLIND JPEG
STEGANALYSIS TOOL TARGETING CURRENT
OPEN-SOURCE EMBEDDING PROGRAMS

A dissertation submitted to Dakota State University in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy
in
Cyber Operations
March 2021
By
Charles A. Badami
Dissertation Committee:
Dr. Wayne Pauli

Dr. Cody Welu
Dr. Christopher Olson

DocuSign Envelope ID: 42175D77-7D05-479C-BB9A-8E6F297D26FC

DAKOTA STATE

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of
Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of
this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions
of the major department or university.

Student Name: Charles Badami

Dissertation Title: JRevealPEG: a semi-blind JPEG steganalysis tool targeting current open-source
embedding programs

Dissertation Chair/Co-Chair: U)M’IM, PMAL(Date: April 4, 2021

Name: Wayne Pauli

Dissertation Chair/Co-Chair: Date:

Name:

Committee member: (,opb,l, Im Date: April 4, 2021
Name: Cody welu

Committee member: (Jufisfolpw Bson Date: April 5, 2021

Name: Christopher Olson

Committee member: Date:
Name:
Committee member: Date:
Name:

Original to Office of Graduate Studies and Research
Acid-free copies with written reports to library

111

ACKNOWLEDGMENT

I would like to express my deepest appreciation to my doctoral committee, to all of my
professors and mentors at DSU, and to my friends and colleagues at Northwest Missouri State
University for all of your help and support throughout this process. I especially want to thank
my wife and children for putting up with me and tolerating my frequent disappearances while

I obsessed over this project.

v

ABSTRACT

Steganography in computer science refers to the hiding of messages or data within
other messages or data; the detection of these hidden messages is called steganalysis. Digital
steganography can be used to hide any type of file or data, including text, images, audio, and
video inside other text, image, audio, or video data. While steganography can be used to
legitimately hide data for non-malicious purposes, it is also frequently used in a malicious
manner. This paper proposes JRevealPEG, a software tool written in Python that will aid in
the detection of steganography in JPEG images with respect to identifying a targeted set of
open-source embedding tools. It is hoped that JRevealPEG will assist in furthering the
research into effective steganalysis techniques, to ultimately help identify the source of hidden
and possibly sensitive or malicious messages, as well as contribute to efforts at thwarting the

activities of bad actors.

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the
language of others is set forth, quotation marks so indicate, and that appropriate credit is given
where I have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Choles (L. Boalomn

Charles A. Badami

vi

TABLE OF CONTENTS

DISSERTATION APPROVAL FORM 111
ACKNOWLEDGMENT 111
ABSTRACT v
DECLARATION \%
TABLE OF CONTENTS VI
LIST OF TABLES IXI
LIST OF FIGURES IX
INTRODUCTION 1
PROBLEM STATEMENTvvvtiieiiiiiiititeteeeeeeeeeeitareeeeeseeesisseteeeeeeesttssseseeeeesasssseeeeeessesassseeeseesasssssseereeeeennaes 2
PURPOSE OF THE STUDY ..uvvvtiieeieiiiiieeeeeeeeeeiitaeeeeeeeeeeeaseaeeseeeeeeetsaseeseeeesaetareseeeseessesssseeseeseesasnseeeeesenanses 3

1Y (0 5 277N (0 N PSRRI 4
SIGNIFICANCE AND CURRENT INTERESTuvvtiiiittiieiieeieeeieeeeieeteeeseteeesesseessssneeseenseeesssssseesasseessnseeessns 5
RESEARCH QUESTIONSuvttiiittteeeeeeeeeeeteeeeeseeeteeesueeeseeasesssasseessassesseessaeesssseeessssetessssseesssnseesssnseeessnsneess 6
SCOPE AND LIMITATIONSuutteiiutteeeeetteeeeeeteeeeseeeeessstseesssssessssseseessassseessssseessssseessssesessasseessssssessssaseessns 7
INTRODUCTION: SUMMARYuvviieiitiiieeeeeeeeeeeeteeeeeeeeee e eeeaeeeeseaeteeesaseeesenaeeessnnaesessaeeesenaeeesanseeessnsaressnneeeeas 8
LITERATURE REVIEW 9
RECENT EFFORTS IN GENERAL IMAGE STEGANOGRAPHY/STEGANALYSIS ...coeoeiiiiiiirieeeeeiiiiieeeeeeeeeennns 9
STEGANOGRAPHY FOCUS ...ovvviiiiiiiieeeeeee ettt ettt e et e e e s eeaaaaee e e e s eeaneaeees 9
STEGANALYSIS FOCUS.....coitiiiieee ettt ee e e e e e e e eaaa e e e e e e e eetaareeeeeseeeaes 10
JPEG COMPRESSION......cuvttiiieieiiiittteeeeeeeeeieteeeeeeeeeeeetaaaeseeeeeeettasseeaeeeseettarsaeeseeeeetssseeeseseenassseeeeeseannses 11
JPEG IMAGE STEGANALYSIS: RECENT TECHNIQUEScccceeiiiitirteieeeeiieiireeeeeeeeeeiitreeeeeeeeeeinnseeeeeeeeennns 13

Y X 500 2 320N 2 1€ SRR 13
DCT AND MACHINE LEARNINGuvtiiiieieetiteeeeeeeteeititeeeeeeeeesisaaseeeseeeesessasseeeesesnesasssseesssensnnseseeesen 13
CONTENT-ADAPTIVE STEGO, IMAGE FILTERS, AND MACHINE LEARNING.........cccvveeiiieeiineeee e 15
NON-MACHINE-LEARNING TECHNIQUEScooouutiviiiieeiiiiieeeeeeeeeeenteneeeeeeeeeetaaeeeseeeseennnssessessesnnnnnees 16
LITERATURE REVIEW: SUMMARYovviiiiiiiiiiiiieeeeeeeeeieiteeeeeeeeeeeaeeeeeeeeeeeaseaeeseeeeessssnsseseesessesnnsreeseeees 17
THEORY AND ARTIFACT DESIGN 19
PROBLEM INVESTIGATIONceiiittuttieeeeeeeieutrereeeeeeeeeeitaneeeeeeeseeetassseeseseeeiessssseeeseesssnseseeesessessssseeeeeeans 20
TREATMENT DESIGNouttiiiieiiiiiiitiriieeeeeeeeeetete e e e eeeeeetaaaeeeeeeeeeetaaaeeeeeeeeeearsaeeaeeeeesetaseeeeeeesentarereeaeeeas 20

JREVEALPEG ARCHITECTURE AND COMPONENTScuvutiiiieieiiiitteeeeeeeeeeisarereeeseeesssnnereeesessssnnnneeseessns 22

vil

OVERVIEW OF JREVEALPEG STRUCTURE AND BEHAVIORccccocuiiieriiiieeeiiieeeiieeeeeiveeeenveeeeireeeas
THE MAIN MODULE: JRPEG.PY ..uuttiittteitesiteeniteenttteeteesnttesteesateesnseesabtesseesssaesseesnseesnseesnseessseesnnes
CUSTOM JPEG PROCESSING: COEFX.PYeeiuveeiiiieireetreeeeeesseeseeesseeseesnssessseessssssssesssssssssesssessssens
JSTEG AND JSDEC.PY ...uvvetieieentieiteittecieetteetseeseesteesteessesseseseesseesseesseassesssesssasssesseessesnsesseessessesssenssens
STEGANPEG AND SPDEC.PYcttieitiieiuiienieeesiteessrtesieeeseessseeeseesssesssseesssessssessssessssessssessssessssessssessns
OUTGUESS AND OGDEC.PYcuttieiuieeitieerireesieeesereesseesssessssseessesssssesssessssesssesssssesssssssssesssessssssssssesnses

THEORY AND ARTIFACT DESIGN: SUMMARYcceiiiiiiiiirieeeeeeeeiitreeeeeeeeesieseareeeeeeesiissseeeeeseeeessnssseeeeees

EXPERIMENT RESULTS AND DISCUSSION

DESIGN VALIDATIONuuttiiiieeeeeiiiitteeeeeeeeeeeiittaeeeeeeeeeeetaseseeeeeeeeetssseeseseesiessseseaeseessesrssseeseesessrsreeraeeans
CONTEXT AND RESEARCH PROBLEMccooottiiiiiieieciieeeee e ettt ee e e eeae e eeeeetaveeeeeeeeeeaareeeeeeens

(0)23) 20 M 0) s 1 6]10) 40N REU PR

RESULTS AND DISCUSSIONcoeiiitiriieeeeeeeeiirtteeeeeeeeeeeeaeaeeeeeeeeeeasreseeeseeestssareeaeeeesisssreeeeseeeeasarsreeeeeens
JD) VNN TN B €] R
ANSWERS TO KNOWLEDGE QUESTIONSuvtiiiittiteesiiteeesereeesereeesaseseessseeesssssesessssesessssssessssseesssses

EXPERIMENT RESULTS AND DISCUSSION: SUMMARY ...ovvvtiiiieiieitirieeeeeeeeeiireereeeeeeeeesnreeeeseesesinnsneeesesens

CONCLUSION

CONTRIBUTIONS AND APPLICATIONSuvieireerereenureessreessreessseessseessseesssessssessssessssessssessssesssesssssessssesnsns
LIMITATIONS OF JREVEALPEG........cccutiiiiiiiiieeite ettt ee ettt ettt ste et eaeeetaeesaaeestbeesaaeensaeennneenens
FUTURE RESEARCH DIRECTIONSutiiiiiiieeiiiiieeeeiieeeeeitteeesteteeesaiteeseasteeesnnteeessnseeesensseeesnsseeessseeesannees

SUMMARY oeeiiieeieeiittiee e e eeeet e e e e e eet et e e e e et et aaaeeeeeeeeeeettassaeeaeeeeeataaseaeeeeeeetasssaeeeeeeeiassraeeseeeeninnsreeens

REFERENCES

APPENDIX A: LOG FILE 1: TEXT FILE

APPENDIX B: LOG FILE 2: CSV FILE 1

APPENDIX C: JREVEALPEG CODE 1

8128 2l €8 o RO 1
(610) 213 €8 L) TR RO 1
)0 YO8 - R 1

SPDEC.PY ..outttvtiiieeeeeeiitttee e e e e eee ettt et e e e eeeetetaeeeeeeee e et aataaeaeeeeatabrreaaeeeea e ——ataaeeeeaaataraeeeeeeaatrareaeeeeaaanres 1

61

61
62
63
64

66

OGDEC.PY ittt e e et e e e e e aaa e eaa e e aas

APPENDIX D: LINKS TO FREE JPEG IMAGES USED

X

LIST OF TABLES
Table 1. List of Citations in Literature ReVIEWccccocieiiiiiiiiiiiiiiiiiiieeeeeee, 18
Table 2. Hidden messages used in the eXperimentccccueeeeveeeeieencreeescieeesvee e 50
Table 3. Master list of JPEG samples (EXCErpt)ceevvieruieriienieeiiieiieeieeiee e 51

Table 4. Descriptive statistics for selected experiment metricsceeveeeeerveneennnene 54

LIST OF FIGURES
Figure 1. Baseline JPEG Compression Stages........coccvveeeeeeeeieeiiiieeniiieeciee e e 12
Figure 2. JRevealPEG Main MEnUccceieviiiieiiieeieeeieeeie e 22
Figure 3. Sample Output — No Positive Result............cccoevvieiieiiiiniiiiiicieceiee 23
Figure 4. Sample Output — One Positive Resultcccoeoveeiieniiiniiiniicieieeiee 24
Figure 5. Sample CSV fIle ..cuuiiiiiiiieieeee et 24
Figure 6. Method Logger.Iprint() from Jrpeg.py .ccveeeeveeeeeveeeiieeeieeeiee e 25
Figure 7. Beginning of function analyze() from jJrpeg.py ...cccceeeveeveerieeniienieenieeeieene 26
Figure 8. One marker per group (left) vs. one marker per table (right)cc.c....... 28
Figure 9. JPEG.StartOfScCan...........coociiiiiiiiiiieeciee e 29
Figure 10. DQT marker scanning in JPEG.decode() from coefX.py.......ccceevvvrenurennee. 30
Figure 11. JPEG.checkHtStructType from COefX.py ...cceevvveeviieniiiiiiiiieiiecieeeeee 30
Figure 12. JPEG.BuildMatrix() from COETX.pY ..ccveevireriieiiieiieeieeieeeieeeeeie e 31
Figure 13. Function filterMCUS from JSAEC.PY...cuvveeruviieiiieeiieeeiieeeiie e 33
Figure 14. Jsteg signature detection in function magic() from jsdec.pyccceeeuvennnee. 34
Figure 15. Function dataBytes() from Spdec.py......ccoceeeeveeriiieeiiieeniieeceee e 36
Figure 16. Main decryption code from SPAeC.pYcccveeeruveeeiiieieiieeeiieecree e 37
Figure 17. Checking data length in function detect() from spdec.py.....c.ccccerverennene 38
Figure 18. Checksum calculation routine from spdec.py........ccccveeveeriieriienieenieenine. 38
Figure 19. Comparing checksums in function detect() from spdec.pycccceeeuvennee. 39
Figure 20. MCU Block — Natural vs Zigzag Orderingcccceeevveevvrieeecreeencneeeneeeene 40
Figure 21. Function dezig() from 08decC.pY ...ccueevvieviiiiiieiieiiecieeeeee et 42
Figure 22. Function calcEdges() from 0gdec.py......cccccveriieiiieniiiiiieieeiecieeiee e 43
Figure 23. Excerpt of function trimEdges() from ogdec.py......ccccceevvvvveiciieinceeenieenne 43
Figure 24. Function extractHeaderInfo() from ogdec.pycccceevvvevciiieniieinciieeeieene, 45
Figure 25. Heuristics tests in function detect() from 0gdec.pyccceecvvevvieriienieennnnne. 46
Figure 26. Experiment execution — running JRevealPEG with input samples 52
Figure 27. Experiment execution - excerpt from JRevealPEG text log file................. 52
Figure 28. Experiment execution — excerpt from JRevealPEG CSV log file............... 53
Figure 29. Graphs of file size vs processing timescccccceerveereenieenieenieesieennenn 56

Figure 30. Graphs of square-pixel area vs processing times

X1

CHAPTER 1

INTRODUCTION

Steganography in computer science refers to the hiding of messages or data within
other messages or data; the detection of these hidden messages is called steganalysis. Digital
steganography can be used to hide any type of file or data, including text, images, audio, and
video inside other text, image, audio, or video data. Zielinska, Mazurczyk, and Szczypiorski
(2014) point out that people sometimes confuse steganography with cryptography. The main
purpose of both is to ensure confidentiality of a message. They are distinguished, however, by
what exactly is being hidden. In cryptography, the message itself is being obfuscated
(meaning garbled, obscured, or made unclear) whether or not an observer knows it is being
sent. In steganography, the fact that the message is being sent is hidden,; it is the channel of
communication that is being kept secret (Zielinska et al., 2014).

The practice of steganography in general has roots that go back millennia. Jamil
(1999) describes several historical examples, some very ancient, and some from within the
last century. There is the story of a nobleman in Medea hiding a message in the belly of an
unskinned hare, which was delivered by someone dressed as a hunter. Another account
involves a Persian tattooing a secret message on a slave’s shaved head, waiting for the hair to
grow back, then sending the slave to the recipient, at which point he was to shave his head
and reveal the message. One commonly used historical technique is to write a message on
some sort of paper medium in a kind of “invisible” ink, e.g. milk, or certain types of juices.
The hidden message could then be revealed by subjecting the paper to heat. In more recent
history, the Nazi spy George Dasch used copper sulfate on a handkerchief as invisible ink that
only became visible when subjected to ammonia fumes. Another technique used by the
Germans in World War II was to use objects called “microdots”. A microdot was an
extremely small photograph about the size of a period; the receiver could blow up the
microdot to reveal a full page of information. Not to be outdone, the United States during
WWII employed Navajo speakers as so-called “codetalkers™ to send secret radio messages in

their native tongue. Only 28 non-Navajos (none of them German or Japanese) were thought to

be able to speak the language at the time, and the codetalkers made it even more difficult by
using slang. Even during the Gulf War in 1990 to 1991, some Navajos used a similar method
to bypass radio censors and send messages to their loved ones serving overseas (Jamil, 1999).
Burney (2018) cites two more historical steganography examples of interest. One
account, again from WWII, mentions the smuggling of Monopoly games into German prison
camps. Maps, files, and compasses were hidden in the game which were intended to aid
British prisoners in escaping. A second story involves a rumor regarding former British Prime
Minister Margaret Thatcher, alleging that Thatcher arranged to have “word processors
programmed to encode the identity of the writer in the word spacing,” so that she could track
cabinet ministers who may have been leaking documents to the press (Burney, 2018).
Steganography has been practiced throughout history, involving a variety of
techniques, and its use cases have ranged from personal errands to wartime tactics. The next
section discusses recent examples of the malicious use of steganography in the digital world,

which is among the primary concerns of this study.

Problem Statement

While steganography can be used in the digital world to legitimately hide data for non-
malicious purposes, it is also frequently used in a malicious manner. Burney (2018) notes that
one common, legitimate purpose for steganography includes secretly marking a document to
be able to trace its authenticity, in an effort to discourage stealing, unauthorized use, or
plagiarism. However, the malicious use of steganography is becoming more prevalent and can
have severe consequences. Shulmin and Krylova (2017) note the increasing use of
steganography by those creating malware and by perpetrators of cyber-espionage, while also
stating that most current anti-malware tools do not provide much protection. Vijayan (2017)
reports that image steganography in particular is of primary concern, as image files are
commonly used for command and control communications, for receiving and exfiltrating data.
Current research continually adds to the list of known malware that uses steganography, some
of which includes Powload, VeryMal, Novel, AdGholas, Fakem, and StegoLoader (Brunot,
2019). Examples of activity involving the use of this malware can be found relatively quickly
through Internet searches. One source reports that Powload had a surge in usage in the first

part of 2018, mainly distributed through email spam (Cisomag, 2019). Dunaway (2019)

details an attack by VeryMal in March of 2019 which was connected to Google’s Firebase
platform and lasted about two days, affecting about a million users. A third article reports that
AdGholas was used to direct traffic to malicious advertising sites for over a year without
being detected (mid-2015 to mid-2016), drawing one to five million hits each day (Kafeine,
2016).

Given that malicious image steganography is becoming more prevalent and that anti-
malware tools are often inadequate to identify and protect against it, a clear need exists for
new and ongoing research into updated steganography detection methods, with the primary
goal of aiding security professionals and researchers in their efforts to mitigate this threat. To
that end, this study details the design of JRevealPEG, a software tool that assists in the
detection of steganography in JPEG images with respect to identifying a targeted set of open-
source embedding tools. It is intended that this improvement in the detection of
steganography and the tools used to create it will help researchers identify malicious content
and prevent breaches before they occur, as well as help authorities trace such content to its
origin and possibly expose the tools and adversaries responsible. This will, in turn, contribute
to a consumer’s overall safety in the digital realm and the progress of cyber security research
in general.

As mentioned above, incidents of digital steganography in conjunction with malware
and nefarious activities can be extremely pervasive, persistent, and reach a large number of
victims in a short amount of time. The design of JRevealPEG is intended as a response to this

problem, and the main purpose of this study is delineated in the following section.

Purpose of the Study

The purpose of this study was to help address the problem stated above by designing a
software artifact that detects steganography in JPEG images while focusing on a select group
of open-source tools. The artifact was programmed in the Python language, and a single-case
mechanism experiment (discussed in Chapter 4) was used to validate the program. Several
prepared JPEG samples were given to the program as input for the experiment under
controlled conditions. Measurements of accuracy, timing, and file size were taken and used in

analysis.

Design science was the methodology used for this study, as delineated by Weiringa
(2014) and explained in Chapter 3. The observations and lessons learned from the design
science process for this artifact, the results of the validation experiment, and certain statistical
measurements were documented and analyzed. The results of this study are hoped to yield a
direct contribution to steganalysis research and spawn practical applications for cyber security
personnel in all types of organizations.

The purpose of the study is focused on the design of JRevealPEG as a steganalysis
tool. The next section details the motivation behind this study in terms of what is lacking in

other existing detection tools and methods.

Motivation

If the intent is to use digital steganography to embed and send hidden messages, files,
and other data, a cursory Internet search reveals that many free and easy-to-use tools are
readily available. Given the seriousness of the possible malicious use of these programs, some
of the current research in this domain focuses on evaluating the effectiveness of existing
methods that are meant to detect this steganography. A recent study by Serrano (2019) tested
steganalysis tools, i.e. software that detects steganography. The study investigated several
types of carrier files, including image, audio, and video files. In terms of image files, JPEGs
were tested, as well as GIFs and PNGs. The detection tools tested included VSL, StegSecret,
and StegDetect. Serrano found that the tools tested had two significant types of limitations:
first, the number of successfully detected image carrier files (those with hidden data) was
generally rather low, with an average detection rate of 3.75 images out of 15; second, several
tools lacked or had minimal ability to identify the tool that embedded the steganography,
resulting in an average identification rate of one tool out of six (Serrano, 2019). The artifact
proposed in the present study, JRevealPEG, is intended to address both of these shortcomings
of current steganalysis tools.

As described in the Literature Review, the vast majority of recent image
steganography detection methods depend upon supervised machine learning to make their
determinations. Supervised learning involves data that is classified by humans ahead of time
and often requires thousands of samples to be used as a training set. In addition, Qiao, Luo,

Wu, Xu, and Qian (2019) observe that there is a lack of modern research into steganalysis

methods that are “unsupervised,” referring to machine analysis of data sets that are not labeled
by humans beforehand. Unsupervised techniques find patterns based on the data points alone
and do not require training sets. Although it does not use machine learning, JRevealPEG is
nonetheless intended to help fill this gap by utilizing detection methods that have no need for
training sets.

Additionally, JPEG compression is acknowledged to be the most popular standard
among all image types, with several billion JPEGS created daily as of 2015 (JPEG, n.d.). This
fact combined with the prevalence of JPEG steganography research shown in the Literature
Review is a major reason why the proposed tool focuses on JPEG steganalysis.

As referenced above, existing image steganalysis tools can be shown to lack
effectiveness when it comes to attribution and specific embedding tools. It is also noted that
many detection methods rely on machine learning and large training data sets. This study
focuses on JPEG analysis due to its immense popularity as an image standard. The following

section focuses on the current interest and significance of this research area.

Significance and Current Interest

The practice of steganography for malicious purposes is a significant problem that has
been prevalent in recent research and continues to evolve. Brunot (2019) finds that current
types of malware delivered through steganography, especially malvertising and ransomware,
are costing organizations billions of dollars. Malvertising, or malicious advertising, is the
mixing of malware-based advertisements with legitimate online advertising; a user’s system
can be infected with malware by just having visited a page that contains malvertising
(Malvertising, n.d.). Ransomware encrypts a victim’s data files and demands payment before
enabling decryption. Brunot also reports that the sophistication of attacks is constantly
increasing, which puts pressure on the demand for equally sophisticated detection tools. In
addition, other types of steganography threats continue to be a concern for organizations,
including insiders hiding sensitive company information, illicit material stored on company
resources, and criminal communications taking place on corporate websites (Brunot, 2019).

The number of stakeholders and practical use cases that are related to this research is
potentially very large, since the illicit transfer of data affects virtually all private and public

organizations. In fact, Zielinska notes that in our current technological state, the type of

carrier file for steganography could be not only an image file, but “any other file type or
organizational unit of data... that naturally occurs in computer networks” (Zielinska et al.,
2014). As a direct application, the proposed tool could be used by computer security
technicians for regular data flow checkups, or to investigate specific incidents or suspicious
files. For example, if employees start reporting unexpected, similar emails that contain
random JPEG attachments, the security department might use the tool to attempt to identify a
common origin or telling characteristics of these files, or to monitor internal communications
that involve suspicious images, allowing early analysis before sensitive information can be
leaked. One incident illustrating this internal use of images was cited by Brunot (2019): in
2018 malware infected the Magento e-commerce system and hid payment details inside
product images published on its website. Finally, stakeholders such as general security
researchers would also potentially benefit from the proposed tool, as they may use the artifact
to test known steganography samples and possibly improve or replace the tool with something
better. As Zielinska points out, the lack of a ““one size fits all’ solution” should motivate
researchers to develop more practical and immediately-usable steganalysis methods (Zielinska
et al., 2014).

The consequences and ramifications of the malicious use of digital steganography can
be serious and affect all stakeholders connected to an organization, and a clear need exists for
further research and refinement of solutions to this problem. As part of the response to these

issues, the current study is guided by the three research questions detailed in the next section.

Research Questions

The goals of design science research can be framed in terms of a design problem and
related knowledge questions (Weiringa, 2014). For this study, the design problem can be
stated as follows: Improve the area of JPEG steganalysis by designing a program that detects
hidden data in JPEGs embedded by known tools, in order to help security professionals thwart
malicious data-hiding activities. The following are knowledge questions related to this

problem that this research endeavored to answer:

1. Within the scope of the embedding tools targeted by this study, what level of accuracy
can be achieved by the program in terms of successfully detecting the presence of
steganography in a given JPEG?

