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Abstract  

Norway spruce is one of the most commonly used species for new forest 
planting in Europe. It is planted in a large number of habitats, often without following 
the previous results in the success of afforestation. In order to improve Norway spruce 
afforestation, open field tests were established in which developmental phenophases 
are monitored. The use of planting material of different provenances, which had not 
previously been tested for habitat conditions, was often the cause of the decline of 
newly planted forests. Early budburst of Norway spruce causes losses due to the 
freezing of terminal buds. Norway spruce testing for different habitat conditions in 
Bosnia and Herzegovina (B&H) was conducted at two ecologically different localities: 
Srebrenica (eastern part of B&H) and Drinić (western part of B&H). During 3 years, the 
budburst on the seedlings originating from 6 populations (Han Pijesak 1, Han Pijesak 2, 
Foča, Olovo, Kneževo and Potoci) was monitored. The budburst dynamics was 
monitored in 2013, 2015 and 2016 and it was recorded for each seedling in two 
progeny tests. Seedlings from the Kneževo population budbursted the earliest. The 
seedlings would start budburst on different days of the year, depending partly on the 
temperature sums and their origin. The earliest budburst was recorded in 2013 (119th 
day of the year in Srebrenica and 121st day of the year in Drinić). During 2015 and 
2016, the budburst started later (125th day in Srebrenica and 129th day in Drinić). 
Temperature cumulants indicate that a smaller sum of temperatures was required for 
the buburst in the Srebrenica test than in the Drinić test. However, the temperature 
sums did not clearly indicate the budburst pattern because they were different for 
each observed year, but the populations ranking was almost the same. This indicates 
the influence of some other variables on the budburst. The knowing of the data on the 
budburst dynamics are a prerequisite for a successful selection of starting populations 
from which planting material is produced and new forests are later planted. 
Population Kneževo had the earliest budburst but population Han Pijesak 2 had the 
latest budburst.  
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1 Introduction 

Planting new forests requires the application of knowledge acquired through 
short-term and long-term field testing. Afforestation and reforestation in Europe and 
the world require the use of planting material adapted to climate change with the 
highest possible wood production and with minimal risks. Early budburst and late 
budset raises the probability of damage caused by late spring and early autumn frosts 
respectively (Heide 1985). Late frosts are one of the common reasons for unsuccessful 
afforestation causing severe damage on seedlings or seedlings decay. 

Norway spruce is considered to be one of the species with the longest 
cultivation history (Skrøppa 2003). The total area under spruce forests in Europe is 
estimated to be greater than 30 million hectares (Jansson et al. 2013). The species, 
based on the latest genecological tests from Switzerland, is considered to be an 
adaptive specialist. This means that the influence of the external environment has a 
significant impact on the survival and physiological functions (Cvjetković et al. 2015a; 
Frank et al. 2017) due to its sensitivity to the change of ecological factors. It should be 
considered when transferring it to other habitats and the dynamics of growth can be 
very different (Jansone et al. 2020). A positive correlation between frost damage and 
early budburst for many European Norway spruce provenances has been found 
(Lundströmer et al. 2020). Due to climate change, budburst starts earlier than before 
(Lange et al. 2016; Allen et al. 2018; Liu et al. 2018). It is believed that the budburst 
will begin 10 days earlier in the period 2051-2080 compared to 1971-2000 (Olsson et 
al. 2017) when late spring frosts could be a more common problem due to earlier 
budburst. 

In general, plants have a survival mechanism that allows them to “sense” and 
adapt to adverse environmental influences and to reproduce successfully (Howe et al. 
2003; Rohde et al. 2011; Azeez and Sane 2015). Species with a longer period of bud 
dormancy avoid damage caused by late spring frosts at the cost of a shorter period of 
growth (Leinonen and Häinninen 2002; Häinninen and Tanino 2011; Basler and Körner 
2012; Basler and Körner 2014). Bud dormancy is a variable and at the same time 
polygenic adaptive trait (Frewen et al. 2000; Rohde and Bhalerao 2007). It allows 
plants to survive in times of dehydration and stress caused by low temperatures by 
stopping their growth and development. 