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by the
program in terms of successfully identifying which target tool was used to hide the
data?

3. What kinds of obstacles and difficulties were encountered in terms of designing
successful detection methods for the steganographic tools and embedding methods

targeted by this study, and which (if any) of these obstacles were not overcome?

The documentation collected during the design process and validation experiment for
the artifact of this study was used to answer these questions, and those answers are discussed

in detail in Chapter 4. The next section describes the scope and limitations of this study.

Scope and Limitations

The scope of this study includes the design of a software tool (JRevealPEG) that
performs detection of steganography on JPEG images processed by a preselected group of
open-source embedding tools. The specific group of embedding tools that were included are
discussed in detail in Chapter 3. Through an experiment, the detection accuracy of
JRevealPEG was measured in relation to a selection of preprocessed JPEG images, and the
processing times that elapsed during the experiment were also recorded. Difficulties and
obstacles during the design process were also observed and documented.

There were several limitations to this study that should be noted. First, as a
steganalysis tool, the functionality of JRevealPEG in this study is limited to JPEG images
only. Other image types, such as Portable Network Graphics (PNG), Bitmap (BMP), and
Tagged Image File Format (TIFF) are not considered valid files for analysis. Audio, video,
and other file types are also excluded. Additionally, JRevealPEG is not intended as a
universal steganalysis tool. Only the selected group of steganography tools listed in Chapter 3
are meant to be within the scope of its detection capabilities. Finally, while this research did
involve implementation of steganography detection capability, the actual retrieval of hidden

messages was not considered within scope.

Introduction: Summary

This introduction began by providing stories about the use of steganography
throughout history and noting the variety of techniques employed. The main problem of this
study was identified, namely the ongoing use of steganography for malicious purposes and the
need for further research and solutions. The purpose of this study was described as the design
and analysis of a new steganalysis tool written in Python, called JRevealPEG. The lack of
effective existing tools and methods and the popularity of the JPEG image type were given as
the main motivating factors for this study. It was noted that malware steganography is still a
current and significant issue which costs organizations billions of dollars, and therefore
interest in this area of research and the need for solutions continues to grow. The research
questions stated for this study are concerned with the resultant accuracy of JRevealPEG in
detecting steganography, its accuracy in identifying the responsible tool, and also
documenting obstacles encountered during the research. Finally, only detection capability,
JPEG images, and a selected group of open-source embedding tools are included in this
study’s scope. Hidden message retrieval, other tools, and other image and file types are
outside the scope of this research.

Chapter 2 is a literature review surveying current research and methods in the realm of
image steganography and steganalysis. It also provides a brief background on the JPEG image

compression standard.

CHAPTER 2

LITERATURE REVIEW

Recent Efforts in General Image Steganography/Steganalysis

The art of hiding data in digital images in general, as well as its counterpart, the art of
detecting, extracting, and/or reconstructing such data, have become highly technical areas
recently, continually evolving with increasingly sophisticated techniques. This is evidenced
by certain relevant studies of the past few years. The next several examples do not focus on
particular image formats, but rather image steganography and steganalysis in general. The
JPEG image type is of particular interest to this study and the steganography world overall,

and many studies relating specifically to JPEG steganalysis will be addressed later.

Steganography Focus

Recent research into image steganography/steganalysis tends to focus on either the
data hiding side (steganography), or the data detection and extraction side (steganalysis). On
the steganography side, in a study by Das and Dhara (2018), the well-known least-significant-
bit (LSB) substitution method of hiding data in an image’s pixels is explored, but utilized a
newly-proposed manner on gray-scale images, in combination with other techniques. In LSB,
the least significant bits in the cover (original) image are replaced by the bits of the message
that is to be hidden. The authors in this case first apply a custom extended local binary pattern
(ELBP), which is a way of encoding image pixel data using blocks of 3x3 pixel values in the
gray-scale image. First, ELBP converts each of the surrounding decimal pixel values in the
3x3 block (all but the center pixel) into a 3-bit binary code. After this, the secret message is
embedded by the LSB technique into those 3-bit codes and the pixel block is converted back
to decimal values. Finally, an algorithm called optimal pixel adjustment process (OPAP) is
applied to reduce the distortion caused by LSB and improve the final image quality. The
authors concluded that their technique allowed for a higher embedding rate than comparative
methods, resulted in better image quality, and presented a high resistance against statistical

steganalysis attacks (Das & Dhara, 2018).

10

Another study on the steganography side (Sairam & Boopathybagan, 2019) also
attempts to improve hiding capacity and maintain good image quality, however that proposed
method also involves a layer of encryption of the data. The study examines a technique that
uses modulus values to find random locations for hiding bits of data in the cover image. The
LSB technique mentioned above is also employed here. In this case, the proposed modulus
method was found to be most effective when applied to the non-compressed bitmap image
type (BMP). Like the study above, the authors also used RS steganalysis to test the security of
their method (Sairam & Boopathybagan, 2019).

A steganography technique using a curvelet transform method is proposed in a paper
by Subhedar and Mankar (2018), which tested grayscale images only. The curvelet transform
algorithm that was used looks at an image geometrically in an effort to hide data more
sparsely and effectively, ostensibly making it more resistant to detection. Additionally, the
study discusses the importance of choosing appropriate cover images for more secure
steganography and contributes a new technique for this purpose. The authors employ a
technique they call “fuzzy logic™ to sort through and analyze a collection of images to choose
the best candidates. To evaluate the robustness of their proposed methods, the authors employ
machine learning, in this case a support vector machine (SVM) classifier (Subhedar &

Mankar, 2018).

Steganalysis Focus

While the topic of finding new ways of hiding data in images is a current and
significant research area, equal if not greater research activity appears to be occurring in the
realm of detecting that hidden data through image steganalysis. Two recent studies focus on
data extraction targeting a well-known steganography technique called HUGO (Highly
Undetectable steGO). In one study by Gan, J. Liu, Luo, Yang, and Liu (2018), the authors
focus on an extraction technique to retrieve hidden data embedded by HUGO, but which has
also been encrypted. HUGO is an adaptive steganography technique that can select the best
pixels to use in order to create minimal distortion in the resulting image. The method
proposed by Gan et al. claims to extract an encrypted hidden message only when some of the
plain text is known, in this case the file format and length of the message. A key part of this

method is stated as making use of syndrome-trellis codes (STCs), a concept from information

11

coding theory that can be used to determine places to embed messages in a cover image (Gan
et al, 2018).

In the other paper targeting HUGO (Luo et al., 2016), the authors propose a blind
analysis method to extract the hidden data, also making use of STC data. The difference here
is that the hidden data is not encrypted, eliminating the need for known plain text. In this
study, the authors construct all possible STC parameters, which they compare to the identified
bits of hidden data in an effort to reconstruct the original message. Another notable part of
this process is that it also employs machine learning, here in the form of an estimator that
helps determine the relative payload (size of hidden message vs. size of cover image) of the
hidden data (Luo et al., 2016).

A study by Malik, Subbalakshmi, and Chandramouli (2016) explores a statistical
approach to detecting steganography hidden by a particular technique. Their proposed method
examines a particular transformation of pixel data called quantization index modulation
(QIM), and implements a kind of randomness test to detect steganography. The technique
uses hypothesis testing in the form of decision rule formulas for the final determination of
which part of an image is cover, and which part is steganography (Malik et al., 2016).

Machine learning appears yet again in a paper by Lu et al. (2019), which explores a
new method of hidden message detection in binary images. Binary images are black and white
images with two possible values (1 or 0) for each pixel. The proposed method first compiles
histograms of certain pixel structural element (SE) patterns based upon predetermined criteria.
From these SE patterns, a feature vector (set of relevant characteristics) is chosen to use with

an SVM classifier for final determination (Lu et al., 2019).

JPEG Compression

Since the focus of the present study is the steganalysis of JPEG images, a brief
background on the standard JPEG compression algorithm will be helpful. All of the
steganalysis techniques discussed in later sections are focused on JPEG images, so a basic
familiarity with the standard should aid greatly in understanding the relevant concepts and
terminology.

JPEG (Joint Photographic Experts Group) technically does not refer to an image file

format, but rather a compression method invented to be able to support continuous-tone

12

images. Continuous-tone images that have thousands (even millions) of colors resulting from
the real-world origins of the subjects (JPEG Compression, n.d.). Because of the need for such
a large number of colors, the image also has to be capable of large pixel depths, e.g. 24 bits
would equate to 224, or over 16 million colors. In addition, it is mainly a lossy compression
method, meaning it discards unnecessary data during encoding to reduce file size. In terms of
an image, this means that the algorithm discards certain image data that cannot be seen by the
human eye in any case (JPEG Compression, n.d.).

In the core standard, called Baseline JPEG, encoding is based on a category of
mathematical operations called the Discrete Cosine Transform (DCT). In the third stage of
compression, the DCT is applied to image data that has been divided into 8x8 pixel blocks
(here, pixels are single values representing certain colors, rather than separate RGB values).
The DCT values are then “quantized,” or divided by values from a particular quantization
table, called “quantization coefficients” (JPEG Compression, n.d.). The quantization step is
where the “unnecessary” pixel data is discarded during compression. After that, however, the
final encoding step is lossless, since it only involves removing redundant information (JPEG
Compression, n.d.).

For the JPEG steganalysis examples discussed below, the compression stages above
are the most relevant component of the JPEG algorithm. Overall, however, there are five
stages in Baseline JPEG compression. A simplified diagram is provided in Figure 1 to
illustrate this (JPEG Compression, n.d.). These steps are followed in reverse order to decode

and display a JPEG-compressed image.

‘ Raw Image = ‘ Optimize Colors = ‘ Downsample -= | DCT = ‘ Quantize = | Encode -= | JPEG Compressed

Figure 1: Baseline JPEG Compression Stages

Regarding the byte structure of a compressed JPEG image file, the most pertinent
aspects are addressed during discussions of the design of the artifact which is the object of
this study. However, it may be useful to note a few basic elements here. JPEG images contain
special two-byte markers, which mark the beginning of each particular segment of the file.
Each of these markers begins with the value OxFF. Also, there may be several segments

before the segment containing the actual image bytes, such as those providing DCT-specific

13

information and the quantization tables used in the encoding (JPEG, n.d.). Analysis of the
byte organization of a JPEG image file can be relevant to many types of steganalysis

techniques.

JPEG Image Steganalysis: Recent Techniques

Machine Learning

The practice of employing machine learning algorithms and techniques to facilitate
JPEG image steganalysis appears to be the dominant trend in the literature of recent years,
probably due to its evident effectiveness. Often, a study will propose one or more new
techniques to aid in determining the appropriate features to extract from a JPEG image set,
then this data is fed to one or more machine learning classifiers for training and testing, and
finally accuracy analysis. The DCT domain that is part of JPEG compression is a major theme
and an important source of data for the majority of these steganalysis studies. Other common
themes include targeting content-adaptive JPEG steganography, as well as drawing upon

digital image filtering techniques when creating a steganalysis method.

DCT and Machine Learning

A method proposed by Jia-Fa, Xin-Xin, Gang, Wei-Guo, and Na-Na (2016) targets
steganography that uses additive operations on AC coefficients to hide data. In a quantized
8x8 pixel block of a JPEG, there are two types of DCT coefficients that occupy those 64 cells:
one cell is labeled as DC, and the other 63 are labeled as AC. The study by Jia-Fa et al.
exploits the statistical changes in the AC coefficients that show up after steganography has
occurred. Their experiments made use of JPEG images for both the cover and the stego
(hidden) data. The feature vector they employed contained only three data points, and they
used a Fisher linear classifier. It was concluded that their method was simpler and resulted in
a lower false positive rate compared to other existing methods (Jia-Fa et al., 2016).

Nouri and Mansouri (2017) explored a technique that models natural image statistics
using a method called singular value decomposition (SVD). SVD is a type of matrix
decomposition method used in signal processing. The singular values (SVs) are then used to

determine features for classification using an SVM binary classifier. For JPEGs analyzed in

14

this study, these features were extracted from the quantized DCT coefficients (Nouri &
Mansouri, 2017).

Some JPEG images can be doubly compressed, which can cause issues for
steganalyzers. This is addressed in a study by Yang, Kong, and Feng (2018), which attempts
to improve detection performance by reducing the discrepancies between training and testing
sets that occur due to double compression. Also making use of and image’s DCT coefficients,
the authors use a multi-classifier to detect the double compression initially. Through this they
determine what are referred to as quality factors, which help adjust the features used in the
training set that is fed to an SVM. The authors claim that in general, their technique is an
improvement over comparative methods (Yang et al., 2018).

Another technique that analyzes DCT coefficients in a different manner was proposed
by Rabee, Mohamed, and Mahdy (2018). In what is described as a blind steganalysis
technique, the authors measure the differences between DCT coefficients that occur before
and after cropping the image. Essentially the procedure is this: the initial DCT coefficients are
extracted, the image is decompressed, it is cropped by four columns and four rows, it is
recompressed, the new coefficients are extracted, and finally they are compared. This method
uses an SVM classifier, and is tested against five known steganography algorithms. The
authors conclude that their method generally performed better than a comparative method
called Merged Features (Rabee et al., 2018).

Butora and Fridrich (2020) put forth a method called Reverse JPEG Compatibility
Attack, which targets rounding errors in integer values used during the DCT stage of JPEG
compression. The proposed method was compatible with both color and grayscale JPEGs, but
limited to quality factors 99 and 100, which are the two highest compression qualities
available with the JPEG algorithm. The authors used statistical hypothesis testing to initially
evaluate their method, but stated that the best detection would result from the use of
classifiers. Hence, they also used three classifiers and tested against five known
steganography techniques. A notable observation was that the classifiers behaved somewhat
“universally,” in that they seemed to generalize detection to steganography methods they had

not seen (Butora and Fridrich, 2020).

15

Content-adaptive Stego, Image Filters, and Machine Learning

One study by Denemark, Boroumand, and Fridrich (2016) focused on detection of
content-adaptive steganography in JPEGs. Content-adaptive steganography describes a means
of choosing the best locations for embedding hidden data in a cover image, as opposed to
more random methods. Denemark et al. proposed a way to incorporate selection-channel-
aware features into data for classifier training and steganography detection. The idea of a
selection channel refers to the probability of certain cover image locations being changed
during hidden data embedding. For small payloads in particular, the authors concluded that
their method resulted in significant detection improvement (Denemark et al., 2016).

Content-adaptive steganalysis and digital image filtering is combined in a study by
Song et al. (2017). The authors develop a characteristic called a Gabor Rich Feature (GRF),
which they based on two-dimensional Gabor image filtering, where the JPEG is filtered after
being decompressed. The final features are selected based on statistics, including histograms,
and merging of other features. Their technique is tested on three current steganography
methods using an ensemble classifier (multiple decision engines). The proposed GRF was
concluded to improve detection, when compared to other types of features being used in the
field (Song et al., 2017).

Feng, Zhang, Ren, Qian, and Li (2020) devised a special combination of digital image
filtering techniques to compute JPEG image residuals, referring to traces of embedded hidden
data that can be used in steganalysis. The filters used in this case were base filters and cascade
filters, which have special properties in the signal processing domain. The computed residuals
were used to generate features to be fed to an ensemble classifier for analysis. This method
was tested against four known steganography methods, including a well-known one called J-
UNIWARD. Various results were reported, based on particular configurations of the filters
used (Feng et al., 2020).

One final paper that made explicit use of machine learning (in this case, a neural
network) seemed to claim that using DCT data in the initial set up may actually hurt
efficiency, in terms of a neural network analyzer (Boroumand, Mo, & Fridrich, 2019). The
proposed method instead promoted deep learning from end to end, which means useful
features were to be learned by the analyzer instead of being fed to it ahead of time. The

authors developed what they called SRNet, or Steganalysis Residual Network. This technique

16

used grayscale images and targeted the UED-JC and J-UNIWARD embedding techniques.
The authors also claimed that SRNet was the first neural network steganalyzer that did not
require extra that information be given to it initially, considering other work referred to in the

paper (Boroumand et al., 2019).

Non-machine-learning Techniques

Very few examples in recent literature appeared to propose JPEG steganalysis
techniques that did not make use of machine learning as a key component. This lack of
current research in JPEG steganalysis that does not involve large samples for machine
learning is part of the motivation for the software artifact being proposed in the present study.
The following two studies describe recent attempts at this type of JPEG steganalysis.

Rather than detection, a study by Xu, Liu, Gan, and Luo (2018) explored a new
method to aid in the extraction of hidden messages in JPEGs. The authors propose a technique
to recover the stego key, which is a seed value for generating a pseudorandom number in
steganography. The seed leads to a random path being picked for embedding the bits of
hidden data in the DCT coefficients of a JPEG, using the LSB technique. The paper’s
detection method uses hypothesis testing to compare the statistics from different samples of
DCT coefficients, trying to recover the original embedding path and derive the stego key. The
stego key could then theoretically be used to extract the hidden data. The proposed method
was tested against F5 and OutGuess steganography methods and found to perform more
quickly and with less computational complexity, as compared to one other competing
detection method (Xu et al., 2018).

Qiao et al. (2019) proposed an adaptive steganalysis framework for JPEG
steganography, based on a statistical model of quantized DCT coefficients. This framework
also relies on hypothesis testing to detect steganographic data, as opposed to a machine-
learning classifier. For the technique discussed in this study, the authors assume that the stego
data was embedded using LSB replacement in the quantized coefficients. In order for the
proposed framework to have the best performance, high accuracy is necessary concerning
three main factors: the statistical model used, the distribution parameters, and the payload size
estimation. The authors’ evaluation consisted of comparing the performance of their

framework to machine-learning classifiers in two types of scenarios. Tested against non-

17

adaptive embedding methods, the framework performed better than machine-learning
classifiers. However, tested against modern adaptive methods, such as J-UNIWARD, both the
framework and the classifiers were ineffective, especially with small payloads (Qiao et al.,

2019).

Literature Review: Summary

This review has outlined the various efforts in recent research of image steganography
and steganalysis in general, a brief introduction highlighting the essential components of
JPEG compression, and a survey of recent steganalysis research focused specifically on JPEG
images. It was observed that the majority of current JPEG steganalysis techniques involve
some type of machine learning, as well as various JPEG-specific concepts, such as the DCT
domain, content-adaptive steganography, and signal processing techniques such as image
filtering. It was also noted that there is far less current research on JPEG steganalysis without
the use of machine learning, and that the methods that are proposed are limited as to the
steganographic methods they target, as well as the initial assumed conditions. It is clear that
much room exists for further research in the area of JPEG steganalysis without the aid of

machine learning, which is the focus of the present study.

Table 1 lists and categorizes the cited references as they appear in this review:

Category Citation

Recent Efforts in General Image Steganography/Steganalysis

o Steganography Focus Das & Dhara, 2018

Sairam & Boopathybagan, 2019

Subhedar & Mankar, 2018

o Steganalysis Focus Gan et al, 2018

Luo etal., 2016

Malik et al., 2016

Luetal., 2019

JPEG Compression JPEG Compression, n.d.

JPEG, n.d.

JPEG Image Steganalysis: Recent Techniques

e Machine Learning (ML)

o DCT and ML Jia-Fa et al., 2016

18

Nouri & Mansouri, 2017
Yang et al., 2018

Rabee et al., 2018

Butora and Fridrich, 2020

e Content-adaptive Stego, Image Filters, and ML Denemark et al., 2016
Song et al., 2017
Feng et al., 2020
Boroumand et al., 2019

e Non-machine-learning Techniques Xu et al., 2018
Qiao et al., 2019

Table 1: List of Citations in Literature Review

The next chapter describes the methodology used to develop the JRevealPEG artifact,
which was design science. The Python-language architecture of the artifact and its features are
discussed in great detail, and the detection functionality of the program in relation to each of

the target steganography tools is explained thoroughly.

19

CHAPTER 3

THEORY AND ARTIFACT DESIGN

The main objective of this research was to design a software steganalysis artifact that
is able to detect hidden data in JPEG images, targeting a specific group of current, open-
source tools. The artifact should be able to detect the presence of steganography embedded by
the target tools, while at the same time identifying the tool that was used. The overall
methodology employed for this study is design science, referencing the framework explained
by Weiringa (2014).

As stated in the introduction, Weiringa (2014) suggests that the main goal of design
science research can be thought of as a design problem and its related knowledge questions.
The design problem for this study was stated as follows: Improve the area of JPEG
steganalysis by designing a program that detects hidden data in JPEGs embedded by known
tools, in order to help security professionals thwart malicious data-hiding activities.

The related knowledge questions are also restated below:

1. Within the scope of the embedding tools targeted by this study, what level of
accuracy can be achieved by the program in terms of successfully detecting the
presence of steganography in a given JPEG?

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by
the program in terms of successfully identifying which target tool was used to hide
the data?

3. What kinds of obstacles and difficulties were encountered in terms of designing
successful detection methods for the steganographic tools and embedding methods

targeted by this study, and which (if any) of these obstacles were not overcome?

Within design science methodology, the design cycle can be divided into three
categories: problem investigation, treatment design, and treatment validation (Weiringa,

2014). The first two categories are discussed in this chapter in relation to the present study.

20

The third category, treatment validation, is addressed in Chapter 4 along with the discussion

of the results from a single-case mechanism experiment.

Problem Investigation

According to Weiringa (2014), an important part of problem investigation involves
identifying a conceptual framework and key concepts related to the problem. Most of the
background information that would help establish a conceptual framework for the research
problem is discussed in the Introduction and Literature Review. However, the main relevant
concepts can be summarized here.

One of the main higher-level concepts relevant to this project is steganalysis, along
with its sibling term, steganography. Steganography in general is the act of hiding messages
or other data inside of other messages or data, and steganalysis is the detection and/or
recovery of such hidden data. In terms of digital media, stenography can be performed with
text, image, audio, and video. This study focuses on image steganalysis, specifically JPEG
steganalysis. Hence, a good understanding of the JPEG image specification and related terms
(discussed in the Literature Review) is also essential to the research problem.

There have been many steganographic algorithms developed for the JPEG format,
some of which are highly technical and difficult to understand. In response, a variety of
detection techniques have also been proposed that focus either on certain algorithms, or on
universal detection. Instead of delving deeply into several highly technical algorithms or
taking on the burden of developing another universal detection system, the program
developed in this research focuses on a small group of current, open-source software tools that
are freely available for anyone to use. The tools that were chosen for this study are listed in
the next section, and later each is examined and discussed in terms of its steganographic
technique and related program architecture. As will become apparent, an intimate
understanding of these target programs was essential to the successful design of the main

artifact of this study.

Treatment Design
In the context of design science, the term “treatment” can be used to describe “the

interaction between the artifact and the problem context,” which, in this case, refers to the

21

proposed program interacting with JPEG input to detect hidden data (Weiringa, 2014, p. 28).
The resulting architecture of the treatment proposed in this study is meant to address the
determined requirements, and these are based on the design science research goals, as stated
above. For the development environment, the operating system used was Windows 10, and
the programming language was Python 3. The following is a list of the initial feature

requirements for the program, named JRevealPEG:

1. Must run through a command-line interface.
Must provide a menu for the user that lists all commands.
Must be able to take JPEG images of varying sizes and dimensions as input.

Must calculate processing times for each input file.

A

Must provide a detection report (detection positives and negatives with tools
identified, processing times, other relevant data) as output to the screen.
6. Must save reports to log files (text and csv).

7. Must implement user input validation and exception handling.

As is common for a program written in Python, the architecture involves multiple
Python script files. The program makes use of several custom functions and modules, as well
as a handful of standard Python libraries. The design and functionality of each component are
discussed in detail in the following section, including how JPEGs are processed and how
steganography is detected in relation to each of the target software tools.

The software tools targeted by the artifact in this study are Jsteg 0.3.0 as released on
8/16/2018, SteganPEG 1.0 as released on 1/5/2011, and OutGuess 0.2.2 as released on
1/20/2019 (Abhiram, 2011; Champine, 2018; Filho, 2019). This list was developed by first
choosing a group of several candidate programs through a moderately vigorous Internet
search, intended to simulate a selection of tools that would be freely available and appear for
any user to implement. From the initial list, some candidates were eliminated on account of
discovered incompatibilities with the required JPEG format. Others were removed because of
age, compilation problems, other bugs, or limited message-embedding capacity. Through
further analysis, the resulting list of target programs was found to include a promising variety

of complexities, challenges, and steganographic methods that would fit the scope and purpose

22

of this research appropriately. The specific methods employed by these programs are
addressed during the discussion of the JRevealPEG architecture, below.

It is also worthwhile to clarify the scope of JRevealPEG by identifying some notable
functional limitations. First, many existing methods employ machine learning and classifiers
to detect steganography. This program does not use machine learning. Next, the tool does not
endeavor to have the ability to detect hidden data spread across multiple images. Third, visual
image inspection (by a human) is not a factor in hidden data detection, i.e. detection occurs
solely within the software. Finally, the program will not attempt to extract or reassemble the

hidden data, unless this becomes a byproduct of a particular detection algorithm.

JRevealPEG Architecture and Components

In this section, the components and architecture of the artifact of this study,
JRevealPEG, are discussed. At the same time, the steganographic methods and structures of
the three targeted embedding tools are examined in relation to the corresponding detection

techniques developed in the artifact.

Overview of JReveal PEG Structure and Behavior

JRevealPEG is composed of one main module, jrpeg.py, and four other custom
modules used as imports in the main module: coefx.py, jsdec.py, spdec.py, and ogdec.py. The
main module contains the entrance point for the program, which can be executed in a
command window and takes no arguments. Upon execution, a simple menu appears to the
user which allows the choice of entering the path to a single file, entering the path to a folder,

bringing up the help page, or quitting the program (see Figure 2).

Enter a path to a single file for anal L=

Enter a path to a folder to analyze mu ple files
{ Help
(q) Quit

Enter a menu option:

Figure 2: JRevealPEG Main Menu

23

If either analysis option is selected, the main detection sequence will begin for the
chosen input file(s). As each file is analyzed, a report is displayed to the console, which
includes information on the file currently being analyzed, the results of each stage of detection
per target program, and processing times for initial JPEG analysis and the total detection
sequence for that file. The detection sequence begins with the first target program (Jsteg), and
if detection is negative it moves on to the next target (SteganPEG), and if negative again, the
final target will be checked (OutGuess). The assumption is that once an input file tests
positive for steganography by one of the target tools, there is no need to check the other
targets, so the detection sequence will skip to completion for that file as soon as a positive
result is attained. If no positive result is found, there will be a message confirming that status

(see Figures 3 and 4).

pg. This could take several seconds...

ted for file 1

*Ex¥*Einal p - OutGues
ed top lar

ns) not possible for file 1,
phy p s detected for file

Total detection and processing time for file 1, stego sam

Analysis is complete. Log file is jrpegl «t, and metrics are

Figure 3: Sample Output — No Positive Result

24

acting initial byte array from file 1,

Initial JPEG pro

cted for file

ctio

Figure 4: Sample Output — One Positive Result

JRevealPEG also has a logging function which automatically saves the detection
sequence report to a text file. In addition, a CSV file is created that contains a list of all JPEG
files analyzed, their sizes and dimensions, positive and negative test results, and both types of

processing time (see Figure 5).

I A B 2 D E F G H |

| 1 :File ‘Size .Heigh-t ‘Width .Jsteg .SteganPEG OutGuess CoeffTime OverallTime

| 2 |jsGoldHost.jpg 485007 3300 3300 TRUE FALSE FALSE 4.58 6.22
|3 |ogGoldHost.jog 488385 3300 3300 FALSE FALSE TRUE 4.84 12.18
! < _spGGIdHGSTJpg 796987 3300 3300 FALSE TRUE FALSE 6.98 10.15

Figure 5: Sample CSV file

The other four modules are imported into jrpeg.py and are responsible for the JPEG
processing and detection algorithms that occur during the main detection sequence. The
coefx.py module performs a partial decompression of the JPEG file and returns the relevant
bytes for steganography detection. The modules jsdec.py, spdec.py, and ogdec.py each
perform a customized detection algorithm targeting the steganography programs Jsteg,
SteganPEG, and OutGuess, respectively. All five modules are discussed in more detail below,

along with relevant analyses of the three target steganography tools.

The Main Module: jrpeg.py
Since all of the costly processing is done by the custom external modules, the main
module of JRevealPEG is fairly lightweight. The two most important features of jrpeg.py are

its ability to coordinate the requisite files to be analyzed, and to populate and save the log

25

files. Along with the four custom modules mentioned above, jrpeg.py imports the standard
Python time and os modules for timestamping and filesystem manipulation purposes.

In order to facilitate a specific kind of logging capability, a custom class called Logger
was created to save the two types of analysis reports mentioned above, in this case a text file
and a CSV file. Logger contains a method called lprint(), which is used to simultaneously

print to the screen and save to the log text file (see Figure 6).

def lprint(self, line):
print{line)
self.logFile.write(line + "\n™)

Figure 6: Method Logger.lprint() from jrpeg.py

The detection sequence is handled and directed by the function analyze() (see Figure
7). This function is set up to handle a list of one or more input files, depending on what has
been selected by the user beforehand. Exception handling is incorporated throughout the
detection sequence, the steps of which are as follows:
1. Save the starting time.
2. If the list is not empty, process the next input file using coefx.py.
a. Else, go to Step 11 to end analysis.
3. Ifno errors, save the JPEG processing time for current file.
a. Else, go to Step 1 for next input file.
4. Initialize all detection results to false.
5. Using jsdec.py, apply Jsteg detection algorithm to processed JPEG data.
6. If Jsteg result is false, apply SteganPEG detection algorithm using spdec.py.
a. Else, update result message, go to Step 8 to complete sequence for file.
7. 1If SteganPEG result is false, apply OutGuess detection algorithm using ogdec.py.
a. Else, update result message, go to Step 8 to complete sequence for file.
8. Save the total processing time for current file.
9. Update user on final result and write stats to CSV file.
10. Go to Step 1 for next input file.
11. Display completion message and names of log and CSV files.

12. Close log text and CSV files.

26

def analyze(srcFiles, log):

log.lprint("Number of files to be analyzed: " + str(len(srcFiles)))

count = @

for f in srcFiles:
count += 1

log.lprint("\nExtracting initial byte array from file " + str(count) + ", " + f + ". This could take several seconds...”
startTime = time.perf_counter()

try:
coeffs, y, x = coefx.extract(f)
if (coeffs == Nene):
log.lprint("\tNo scan data! May be bad file type.™)
continue
except FileNotFoundError:
log.lprint("Error: File not found! : " + f)
continue
except Exception as inst:

log.lprint("Error: File might not be an accepted type of JPEG (baseline, 4:2:8 (2x2) subsampling) : " + f)
m,n = inst.args
log.lprint("\t" + m + " " + n)

continue

jpgProcTime = time.perf_counter() - startTime
log.lprint("\nInitial JPEG processing time: {:.2f} seconds”.format(jpgProcTime))

Figure 7: Beginning of function analyze() from jrpeg.py

Custom JPEG Processing: coefx.py

JRevealPEG employs custom steganography detection algorithms which have been
tailored specifically for the three target programs of this study: Jsteg, SteganPEG, and
OutGuess. However, before those algorithms can be applied to a JPEG, a very particular set
of data must be decoded and extracted from the image file. Each of the steganography
programs used in this study employs the least-significant-bit (LSB) substitution technique
referenced in the Literature Review, which means the data to be hidden has to be placed into
the image data affer the lossy compression stages (DCT and quantization), but before the
lossless compression step, namely the Huffman coding process (briefly explained below).
Therefore, each JPEG only needs to be partially decompressed to the pre-Huffman coding
state, the bytes of which contain the modified bits representing the hidden data, if any.

Several Python libraries exist that perform various types of JPEG manipulation,
however it was found that most of the operations provided by these modules were not
granular enough to be useful in this case. Only fully-decompressed JPEG data was normally
available using the provided extraction functions. One recently-developed Python script was
found, though, that could potentially aid in the necessary partial decompression, but it would
need to be adapted and modified. The Baseline JPEG Decoder by Khalid (2019) is an

experimental JPEG decoder written in Python as a single script, and as such several of its

27

functions exhibited promising granularity and became the basis of the coefx.py module in
JReveal PEG.

The main purpose of the coefx.py module is to retrieve a JPEG’s pre-Huffman image
scan data, also known as the quantized DCT coefficients, for steganalysis. There were three
main modifications/additions that needed to be made when adapting the Baseline JPEG
Decoder for this purpose. The nature of each modification is introduced initially, then they are
discussed in conjunction with code examples.

First, it turns out that Khalid’s decoder (2019) only decompresses and displays
Baseline JPEGs with no chroma subsampling, which is a method of saving space when
encoding images by reducing the resolution of the color components, since humans do not
notice differences in color as well as they do differences in luminance, or brightness (Chroma
subsampling, n.d.). By contrast, two out of the three target steganography tools (Jsteg and
OutGuess) only output JPEGs with what is known as 4:2:0, or 2x2 subsampling, which is
common. Therefore, one necessary modification made for coefx.py was to ensure
compatibility with 2x2 subsampling.

Another discovery, related to JPEG file segment markers, prompted the need for a
second modification. It was mentioned in the Literature Review that JPEG files have varying
types of segments delineated by special two-byte markers, each beginning with OxFF. During
decompression, it is necessary to recognize several of these markers in order to extract and
use essential decoding parameters and tables. One of the most pertinent of these markers
defines the quantization tables (DQT) and is made up of the bytes OxFFDB; another defines
the Huffman tables (DHT) and is 0xFFC4. For nearly all the color JPEGs with three
components (Y, Cb, and Cr, for one luminance and two chrominance components) seen in this
research, two quantization tables and four Huffman tables exist, each table having its own
copy of the appropriate marker. However, it was observed that the JPEGs processed by the
Jsteg tool only have one marker for each group of tables. Since Khalid’s decoder (2019)
cannot process the type of marker organization used by Jsteg, this capability was included in
the code of coefx.py in relation to the DQT and DHT markers. Using 010 Editor, one can
easily see the difference between the two types of marker organization from each kind of

JPEG (see Figure 8).

28

struct JPGFILE jpafile struct JPGFILE jpafile

enum M_ID S01Marker M5S0/ enum M_ID Narker M_SO1 (FFD8h)
sin)QT dg struct APPO appd
enum M_ID marker M_D Bh) struct DQT dgt{0]

enum M_ID K {_DQT (FFDBh)

M_EOI (FFDgh)

M_DHT (FFC4h)
31

struct Huffmann_Table huff_tabie

Figure 8: One marker per group (left) vs. one marker per table (right)

The third necessary modification has to do with extracting the partially-decompressed
image data, as opposed to the fully-decompressed image pixels. Specifically, the data bytes
right before the Huffman coding stage of JPEG compression were needed, since that is where
LSB steganography occurs. Huffman coding is an algorithm that performs lossless
compression of data by eliminating redundancies, thereby saving space without losing
information. Huffman-encoded data can be most easily understood as a binary tree data
structure, however implementing the decoding algorithm can be a bit more complicated.
Fortunately, Khalid’s decoder (2019) already implements Huffman decoding in Python, but
even so, it is woven continuously into full JPEG decompression. It was necessary to add code
that extracts the pre-Huffman bytes before they are allowed to be fully decompressed.

The module coefx.py retains enough of Khalid’s code (2019) to facilitate the first
stage of decompression, without needing to fully decompress and display the JPEG. The
modifications mentioned above are incorporated into existing and new functions, and the

bytes needed for steganography detection are exported. Regarding the first modification, that

29

which accommodates 2x2 chroma subsampling, the key was learning that the data bytes for
the image components (Y, Cb, and Cr) are stored in a specific manner that differs from other
subsampling specifications. Every luminance and two chrominance components (brightness
and color) is represented as an 8x8 grid of pixel values; these three channels combine to form
the full color image. Normally, each of these 8x8 combinations is a minimum coded unit
(MCU). Each MCU is converted to a linear array of bytes. These arrays are stored
sequentially from left to right and top to bottom as found in the displayed grid of a two-
dimensional image. This results in an image component storage pattern of (YCbCr)(YCbCr)-
etc. However, with 2x2 subsampling, the color components are sampled less often and
averaged. Specifically, the MCU is 16x16 instead of 8x8, where the storage pattern is
(YYYYCbCr)(YYYYCbCr)-etc. The existing method JPEG.StartOfScan() was heavily
modified to account for this, as shown in Figure 9. A nested for loop iterates through an image
grid, accounting for a 16x16 pixel MCU and the component pattern YYY Y CbCr. The method
BuildMatrix() is discussed below. Note that unconventional capitalizations were retained from

preexisting code.

def StartOfScan(self, data, hdrlen):
data, lenchunk = RemoveFF@@8{data[hdrlen:])

data.append(8)

st = Stream{data)
oldlumdccoeff, oldCbdccoeff, oldCrdccoeff =&, @, @

meulist = []

for y in range(self.extHeight // 16):
for x in range(self.extWidth // 16):

for i in range(4):
cBlock, oldlumdccoeff = self.BuildMatrix(
st, 8, self.quant[self.quantMapping[8]], oldlumdccoeff

)
mculist.append(cBlock)

cBlock, oldCbdccoeff = self.BuildMatrix(
st, 1, self.quant[self.quantMapping[1]], oldCbdccoeff

)
mculist.append({cBlock)

cBlock, oldCrdccoeff = self.BuildMatrix(
st, 1, self.quant[self.quantMapping[2]], oldCrdccoeff

)
mculist.append(cBlock)

return mculist

Figure 9: JPEG.StartOfScan

30

In order to fix the problem related to JPEG segment markers, coefx.py needed the
ability to scan both styles of DQT and DHT marker organization, as mentioned above.
Essentially, code was added to check the length of the data chunk after each marker, and this
was used to determine the appropriate scanning algorithm for that segment. For the DQT case,
a few lines of code were added to JPEG.decode() (see Figure 10). It turns out that the
quantization tables were not essential to the functionality of the final artifact, but the code that
handles this was retained as it may become useful in future work. As there are four Huffman
tables to scan, the code that handles the DHT marker was more complex and seemed best as a

new method, JPEG.checkHtStructType() (see Figure 11).

if marker == OxFFDB: ;
chunkl = chunk[:65]
self.DefineQuantizationTables(chunkl)

if (len_chunk > 69):
chunk2 = chunk[65:130]
self.DefineQuantizationTables({chunk2)

Figure 10: DQT marker scanning in JPEG.decode() from coefx.py

def checkHtStructType(self, len chunk, data):

tablelengths = data[5:21]

valSum = @

for val in tablelengths:
valSum += val

if ((len_chunk - 8x13) == valSum):
len_chunk += 2
chunk = data[4:1len_chunk]
self.decodeHuffman(chunk)
return len_chunk, chunk, data

else:

tablelengths = data[5:21]
len_chunk = valSum + Bx13 + 2
chunk = data[4:1len_chunk]
self.decodeHuffman(chunk)
data = data[len_chunk:]
for i in range(3):
tablelengths = data[1:17]
valSum = 8
for val in tablelengths:
valSum += wal
len chunk = valSum + Bx13 - 2
chunk = data[:len_chunk]
self.decodeHuffman(chunk)
data = data[len chunk:]
return len_chunk, chunk, data

Figure 11: JPEG.checkHtStructType from coefx.py

31

In order to achieve the final goal of pre-Huffman MCU extraction, it was necessary to
identify that exact point of partial decompression in the original decoder, somewhere in the
middle of the full decompression algorithm. Analysis showed that this occurred in the existing
method JPEG.BuildMatrix(). Originally, JPEG.BuildMatrix() returned a fully-decompressed
MCU component which went on to become part of the image display. For the purposes of the
present artifact, the method was altered to stop decompression as soon as the pre-Huffman
values are retrieved for a given component, and the MCU component block is returned as a

one-dimensional list (see Figure 12).

def BuildMatrix(self, st, idx, quant, olddccoeff):
cBlock = [8] = &4
code = self.huffman_tables[8 + idx].GetCode(st)
bits = st.GetBitN(code)

dccoeff = Decodelumber(code, bits) + olddccoeff

cBlock[8] = dccoeff

1 =3

while 1 < 64
code = self.huffman_tables[16 + idx].GetCode(st)
if code == B:

break

if code > 15:

1 += code »> 4

code = code & @x0OF
bits = st.GetBitN{code)

if 1 < 64:
coeff = Decodelumber({code, bits)

cBlock[1l] = coeff
1+=1

return cBlock, dccoeff

Figure 12: JPEG.BuildMatrix() from coefx.py

One last limitation of Khalid’s original program (2019) should be mentioned, which

was addressed in coefx.py. In the original decoder, only JPEGs with height and width

32

dimensions that are evenly divisible by eight could be decoded. The coefx.py module has the
ability to decode JPEGs of any height and width dimensions. This problem was solved by
simply rounding each dimension to the next higher multiple of sixteen, if not already
divisible, which accounts for how irregularly-sized JPEGs are compressed. This dimension
divisibility issue also has specific ramifications involving OutGuess in particular.

Finally, the main module of the artifact makes use of coefx.py by calling the
entrypoint function extract() during the detection sequence. Note that along with a list of lists
containing the MCU data, the height and width of the image is returned to the caller. These

values become useful later in the detection sequence.

Jsteg and jsdec.py

Once the collection of pre-Huffman coefficients (the MCUs) is successfully extracted
from a JPEG file using coefX.py, it can be passed to the first detection algorithm of the
sequence, encapsulated by the module jsdec.py. The steganography tool targeted by jsdec.py
is Jsteg, and this was chosen to be first in the detection sequence because the detection
algorithm is the quickest and least complex of the three. First the relevant features and
behavior of Jsteg itself are discussed, followed by an explanation of the jsdec.py detection
module.

Jsteg (Champine, 2018) is written in the Go programming language, an object-oriented
language invented by Google with C-like syntax (Go (programming language), n.d.). The
program contains several modules and runs with a command-line interface. Jsteg uses the
LSB substitution method for its steganography, as do the other two tools targeted in this
study. Code tracing revealed which bytes are used to hide data, and which bytes are avoided.
For all the target tools, it is essential to JRevealPEG’s detection strategy to understand exactly
which bytes are used for embedding.

In Jsteg’s case, the program only hides data in the LSBs of Y-component bytes of an
image’s MCUs. There is further filtering inside each component as well. Recall that each
MCU component can be thought of as an 8x8 grid of values. Through mathematical
transformations, these values determine what is eventually displayed on a screen for each 8x8
section of an image’s pixels. The upper left value in an 8x8 grid has the biggest impact on the

image, and it is referred to as the DC coefficient. The other 63 values are called AC

33

coefficients (JPEG, n.d.). It is in the LSBs of the AC coefficients that Jsteg hides data, also
noting that any byte values of -1, 0, and 1 are skipped (Champine, 2018).

Since any useful steganography program needs to be able to retrieve the data it hides,
it has to have some method of identifying that data when it is time for extraction. Some tools
require or at least have the option of using a password, which is specially encoded along with
the hidden message; often the length of the message is embedded as well. The tool can then
check for that password when asked to decode the message, failing if not matched. Jsteg does
not require or have an option for a password, however it does use its own internal “magic”
key, in this case the string “jsteg” (Champine, 2018). Analysis shows that the ASCII values of
the characters of “jsteg” are prepended as the first five bytes of the hidden message, the bits of
each byte stored in the order of least to most significant.

Given the knowledge of which bytes are used by Jsteg for steganography, as well as
how the internal key is stored, the detection strategy to employ in the jsdec.py module became
fairly straightforward:

1. Extract the first 40 eligible LSBs from the MCU list, Y components only.
2. Compare those bits to the “jsteg” key bits.
a. If the bits match, return True.
b. Else, return False.
Initially, jsdec.py uses the function filterMCUSs() to retain only the Jsteg-eligible bytes for
analysis, based on the tool’s behavior as discussed above (see Figure 13). All Cb and Cr

components and DC’s are ignored, and all values of -1, 0, and 1 are filtered out.

def filterMCUs(coeffs):

res =[]

count = 1

for ¢ in coeffs:

if ((count + 1) ¥ 6 == @ or count ¥ 6 == @):

count += 1
continue
e[1:]
list(filter((-1)._ne , c))
list(filter({8)._ne , c))
list(filter((8.8)._ne , c))
c = list(filter((1).__ne_ , c))
res.extend(c)
count += 1

moAnonN

return res

Figure 13: Function filterMCUs from jsdec.py

34

Next, the function magic() collects the LSBs from the first 40 bytes in the filtered list and
compares them to the “jsteg” ASCII bits, which are hardcoded in an array in the appropriate
order (see Figure 14). If all the bits match, magic() returns a positive (true) detection result,

and this result is passed back to the main module.

jstegkey = |

]

def magic(coeffs, key):
bithum = @
for i in range(5):
temp = []
for j in range(8):
temp.append(coeffs[bitNum]%2)
bitHum += 1
if (temp != key[i]):
return False
return True

Figure 14: Jsteg signature detection in function magic() from jsdec.py

SteganPEG and spdec.py

If jsdec.py returns a negative result and Jsteg is not detected, the main detection
sequence passes the JPEG data to spdec.py, which contains the detection algorithm that
targets SteganPEG. This was chosen as the second target in the sequence because it has a
fairly concrete signature, but the detection strategy is more complex than for Jsteg. Also, it
makes sense for the third position to go to OutGuess, as it has the vaguest signature and its
detection algorithm should only be triggered if the first two come back negative.

SteganPEG (Abhiram, 2011) is written in Visual Basic and runs through a graphical
user interface, rather than the command line. The program’s steganography procedure is quite
a bit more complex than Jsteg, as it not only requires a password, but compresses and
encrypts the data before hiding it. Like both Jsteg and OutGuess, SteganPEG does use LSB
substitution to store the final data bits, however it does this in a slightly different manner than

the other two tools. Additionally, and unlike Jsteg and OutGuess, SteganPEG preserves the

35

subsampling ratio of the original cover image. However, for the best overall compatibility and
proof-of-concept purposes, it was decided that JRevealPEG will only process 2x2 subsampled
JPEGs in its initial incarnation.

To prepare for encryption, SteganPEG applies a special encoding function to the
password received from the user that transforms it into an array of integers. This password
array is used to pseudo-randomly determine how each byte of data will be encrypted, via a bit
rotation sequence. Also, two special values are concatenated with the compressed message
data. First, a checksum is generated by a function involving the bytes of message data and
appended to the data. Then, the length of the message data is prepended to the message data
as four header bytes. The final result is then encrypted using the rotation sequence mentioned
above (Abhiram, 2011).

As for which LSBs are modified during embedding, SteganPEG considers all MCU
components fair game (both luminance and chrominance), but it does skip the DC coefficients
and zero-value bytes. One last critical realization yielded by analysis was that the bit values of
the message data get flipped when embedded in negative bytes. In other words, when
decoding the message, negative odd and positive even bytes yield Os, and the others yield 1s.

The detection strategy employed in the spdec.py module needed to consider all the
mentioned complexities in SteganPEG’s algorithm except the compression of the message
data, since full message extraction is not a goal in this study. Also, since SteganPEG requires
a password, it was decided this first version of the detector would assume the password is
from a known list; a fully-blind, brute-force version might be a possibility for future work and
is addressed in the Conclusion chapter.

Because there were several layers of complexity that needed to be reversed in order to
identify a possible SteganPEG signature, much of the detection code in spdec.py was the
result of isolating and adapting key routines from the original Visual Basic source code, and
replicating and modifying it in Python. The overall detection strategy in spdec.py can be
summarized as follows:

1. Extract the eligible bytes that could contain embedded data from the MCU list.
2. Encode a list of known passwords for use in decrypting data bytes.
3. For each known password (until finished or positive result):

a. Decrypt the data length header (four bytes).

36

b. Check length against number of available bytes. If too large, go to next
password.
Decrypt the rest of the data and retrieve stored checksum (one byte).
d. Calculate fresh checksum using decrypted data bytes.
e. Compare checksums.
1. If checksums are equal, return True.
ii. Else, go to next password.
4. Return False.
Extracting the eligible cover bytes in spdec.py means first filtering the MCUs
according to SteganPEG’s specifications, detailed above. Then, a function called dataBytes()
reconstitutes the hidden bytes from the LSBs, tailoring itself to SteganPEG’s embedding

system (see Figure 15).

def dataBytes(blist):
byteProcd = 6
res = []
count = 1
for b in blist:
bit = b % 2
if (b < 8):
bit = (~bit) & 1 #
byteProcd = (byteProcd << 1) + bit
if (count == 8):
res.append(byteProcd)
byteProcd = @
count = 8@
count += 1

return res

Figure 15: Function dataBytes() from spdec.py

The function encodePass() is essentially a Python transcription of SteganPEG’s
original routine. This is used in spdec.py to generate a list of known, encoded passwords that
will be needed to attempt decryption. As an initial proof of concept, the known list of
passwords used in this iteration of the artifact is the top 20 most common passwords used in
2020, according to NordPass (List of the most common passwords, n.d.).

Next, each of the encoded passwords is used as a decryption key when trying to

identify data as having been processed by SteganPEG. Adapted from the Visual Basic source

37

code, the function decryptData() takes as arguments a list of bytes to decrypt (byteList), a
decryption key (passStore), and a special index number (rotChosen). Part of this decryption

process also involves a bit rotation function called rotateLeft() (see Figure 16).

def rotateleft(val):
msb = wal »»> 7
newVal = wval << 1
val = newVal & BxFF
val = val | msb
return val

def decryptData(bytelist, passStore, rotChosen):
i=29
result = []
while (i < len(bytelist)):
val = bytelist[i]
if (rotChosen == len(passStore)):
rotChosen = 8
for j in range(@,passStore[rotChosen]):
val = rotateleft(val)
rotChosen += 1
result.append(wval)
i+=1

return result

Figure 16: Main decryption code from spdec.py

Since SteganPEG prepends the hidden data with four bytes that store the data length,
those four bytes are decrypted first and the length value is compared with the total number of
available possible bytes. If the decrypted length value is greater than the number of available
bytes, it can be concluded that a match does not exist for SteganPEG using the current
password and analysis should move to the next password. The section of code in spdec.py that

handles this task is part of the entrypoint function detect() (see Figure 17).

header = decryptData(blist[:4], passStores[i], @)
datalen = @
for b in header:

datalen <<= 8

datalen = datalen | b

if (datalen > (len(blList) - 4)):
msgs += "Data length too big, negative match...\n"
continue

38

Figure 17: Checking data length in function detect() from spdec.py

If the data length does not disqualify the sample, the rest of the data is decrypted and
the last byte of the data is popped from the list, assumed to be the stored checksum. Finally,
the function calcChecksum(), another routine adapted from the original source code,
calculates a fresh checksum using the decrypted data (see Figure 18). Then, the last task in the
detect() function is to compare both checksum values, returning true if they are equal. If no
positive match is found, the detector will continue until all known passwords have been

checked (see Figure 19).

def calcChecksum(data):
checksum = 8
sum = 8
val = @
for i1 in range(len(data)):
val = (val << 1) | (data[i] & 1)
if (i % 7 == 0):
sum += val
val = @
if (val != 8):
sum += val
val = @
for j in range(8):
checksum = (checksum << 1) | (sum & 1)
sum »»= 1

return checksum

Figure 18: Checksum calculation routine from spdec.py

decData = decryptData(blList2, passStores[i], rot)
checksuml = decData.pop()

checksum? = calcChecksum(decData)
if (checksuml == checksum2):
msgs += "Positive match!\n”
return True, msgs
msgs += "Negative match...\n"

return False, msgs

Figure 19: Comparing checksums in function detect() from spdec.py

39

OutGuess and ogdec.py

A negative result from both jsdec.py and spdec.py triggers the final detection module,
ogdec.py, written to detect OutGuess. The algorithm used by OutGuess introduces
complexities not found in either Jsteg or SteganPEG, and the program leaves only a minimal
type of signature that makes it difficult to say conclusively that it has modified a JPEG,
although in some cases it can be eliminated as a possibility. Based on these observations, it is
shown below that the ogdec.py module uses two special values to implement a type of
heuristic detection strategy for OutGuess.

OutGuess (Filho, 2019) is written in the C language and the source code makes use of
many main component files and JPEG library modules, some of which are altered with
custom code. It is a command-line tool that only runs on Linux systems. The program allows
for an optional password, or it uses a default key value if one is not supplied. In addition,
OutGuess implements its own ARC4 pseudorandom number generator which it uses for both
encryption and for an iterator that chooses the bytes it uses for hiding data. ARC4 is a stream
cipher that “generates a pseudorandom stream of bits” (RC4, n.d.). In order to be able to
select these pseudorandom locations for steganography, a “bitmap” structure is created that
extracts the eligible bytes from the cover image and stores them in an array. Statistical foiling
options are also available, but they have minimal relevance to the detection methods in this
study and are not considered here.

OutGuess uses two different ARC4 pseudorandom number streams in its algorithm.
One is used as the iterator that chooses which cover bytes will contain the hidden message
bits, and the other is used to encrypt the data by doing an XOR operation with the message
bytes. The password for a given encoding session is used to initialize both of these streams,
ensuring that OutGuess can find and decrypt the correct message during retrieval if the same
password is supplied. It is also essential to note that before encryption, a special header is
prepended to the main message data that contains the length of the message data, as well as a
“seed” number that is used to reseed the iterator for when the main body of the message is
retrieved. This prepending of information is reminiscent of both Jsteg’s and SteganPEG’s
algorithms, and those two “signature” values play a key role in JRevealPEG’s detection

strategy for OutGuess.

40

It was explained above how OutGuess selects cover bytes from the bitmap structure,
as well as how the data is encrypted. However, it is also essential to understand how the
bitmap itself is constructed, specifically which MCU bytes are selected and in what order.
Careful analysis of the source code shows that OutGuess makes use of all components (Y, Cb,
and Cr), including all coefficients, DC and AC. The values 0 and 1 are avoided. In addition,
three crucial points are observed. First, note that each 8x8 MCU block returned by coefx.py is
represented as a one-dimensional list in so-called “zigzag™ order, as opposed to natural order
(see Figure 20), which agrees with the JPEG standard (JPEG, n.d.). This is not an issue when
it comes to Jsteg and SteganPEG analysis, as the data in both of those programs is handled in
zigzag ordering. However, the bitmap structure in OutGuess stores the selected MCU bytes in

natural ordering.

0 [1 (2 [3 [4]5]6 |7 041 [53F6 L1415 [27128
g [o J1of11]12]13]14]15 2 1417 |43 16| 26 (20] 42
16171819 20] 212223 3 12 [a7 | 25]30 [41] 48
242502627 28] 203031 o 31 |38 | 247 31| 467 447 53
203334 [35]36]37[38]30 1] 9] 237 37| 397 457 57| s4
404174214344 4546 47 2| 227] 337] 3870 461 51| 5357 60
484035051 352]53]54](55 27 347 371 477 5071 567 597 61
563758 [359]60]61]62]63 351-367| 487149 | 57-58] 62163
Natural Ordering Zigzag Ordering

Figure 20: MCU Block — Natural vs Zigzag Ordering

The second critical point has to do with JPEGs that have visual dimensions not evenly
divisible by 16. Recall that for these irregularly-sized JPEGs, the MCUs are padded so that
the stored version of the image is indeed divisible by 16, even though this padding is
discarded when the image is displayed. When OutGuess builds its steganography bitmap, the
padding bytes are not included. This is an important consideration for the detection algorithm,
which needs to rebuild this bitmap. Finally, the third crucial point to note is that OutGuess’s
embedding method results in even-valued bytes that decode to 0-bits, while odd values
decode to 1-bits.

The ogdec.py module relies on byte analysis combined with special heuristics to

determine if a JPEG could possibly contain OutGuess steganography, or if it can be

41

disqualified as a candidate. The decision to limit detection to only a “possible” positive was
based on the analysis described above, in which the signature identified was not necessarily a
conclusive fingerprint of OutGuess, but more of an indication of likelihood. Also, for proof-
of-concept purposes, it is assumed that default settings were used for the steganography,
including the default password. The overall detection strategy of ogdec.py can be described

by the following steps:

1. Construct OutGuess-style bitmap list from JPEG MCUs (coefx.py output):
a. Put the coefficients in natural order.
b. Trim edge padding if necessary.
c. Filter out 1’s and 0’s.
d. Extract and save list of LSBs.
2. Extract seed value and data length from bitmap.
a. Use precalculated iterator and encryption key values.
b. Assume default password: “Default key”.
3. Run heuristic checks:
a. If data length is larger than half the size of the bitmap list, return False.
b. If seed value is greater than 255, return False.
4. If both heuristic checks pass, return True (OutGuess possible).
The initial task of constructing an OutGuess-style bitmap list must be exact and is the
most involved process in ogdec.py, containing several subtasks. The first subtask of
converting the MCU blocks from zigzag to natural ordering occurs in dezig(), a fairly

straightforward function that re-maps the indexes of each block (see Figure 21).

42

def dezig(coeffs):
natOrder'= [0, 1, 8, 16, 9, 2, 3, 18,
Ty P T B T8 A Tl
12, 19, 26, 33, 48, 48, 41, 34,
27, 28, 13, 6, 7, 14, 21, 28,
35, 42, 49, S6, 57, 5@, 43, 36,
29, 22, 15, 23, 3@, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 68, 61, S4, 47, 55, 62, 63]
dezigged = []
for ¢ in coeffs:
output = [B] * 64
for i in range(64):
output[natOrder[i]] = int(c[i])
dezigged.append{output)
return dezigged

Figure 21: Function dezig() from ogdec.py

The second subtask of bitmap construction is to remove any padding bytes that may be
present in the MCU blocks of the right and bottom edges of the image matrix. For the JPEGs
accepted by the detector, this routine only needs to occur if either the height or the width
dimension is not divisible by 16. In ogdec.py, this process occurs in two functions:
calcEdges() and trimEdges(). First, the function calcEdges() determines the indexes of the
MCUs on the right and/or bottom edge, whichever has indivisible dimensions (modulo 16). A
list of lists containing these indexes is returned for use in trimEdges() (see Figure 22). Second,
the function trimEdges() must remove the padding bytes from the MCUs identified by
calcEdges(). It was determined through testing that removing only the extra bytes in the
appropriate Y components was sufficient in this case. However, the Cb and Cr components
may need to be considered in future iterations of the artifact. An example of how trimEdges()
calculates and removes the appropriate coefficients is shown in Figure 23. For a more in-
depth understanding of how the Y components in 2x2 subsampling are mapped to a JPEG’s

pixel display, Hass (2018) provides an excellent explanation.

41 def calcEdges(y, x):

44 if (x % 16 = @):

xEdge = x // 16 - 1
else:

xEdge = x // 16

if (y % 16 == 8):
yEdge =y // 16 - 1
51 else:
yEdge =y // 16

rSide = []
rStart = xEdge
rStep = xEdge + 1
rStop = rStep * yEdge
if (x % 16 1= 8):
for i in range(rStart, rStop, rStep):
rSide.append(1i)

bSide = []

bStart = (xEdge + 1) * yEdge
bStop = bStart + xEdge

[if (v % 16 1= 8):

53 for i in range(bStart, bStop):
78 bSide.append(i)

brCorner = [bStart + rStart]
incomps = [rSide, bSide, brCorner]

return incomps

Figure 22: Function calcEdges() from ogdec.py

xRem = x % 16
if (xRem != 8):
if (xRem <= 8):
28 off =8
91 pSave = xRem
92 br¥l = brY3 = False

3 else:
off =1
5 pSave = xRem - 8
98 leftkeep = []

for row in range(8®, 57, 8):
for col in range(row, pSave + row):
leftKeep.append(col)

for mcu in incomps[8]:
ylistA = []
ylistB = []

for c in range(len(mculist[mcu®*6 + off])):
if (c in leftKeep):
ylistA. append(mculist[mcu®*6 + off][c])
mculist[mcu®*6 + off] = ylistA

113 for ¢ in range(len(mculist[mcu®*s + off + 2])):

114 if (c in leftKeep):

5 ylistB.append(mculist[mcu®*6 + off + 2][c])
116 mculist[mcu®*6 + off + 2] = ylistB

Figure 23: Excerpt of function trimEdges() from ogdec.py

43

44

The last two subtasks of bitmap construction in ogdec.py are much more lightweight
than the first two. The 1s and Os are filtered from the byte collection in much the same way as
in previous modules. The final bitmap list is then populated with the LSBs from the remaining
bytes by the bitmap() function, which decodes Os from even bytes and 1s from odd bytes.

Once the bitmap list has been prepared, ogdec.py looks for special header values (two
bytes each) that would have been embedded with the message data if the sample was indeed
processed by OutGuess. These values include a “seed” number used in OutGuess’s algorithm,
and the length of the embedded message data. For the purposes of this study, it is assumed
that only default options were used in any OutGuess-modified JPEGs. This includes a default
password, which OutGuess sets to be “Default key”.

The password is used to initialize both the iterator that chooses the sequence of cover
bytes used, and the encryption key values. Fortunately, since it is assumed every sample only
uses the default password, it was not necessary try to adapt to Python all the C routines from
the source code that would replicate these values dynamically. Instead, the needed numbers
were extracted while executing a session of OutGuess through a debugger, and they have been
hardcoded in ogdec.py. The function extractHeaderInfo() first uses the 32 saved iterator
values to find the correct bits in the bitmap list, which are then used to assemble the four
supposed header bytes. The header bytes are each decrypted by an XOR operation with the
saved encryption key values. The first two header bytes become the seed value, and the last

two bytes become the data length, and these are returned for the next step (see Figure 24).

45

def extractHeaderInfo(data):

iterator = [29, 58, 78, 71, 86, 93, 125, 148,
167, 172, 194, 289, 233, 238, 264, 294,
308, 313, 326, 336, 362, 388, 462, 413,
426, 452, 463, 495, 503, 512, 528, 526]
arcdkey = [8x3f, @x5e, @xd7, Oxlc]
encBytes = []
for i in range(7,32,8):
byte = @
off =7
for j in range(i,i-8,-1):
byte += data[iterator[j]] << off

off =1
encBytes.append(byte)

hdr = []
for i in range(4):
hdr.append(encBytes[i] * arcdkey[i])

seed = (hdr[1] << 8) + hdr[8]
datalen = (hdr[3] << 8) + hdr[2]

return seed, datalen

Figure 24: Function extractHeaderInfo() from ogdec.py

The final task in the ogdec.py detection process is to perform two heuristic tests in
order to decide whether or not to disqualify the sample as OutGuess. If it is not disqualified
the detector will report the sample as a possible, but not conclusive match for the tool. These
tests occur at the end of the detect() function in ogdec.py (see Figure 25). The first test checks
the calculated data length. Analysis of Outguess shows that it does not embed a message that
is more than half the size of the bitmap list. Therefore, if the data length calculated by the
detector is larger than this value, it can rule out OutGuess for the sample and return False. If
the first test is passed, the seed value is checked to see if it is larger than 255, which is the
limit observed through OutGuess code analysis. If the seed is larger than the limit, the
detector can rule out OutGuess for the sample and return False. If these tests do not eliminate
OutGuess as a possibility, the detector concludes that it is a possibility, assuming default

options were used.

46

if (datalen » len(bmap) // 2):
msgs += "Data length too big vs. available cover..."
return False, msgs

if (seed » 255):
msgs += "Seed too large..."
return False, msgs

return True, msgs

Figure 25: Heuristics tests in function detect() from ogdec.py

Theory and Artifact Design: Summary

This chapter began by introducing the design problem and research questions
associated with the development of JRevealPEG, the artifact that is the object of this study.
The initial requirements of the artifact were stated, and the three steganography tools that are
the targets of JRevealPEG were also introduced. The architecture and behavior of each of the
five modules of JRevealPEG were then discussed, along with relevant analysis details
regarding the target steganography programs. The next chapter discusses the design and
results of a single-case mechanism experiment that was performed as validation for this

research.

47

CHAPTER 4

EXPERIMENT RESULTS AND DISCUSSION

This chapter begins with a brief discussion of the phases of a single-case mechanism
experiment, which is the chosen design validation for this research. Next, the setup and
execution of the experiment itself is addressed under Experiment Setup and Execution.
Finally, the results of the experiment and data reports are discussed in the Results and

Discussion section which also includes the answers to the three knowledge questions.

Design Validation

One means of validating design research is with a single-case mechanism experiment.
Weiringa (2014) explains that this type of validation enables the user to “expose the model to
controlled stimuli and analyze in detail which mechanisms are responsible for the responses”
(p. 64). This seems to apply well in the case of this study, particularly in terms of answering
the first two research questions, which pertain to finding levels of accuracy regarding hidden
data detection and tool identification.

A single-case mechanism experiment consists of several pieces, most of which are
summarized below as they relate to this study. These pieces include context, research
problem, object of study, treatment design, measurement design, inference design, execution,
and data analysis (Weiringa, 2014). The execution phase is discussed under the Experiment
Setup and Execution section, and the data analysis is included in the Results and Discussion

section.

Context and Research Problem

In terms of the context and research problem, the conceptual framework and
knowledge questions for this study have been defined in the Introduction and other previous
sections, including the Literature Review. The relevant variables include the size and
dimensions of the JPEG file input, the processing time required to achieve a result, the

detected presence of hidden data (Boolean), and the identified steganography tool of origin

48

(Jsteg, SteganPEG, or OutGuess). The population related to this validation is all instances of
the detection tool being used by security professionals to detect JPEG steganography.

Object of Study

As the object of study, the validation model utilized a Windows 10 operating system
environment with Python 3 and the artifact (the detection program) installed. The JPEG
samples used for input were developed from a selection of free-to-use images downloaded
from online sources. Some of these JPEGs were used as control samples and had no
steganography embedded, while the remaining samples were processed by the target tools
mentioned above and contained hidden data; specific details of the JPEG samples are
provided in the Experiment Setup and Execution section.

The data generated include the output of the detection program itself, including the
sizes and dimensions of the JPEG input files, relevant processing time measurements, and
positive and negative detection results. It was expected that the validation model should
behave similarly to a real-world implementation, since the basic environment used was a
standard Windows 10 setup. There may be random variables that affect the validity of the
results, however, such as human error when using the software or unknown system settings

and environmental factors.

Treatment Design

The treatment design in the context of the validation consisted of providing
pregenerated JPEG images as input to the detection program artifact. Other than the operating
system and related software mentioned above, no special instruments were needed. The
researcher had full knowledge and control of the JPEG images being used as input, however
in real-world conditions, the possibility of uncontrolled input exists with other unpredictable

conditions.

Measurement Design
In terms of measurement design, the variables of interest include JPEG file size,
measured in bytes; JPEG image height and width dimensions, measured in pixels; detection

processing times, measured in seconds; and three Boolean variables to indicate the presence

49

or absence of steganography relating to each of the target tools. The sources of data from the
experiment were generated by the execution of the artifact itself. No special measurement
instruments were needed, and data was initially stored and analyzed using basic spreadsheet

software.

Inference Design

The inference design for the data generated in this study included descriptive,
abductive, and analogic inferences. Descriptive summaries include charts, tables, and graphs
showing raw output as well analysis of results from the treatment process, e.g. scatterplots
showing the relationship between key metrics, such as input file size and processing time, and
tables containing raw results from artifact execution.

As far as abductive inferences, any significant aberrations or inconsistencies in results
could be explained by malformed input, such as a corrupt image file, random interruptions in
the input and output streams to and from the artifact, or other software bugs.

Finally, the main analogic inference for the study is that the experiment would easily
generalize to real-world cases, meaning security researchers using the artifact to analyze
JPEG images on similar operating systems should see similar results. In fact, since the
program is more dependent on a correctly-functioning language interpreter (Python) than a
particular operating system, it is likely that cases involving a variety of operating systems

would behave similarly.

Experiment Setup and Execution

As described under Object of Study, the experiment used to validate this design
research consisted of a group of JPEG samples being passed as input to the artifact of the
study, the JRevealPEG program. The program generated as its output several measurements
per input sample, and this data was saved in log files for further analysis. Before the
experiment could be officially executed, however, an appropriate group of JPEG samples had

to be collected and prepared.

50

Setup

The previous chapter discussed the fact that the initial iteration of JRevealPEG is only
configured to analyze color JPEGs that have Baseline compression and 2x2 chroma
subsampling, mainly due to the fact that two of the three target steganography programs only
output JPEGs with these specifications. When searching for random JPEGs online, there is no
easy way to predict if a sample will be a Baseline or a progressive scan image, or what the
subsampling ratio will be. Fortunately, it was found that the Paint3D program that comes with
Windows 10 automatically converts any JPEG opened and then re-saved within the
application to a Baseline, 2x2 image. Paint3D can also be used to vary the dimensions of a
JPEG if more variation is needed.

In order to test for both positive and negative results, the JPEG samples needed to
include images with and without steganography embedding. In addition, to test JRevealPEG’s
speed and handling of odd image dimensions, images within a wide range of file sizes,
dimensional proportions, and total square pixel area were selected. In terms of the hidden
messages used, two different types of files were chosen of relatively small size so they would
be compatible with all sizes of cover images and all three embedding programs (see Table 2).
However, the files are big enough to simulate a dangerous amount of sensitive data or a

malicious executable. The message files can be found in the Windows 10 System32 folder.

Filename File Type Size [Bytes)
msdxm.ocx Active X Control 7168
security.dll DLL 5632

Table 2: Hidden messages used in the experiment

Table 3 shows an excerpt from the master list of JPEGs prepared to serve as input for
the experiment. Ten different cover images of varying sizes and proportions were chosen to
contain the hidden data. Each cover image was used twice with each target steganography
program, once to hide msdxm.ocx, and once to hide security.dll. This generated 20 positive
samples for each target program, or 60 positive samples total. Finally, the ten original covers
were added to the list with no hidden data, and ten more random JPEGs were chosen and
added, also with no hidden data. Therefore, the final group contained 60 positive and 20
negative samples, for a total of 80 JPEGs.

51

Stego File Size (Bytes) Height Width 5q. Pixels Cover Image Message File Stego Program Password?
jsPumpkinsSec.jpg 914303 3239 2293 7427027 pumpkins.jpg security.dll Jsteg N/A
jsSpidersMsd.jpg 419257 2108 2400 5059200 spiders.jpg msdxm.ocx Isteg N/A
jsSpidersSec.jpg 419279 2108 2400 5059200 spiders.jpg security.dll Jsteg N/A
jsYellowMsd.jpg 256814 1200 1200 1440000 yellow.jpg msdxm.ocx Isteg N/A
jsYellowSec.jpg 256821 1200 1200 1440000 vyellow.jpg security.dil Isteg N/A
spCowMsd.jpg 1276041 2667 4000 10668000 cow.jpg msdxm.ocx SteganPeg 123123
spCowSec.jpg 1276026 2667 4000 10668000 cow.jpg security.dil SteganPeg senha
spCraterMsd.jpg 1072285 1703 2556 4352868 crater.jpg msdxm.ocx SteganPeg 12345
spCraterSec.jpg 1072279 1703 2556 4352868 crater.jpg security.dll SteganPeg Million2
spForestMsd.jpg 729943 1280 1920 2457600 forest.jpg msdxm.ocx SteganPeg 111111
ogGreentreesMsd.jpg 2648358 4293 6440 27646920 greentrees.jpg msdxm.ocx OutGuess "Default key"
ogGreentreesSec.jpg 2648133 4793 6440 27646920 greentrees.jpg security.dll OutGuess "Default key"
ogHouseplantMsd.jpg 254165 1066 1599 1704534 houseplant.jpg msdxm.ocx OutGuess "Default key"
ogHouseplantSec.jpg 253888 1066 1599 1704534 houseplant.jpg security.dil OutGuess "Default key"”
ogPalmsMsd.jpg 216598 1200 1600 1920000 palms.jpg msdxm.ocx OutGuess "Default key"

Table 3: Master list of JPEG samples (excerpt)

Also note that in Table 3 a password value exists where applicable with SteganPEG
and OutGuess. With OutGuess the password is the same default for every sample, “Default
key.” However, in order to test the full list of 20 known passwords included with the
SteganPEG algorithm, every sample processed with that tool used a different password from
that list.

Finally, the sample JPEGs were stored in a dedicated folder, the path of which would
be passed to JRevealPEG during runtime. To facilitate command-line execution, the path to
Python 3 was added to the Windows system environment variables, and a command window

was opened to the directory containing the JRevealPEG scripts.

Execution

Once the group of JPEG input samples had been compiled in an accessible directory,
executing the experiment was simply a matter of running the jrpeg.py script on a Windows 10
machine and entering the path to the input files at the appropriate time (see Figure 26). Once
the detection sequence started, it proceeded automatically, displaying output to the screen,
while also saving results to both log files, text and CSV. The text file is essentially a copy of
the results displayed to the console, and the CSV is a distilled version of important statistics.
Figures 27 and 28 show excerpts from both of the log files generated by the experiment, and
the full files can be found in Appendices A and B.

52

[Version 18.8.1836
poration. it

Figure 26: Experiment execution — running JReveal PEG with input samples

226 FExtracting initial byte array from file 67, spPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.07 seconds

*kk%*First pass — Jsteg: attempting to find signature...
18932 Jsteg not detected for file &7, spPalmsSec.jpg

**k*%%5acond pass - SteganPeqg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Negative match...
1937 Checking password 'picturel'... Negative match...
1838 Checking password 'password'... Positive match!

1841 3SteganPeg detected for file &7, spPalmsSec.jpg

Total detection and processing time for file 67, spPalmsSec.jpg: 3.95 seconds

Extracting initial byte array from file 68, spPenguinMsd.jpg. This could take several seconds...
Initial JPEG processing time: 9.44 seconds

*kk%*First pass — Jsteg: attempting to find signature...

1951 Jsteg not detected for file 68, spPenguinMsd.jpg

1853 #**x%*%%second pass - SteganPeqg: attempting to find signature using common passwords...

1954 Checking password '123456'... Negative match...
1955 Checking password '123456789'... Negative match...
1 Checking password 'picturel'... Negative match...
1957 Checking password 'password'... Negative match...
1958 Checking password '"12345678'... Positive match!

1881 SteganPeqg detected for file 68, spPenguinMsd.jpg

18963 Total detection and processing time for file 68, spPenguinMsd.jpg: 11.70 seconds

Figure 27: Experiment execution - excerpt from JRevealPEG text log file

53

File Size Height Width Isteg SteganPEG OutGuess CoeffTime OverallTime

cactus.jpg 591155 3600 2400 FALSE FALSE FALSE 4.97 11.23
COW.jpg 1275950 2667 4000 FALSE FALSE FALSE 10.33 18.54
crater.jpg 1072272 1703 25356 FALSE FALSE FALSE 8.52 124
eagle.jpg 770867 1634 2400 FALSE FALSE FALSE 5.97 9.23
forest.jpg 729525 1280 1920 FALSE FALSE FALSE 5.54 .71
frog.jpg 298370 1805 2400 FALSE FALSE FALSE 2.49 5.56
greentrees.jpg 4664976 4293 6440 FALSE FALSE FALSE 38.45 62.32
houseplant.jpg 316713 1066 1593 FALSE FALSE FALSE 2.42 3.79
jsCowMsd.jpg 822003 2667 4000 TRUE FALSE FALSE 7.01 8.61
jsCowsec.)pg 822010 2667 4000 TRUE FALSE FALSE 7.41 8.96
jsCraterMsd.jpg 601331 1703 2556 TRUE FALSE FALSE 3:11 5.79
jsCratersec.jpg 601336 1703 2556 TRUE FALSE FALSE 5.31 6.04
jsForestMsd.jpg 458084 1280 1920 TRUE FALSE FALSE 3.78 4.18
jsForestSec.jpg 458099 1280 1920 TRUE FALSE FALSE 3.76 4.16
jsGreentreesMsd.jpg 2650002 4293 6440 TRUE FALSE FALSE 23.06 27.24

Figure 28: Experiment execution — excerpt from JRevealPEG CSYV log file

The experiment ran uninterrupted for approximately 15.7 minutes until completion.
The next section analyzes the specific data results, as well as providing other observations of

interest. Finally, there is a discussion of the answers to the three knowledge questions.

Results and Discussion

The following discussion begins with a selective analysis of the data generated by this
experiment, in terms of the variables of interest described under Measurement Design, as well
as any other interesting observations. Then, based upon these results and notes from the
development period, a discussion is provided that answers the three original knowledge

questions relating to this research.

Data Analysis

Since the relevant metrics of interest produced by the experiment were saved in a CSV
log file, most of the data analysis related to these results could be derived using Microsoft
Excel. When considering the kinds of data analyses that would best align with the current
study’s research goals, three useful perspectives of interest were identified: selected
descriptive statistics derived from the main numeric metrics, correlation analysis between
input file parameters and processing times, and accuracy of the Boolean detection results.

Basic descriptive statistics can serve multiple purposes, such as providing a compact summary

54

of experiment input parameters and artifact performance, or setting a baseline for future
experiments. Analysis of possible correlations between input samples and processing times
exhibited by the artifact can facilitate predictive formulas, which could help judge the
usefulness of the artifact in other experiments. Finally, calculating the accuracy of the
Boolean detection results not only evaluates the effectiveness of the most important function
of the artifact, but also provides the data necessary to answer the first two knowledge
questions.

In terms of descriptive statistics, the raw output metrics considered included the size
of the input file in bytes, the coefficients-only processing time for each file in seconds
(coefx.py processing time), and the overall processing time for each file in seconds, including
detection processing. In addition, the derived metrics of area in square pixels (image height
times the width) and detection processing time (overall time minus coefficient time) were
analyzed. The descriptive statistics considered the most relevant to this experiment and data
set included, for each metric, the minimum and maximum, the range, and the mean. Table 4

provides a summary of these metrics in terms of the measured statistics.

Metric (per Input Sample) Mean Minimum Maximum Range
File Size (B) 949073 216003 4664980 4448977
Area in 5q. Pixels 6876053 1440000 27646920 26208920
Coefficient Processing Time 8.01 1.78 39.92 38.14
Detection Processing Time 3.77 0.22 23.87 23.65
Owverall Processing Time 11.78 2.08 62.32 60.24

Table 4: Descriptive statistics for selected experiment metrics

The data in Table 4 shows that for the collection of input samples used in this
experiment, which had an average file size of about 950KB, the average overall processing
time for each file was close to 12 seconds. For 80 samples, this would mean a total execution
time of 16 minutes, which was approximately the full runtime of the experiment. Some files
only took about two seconds to process, while others took more than a minute. It can also be
observed that the coefficient processing time took more than twice as long as detection
processing on average and was about two-thirds of the overall processing time. The square-
pixel area values are also shown as an alternative JPEG size measurement, but from this table
there is no way of knowing if any specific correlations exist between size and area, or

between other pairs of metrics. Finally, the percentages of positive and negative

55

steganography samples used in the experiment are not shown here, nor are the relative
percentages of samples processed by each target tool. However, a good overall snapshot of
the experiment and processing performance of JRevealPEG can be assessed.

Several interesting observations were made when analyzing possible correlations
between certain input file characteristics and the different processing time metrics. The
following pairs of metrics were analyzed as scatterplots with linear regression:

1. File Size vs Coefficient Processing Time
File Size vs Detection Time
File Size vs Overall Processing Time

Pixel Area vs Coefficient Processing Time

A

Pixel Area vs Detection Time
6. Pixel Area vs Overall Processing Time

Figure 29 shows the three graphs with file size as the horizontal axis, and Figure 30
shows the three graphs with square-pixel area as the horizontal axis. Note that each scatterplot
has been superimposed with a regression line, the line of best fit for the given data. Also
included are the equations for each line, and the R-squared values (recall that the closer R-
squared is to 1, the stronger the correlation). If one examines the R-squared values first, it is
apparent that the strongest correlation occurs between the input file size and the coefficient
processing time, with a value of 0.9978. This value is not only the largest when compared
with the other R-squared values, but it is extremely close to 1. In terms of coefficient
processing time in future experiments, this would suggest that the file size of a particular
input JPEG may be the best predictor of that value. The file size does not seem quite as good
at predicting the overall processing time, with an R-squared of 0.9231, although still relatively
close to 1. The pixel area has a weaker relationship with coefficient and overall processing
time than file size does, but it does seem to carry more weight in determining the overall time
(R-squared being 0.8423). Another interesting observation is that neither file size nor pixel
area have a particularly strong correlation with the detection processing time metric, both
having relatively mediocre R-squared values (0.5333 and 0.6102). This suggests that other
factors exist which likely weigh in with importance, such as the relative presence or absence
of steganography in a set of samples, as well as the proportion of samples embedded with data

by a particular steganography tool.

45

35 |

30
a5

20 |
15 |

10

File Size vs Coefficient Processing Time

File Size vs Detection Time

56

a0
=BE-D6x -0.0364 R*=0:09578
¥ % L] 5 | <
8
: 0 | = 4E-D6x + 0.3899
B R=05333..-
e 15 | et v
. | 1 1 ...t =0 0T |
e
e 10 | .o - — o M
o
v 3 5 | 2_e
I o® 0, .10 g L
W ®
. . . o | G180 | . :
1000000 2000000 3000000 4000000 5000000 0 1000000 2000000 3000000 4000000 5000000
File Size vs Qverall Processing Time
70
L]
60 y=TE-05x+0.3535
50
. .
a0 gt
o
30 e
611 =t
[] [T
o..‘..i L
10 ,'5
0 1000000 2000000 3000000 4000000 5000000
Figure 29: Graphs of file size vs processing times
Pixel Area vs Coefficient Processing Time Pixel Area vs Detection Time
30
{] 5 ;
v = 1E-06x + 08546 y=5E-07x +0.2254
R®=0821L 0 |
L] v i
L] 15 R*= 06102+
L [O | (S | A -~
10 | L s
. 5 | -
| !] [:] ! ! !
15000000 20000000 25000000 30000000 0 5000000 10000000 15000000 20000000 25000000 30000000
Pixel Area vs Overall Processing Time
70
50 L]
0| ¥ = 26-06% +1.08 :
RE=0.8425,.7
40 | et
. =
| G P
30 L -
20 | ° _ zaset™
T P i
10 | By ®
a A
oL
0 5000000 10000000 15000000 20000000 25000000 30000000

Figure 30: Graphs of square-pixel area vs processing times

57

Since the main purpose of JRevealPEG as a software tool is to detect steganography,
the accuracy of its results when applied to a particular JPEG sample set is of paramount
importance when judging its success. There are three Boolean variables that account for
detection accuracy in JRevealPEG, one for each target steganography program and labeled
with the name of each tool (Jsteg, SteganPEG, and OutGuess). According to the CSV report
generated as part of the output of the experiment, JRevealPEG was correct in its classification
of all 80 samples (see Appendix B for the full CSV report). The filenames used for each JPEG
can be used to easily verify each result in the CSV file: JPEGs positive for Jsteg begin with
“js” followed by a capital letter; those of SteganPEG have “sp” followed by a capital;
OutGuess files have “og” followed by a capital; the remaining files should be negative for any
steganography.

Of course, future iterations of the experiment with key factors adjusted to greater
extremes, such as size and variety of message payloads and of cover images, may expose
errors or inaccuracies not discovered during the execution of the experiment at the time of this
study. Additionally, as noted during the discussion of JRevealPEG’s architecture, there were
certain assumptions made to facilitate what is really a “conditional” detection capability for
SteganPEG and OutGuess, such as use of known passwords. Future attempts to eliminate
these assumptions may reduce the level of accuracy of which the artifact currently appears to

be capable.

Answers to Knowledge Questions

The original knowledge questions raised in Chapter 3 of this study are restated as

follows:

1. Within the scope of the embedding tools targeted by this study, what level of
accuracy can be achieved by the program in terms of successfully detecting the
presence of steganography in a given JPEG?

2. If steganography is detected in a JPEG, what level of accuracy can be achieved by
the program in terms of successfully identifying which target tool was used to hide

the data?

58

3. What kinds of obstacles and difficulties were encountered in terms of designing
successful detection methods for the steganographic tools and embedding methods

targeted by this study, and which (if any) of these obstacles were not overcome?

Answer to Question 1: According to the results of the experiment, out of 60 positive
samples and 20 negative samples, JRevealPEG detected the presence of steganography with

100% accuracy, i.e. no false positives and no false negatives occurred.

Answer to Question 2: According to the results of the experiment, out of the 60
samples it classified as positive for steganography, JRevealPEG successfully identified the
target tool used with 100% accuracy, i.e. there were no false attributions for any of the

detected steganography.

Answer to Question 3: The difficulties and obstacles encountered during the research
and design of the JRevealPEG artifact were many, varied, persistent, and often unexpected.
Fortunately, in virtually all cases a direct solution or workaround was found, which allowed
the research to progress and an artifact to be developed that was able to address the original
research goals. Most of the biggest obstacles arose during JPEG processing, and while reverse
engineering the target steganography programs.

JPEG Processing: One of the main areas that spawned several challenges early in the
research period was JPEG processing in Python 3. Initially, it appeared that there may be one
or more existing Python libraries that contained JPEG processing functionality which could
be used in this project. Unfortunately, every library that was examined contained functions
that were either too “blunt” for the granularity needed in this artifact, or the functionality
needed was embedded deep within other, more global routines. The main problem was most
programs served to fully decompress JPEG images; the artifact in this study needed to extract
data from only partway through the decompression process. Eventually a single script was
found (mentioned in Chapter 3) that seemed to contain functionality close to that which was
needed for this research, or at least it seemed like it could be adapted.

Now that a Python module was found that could be used as a starting point to aid in

JPEG processing, the challenge arose of adapting the code to the specific needs of this

59

artifact. This challenge had three main difficulties. First, the finer details of JPEG
compression are not trivial, and much related research had to be done to get up to speed with
sufficient expertise. Second, the only sure way to know if the extracted partially-
decompressed data was correct (the pre-Huffman scan bytes) was to allow the decompression
to go to completion during time-consuming debugging, then verify that the final image was
displayed correctly. Third, the script that was being adapted was not compatible with 2x2
subsampling, so much learning was needed and many modifications had to be made to fix
this. In the end, adapting that Python script to extract the needed data was a major milestone
in the study.

Reversing the Target Programs: Another essential task that presented a wide variety
of challenges was the effort to reverse engineer the three target steganography programs. This
was a necessary step toward understanding the tools on a deep-enough level to be able to
identify possible steganography signatures, invaluable for the development of the artifact’s
detection algorithms. Some difficulties applied to all three programs, others were tool-
specific.

One problem that initially became apparent was that each tool was written in a
different programming language (Go, Visual Basic, and C). This was not unexpected, but it
took time to become accustomed to the various syntax and data type differences of each.
Occasionally mistakes resulted from transcriptional errors between a target’s source language
and Python 3. The disparity of programming languages and architectures also made tracing
each target program an adventure. Tracing OutGuess, in particular, involved going back and
forth through dozens of .h and .c source files.

The target programs also had varying levels of documentation, and some of the
comments in the source code were rather cryptic. In terms of message-hiding capacity, it was
not clear initially how much data each program could hide in a cover image. Only through
experimentation and tracing were limitations in this area determined.

As explained in Chapter 3, LSB steganography in a JPEG occurs in the partially-
compressed image bytes. A big challenge in this research was to be able to reconstruct exactly
which of those partially-compressed bytes each of the target programs chose when hiding
data. Jsteg was the most straightforward, in that the program essentially hid data in

consecutive bytes from those that were eligible. For SteganPEG, the main difficulty was

60

recognizing that the message data was compressed before it was hidden, which threw off size
comparisons during steganography analysis. The last program to be cracked in terms of its
chosen bytes was OutGuess. First, it took a while to realize that OutGuess stores the chosen
cover bytes in natural order, which is different than the zigzag order used by Jsteg and
SteganPEG. Then, much analysis was required to discover the special manner in which
OutGuess handles JPEGs with uneven dimensions (not divisible by 16), namely that it ignores

padding bytes.

Experiment Results and Discussion: Summary

This chapter defined the components of a single-case mechanism experiment, which is
the form of treatment validation used for this design science research. It explained the setup
and execution of the experiment involving the artifact of the study, JRevealPEG. The results
of the experiment were then discussed in terms of analysis of the data generated. Finally,
answers to the three original knowledge questions were provided. The final chapter is the
Conclusion, which gives a summary of this paper, lists the expected scholarly contributions of
this research, identifies the primary limitations of the artifact developed in this study, and

recommends several possible future research directions related to this work.

61

CHAPTER 5

CONCLUSION

This work introduced the design of JRevealPEG, a steganalysis software tool written
in Python 3 that targets three popular, open-source steganography programs. A brief history of
steganography was provided, along with reasoning behind the motivation for this study and
the current significance, interest, and need for a steganalysis tool like JRevealPEG. Several
examples from current literature were presented, illustrating recent efforts in JPEG
steganalysis research, including techniques such as those involving machine learning. The
architecture and behavior of JRevealPEG was examined in relation to each of its five Python
modules, and its detection algorithms were discussed along with the steganography programs
that they target. Finally, the results of a single-case mechanism experiment used as treatment
validation were analyzed, and the three knowledge questions posed at the beginning of the
research were answered.

The rest of this chapter identifies possible scholarly contributions and applications of
this research, discusses the primary limitations of the artifact developed in this study, and

recommends a number of future research directions related to this project.

Contributions and Applications

The original motivation for this research was to contribute to the field of cyber
security as it relates to malicious activities involving the secret transmission of digital
material, specifically through the JPEG medium. It is intended that JRevealPEG will be made
freely available to the professional and academic cyber security community as a tool for both
research and practical applications.

One area of cyber security research that should directly benefit from this research is
the study of JPEG steganography and steganalysis, and possibly that related to other types of
images as well. JRevealPEG can provide insight into current tools used for both
steganography and steganalysis, as its design research involved reverse engineering three

open-source tools that are also available for anyone to study.

62

Another area of cyber security research to which this work contributes is that of
Python security tool development. It is hoped that insight will be gained as to how to take
advantage of Python in adapting code from other programming languages, as well as writing
other kinds of detection software in Python.

Practical applications exist that could also benefit from the usage of JRevealPEG as a
detection tool. JRevealPEG is already equipped with some validation and exception handling,
so it should be robust enough to be exposed to multiple types of files. One possible
application could be to run JRevealPEG on an entire directory of files as a preliminary sweep,
just to see if any detection is triggered.

Another application can be for security personnel to use JRevealPEG to help analyze
multiple data exfiltration incidents to see if they are related. It is possible that the program
could play a role in linking a group of stego images to a specific embedding tool.

It is also possible that JRevealPEG can help identify the source of other types of
malicious attacks. For example, JPEGs can be used for surreptitious delivery of malware
executables, or they can be used to plant sensitive data on a certain party’s machine, intending
to frame them for possessing illegal or unauthorized material. If one of the target tools was

used to hide the data, it could be specifically detected.

Limitations of JReveal PEG

Although JRevealPEG was shown to function well when operating on input files
within the scope of this study and falling within certain assumptions and parameters, there are
several limitations on the functionality and usefulness of the program in its current version.

The most obvious shortcoming of JRevealPEG is that it is only tailored to detect
steganography from the three target tools used in the study. Therefore, JPEGs carrying
messages hidden by a program other than those three will likely go undetected. It is possible
steganographic algorithms exist which are similar enough to one of the current targets that
they might be detectable by JRevealPEG, but the likelihood of that is not known.

Another limitation is that JRevealPEG only analyzes Baseline JPEGs with 2x2 chroma
subsampling. But in fact, this is really only a limitation as it relates to one of the target tools,

SteganPEG, as the other two tools only output Baseline, 2x2 JPEGs in any case. However,

63

any image processed by SteganPEG (or any JPEG at all) that is not 2x2 subsampled would
not be detectable. JPEGs that are encoded as progressive scan would also be excluded.

Even considering compatible JPEGs processed by one of the target tools, there are
limitations on JRevealPEG’s detection capability. As seen in the experiment from Chapter 4,
when scanning a file under the SteganPEG detection algorithm, steganography will only be
detected if it was embedded with one of a group of known passwords. This means a stego
image that has used a password not on the list will escape detection. Similarly, the OutGuess
detector only works for images that utilize the default options, which include a password of
“Default key .”” Other configurations are also available with OutGuess that could affect
JRevealPEG’s detection ability.

One other possible limitation to note has to do with multiple payloads. Both
SteganPEG and OutGuess have the option of hiding multiple messages in a JPEG. After
preliminary analysis of these tools, it remains unclear if the current detection algorithms of
JRevealPEG would be able to detect an image processed by these tools that contains more
than one hidden message. Some indications show that it might, but this contingency was not

in the scope of this study and has not been tested.

Future Research Directions

The work performed in designing JRevealPEG raises many opportunities for future
research in connection with this study. Some of these ideas are motivated by the desire to
address the limitations mentioned in the previous section, and others relate to exploring the
possibility of extending JRevealPEG’s other functionalities beyond that which was originally
intended.

Adding detection functionality for other embedding tools would address the first
limitation mentioned above. Naturally one would start with tools that could be reverse
engineered most easily, probably programs where the source code is available. A detection
algorithm could conceivably be developed for a program without having the source code, but
an extra layer of difficulty would be present when trying to reverse that tool.

To address the fact that JRevealPEG can only process JPEGs with 2x2 subsampling,
more decoding functionality would have to be added to coefx.py that takes this into

consideration. Practically speaking, this would probably not be a difficult task, but a natural

64

upgrade for further iterations of the program, since it would increase the range of SteganPEG
detection ability. The capability to process progressive scan JPEGs could also be added, but
this would only be necessary if new detection capabilities for a new tool merited the upgrade.

The limitation requiring the use of known passwords with SteganPEG and OutGuess
would be a natural one to seek to eliminate, so that fully-blind detection could be
accomplished. In SteganPEG’s case, an efficient manner would have to be found to check all
valid password combinations until a valid checksum could be calculated. OutGuess would be
a bit more complicated, however, because the PRNG would have to be replicated inside the
detector, which could degrade performance

One idea for a completely new feature upgrade for JRevealPEG is adding payload
extraction capability. In fact, much of the ground work has already been done for this since
the program already knows how to extract the pre-Huffman MCUs. These are the bytes that
contain the steganography. The journey to full payload extraction might not be much farther.
However, on some level it might be easiest just to decode an image inside the original
program, once it has been detected as the originator.

One final idea for an extended feature for JRevealPEG would be to add detection
capability for image types other than JPEG. In fact, since steganography can be performed on

any file, audio and video files could perhaps be added in the future as well.

Summary

This study detailed the rationale for and the design of JRevealPEG, a new steganalysis
software tool that detects steganography in JPEGs and identifies the responsible embedding
program out of a select open-source group. The study provided a brief background on digital
image steganography and steganalysis, focusing on the JPEG standard and literature that
illustrates the current state of JPEG and other image steganography detection tools and
techniques. The literature revealed that most of the current detection tools and methods use
machine learning and focus on general detection, while there is a lack of research and tools
that are not based on machine learning. JRevealPEG was designed to explore this research
gap and test the effectiveness of a tool designed without machine learning that has specific

targets of detection.

65

The results of this study showed that a program can be written without machine
learning that effectively detects JPEG steganography and identifies the tools of origin. The
design process of JRevealPEG illustrated that Python can be a useful language for doing
JPEG analysis, but also that not many existing Python libraries facilitate low-level JPEG
manipulation, illustrating another opportunity for research. The outcome of the single-case
mechanism experiment performed with JRevealPEG showed that the tool proved highly
successful in a controlled environment with specific parameters and limitations, but plenty of
room exists for overcoming those limitations and extending JRevealPEG’s capabilities to

make it a more universal tool.

66

REFERENCES

Abhiram, K. (2011). SteganPEG (Version 1.0) [Computer software]. Retrieved from
https://www.softpedia.com/get/Security/Encrypting/SteganPEG.shtml

Boroumand, M., Mo, C., & Fridrich, J. (2019). Deep residual network for steganalysis of
digital images. IEEE Transactions on Information Forensics and Security, 14(5),

1181-1193. https://doi.org/10.1109/TIFS.2018.2871749

Brunot, J. (2019). The Increased Use of Steganography by Malware Creators to Obfuscate
Their Malicious Code. ProQuest Dissertations Publishing.

Burney, M. (2018). The History of Steganography and the Threat Posed to the United States
and the Rest of the International Community. ProQuest Dissertations Publishing.

Butora, J., & Fridrich, J. (2020). Reverse JPEG compatibility attack. IEEE Transactions on
Information Forensics and Security, 15, 1444-1454.
https://doi.org/10.1109/TIFS.2019.2940904

Champine, L. (2018). Jsteg (Version 0.3.0) [Computer software]. Retrieved from

https://github.com/lukechampine/jsteg/releases/tag/v0.3.0

Chroma subsampling. (n.d.). Retrieved from

https://en.wikipedia.org/wiki/Chroma_subsampling

Cisomag. (2019, March 26). Hackers using steganography to spread Powload malware:

Research. https://cisomag.eccouncil.org/hackers-using-steganography-to-spread-

powload-malware-research /

Das, S., & Dhara, B. (2018). An LSB based novel data hiding method using extended LBP.
Multimed Tools Appl, 77(12), 15321-15351. https://doi.org/10.1007/s11042-017-5117-
8

Denemark, T., Boroumand, M., & Fridrich, J. (2016). Steganalysis features for content-
adaptive JPEG steganography. IEEE Transactions on Information Forensics and
Security, 11(8), 1736-1746. https://doi.org/10.1109/TIFS.2016.2555281

Dunaway, G. (2019, March 21). VeryMal strikes again with a new twist on its complex

redirect attack. AdMonsters. https://www.admonsters.com/verymal-strikes-new-twist-

complex-redirect-attack/

67

Feng, G., Zhang, X., Ren, Y., Qian, Z., & Li, S. (2020). Diversity-based cascade filters for
JPEG steganalysis. IEEE Transactions on Circuits and Systems for Video Technology,
30(2), 376-386. https://doi.org/10.1109/TCSVT.2019.2891778

Filho, J. (2019). OutGuess (Version 0.2.2) [Computer software]. Retrieved from

https://github.com/resurrecting-open-source-projects/outguess/releases/tag/0.2.2

Gan, J., Liu, J., Luo, X., Yang, C., & Liu, F. (2018). Reliable steganalysis of HUGO

steganography based on partially known plaintext. Multimed Tools Appl, 77(14),
18007-18027. https://doi.org/10.1007/s11042-017-5134-7

Go (programming language) (n.d.). Retrieved from
https://en.wikipedia.org/wiki/Go_(programming_language)

Hass, C. (2018). Designing a JPEG decoder & source code [Web log post]. Retrieved from

https://www.impulseadventure.com/photo/jpeg-decoder.html

Jamil, T. (1999). Steganography: the art of hiding information in plain sight. /EEE Potentials,
18(1), 10-12. https://doi.org/10.1109/45.747237

Jia-Fa, M., Xin-Xin, N., Gang, X., Wei-Guo, S., & Na-Na, Z. (2016). A steganalysis method
in the DCT domain. Multimedia Tools and Applications, 75(10), 5999-6019.
https://doi.org/10.1007/s11042-015-2708-0

JPEG (n.d.). Retrieved from https://en.wikipedia.org/wiki/JPEG

JPEG Compression (n.d.). Retrieved from

https://www.fileformat.info/mirror/egff/ch09 _06.htm

Kafeine. (2016, July 28). Massive AdGholas malvertising campaigns use steganography and
file whitelisting to hide in plain sight [Web log post]. Retrieved from

https://www.proofpoint.com/us/threat-insight/post/massive-adgholas-malvertising-

campaigns-use-steganography-and-file-whitelisting-to-hide-in-plain-sight
Khalid, M. (2019). Baseline JPEG Decoder [Computer software]. Retrieved from
https://github.com/yasoob/Baseline-JPEG-Decoder

List of the most common passwords (n.d.). Retrieved from
https://en.wikipedia.org/wiki/List_of the most common_passwords

Lu, W., Li, R., Zeng, L., Chen, J., Huang, J., & Shi, Y.-Q. (2019). Binary image steganalysis

based on histogram of structuring elements. /EEE Transactions on Circuits and

Systems for Video Technology, 1-1. https://doi.org/10.1109/TCSVT.2019.2936028

68

Luo, X., Song, X., Li, X., Zhang, W., Lu, J., Yang, C., & Liu, F. (2016). Steganalysis of
HUGO steganography based on parameter recognition of syndrome-trellis-codes.
Multimedia Tools and Applications, 75(21), 13557-13583.
https://doi.org/10.1007/s11042-015-2759-2

Malik, H., Subbalakshmi, K., & Chandramouli, R. (2016). Joint-channel modeling to attack
QIM steganography. Multimedia Tools and Applications, 75(21), 13585-13611.
https://doi.org/10.1007/s11042-015-3006-6

Malvertising (n.d.). Retrieved from https://en.wikipedia.org/wiki/Malvertising

Nouri, R., & Mansouri, A. (2017). Digital image steganalysis based on the reciprocal singular
value curve. Multimedia Tools and Applications, 76(6), 8745-8756.
https://doi.org/10.1007/s11042-016-3507-y

Qiao, T., Luo, X., Wu, T., Xu, M., & Qian, Z. (2019). Adaptive steganalysis based on

statistical model of quantized DCT coefficients for JPEG images. IEEE Transactions
on Dependable and Secure Computing, 1-1.
https://doi.org/10.1109/TDSC.2019.2962672

Rabee, A., Mohamed, M., & Mahdy, Y. (2018). Blind JPEG steganalysis based on DCT
coefficients differences. Multimed Tools Appl, 77(6), 7763-7777.
https://doi.org/10.1007/s11042-017-4676-z

RC4 (n.d.). Retrieved from https://en.wikipedia.org/wiki/RC4

Sairam, T., & Boopathybagan, K. (2019). Computational intelligence-based steganalysis
comparison for RCM-DWT and PVA-MOD methods. Automatika, 60(3), 293.
https://doi.org/10.1080/00051144.2019.1579434

Serrano, J. (2019). Steganalysis: a study on the effectiveness of steganalysis tools. In J.
Giordano & R. DeCarlo (Eds.): ProQuest Dissertations Publishing.

Shulmin, A., & Krylova, E. (2017). Steganography in contemporary cyberattacks. Retrieved
from https://securelist.com/steganography-in-contemporary-cyberattacks/79276/

Song, X., Liu, F., Zhang, Z., Yang, C., Luo, X., & Chen, L. (2017). 2D Gabor filters-based

steganalysis of content-adaptive JPEG steganography. Multimed Tools Appl, 76(24),
26391-26419. https://doi.org/10.1007/s11042-016-4157-9

69

Subhedar, M., & Mankar, V. (2018). Curvelet transform and cover selection for secure
steganography. Multimed Tools Appl, 77(7), 8115-8138.
https://doi.org/10.1007/s11042-017-4706-x

Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering. Berlin: Springer.

Xu, C., Liu, J., Gan, J., & Luo, X. (2018). Stego key recovery based on the optimal hypothesis
test. Multimed Tools Appl, 77(14), 17973-17992. https://doi.org/10.1007/s11042-017-
4878-4

Yang, Y., Kong, X., & Feng, C. (2018). Double-compressed JPEG images steganalysis with
transferring feature. Multimed Tools Appl, 77(14), 17993-18005.
https://doi.org/10.1007/s11042-018-5734-x

Vijayan, J. (2017). Steganography use on the rise among cyber espionage, cybercrime groups.

Retrieved from https://www.darkreading.com/attacks-breaches/steganographyuse-on-

the-rise-among-cyber-espionage-cybercrime-groups/d/d-id/1329569

Zielinska, E., Mazurczyk, W., & Szczypiorski, K. (2014). Trends in steganography.
Communications of the ACM, 57(3), 86-95. https://doi.org/10.1145/2566590.2566610

70

APPENDIX A

LOG FILE 1: TEXT FILE

Logged on [N

Directory entered: stego samples

Number of files to be analyzed: 80

Extracting initial byte array from file 1, cactus.jpg. This could take several seconds...
Initial JPEG processing time: 4.97 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 1, cactus.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel’... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111'... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

71

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 1, cactus.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 1, cactus.jpg

None of the target steganography programs detected for file cactus.jpg

Total detection and processing time for file 1, cactus.jpg: 11.23 seconds

Extracting initial byte array from file 2, cow.jpg. This could take several seconds...

Initial JPEG processing time: 10.33 seconds

*#kxxxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 2, cow.jpg

*kx**xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 2, cow.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 2, cow.jpg

None of the target steganography programs detected for file cow.jpg

Total detection and processing time for file 2, cow.jpg: 18.54 seconds

Extracting initial byte array from file 3, crater.jpg. This could take several seconds...

Initial JPEG processing time: 8.52 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 3, crater.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...

72

Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 3, crater.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 3, crater.jpg

None of the target steganography programs detected for file crater.jpg

Total detection and processing time for file 3, crater.jpg: 12.40 seconds

Extracting initial byte array from file 4, eagle.jpg. This could take several seconds...

Initial JPEG processing time: 5.97 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 4, eagle.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'"... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 4, eagle.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 4, eagle.jpg

None of the target steganography programs detected for file eagle.jpg

Total detection and processing time for file 4, eagle.jpg: 9.23 seconds

Extracting initial byte array from file 5, forest.jpg. This could take several seconds...

Initial JPEG processing time: 5.54 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 5, forest.jpg

74

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 5, forest.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 5, forest.jpg

None of the target steganography programs detected for file forest.jpg

Total detection and processing time for file 5, forest.jpg: 7.71 seconds

Extracting initial byte array from file 6, frog.jpg. This could take several seconds...

76

Initial JPEG processing time: 2.49 seconds

*H*AXFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 6, frog.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111'... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 6, frog.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 6, frog.jpg

None of the target steganography programs detected for file frog.jpg

Total detection and processing time for file 6, frog.jpg: 5.56 seconds

Extracting initial byte array from file 7, greentrees.jpg. This could take several seconds...

Initial JPEG processing time: 38.45 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 7, greentrees.jpg

*Fx*xSecond pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 7, greentrees.jpg

*****Final pass - OutGuess: attempting to find signature...

77

Seed too large...

OutGuess (with default options) not possible for file 7, greentrees.jpg

None of the target steganography programs detected for file greentrees.jpg

Total detection and processing time for file 7, greentrees.jpg: 62.32 seconds

Extracting initial byte array from file 8, houseplant.jpg. This could take several seconds...

Initial JPEG processing time: 2.42 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 8, houseplant.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

78

SteganPeg not detected for file 8, houseplant.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 8, houseplant.jpg

None of the target steganography programs detected for file houseplant.jpg

Total detection and processing time for file 8, houseplant.jpg: 3.79 seconds

Extracting initial byte array from file 9, jsCowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 7.01 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 9, jsCowMsd.jpg

Total detection and processing time for file 9, jsCowMsd.jpg: 8.61 seconds

Extracting initial byte array from file 10, jsCowSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.41 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 10, jsCowSec.jpg

Total detection and processing time for file 10, jsCowSec.jpg: 8.96 seconds

Extracting initial byte array from file 11, jsCraterMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.11 seconds

79

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 11, jsCraterMsd.jpg

Total detection and processing time for file 11, jsCraterMsd.jpg: 5.79 seconds

Extracting initial byte array from file 12, jsCraterSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.31 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 12, jsCraterSec.jpg

Total detection and processing time for file 12, jsCraterSec.jpg: 6.04 seconds

Extracting initial byte array from file 13, jsForestMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.78 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 13, jsForestMsd.jpg

Total detection and processing time for file 13, jsForestMsd.jpg: 4.18 seconds

Extracting initial byte array from file 14, jsForestSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.76 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 14, jsForestSec.jpg

Total detection and processing time for file 14, jsForestSec.jpg: 4.16 seconds

Extracting initial byte array from file 15, jsGreentreesMsd.jpg. This could take several seconds...

80

Initial JPEG processing time: 23.06 seconds

#x+xFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 15, jsGreentreesMsd.jpg

Total detection and processing time for file 15, jsGreentreesMsd.jpg: 27.24 seconds

Extracting initial byte array from file 16, jsGreentreesSec.jpg. This could take several seconds...

Initial JPEG processing time: 23.52 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 16, jsGreentreesSec.jpg

Total detection and processing time for file 16, jsGreentreesSec.jpg: 27.83 seconds

Extracting initial byte array from file 17, jsHouseplantMsd.jpg. This could take several seconds...

Initial JPEG processing time: 1.95 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 17, jsHouseplantMsd.jpg

Total detection and processing time for file 17, jsHouseplantMsd.jpg: 2.22 seconds

Extracting initial byte array from file 18, jsHouseplantSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.20 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 18, jsHouseplantSec.jpg

81

Total detection and processing time for file 18, jsHouseplantSec.jpg: 2.46 seconds

Extracting initial byte array from file 19, jsPalmsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 1.79 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 19, jsPalmsMsd.jpg

Total detection and processing time for file 19, jsPalmsMsd.jpg: 2.08 seconds

Extracting initial byte array from file 20, jsPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 1.80 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 20, jsPalmsSec.jpg

Total detection and processing time for file 20, jsPalmsSec.jpg: 2.09 seconds

Extracting initial byte array from file 21, jsPenguinMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.03 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 21, jsPenguinMsd.jpg

Total detection and processing time for file 21, jsPenguinMsd.jpg: 6.04 seconds

Extracting initial byte array from file 22, jsPenguinSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.18 seconds

*****First pass - Jsteg: attempting to find signature...

82

83

Jsteg detected for file 22, jsPenguinSec.jpg

Total detection and processing time for file 22, jsPenguinSec.jpg: 6.28 seconds

Extracting initial byte array from file 23, jsPumpkinsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 8.01 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg detected for file 23, jsPumpkinsMsd.jpg

Total detection and processing time for file 23, jsPumpkinsMsd.jpg: 9.40 seconds

Extracting initial byte array from file 24, jsPumpkinsSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.77 seconds

*#kxxxFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 24, jsPumpkinsSec.jpg

Total detection and processing time for file 24, jsPumpkinsSec.jpg: 8.93 seconds

Extracting initial byte array from file 25, jsSpidersMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.73 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 25, jsSpidersMsd.jpg

Total detection and processing time for file 25, jsSpidersMsd.jpg: 4.48 seconds

Extracting initial byte array from file 26, jsSpidersSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.69 seconds

*H*AXFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 26, jsSpidersSec.jpg

Total detection and processing time for file 26, jsSpidersSec.jpg: 4.47 seconds

Extracting initial byte array from file 27, jsYellowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.11 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 27, jsYellowMsd.jpg

Total detection and processing time for file 27, jsYellowMsd.jpg: 2.40 seconds

Extracting initial byte array from file 28, jsYellowSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.12 seconds

*H*AXFirst pass - Jsteg: attempting to find signature...

Jsteg detected for file 28, jsYellowSec.jpg

Total detection and processing time for file 28, jsYellowSec.jpg: 2.34 seconds

Extracting initial byte array from file 29, leaves.jpg. This could take several seconds...

Initial JPEG processing time: 2.23 seconds

*Fx*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 29, leaves.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

84

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 29, leaves.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 29, leaves.jpg

None of the target steganography programs detected for file leaves.jpg

Total detection and processing time for file 29, leaves.jpg: 3.72 seconds

Extracting initial byte array from file 30, moon.jpg. This could take several seconds...

Initial JPEG processing time: 7.88 seconds

86

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 30, moon.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 30, moon.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 30, moon.jpg

None of the target steganography programs detected for file moon.jpg

Total detection and processing time for file 30, moon.jpg: 18.38 seconds

Extracting initial byte array from file 31, ogCowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 7.58 seconds

*H*AXFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 31, ogCowMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 31, ogCowMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

87

OutGuess (with default options) possible for file 31, ogCowMsd.jpg

Total detection and processing time for file 31, ogCowMsd.jpg: 15.84 seconds

Extracting initial byte array from file 32, ogCowSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.66 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 32, ogCowSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111'... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 32, ogCowSec.jpg

88

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 32, ogCowSec.jpg

Total detection and processing time for file 32, ogCowSec.jpg: 15.85 seconds

Extracting initial byte array from file 33, ogCraterMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.30 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 33, ogCraterMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

89

SteganPeg not detected for file 33, ogCraterMsd.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 33, ogCraterMsd.jpg

Total detection and processing time for file 33, ogCraterMsd.jpg: 9.04 seconds

Extracting initial byte array from file 34, ogCraterSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.61 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 34, ogCraterSec.jpg

*#Fx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...

Checking password 'aaron431'... Data length too big, negative match...

90

91

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 34, ogCraterSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 34, ogCraterSec.jpg

Total detection and processing time for file 34, ogCraterSec.jpg: 9.24 seconds

Extracting initial byte array from file 35, ogForestMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.88 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 35, ogForestMsd.jpg

*#kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...

Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...
Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 35, ogForestMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 35, ogForestMsd.jpg

Total detection and processing time for file 35, ogForestMsd.jpg: 5.93 seconds

Extracting initial byte array from file 36, ogForestSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.86 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 36, ogForestSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...

Checking password 'qwerty'... Data length too big, negative match...

92

93

Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 36, ogForestSec.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 36, ogForestSec.jpg

Total detection and processing time for file 36, ogForestSec.jpg: 5.90 seconds

Extracting initial byte array from file 37, ogGreentreesMsd.jpg. This could take several seconds...

Initial JPEG processing time: 23.65 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 37, ogGreentreesMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111"... Data length too big, negative match...

Checking password '123123'"... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 37, ogGreentreesMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 37, ogGreentreesMsd.jpg

Total detection and processing time for file 37, ogGreentreesMsd.jpg: 46.76 seconds

Extracting initial byte array from file 38, ogGreentreesSec.jpg. This could take several seconds...

Initial JPEG processing time: 23.76 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 38, ogGreentreesSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111"... Data length too big, negative match...

94

95

Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 38, ogGreentreesSec.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 38, ogGreentreesSec.jpg

Total detection and processing time for file 38, ogGreentreesSec.jpg: 46.33 seconds

Extracting initial byte array from file 39, ogHouseplantMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.25 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 39, ogHouseplantMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 39, ogHouseplantMsd.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 39, ogHouseplantMsd.jpg

Total detection and processing time for file 39, ogHouseplantMsd.jpg: 3.65 seconds

Extracting initial byte array from file 40, ogHouseplantSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.11 seconds

*Fx*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 40, ogHouseplantSec.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

96

97

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 40, ogHouseplantSec.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 40, ogHouseplantSec.jpg

Total detection and processing time for file 40, ogHouseplantSec.jpg: 3.46 seconds

Extracting initial byte array from file 41, ogPalmsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 1.90 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 41, ogPalmsMsd.jpg

*Hx#%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'"... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 41, ogPalmsMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 41, ogPalmsMsd.jpg

Total detection and processing time for file 41, ogPalmsMsd.jpg: 3.33 seconds

Extracting initial byte array from file 42, ogPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 1.78 seconds

98

99

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 42, ogPalmsSec.jpg

*#x#%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 42, ogPalmsSec.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 42, ogPalmsSec.jpg

Total detection and processing time for file 42, ogPalmsSec.jpg: 3.32 seconds

100

Extracting initial byte array from file 43, ogPenguinMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.08 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 43, ogPenguinMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 43, ogPenguinMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 43, ogPenguinMsd.jpg

Total detection and processing time for file 43, ogPenguinMsd.jpg: 10.01 seconds

Extracting initial byte array from file 44, ogPenguinSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.28 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 44, ogPenguinSec.jpg

*Fx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 44, ogPenguinSec.jpg

*****Final pass - OutGuess: attempting to find signature...

101

OutGuess (with default options) possible for file 44, ogPenguinSec.jpg

Total detection and processing time for file 44, ogPenguinSec.jpg: 10.40 seconds

Extracting initial byte array from file 45, ogPumpkinsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 7.77 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 45, ogPumpkinsMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

102

103

SteganPeg not detected for file 45, ogPumpkinsMsd.jpg

***4*Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 45, ogPumpkinsMsd.jpg

Total detection and processing time for file 45, ogPumpkinsMsd.jpg: 13.90 seconds

Extracting initial byte array from file 46, ogPumpkinsSec.jpg. This could take several seconds...

Initial JPEG processing time: 7.90 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 46, ogPumpkinsSec.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 46, ogPumpkinsSec.jpg

***4*Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 46, ogPumpkinsSec.jpg

Total detection and processing time for file 46, ogPumpkinsSec.jpg: 13.95 seconds

Extracting initial byte array from file 47, ogSpidersMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.81 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 47, ogSpidersMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...

104

105

Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 47, ogSpidersMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 47, ogSpidersMsd.jpg

Total detection and processing time for file 47, ogSpidersMsd.jpg: 7.67 seconds

Extracting initial byte array from file 48, ogSpidersSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.64 seconds

*#kxxxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 48, ogSpidersSec.jpg

*kx**xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...

Checking password 'abc123'... Data length too big, negative match...

Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 48, ogSpidersSec.jpg

*#x**Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 48, ogSpidersSec.jpg

Total detection and processing time for file 48, ogSpidersSec.jpg: 7.55 seconds

Extracting initial byte array from file 49, ogYellowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.12 seconds

*H*AXFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 49, ogYellowMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111"... Data length too big, negative match...

Checking password '123123"... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha’... Data length too big, negative match...

106

107

Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 49, ogYellowMsd.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 49, ogYellowMsd.jpg

Total detection and processing time for file 49, ogYellowMsd.jpg: 3.35 seconds

Extracting initial byte array from file 50, ogYellowSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.11 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 50, ogYellowSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...

Checking password '123456789'... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111"... Data length too big, negative match...

Checking password '123123"... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 50, ogYellowSec.jpg

*****Final pass - OutGuess: attempting to find signature...

OutGuess (with default options) possible for file 50, ogYellowSec.jpg

Total detection and processing time for file 50, ogYellowSec.jpg: 3.24 seconds

Extracting initial byte array from file 51, palms.jpg. This could take several seconds...

Initial JPEG processing time: 3.22 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 51, palms.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

108

109

Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 51, palms.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 51, palms.jpg

None of the target steganography programs detected for file palms.jpg

Total detection and processing time for file 51, palms.jpg: 4.77 seconds

Extracting initial byte array from file 52, penguin.jpg. This could take several seconds...

Initial JPEG processing time: 9.44 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 52, penguin.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 52, penguin.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 52, penguin.jpg

None of the target steganography programs detected for file penguin.jpg

Total detection and processing time for file 52, penguin.jpg: 14.67 seconds

Extracting initial byte array from file 53, pumpkins.jpg. This could take several seconds...

Initial JPEG processing time: 13.58 seconds

110

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 53, pumpkins.jpg

*Hx#%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 53, pumpkins.jpg

*#x**Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 53, pumpkins.jpg

None of the target steganography programs detected for file pumpkins.jpg

111

112

Total detection and processing time for file 53, pumpkins.jpg: 20.19 seconds

Extracting initial byte array from file 54, snowhill.jpg. This could take several seconds...

Initial JPEG processing time: 25.85 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 54, snowhill.jpg

*#x*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 54, snowhill.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 54, snowhill.jpg

None of the target steganography programs detected for file snowhill.jpg

Total detection and processing time for file 54, snowhill.jpg: 36.96 seconds

Extracting initial byte array from file 55, spCowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 10.53 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 55, spCowMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111"... Negative match...

Checking password '123123'... Positive match!

SteganPeg detected for file 55, spCowMsd.jpg

Total detection and processing time for file 55, spCowMsd.jpg: 14.04 seconds

Extracting initial byte array from file 56, spCowSec.jpg. This could take several seconds...

Initial JPEG processing time: 10.67 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 56, spCowSec.jpg

113

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111"... Negative match...

Checking password '123123'"... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Positive match!

SteganPeg detected for file 56, spCowSec.jpg

Total detection and processing time for file 56, spCowSec.jpg: 14.41 seconds

Extracting initial byte array from file 57, spCraterMsd.jpg. This could take several seconds...

Initial JPEG processing time: 8.76 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 57, spCraterMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel’... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Positive match!

SteganPeg detected for file 57, spCraterMsd.jpg

114

Total detection and processing time for file 57, spCraterMsd.jpg: 10.62 seconds

Extracting initial byte array from file 58, spCraterSec.jpg. This could take several seconds...

Initial JPEG processing time: 8.75 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 58, spCraterSec.jpg

*Fx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...
Checking password 'picturel'... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111"... Negative match...
Checking password '123123'... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha’... Negative match...
Checking password '1234567'... Negative match...
Checking password 'qwerty'... Negative match...
Checking password 'abc123'... Negative match...

Checking password 'Million2'... Positive match!

SteganPeg detected for file 58, spCraterSec.jpg

Total detection and processing time for file 58, spCraterSec.jpg: 11.10 seconds

Extracting initial byte array from file 59, spForestMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.89 seconds

*****First pass - Jsteg: attempting to find signature...

115

Jsteg not detected for file 59, spForestMsd.jpg

*kx**xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111"... Positive match!

SteganPeg detected for file 59, spForestMsd.jpg

Total detection and processing time for file 59, spForestMsd.jpg: 6.96 seconds

Extracting initial byte array from file 60, spForestSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.84 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 60, spForestSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...
Checking password 'picturel’... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111"... Negative match...
Checking password '123123'... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha'... Negative match...
Checking password '1234567'... Negative match...

Checking password 'qwerty'... Negative match...

116

Checking password 'abc123'... Negative match...
Checking password 'Million2'... Negative match...
Checking password '000000'... Negative match...
Checking password '1234"... Negative match...
Checking password 'iloveyou'... Negative match...
Checking password 'aaron431'... Negative match...

Checking password 'password1'... Positive match!

SteganPeg detected for file 60, spForestSec.jpg

Total detection and processing time for file 60, spForestSec.jpg: 7.43 seconds

Extracting initial byte array from file 61, spGreentreesMsd.jpg. This could take several seconds...

Initial JPEG processing time: 39.13 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 61, spGreentreesMsd.jpg

*#kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...
Checking password 'picturel'... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111"... Negative match...
Checking password '123123'"... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha'... Negative match...
Checking password '1234567'... Negative match...
Checking password 'qwerty'... Negative match...
Checking password 'abc123'... Negative match...
Checking password 'Million2'... Negative match...
Checking password '000000'... Positive match!

117

SteganPeg detected for file 61, spGreentreesMsd.jpg

Total detection and processing time for file 61, spGreentreesMsd.jpg: 48.92 seconds

Extracting initial byte array from file 62, spGreentreesSec.jpg. This could take several seconds...

Initial JPEG processing time: 39.92 seconds

*Fx*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 62, spGreentreesSec.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'... Positive match!

SteganPeg detected for file 62, spGreentreesSec.jpg

Total detection and processing time for file 62, spGreentreesSec.jpg: 49.22 seconds

Extracting initial byte array from file 63, spHouseplantMsd.jpg. This could take several seconds...

Initial JPEG processing time: 2.46 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 63, spHouseplantMsd.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

118

Checking password '111111"... Negative match...
Checking password '123123'"... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha'... Negative match...
Checking password '1234567'... Negative match...
Checking password 'qwerty'... Negative match...

Checking password 'abc123'... Positive match!

SteganPeg detected for file 63, spHouseplantMsd.jpg

Total detection and processing time for file 63, spHouseplantMsd.jpg: 3.43 seconds

Extracting initial byte array from file 64, spHouseplantSec.jpg. This could take several seconds...

Initial JPEG processing time: 2.37 seconds

*Fx*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 64, spHouseplantSec.jpg

*#x#%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111"... Negative match...

Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Negative match...

Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Negative match...

Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Negative match...

119

120

Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Negative match...

Checking password 'aaron431'... Negative match...

Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Positive match!

SteganPeg detected for file 64, spHouseplantSec.jpg

Total detection and processing time for file 64, spHouseplantSec.jpg: 3.07 seconds

Extracting initial byte array from file 65, spiders.jpg. This could take several seconds...

Initial JPEG processing time: 5.44 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 65, spiders.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...

121

Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 65, spiders.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 65, spiders.jpg

None of the target steganography programs detected for file spiders.jpg

Total detection and processing time for file 65, spiders.jpg: 9.44 seconds

Extracting initial byte array from file 66, spPalmsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.11 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 66, spPalmsMsd.jpg

*x***Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...
Checking password 'picturel’... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111'... Negative match...
Checking password '123123'... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha’... Negative match...

Checking password '1234567'... Negative match...

Checking password 'qwerty'... Positive match!

SteganPeg detected for file 66, spPalmsMsd.jpg

Total detection and processing time for file 66, spPalmsMsd.jpg: 4.03 seconds

Extracting initial byte array from file 67, spPalmsSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.07 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 67, spPalmsSec.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Negative match...

Checking password 'password'... Positive match!

SteganPeg detected for file 67, spPalmsSec.jpg

Total detection and processing time for file 67, spPalmsSec.jpg: 3.95 seconds

Extracting initial byte array from file 68, spPenguinMsd.jpg. This could take several seconds...

Initial JPEG processing time: 9.44 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 68, spPenguinMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...

122

123

Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Positive match!

SteganPeg detected for file 68, spPenguinMsd.jpg

Total detection and processing time for file 68, spPenguinMsd.jpg: 11.70 seconds

Extracting initial byte array from file 69, spPenguinSec.jpg. This could take several seconds...

Initial JPEG processing time: 9.47 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 69, spPenguinSec.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Positive match!

SteganPeg detected for file 69, spPenguinSec.jpg

Total detection and processing time for file 69, spPenguinSec.jpg: 11.75 seconds

Extracting initial byte array from file 70, spPumpkinsMsd.jpg. This could take several seconds...

Initial JPEG processing time: 13.38 seconds

*#x*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 70, spPumpkinsMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...
Checking password 'picturel'... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111'... Negative match...
Checking password '123123"... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha'... Negative match...
Checking password '1234567'... Negative match...
Checking password 'qwerty'... Negative match...
Checking password 'abc123'... Negative match...
Checking password 'Million2'... Negative match...
Checking password '000000'... Negative match...
Checking password '1234'... Negative match...

Checking password 'iloveyou'... Positive match!

SteganPeg detected for file 70, spPumpkinsMsd.jpg

Total detection and processing time for file 70, spPumpkinsMsd.jpg: 16.87 seconds

Extracting initial byte array from file 71, spPumpkinsSec.jpg. This could take several seconds...

Initial JPEG processing time: 13.80 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 71, spPumpkinsSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel'... Negative match...

Checking password 'password'... Negative match...

Checking password '12345678'... Negative match...

Checking password '111111"... Negative match...

124

Checking password '123123'"... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha’... Negative match...
Checking password '1234567'... Negative match...
Checking password 'qwerty'... Negative match...
Checking password 'abc123'... Negative match...
Checking password 'Million2'... Negative match...
Checking password '000000'... Negative match...
Checking password '1234'... Positive match!

SteganPeg detected for file 71, spPumpkinsSec.jpg

Total detection and processing time for file 71, spPumpkinsSec.jpg: 17.06 seconds

Extracting initial byte array from file 72, spSpidersMsd.jpg. This could take several seconds...

Initial JPEG processing time: 5.71 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 72, spSpidersMsd.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Positive match!

SteganPeg detected for file 72, spSpidersMsd.jpg

Total detection and processing time for file 72, spSpidersMsd.jpg: 7.28 seconds

Extracting initial byte array from file 73, spSpidersSec.jpg. This could take several seconds...

Initial JPEG processing time: 5.53 seconds

*****First pass - Jsteg: attempting to find signature...

125

Jsteg not detected for file 73, spSpidersSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...
Checking password 'picturel'... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111"... Negative match...
Checking password '123123'... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Negative match...
Checking password 'senha’... Negative match...
Checking password '1234567'... Negative match...
Checking password 'qwerty'... Negative match...
Checking password 'abc123'... Negative match...
Checking password 'Million2'... Negative match...
Checking password '000000'... Negative match...
Checking password '1234"... Negative match...
Checking password 'iloveyou'... Negative match...

Checking password 'aaron431'... Positive match!

SteganPeg detected for file 73, spSpidersSec.jpg

Total detection and processing time for file 73, spSpidersSec.jpg: 7.93 seconds

Extracting initial byte array from file 74, spYellowMsd.jpg. This could take several seconds...

Initial JPEG processing time: 3.17 seconds

*Fx*xxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 74, spYellowMsd.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...

126

Checking password '123456'... Negative match...
Checking password '123456789'"... Negative match...
Checking password 'picturel'... Negative match...
Checking password 'password'... Negative match...
Checking password '12345678'... Negative match...
Checking password '111111"... Negative match...
Checking password '123123'"... Negative match...
Checking password '12345'... Negative match...
Checking password '1234567890'... Positive match!

SteganPeg detected for file 74, spYellowMsd.jpg

Total detection and processing time for file 74, spYellowMsd.jpg: 3.86 seconds

Extracting initial byte array from file 75, spYellowSec.jpg. This could take several seconds...

Initial JPEG processing time: 3.22 seconds

*#kxxxFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 75, spYellowSec.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Negative match...

Checking password '123456789'"... Negative match...

Checking password 'picturel’... Negative match...

Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Negative match...

Checking password '111111'... Negative match...

Checking password '123123'... Negative match...

Checking password '12345'... Negative match...

Checking password '1234567890'... Negative match...

Checking password 'senha'... Data length too big, negative match...

Checking password '1234567'... Positive match!

127

128

SteganPeg detected for file 75, spYellowSec.jpg

Total detection and processing time for file 75, spYellowSec.jpg: 3.97 seconds

Extracting initial byte array from file 76, squirrel.jpg. This could take several seconds...

Initial JPEG processing time: 18.09 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 76, squirrel.jpg

kx+xSecond pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 76, squirrel.jpg

129

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 76, squirrel.jpg

None of the target steganography programs detected for file squirrel.jpg

Total detection and processing time for file 76, squirrel.jpg: 31.12 seconds

Extracting initial byte array from file 77, sunset.jpg. This could take several seconds...

Initial JPEG processing time: 1.96 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 77, sunset.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel’... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111'... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha’... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...

Checking password 'password1'... Data length too big, negative match...

130

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 77, sunset.jpg

***4*Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 77, sunset.jpg

None of the target steganography programs detected for file sunset.jpg

Total detection and processing time for file 77, sunset.jpg: 3.59 seconds

Extracting initial byte array from file 78, tiger.jpg. This could take several seconds...

Initial JPEG processing time: 4.69 seconds

*Fx*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 78, tiger.jpg

*#x#%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...
Checking password '123456789'... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...
Checking password 'password'... Data length too big, negative match...
Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123'... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...

131

Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 78, tiger.jpg

*#***Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 78, tiger.jpg

None of the target steganography programs detected for file tiger.jpg

Total detection and processing time for file 78, tiger.jpg: 6.55 seconds

Extracting initial byte array from file 79, whitehouse.jpg. This could take several seconds...

Initial JPEG processing time: 10.99 seconds

*#x*xFirst pass - Jsteg: attempting to find signature...

Jsteg not detected for file 79, whitehouse.jpg

****%Second pass - SteganPeg: attempting to find signature using common passwords...
Checking password '123456'... Data length too big, negative match...

Checking password '123456789'"... Data length too big, negative match...

Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

Checking password '12345678'... Data length too big, negative match...

Checking password '111111"... Data length too big, negative match...

Checking password '123123'"... Data length too big, negative match...

Checking password '12345'... Data length too big, negative match...

Checking password '1234567890'... Data length too big, negative match...

Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234'... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 79, whitehouse.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 79, whitehouse.jpg

None of the target steganography programs detected for file whitehouse.jpg

Total detection and processing time for file 79, whitehouse.jpg: 15.62 seconds

Extracting initial byte array from file 80, yellow.jpg. This could take several seconds...

Initial JPEG processing time: 3.27 seconds

*****First pass - Jsteg: attempting to find signature...

Jsteg not detected for file 80, yellow.jpg

*kx*xSecond pass - SteganPeg: attempting to find signature using common passwords...

Checking password '123456'... Data length too big, negative match...
Checking password '123456789'"... Data length too big, negative match...
Checking password 'picturel'... Data length too big, negative match...

Checking password 'password'... Data length too big, negative match...

132

133

Checking password '12345678'... Data length too big, negative match...
Checking password '111111"... Data length too big, negative match...
Checking password '123123"... Data length too big, negative match...
Checking password '12345'... Data length too big, negative match...
Checking password '1234567890'... Data length too big, negative match...
Checking password 'senha'... Data length too big, negative match...
Checking password '1234567'... Data length too big, negative match...
Checking password 'qwerty'... Data length too big, negative match...
Checking password 'abc123'... Data length too big, negative match...
Checking password 'Million2'... Data length too big, negative match...
Checking password '000000'... Data length too big, negative match...
Checking password '1234"... Data length too big, negative match...
Checking password 'iloveyou'... Data length too big, negative match...
Checking password 'aaron431'... Data length too big, negative match...
Checking password 'password1'... Data length too big, negative match...

Checking password 'qqww1122'... Data length too big, negative match...

SteganPeg not detected for file 80, yellow.jpg

*****Final pass - OutGuess: attempting to find signature...

Seed too large...

OutGuess (with default options) not possible for file 80, yellow.jpg

None of the target steganography programs detected for file yellow.jpg

Total detection and processing time for file 80, yellow.jpg: 4.54 seconds

Analysis is complete. Log file is jrpegLog0.txt, and metrics are saved in jrpegStats0.csv

File

cactus.jpg

COW.JPE

crater.jpg

eagle.jpe

forest.jpg

frogipg
greentrees.jpg
houseplant.jpg
isCowMsd.jpg
jsCowSec jpe
isCraterMsd. jpg
jsCraterSec.jpg
jsForestM=d.jpg
jsForestSec.jpg
jsGreentreesMsd.jpg
jsGreentreesSec.jpg
isHouseplantMsd.jpe
isHouseplantSec.ipe
jsPalmsMsd.jpe
jisPalmsSec.jpe
isPenguiniMsd jpg
isPenguinsec.jpg
isPumpkinsisd.jpg
isPumpkinsSec.jpe
isSpidersMsd.jpe
isSpidersSec.jpg
isYellowhsd jpg
isYellowsec jpg
leaves.jpg

moon . jpg
cgCowMsd.jpg
ogCowSec.jpg
ogCraterMsd.jpg
ogCraterSec.jpg
oeForestMsd.jpe
ogForestSec.jpg
ogGreentreesMsd.jpe
ogGreentreesSec jpg
ogHouseplantMsd. jpg
ogHouseplantSec jpe

Size
591155
1275990
1072272
770867
729925
298370
4664976
316713
222003
822010
601331
601336
458084
4553099
2650002
2550020
227946
255675
216005
216003
591038
591050
914289
914303
419257
419279
256814
256821
306227
275648
823975
823575
600659
600482
458562
458322
2648358
2648133
254185
253888

LOG FILE 2:CSV FILE

Height
3600
2667
1702
1534
1280
1505
4293
1066
2667
2667
1703
1703
1380
13280
4393
4353
1066
1066
1200
1200
3037
3037
3239
3239
2108
2108
1200
1200
1066
2946
2667
2667
1702
1703
1280
1280
4293
4293
1066
1066

APPENDIX B

2400
4000
2556
2400
1920
2400
G440
1599
4000
4000
2556
2556
1920
15920
G440
G440
1559
1559
1600
1600
2025
2025
2293
2293
2400
2400
1200
1200
1589
4489
4000
4000
2556
2556
1920
1920
6440
6440
1599
1559

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

457
10.33
8.52
597
554
249
38.45
242
7.01
7.41
511
531
3798
376
23.06
2352
1495
2.2
179
18
5.03
518
8.01
737
393
3.69
211
21
2.23
7.88
7.58
7.66
53
5561
3.88
3.86
23.65
2376
2.25
211

134

1123
18.54
124
.23
7.7
5.56
6232
379
8.61
8.96
579
.04
418
418
27.24
27.83
222
248
2.08
2.09
604
6.28
94
8.93
448
447
24
234
372
18.38
15.84
15.85
9.04
24
593
549
46.76
4633
3.65
3.46

ogPalmsMsd. jpe
ogPalmsSec.jpg
ogPenguinhsd.jpg
ocgPenguinsec.jpg
ocgPumpkinsMsd.ipe
ogPumpkinsSec.jpg
ogSpidersisd.jpe
ogSpiderssec.jpg
ogtellowhsd.jpg
ogYellowsec.jpe
palms.jpg
penguin.jpg
pumpkins.ipg
snowhill_jpg
spCowMsd.jpe
spCowsSec.jpg
spCraterMsd.jpg
spCraterSec jpg
spForestMsd.ipg
spForestSec jpg
spGreentreesisd.jpe
spGEreentreesSec jpg
spHouseplantMsd.jpe
spHouseplantsec.jpg
spiders jpg
spPalmsiMsd.jpe
zpPalmsSec jpg
spPenguinisd. jpg
spPenguiniec.jpg
spPumpkinsMsd.ipg
spPumpkinsSec.jpg
spSpidersMsd.jpe
spSpidersSec.ipg
spYellowMsd.jpg
spYellowsec.jpe
squirrel jpg
sunset.jpg

tiger.jpg
whitehouse jpg
yeliow.ipe

216558
216295
591951
591768
912251
912083
421724
421149
258233
257856
380985
1126912
1652888
3131428
1276041
1276026
1072285
1072279
729943
729937
4664580
4564978
316729
316725
673936
381002
381005
1126920
1126916
1652506
1652886
674067
674035
400656
400641
2180916
230704
581934
1361001
400550

1200
1200
3037
3037
3239
3239
2108
2108
1200
1200
1200
3037
3239
25992
2667
2667
1703
1703
1280
1280
4293
4293
1066
10665
2108
1200
1200
3037
3037
3239
3239
2108
2108
1200
1200
3190
1080
1312
1944
1200

1600
1600
2025
2025
2293
2293
2400
2400
1200
1200
1600
2025
2293
3992
4000

2556
2556
1920
1920
5440
5440
1599
1589
2400
1600
1600
2025
2025
2293
2293
2400
2400
1200
1200
4785
1920
1474
2592
1200

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

19
178
5.08
5.28
77

7.8
3.81
3.64
2.12
211
3.22
§.44

13.58
25.85
10.53
10.67
8.76
8.75
5.89
5.84
39.13
39.52
2.48
2.37
5.44
211
3.07
g.44
9.47
13.38
138
571
553
3.17
3.22
18.08
196
469
1099
3.27

135

3.33
3.32
1001
0.4
139
1295
7.67
7.55
3.35
3.24
477
1467
2019
3696
1404
1441
10.62
111
6.95
743
48.92
49323
3.43
3.07
544
4.03
3295
117
1175
16.87
17.06
7.28
7.83
3.86
3.97
3112
3.59
6.55
15.62
454

APPENDIX C

JREVEALPEG CODE

jrpeg.py

import

impart

impart

impart

import

impart

o5

Jadec
Spded

[

def analyze(srcFiles, Log)i

Iog. lprint({ "Number of flles to be snalyzed: " + sor|len(srcFlles)))

count = @
for £ in srcFiles:

counl += 1

log lprint{"\nExtracting [nitial byte array from T1le " + str{count) +

startTime = Cime.perf cownter{)

try:
coeffy, w, x = ooefu exbraclif)

iFf (Coeffs == None):
log. lprint"\iNe scan o
cont inue
EncEpt FLleMotFo

I May be bad file Dype.")

Cildgie el gl

log. lprint{"Er File nol fou "+)
continue

exeepl Exceplioh as inst:
log. lpri Error: Fils might ool be &n sccepled Lype of JPEG (basellie, 4:2:8 (2x2) subsampling). : " + F)
m,n = insl. args
log Eprint{"\t" + m + " " + n)
continue

JpgFrocTime = Uime, pert couiter() - SUariTime
log. 1print{"\nInitlal JIPEG processling time: {:.2¥} seéconds",formabl{jpgProcTime))

js = False
sp = False
og = False

message = "y\nMone of the targel steganbgraphy programs detected for file " + F

", "+ F o+ This could take several secomds...

ny

136

ol 3R

W
o B

£

11
111
H2
113
114
115
patn
| & iy
114
1145
12
Lxl
i
123
14
125
L
137
128
155
158

137

ey llfy dstey slpnatufe F1 | T=gdnt ¥

HAYLemp? Lo Ldenllfy ds g irat, LF pat Ukl St=pinPey, | i
log. lprint{"\n*****First pass - Jsteg: attempting toe find sigrature...")
try:
& = jodec.detect{coef+s)
except Exception as inst:
mn = Inst.args
log. lprint{"it" + @ + " " + n)
log. lprint{ "\nThere was 2 problem with Jsteg detectlon. Moving to next target...")
i (g8
message = “inlsieg detected for file " + stricomt) + ", " + F
else:
log.lprint{"\nlsteg nol detecied for file " + str{count) + *, * + f)
log lprint{"\n*****Secoml pass - SteganPeg: atlempting Co find signatere uslng common passwords...")
try:
ip, msgs = spdec.detscticosiis)
Log. Lprint{msgs)
except Exceplion as inst:
mun = Instoargs

log. lprint{"\t" + m + " " +)

log. lprint(" \nThers was 2 problem with SteganPey detecblon. Moving o nexl Larpet...")
if {ap):

mesiage = "\nGteganPeg delected for FLle " + sir{count) + ", " + ¥
elge:

log . lprint{"\nStepenPeg nob detected for FIle " 4+ sbr{comml) + , " + ¥)
Tog. lprint (" \n****sFinal pass - OutGuess: attempting to Find signature...™)
ogErr = False
try:
o, migs = ogdec.detect{coeffs, y, x)
log. lprint{msgs)
expept Exceplion as inst:
mn = inst.args
log lprinb{"\t" + m + " " + n)
log. lprint{" \nThere was a problem with OutGeess detectlon. Flnmalizing...")

ogErr = True
if (og):
message = "\ndutGuess (with default options) possible for Fflle " + ste{comnt) + ", "+ F

elif (mot ogire):
Llog: lprint{"\n0ustGueess {(with default options) not possible for file " + ste{coumt) + “, " +)

endTime = Lime, pert_counter])

totalTime = {endTime -startTime)

log. lprint{message)

log. lprint{"\nTotal detection and procescing time for +ile "+ stefoounmt) + °, " +F + "1 {1 24} seconfe" format{totalTime))

filze = os.path.getsizef)
log.csvFlle write{f + ", " + strf{fsize) + ", + seedyd + 0" + steded + 0" + str{fed + 0" + stedspd + 0"+ str{og) +
t {2} s et Formet{ jpaProcTime, totalTime))

log. lprint{"\ninalysis Is complete. Log file is " + log.logMeme + “, and metrics are saved In " + log.csvilame)
log. logFile.clossf)
log.cswFile.close])

i e
class Logger:

def _ init. (delf, cwd):
self.cud = Lwd
self. setlogFlle()
sl setTSVFLLe()

def setlogFile{sal+):
path = o5 path, jolndself owd, "logs")
{4 s Files) = nestios.walk{path))
for ¢ in rangellen{files)):
Foame = "Jrpeglogtssteic)+”, wan”
iF (fneme not in files):
selt.logfile = open{path+' / +Fname, "w")
selt. lopFlile write]"Logged on " + time.zsctime] time. localtime]time. timed)) j+"n")
self, loghame = Fname
break
£ 4= 1

def setCSWFile{selt):
path = os.path. joln{self.cwd, "logs"})
(. _, ¥illes) = next{os.walk{path})
for ¢ in range(len{flles)):
Fhame = TjrpepStals +ste{o)+”, oev”
iF (fneme not in Files):
self.esville = open{paths’) +Fname, "w")
self.csvFile . write("File Size Helght Width, Jsbeg STepanPEG, OutGeess CoefFTime Overal ITime"+" ")
self.caviame = fname
break
L += 1

def lprint{sel+, line):
print{lime)
self. logFile write{linge + "\n"})

183

1ok

229

o
P
2
25
.y
213

32

433
236
237
Ti9
i
A

245

138

User met rroagre For salh prograr
def menul)
print{"\n{+) Enter & path to & single file for analyoig”)
print{"(d) Enter a path to a folder to enalyze multiple files™)
prinE{ () Help")
print{"(q) Quit")
return Loput{"\nEnter &2 menu option: ")

lad Mals pregram ddiin

path = os.path. join{cowd, “Llogs")
o mkdir{pativ)

except:
pass

#'—1"“_("II““.‘.O.O“‘.O.O.O‘.‘.O.O“‘.O.O‘O‘.‘.O.O“‘.O.O“‘-‘.O.O“-.O.O“‘-O.O\Lh"J
print{" Welcoms te JRevealPEG, & seml-blInd stegenzlysic tool for JPEGS\n")
m-mt(".0#"h..O‘#i*00.0"0¢"¥.0.‘¢¢*00.0*0¢"$00.“i*FOOO*iiﬁh...‘#i*t..'*i“i\“"}
chofce = menui)

witile {choice. lower{) 1= 'g'):

if (eholee not fn [TF,0d,’
print{"Plesse snler a va
choice = menu()
conlinee

R R E
tig eholoe.. .y)

iF (choice == ')
path = input{"Enter a file path: *)
if {os.path.istile{path)):
log = Logger{iwd)
Log. lprint{"File path entered: “ + path)
analyze([path], log)

print{"Not & valld $ile path,")
chelce = memi])
Lo Lo

i (choice == 'd'):
path = Inputl{"Enter 2 directory for Input Files: ")
if (os.path.isdic{path)}:
{_+ s srcFilec) = next(os.walk(path))
s, chdirdpath)
WInltlallse logger
Llog = Logger({cwd)
Leg. lprint{ "Direclory entered: “ + path)
analyre{srcFiles, log)

print{*Not & valld directory. ")
cholce = memi)
Cont Lnue

if (choice == ‘h'):
print{*nmileveal FEG will sttempt to detect steganography In JPEGs given as input.”)
print{"This progrem doess NOT extract the hidden dats.")
print{"Currently, this program is only be ahle to debtect signatures from Jsteg 8.3.8, SteganPeg 1.8, and OuilGuess &.3.2.")
print{"Current 1PEG compatiblility: Basellne DCT, with &4:2:& (2x2) chroms sebsampllng omly, ")
print{"\n¥ou can supply the path to a single file, or to & Tolder with multiple files.")
print{ The analysis report is saved Ln & log file, ol detectlon stats ere also sayed In & caw File.")
print{"ynDetection details:™)
print{"l. Detection will occur in this order: Jsteg, SteganPEG, OulGuess.™)
print{"---Once a signature is detectsd, analysis s complete for that file.")
print{"2, Assimptlions/Preconditlons: ")
print{"---Isteg: Mo password used with this teol.")
print{"---SteganPEG: Assumes possword Is from Cop 28 1lst of 2009 by MordPass.")
print{"---OulGuess: Assumes detault optlons (kKey Ls \“Default key\"). Result is elther \“"possibley* or \"not possiblsiy".")
print{"3. For abl input +iles, this program assumes there is only one hidden message or tile.")

cholce = menuf)

coefx.py

W wR e e b e

=
L]

NYEE

P
B =1

A

B

b
R

i 15

ot Bt L
ol foar e

B e
Al A

R
n b

|

e
v =

[ERSRALERE S

-)

T e

7
¥
T

From struct import wnpack
import math

def RemoveF FaB{data):

Removes Ewdd afler S8x+F In The lmege scah sectlon of JPEG

datapro = []
i=g

while True:
B, bmext = wmpack("BE", detali @ i + 2])
if b == BFF:
iF biext 1= @0
break
detapro, append (datafi])
L4=1
elae:
datapro, append {datali])
L += 1
return datapro, L

GetArray| type, 1, lengih):

A convenlence Fincllon for wenpacklig an arrzy +Pom bitstream
£ o
for L in range{length):
5= &+ Lype
return list{wnpackis, L[:length]))

DecodeMunber{ code, bits):
1 =24 {code - 1)
iF biks 5= 1t
return bits
alog:
return bits - {2 * 1 - 1)

class HuffmanTable:

A MWurffman Table class

def __init_ (self):
selforoot = []
self.elements = []

def BitsFromLeagihs{sels, root, element, pos):
if lslnstance(root, 1ist}):
if pos == 8!
iF len{root) ¢ 2:
ool append| e lement)
return True
return False
for 1 im |8, 1]:
if len{rooL) == i
root cappend{]])
iF self BitsFromlengths{root[i], slement, pos - 1) == Troe:
return True
return False

def GetMuffmanBits{self, lengihs, elements):
self.elements = elements
it =&
For i in range{len{lengths))h:
For j in range{lengths{i]}:
self.BitsFromlengths{self root, elements|IL], L)
it += 1

def Find{self, sth:
™~ = salf.root
while Isinstance{r, 1lst):
r = rlst.Getgitf}]
retern

def GetCode(selt, st):
while True:
res = self, Find{st)
1If red == @:
return 2
elif res l= -1:
return res

139

NERE

W
-

&

111
113
113
114
135
116
117
118
118
125

in
1R
114
135
13&
11X
128
125
138
131
132
133
134
135
136
137
13E
135
148
141
143
133
zda
145
146
147
ldp
145
i Lo
151
152
151
154
155
158
157
158
159
g2
161
153
1£3
164
1E£5
165
167
166
165
iTe
iTt
172
iFl

e
7%
17&
iF?
178
175
188
181
AE3

1E3

ama

class Stream!

A bit streem class with convenlence methods

def _ init_ {self, data):
self.data = data
self.pos = &

def GetBit{self):
b = self.datafself.pos »»> 3]
& = 7 - [selt.pos & 8x7)
self.pos += 1
return (b >» s) &1

def GetBith{sels, 13:
val = @
for _ in range{l):
val = val * 1+ self. GetBit()
return val

def len{self):
retura len{selt.data)

class JPEG:

i

JPEG class for decthding & basellne encoded JPEG image (to pre-Muefiman encoding stage only)

def _ init (selt, imege file):
self. hsffman_tables = {}
self.queant = {}
self quantMapping = |]
with open{imege File, “rb") as f:
self. img data = F.read()

def DefineQuantizationTables{self, data):
(e,) = unpack({"B", datafe:1])
self.quant{hatr] = GetArray("B", datall : 1 + &4], &4)
daka = dacafes:]

def BuildMatrix{self, st, Idx, t, olddecoett):
L i £ M i

eBlock = [8] * 64

code = selt huffman_tables[® + Ldu].GetCode(st)
bits = st.GetBitM{code)
drooedf = DecodeMumber{code, Bits) + olddocosds

cBlock[2] = decseff

I'=:1

while 1 < 63:
code = self huffman tables[16 + idi].GetCode{st)
iF code == B:

break

blis = sl GelBITN{Cade)

iF L« 64:
coetf = DecodeMumber| code, bLTc)

cBlock[1] = coeff
l4=1

return cBlock, docoeft

def BaselineD{T{self, data):
hdi, selt.height, selfiwidth, components = unpack{'>DHHE", data[d:6])
ITn case widih id/or helg Lululble by L
self.exthWidth = self.width

self extMeight = self. height

IF (self widihXEl6 1= @):
self. exthidth += (16-({self, widthEl1E))

if (self.helghtEls 1= 8):
self extHeight += (16-(self heightElis))

for 1 in rangs{components):
id, samp, QEbIH = unpack{“BEE", datal6 + 1 * 3 : 5 + 1 * 1])
self . guantMapping . append{QUbTd)

140

186

283

EHER

EEER

o

s

thl-.ul.i
==
et

o
]
E:n:ulf-.'

e

T
k

At
L5

R e
B)
=t ' b T L

[
s
B

F3iE
23E
233
23E

41
4l
243

245
AR
247
MAE
245
258
253
352
253
254
258
56
25T
158
255
258
263
22
263
25

265
2EE
267

ZRT
zTR
271
Fr
I7A
2756
276
o

def decodeMuffman{selt, data):
offset = &
(header,) = wvipack("8", dataloffser : offset + 1])
offset += 1

lengths = GetArray("B", dataleffset : offset + 18], 18)
etfeet 4= 16

elements = |]

For i in lepgths:
elements += GetArray("B", detafoftser ! offset + L], 1)
offsel += 1

hF = HuffmanTable])
Ivf GetHurffmanBits lengths, elements)
selt hwffman_tablesheader] = ¥

data = datajoffser:]

def checkHMtStruclTypelself, Len_chunk, data):
tablelengths = dataf5:21]
valfum = &
for val in teblelLengtis:
valsum += wval
iF {{len_chienk - 2x11) == valSum):
len_chunk += 2
chink = datafd: Len chuenk]
sel¥, decodeluiman chink)
return len_chunk, chunk, dats
else:
Ionily $irs

L A1 hes L marioer = ¥
tableLengths = data]5:21]
len_chwnk = walSum + 2x13 + 2
chunk = datal4:len_chumk]
self decodeHutfman] chunk)
data = dataflen chunk: |
For I in range(3):
tablelengths = datafi:17]
valsum = &
for val in CablelLengths:
valSum += wal
len chnk = wvalSum + 8xI3 - 3 dhesler o |ealms
chonk = datal:len chunk] Netart &t Dntes @ ceuss
self. decodelutfman{chank)
date = dateflen chaenk:]
return led chenk, choenk, data

LN dlmargs scah 48
def StartOfScan{selt, dats, hdrlen):
date, lenchunk = RemoveFFad|date]hdrlen:)

5t = Stream{data)

oldlumiccostf, oldlbdocset, cldCrdccoets = 2, &, &

ULLse . of decodid M W

meulist = []

oo Ljpur=d for 4:2:3 chiroms it 1

for ¥y In range{self.extHeight // 163
for x in renge{self.extWidgth /7 16):

iFlrol deiode 4 ¥ compoienls 1
for 1 in range{4):
cBlock, oldlumfccostt = self. DulldMatrix(

st, 2, self.quant{sels. guentMappingl2]], oldlumdcooett

H
meullst. append{ cBlock)

cBlock, oldibdccoett = seld. BuildMatrix(

st, 1, self.guant]self guantMappingil]], olofwdocoets

i
meulist, append{cBlock)

kloik, sldCrdccoeft = self.BulldMatriz]

st, 1, self.guent]self. quantMappingl2]], olaCrdccoets

]
mouList . append {cELock)

return moulist

def decodefselt):
data = self.imp data
Clietk Fur Sfar + Tmaje i
(marker,) = wnpack(">N", data[8:2])
if (marker != GxFFDE):
raise Exceplion(“No S0T marker")

141

a
.....E-
Wi B

e

EEEE

ol
]
o

FEEl

i

EEEREER
hlp—l;’; e

el
y =

235

dof decodeuffman)self, dats):
offsel = 2
(header,) = unpack({"E", datafoffsel : offset + 1])
offiel 4= 1

lengths = GetArray("B", data]offset : offset + 18], 16)
offiet += 16

elements = []

for 1 in lengths:
elements += GetArray("D”, datajoffset : offsel + 1], 1)
offset 4= 1

W = HuffmanTable()
I . GetHurifmanBits{ lengths, elements)
sal¥ . hibfman_tables|eader] = bt

date = detajetfset: |

def ehoekHESLruetTypelsels, len_chunk, data):
tablelengths = dataf5:21]

valSum =

2

for val in tablelengths:
valSum += wal

IF {(len_chunk - 8x131) == valSum):
len_chink += 2
chunk = data[4:len_chuenk]
self. decodeduffman Chmk)
return len_chunk, chenk, data

elge:

tablelengths = dataf5:21)

Tirak BT I | et 2uFrca

len chamk = valSwm + 8x13 + 2
chunk = dataf4: len chamik]
self, decodeuffmand chienk)
dats = data] Len_chunk: |

for I in range(l):

tablelengths = datafl:17]

walSum = &

for val in teblelengths:
valSum 4= wval

len chunk = valSum + @x13 - 2 - 11z T 1

chunk = dataltlen chimnk] lstert 20 lndes @ pause b b}

el decodeHrtFman{ clunk)

data = dataflen chamk:]

return len chenk, chunk, data

def SEartOfSean{self, data, harlen):

data, lenchunk = RemoveFF@8{data]hdrlent |)

data. append(a)

it = Stream{data)
oldlumiccoett, oldibdecoeft, oldirdccoett = 8, '8, &

dLlist = b O
meullst = []

i wantjel Liviy ceiidy

for y in range(self.extBéight /7 16):
for x in range(self.extWidth r/ 16):

IFlral dedbde 4 Y Cimpdieils Li Tl
for 1 in range{d4):
cBleck, oldlundccoett = self . BulldMatelaf

st, &, self guant[self.guantMappingis]], oldlumdccosft

!
meulIat, sppend | cBlock)

i e 2 Wl e 1

eBlock, oldfbdecostf = self BulldMebeis
s8t, 1, self.guant]self quentMapping(i]], oldCbdocoets

H
meul it append{cblock)

cBlock, oldCrdocoets = seld BulldMatrig
st, 1, self.guant|self.quantMapping{2]], eldCrdccoeft

H
meul 158 . appendd { cBLock)

return moulist

142

2B5

251

295

257
Joi
200
Je
a1

il it]

a1
LEL|

det decode(selt):

data = self.img data
tar FLar F Image marier $U beglonlng of fLle
{Mr‘k&l‘,} = uq}ar_k{"hl-l" datafe:2]}
if (marker 1= @xFFDR):

raise Exception{"Mo 501 marker™)

witile True:
(marker,) = wonpack(">H", datafe:1])

If marker == SxFFDE: I51eri of In
date = datafl:]

elif marker = BuFFD9: Ui of Tmege - shoele npl be reschs
return

elge:
{len_chunk,) = winpack(“sH", dataf2:4])

if marker == BxFFCA: Hditfmen Table(:
len chaenk, chunk, data = self.checkHtStroctType(len chuenk, data)
({marker,) = unpack{":H", datafe:2])
{len_chunk,) = wapack({">H", dataf2:4])
len chunk += 1

else:
len chuak += 2
chunk = datal4:len_chunk]

£F merker == SxFFDB: [uantlestion Tabls
chunkl = chumk :65]
sel¥.DefineQuant izationTables {chunkl)

HI¥ Les
IF (len chasnk > £33
chunk? = chsnk]65:138]
selt . DefineQuantizationTables]chunkl)
elif marker == BxFFOB: Witlarl of [rams
self, BaselineDIT{chunk)
elif marker == ExFFDA: 1Sl A
miulist = self. St,al‘tD-FS-u_h'l{dkl‘.&, Len_chamk)
réeturn moulist, selt. height, self. widith

data = dataflen chunk:]
if len{data) == 8:
return

AELy Yol L §
def eu!.ratl.{inFIlej
img = JPEG{inFile}
try:
coeffs, ¥, % = img.decode])
except Exception as inst:
m, = insi.args
raise Exceptlon(Unexpected error:”, m)
return coeffs, vy, x

th Ls mor= thas 563, only 1 mdckest For 21l tables, isdp pracedd

143

jsdec.py

EHRESERERRER e v vim ek

1
H

EHEREEREE

B

L3 E
51

11
56
57
=
B

(]
&
|72
ol
&5
&
67
=2
Ta

]
73

-

181

FilterMCUs{coetts):

det

Juteptey = |

1

‘Magle' key for Jateg
e11a1ela
2111881l
21118188
ellaalal
21188111

L LR

for ¢ in coeffs:

iF ((count + 1) % 6 == @ or count % & == &):

count += 1
continue

FRRRA
WOWW W

rescexbend{c)
count += 1

return res

pare exiracisd bl

dof magie{coetfs, ke;'j

bithhum = 2
for 1 in renge{5):
temp = []

e[35] nTygnet
List{filier{{
List{+ilter{(d)._ne , €))
Lise{fllter{{e.a)._ne , c))
LISECFLlter{ (). ne , £))

-1).

for J in range{s):

temp. appendy coedfa | bithum |X2)

bitkum += 1

If (temp 1= key[1]):

réturn False

relturn Troe

IENLrypaing Fane T

def detecticoeffs):

res = False
try:

ne ey

“proclist = filterMOUs{coetss)

res = magic{proclist, jsteghey)
excepl Exception as Inst:

m, = inst.args

raise Emceptlon{“Unexpected error:”, m)

return res

144

145

spdec.py

Far IRevEd oG [Jresg. fy), targpet: 5

Lh:mt' Some GF ThIS cote 15 M result of stapting/revislng source cofe and Lranscrlblog to Python +rom Visual Basic,
referencing SLeganPEG 1.8 by Kango AbhDram, Witps:/fww.sotlpedle.com/get/Securily/Encrypling/SteganPEG. shiml' "

yptlon, employ

pwds = ['123456',
"123456TES",
“plcturel"”,
‘passwird”,
'1234567R"
‘113N,
"123133,
‘12345',
'133ASETESS ,
‘genha '
"1IIABET ',
gueriy’,
‘abr133t

WFL1Eef out O coif
def fill.er!ﬂls{mﬂ-s)
red = |}
Ffor ¢ in coeffs:
€ = ef1{] uTunare DL Cosf
r. = list{filter{(2)._ne , e)}
= list(filver{(2.e). me , €))
fes.em(c)

return res

iireck dals Dyles o LEBSs

def M(nusu

for b in bList:
bit = b X ¥
AF (boc B):
bit = {~bith & 1 0 BiE §
byteProcd = (byteProod << 1._! + bll.
IF {counkt == B):

res ., append| by teProcd)
byteProcd = @
fomt = &
count += 1
Feturn res
Pkl sniaglng sLgsritln fron SLEganPEG

def mr_odei'ass{pu}
passstore = []
passIng = 2
mELlLs = @
numTondd = 2
while (passInd < Lenfpe)):
passBits = @
passPres = ord{pw[passInd]})
while (passBits ¢ Bj:
while (numBits ¢ 3}:
numToddd = {mumTobdd ¢ 1) | {passPres s> 7)
numBits 4= 1
passBits += 1
passPres = (passPres << 1) & &xFF
if (passBits == #):
break
iF (passBits == E):
break

pessStore . sppend| numToldd)
tumToddd = &

A R AR R E R R e N R A R R N B SR B S R G R B B R R s B B U b B E R R RE LR ER EIER RO R E B e Wi s e

135
13&
b s

3%

1

172
7
174
175

174

HE
det

mumBits =
passIngd += 1
iF (numBits l= @)
passStore append| mumToldd)
pesiSlere. reverse])
Feturn passStors

Ll [part of deprjpt o
rotateleftval):

msb = wal »» 7

newal = wal << 1

wal = newval & ExFF

wal = wal | msb

return wal

result = []
while {1 ¢ len{byteList)):
val = hgteLisr.[l 1
if {rotChosen == len(passStore)):
rotChosen = &
for § in range(d, passStoref rotChosen)
wval = rolatelefi{val)
rothosen += 1

ﬂ.-sult append|val)
1+=

return result

culate €
u‘kmmiuu}
checksum = &
Sum = B
wal = 8
for 1 in range]len{data)):
wal = {u-a.]_ << 1) | (darafi] & 1)
i (17 == @)
sum += wal
wal = @
iF (wal 1= @)
sum += val
val = &
for j in range(s):
ehecksem = (checksum <4 1) | {sum & 1)
Sumh b= 1

return checksum

ﬂel‘.er_l{i_oH—Fs)

MFeir Loppls

megs = "

WIFL bytes

bList = 'F!.l LerMils (coetfe)

BLTEL = Ml.aB_»,rLe-s{hLIi)

WE I3 El

pussswres = [_|

for pw in pwds:
passitores append{ sncodeFass{pw))

for 1 .Ln r-ange{len(pdujj_-
msgs += "Clhecking paséword ' + pwdsfi] + "'...

i f + tract leagth oF malo enbedded fats
l-mr— = ﬂa—ypu'.\ala{bu.:.l.[.4]‘ passsturﬁlij &)
datalen = &
for b in header:

datalen <<= 8

datelen = datelen | b
UTF disromed Tength iy noers e
if (datalen 3 {Len(hu.sr.) = ahy:
msgs += "Dats length foo big, negstlve matoh. .. yn"
continee

bLisSEZ = blisg[a: likl.&Lﬂl-Hl 1}
rot = 4 2

decData = decryptData(bList2, passStores{i], rot)
checksuml = decData.pop()

Iyl Edate o ik S

checksum? = ulccher.km{dun&u}

if (checksuml == checkswml):
megs += "Positive matchi! i’
return True, mogs

megs += “Megatlve match...hn”

return False, msge

Chath {LLIST-43, data Stie oo Big, go to (=Kt §

146

147

ogdec.py

N AR R R RS R RN e e R R e AR N R R R R REEE B e o s wibe

- ARewep IPEE (jrpeg.py b, tergets Duiesge & 0. 3

iteralor (AACA) +
oy et bssn Y

detiectlon {beluw

1Eeratnr

wlised

Lengti
o35G T

wpraphy Charpcteciitics

ectle Lo @, olds 1

i &%, Vs, Ch, Or (nalucs]l ordss, no sli= padding)

O 0T .0 - -0 1 0 G 000 -0 050 000 000 000 0 0 0000 0 0 0 0 0 00 0.6 0 S0 S b gy

HPul coefd melrlies Lo solwral gnier

def dezip{coetia):

natrder = [8; 1, &, 16, 8, 3, 3, 18,
X7, 34, 3, 3% (18, 11,04, 7%,
12, 19, 26, 33, 48, A8, 41, 34,
728N G T, DA BE, IR
3%, A7, 49, 56, 57, 58, 43, 34,
29, 13, 15, I3, 34, 37, 44, 51,
T§, 50 §1; 4%, 3%; 31,30, 46,
51, 68, 6, 54, 47, 55; 62, 63]

derlpged = []
for ¢ ln coetfs:
cutput = [&] * &4
for 1 in range({cd):
output [natorder[1]] = Intf{c[l])

derigged. append{output)
return dezipged
WCeleuilale Lhderss of edps MOUs (Plyght, boliom, batiom-right cormse)
def caleEdges(y, x): 0y Ls imsge helght, = |5 width

Nacepunt for dlvldlble lengihs
IF (% % 16 = @):

wEdge == #/ 16 - 1
elos:

xEdpge = x f}! 16

iF (¥ 3 16 == @)

yEdge = y Jf 16 -1

else:
yEdge = ¥ f/ 16

Mo right Slde 1T8T
riide = []
ritart = xEdge
rElep = xEdge + 1
ritop = ritep * yEdge
If (v X 16 1= @)
for 1 in range{rStart, rStop, rStep):

rElde. append(l)
Do botiom LLIst
Bside = []

botart = {xEdge + 1% * yEdge
bStop = bstart + xEdge
IF¥ fy X 16 1= @):
for L in resge{bStert, bStop):
bSide. append{i)

W2 D tTom-r LUl | Dot

briorner = [bELart + +5kart]
incomps = [rSide, bSide, bBrisraer]
return Incomps

CRERE

FEURSENCOERETERE

def trimbdges{mculist, Incomps, ¥, x):

hem =y % 16
Aif (yRem != 8):

k ¥ e, return slngls 11 =F dals il

iF (xRem)z
if (xR = &)
off =@
Ppoave = xhem
Bryl = brY3 = False
elge:
off =

leftieep = []

For Fow Lh range(, 57, B):

for col in range|row, pSave + row):
lefiiesp, append{col)

ylistk = []

for ¢ in rengellen{moullst[mou*s + of+])):
if {c in leFiMeep):
ylista. append {miulist{mou*s + of+][c])
meuList[mou*e + off] = ylista

for ¢ in renge{len{moulistimcu*é + ofF + 2]3):
if (o in lefiKeep):
ylisth . append (meulist[meu*s + off + 2][c])
meuList|mou*s + ofFf + 2] = ylistd

if {yRem <= 8):
off = @
paave = yRem
bryY2 = brYld = Falge
el
off = 2
poave = yRem - &
HCale pinsls (e
eep = [
for row in rangepSave):
for col in renge{row, row + B):
Lopkeep. append(col)

ARe=p. relevs plaels

for mcu in Dncompsfl]:
ylista = []
ylisth = []

for ¢ in rengellen{moulist|mou*e + of+])):
if (¢ in topieep):
ylisth.sppend{miullst[mou*s + of+]lc])
meullst[meu*s + off] = ylista

for ¢ in range{len{moulistimeu*s + off + 1])):
if {c in topleep):
ylisth. append (meulist[meu*s + ofF + 1]0c])
miuListfmcu*s + ofF + 1] = ylistl

148

158
153
itz

171
173
rn
174
176
1ThE
177
17e
176

1g1
153
15
184

149

bLimit = 8
elge:
blLimit = yRem % 8

for roW i Fahge(E):
for 2 in renge{row * E, 8):
iF (& < xRem and {row * B) < yRem):
bryeieep. append{a)
i (brvl):
if (a ¢ rlimit and (fow * E) < bLImith:
Lryikeep . append{a)
£F (bry2):
if {a < whem and {row * 8) < bLimit):
Y Ieep. append{4)
iF (bryiy:
if {a ¢ rLimit and [rew * 8) < bLimlt):
Y IKeap append{2)

miu = imcomps[2][£]
briist = []
for ¢ in range(Ea):
if (¢ in bryeKesp):
brList, append{moul istmeuta] c])
iF (bryl):
for ¢ in range(&d):
if (¢ in brylkeep):
briist.append{meul Lst[mew*s + 100c])
iF (bryY2):
for ¢ in rangef&d):
if (o in bry2Keep):
briist.append{mool Lst{moe*s + 2]{c])
IF (beY1):
for C In range{&d):
if {cin brydiesp):
briist.append {moslist[mew*s + 3])0c])

meulist|meu*E] = briist

temp ., append {moel 1ot [meuts])
LF {brvl):
temp . append {mul ISt [mou*s + 1]
temp . append{meul it [mou*E + 2])
iF (bryd):
temp. append (moulist [mou*s + 1))
temp. appendimoul Lstmow*s + 4])
temp. append{moul Istfmeu*E + 5]}
elif {mou in lncompafI)yy e Y2, Y1 LF necsssary
temp. append{moil i s tfmou*E])
temp. append{moul Istmouts + 1)
IF (brevl):
temp . sppend {meul 1st[meu®s + 2]}
if {bry):
temp. append{meulist [mou*s
temp. append{mcul lstmoutE + 4
temp. append{meul istmeu*E + 5
eLlif (mou in incompsf2)h: ey
temp. append{moul i s tfmou*E])
iF (brvl):
temp . append {meul ict [meu*s + 1]
IF (brvd):
temp. append (moulist[mou*s + 213
iF (bryd):
temp . append {meul ist [meu*s + 3]
temp. append{mcul istfmou*s + 4])
temp. append{moel ist{meu*s + 5]
HELse acif-#Ll ¥ ietnll b, Cr
alge:
temp . append{meel Tt fmow*E])
temp. append {moel Lo tfmeu*s +
temp. appetd{moel let[mouts +

LR

Ltemp, appendi{meul istmou*e +
temp . append{meul stfmou*s +
temp. append {moel Lst{mous +

meullst = temp

Feturn moullst

L R
e b
e e

25

265
I
2T1
272
i
I7a
275
II5
Iy
1T
5

2481
283

FERSREER

281

FEERRELE

A%

L]

136
v

HTurn dats byl=s intyp LER's (eyen Ly @, of

def bitmapidatalytes):

bltmap = []
for element in dataBytes:
if (element X 21 == 8):
bitmap. append|§)
elge:

Bitmap. append(1)
return bitmap

ALy AEel A Fale les

Faniom 1.4
extractHeaderInfoldata):

IFre-Lalol L=

iterater = [29, 538,

of il shirypilorn

, 71, B6, 93, 1%, 148,

167, 172, 194, 28c, 233, 238, 264, 794,
Ies, 313, 326, 336, 361, 3IBE, 482, 413,
426, ‘452, 461, 485, 581, §13, 528, LI6]

ercdkey = [Ex3F, Exbe, Swd7, Exlc)

tes =[]
For 1 in renge(?,312,8):
byte = &
off = 7
for] in renge({i,i-8,-1):
byte += datafliterstor]]]] <4 off
aff -= 1
enchytes, append{byte)

Fytil D gt

hdr = 1
for L in rainge(d):

e append{encBytesfi] “ arcakey[i])
WCalc sepd and dates lenpgt]
seed = {hdrfl] << B) + hatr[8]
datalen = (hadi-f3] << B) + hadrf2]

réturn seed, datalen

alrypolnt

detect{coeffs, y, ¥):
UEs® 1 N

megy =

E

teFTE L fualursl Grder

dezigped = derlglcoetfs)
meus = derigged

L b= lipht o wldath la naf Slvlslbly by

i fy X 16 1= & or x X 16 1= @):

PCaloilats wdgen

incomps = caleEdges{y, %)
iDelets padding, =xtrs componenis
try:

meus = trimEdges{dezipged, incomps, y, %)

except Exception as inst:
m, = imst.args

ratse Exception{"Unexpected error:”, m)

WMo FLLIUe owt (1

bitmapBytes = []

for lime ln mous:
line = list{filter{(2)._ne_, line)
line = list{filter{(1)._ne , Line)
bitmapBytes += line

L 48 2 5 48k LayE

Imap = ninuimwyus}

ICetartlon ineprlatics
seed, datalen = extractHesderInfolbmap)
Out e sets This Jdeta sire 1imit

If {datalen > len{bmap) // 2):

H
)

msgs += "Date length too blg vws. evailable cover..."

return False, msgs

IGesst ehould be-255 oF leus for gdefaunl
if (seed » 255):
msgs += "Seed Loo largs..."

return False, msgs

0T+ header gosen' £ oreles: 18 sl RS umE

return True, msgs

150

APPENDIX D

LINKS TO FREE JPEG IMAGES USED

https://unsplash.com/photos/BOuggN1tMEk

https://unsplash.com/photos/LMU2w-K4J7k

https://unsplash.com/photos/004C9qtn 48

https://unsplash.com/photos/p9t7g50RALs

https://www.freeimages.com/photo/houseplant-1640441

https://www.freeimages.com/photo/palm-and-pier-1390929

https://unsplash.com/photos/DE6yhZyG8bE

https://www.freeimages.com/photo/pumpkins-1363061

https://unsplash.com/photos/Bk5sT CzOaQ

https://www.freeimages.com/photo/yellow-1640997

https://unsplash.com/photos/K2DT1Z bthw

https://unsplash.com/photos/BUzjetL88RU

https://unsplash.com/photos/I8058UfInLc

https://www.freeimages.com/photo/fall-in-gom-province-1640647

https://unsplash.com/photos/I9KghcDU34c

https://unsplash.com/photos/coUZnech6qw

https://unsplash.com/photos/2BbwrimIlaX8

https://unsplash.com/photos/WZXROzZpftw

https://www.freeimages.com/photo/bengal-tiger-1521311

https://www.freeimages.com/photo/white-house-1221438

151

	JRevealPEG: A Semi-Blind JPEG Steganalysis Tool Targeting Current Open-Source Embedding Programs
	Recommended Citation

	Dissertation Final Cover.pdf
	Charles Badami Dissertation Approval 2021.pdf
	Dissertation Final Body.pdf