Different habitat conditions dictate the time of budburst, and thus the 
reaction of plants in terms of a number of characteristics, including budburst. The 
features that characterize the annual growth cycle, especially the beginning of growth 
in spring and the end of growth, as well as the development of the resistance to 
damage caused by low temperatures, were found to show significant variability at 
provenance level (Krutzsch 1973; Skrøppa 1982; Beuker 1994; Hannerz 1994; Beuker 
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et al. 1998; Skrøppa et al. 2007; 2010). Norway spruce shows matching geographical 
patterns of the variation of budburst. The budburst dynamics depends on the latitude 
and longitude of seed sources in Norway spruce, which indicates the local adaptation 
of the populations to climatic conditions (Søgaard et al. 2008; Busov et al. 2015; 
Skrøppa and Steffenrem 2015). 

The budburst dynamics can also be defined on a genetic basis (Johnsen et al. 
2005; Yakovlev et al. 2006; 2008; 2014; 2017) and through epigenetic processes 
(Kvaalen and Johnsen 2008; Søgaard et al. 2009; Yakovlev et al. 2012; Aerresatad et al. 
2014; Carneros et al. 2017; Solvin and Steffenrem 2019; Milesi et al. 2019). 

The need to produce reproductive material resistant to environmental 
challenges, including late spring frosts, made the researchers test numerous Norway 
spruce populations in different environmental conditions through short-term and 
long-term tests. The task was to determine the correlations between the influence of 
the environment and the reaction of the offspring, and to constantly model the 
relationship "population x climatic conditions" in order to make recommendations for 
the safe transfer of forest reproductive material. 

Norway spruce is considered to be sensitive to low temperatures, especially 
during the active period of growth: from the budburst to the end of the period of 
shoots elongation (Hannerz 1994; Hannerz et al. 1999). The selection of appropriate 
sources of reproductive material resistant to the appearance of late frosts is a 
challenge that is closely related to the time of budburst. Regarding this, various 
models have been developed to predict the timing of budburst and the risk of damage 
caused by late spring frosts (Leinonen and Hänninen 2002). Most often, the models 
related to the estimation of the budburst are related to the temperature sums. This 
model is applied in this research. 

The investigation of the onset and budburst dynamics should be one of the 
important factors in choosing the starting population. Establishing forests with the 
planting material that has the optimal use of the growing season is a priority. In order 
to find such sources of starting material, it is necessary to test the planting material 
from different seed sources and to set up experiments on different locations. 

2 Materials and methods 

The dynamics of budburst was monitored in 2013, 2015 and 2016 in two 
progeny tests established in 2009 in different ecological conditions. Progeny tests are 
located in the east of Bosnia and Herzegovina (Srebrenica) and in the west (Drinić) 
(Table 1, Figure 1). 

Table 1. Data on progeny tests. 

Locality Latitude Longitide 
Altitude 

[m] 
Eco – vegetation area Soil 

Drinić 440 31' 10" 16° 36' 04" 690 Inner Dinnarides Calkomelanosol and luvisol 

Srebrenica 440 01' 34" 19°  25' 22" 1000 
Transitional Iliri-

Moesiac area 
Distric cambisol 

 
Six Norway spruce populations were tested: Han Pijesak 1, Han Pijesak 2, Foča, 

Potoci, Olovo and Kneževo. The geographical position and basic habitat characteristics 
of the populations which were tested are shown in Table 2 and Figure 1. In total, the 
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budburst was monitored on 1381 seedlings in Drinić and 1385 seedlings in Srebrenica. 
The total number of seedlings per populations on which the budburst was monitored 
is shown in Table 2, in the last two columns.  The number of seedlings is different in 
each population due to the seedlings survival rate decline from the year of the 
progeny tests establishment (2009) to the years of budburst monitoring. In the period 
2009-2013 there was no budburst monitoring. The dynamics of the budburst was 
recorded on dates given in Table 3. 

Table 2. Starting populations data. 

Locality Latitude Longitide 
Altitude 

[m] 

Number of seedlings per populat. 

Srebrenica Drinić 

Han Pijesak 1 44° 08' 13" 18° 50' 01" 1000-1100 156 187 
Han Pijesak 2 44° 02' 08" 19° 00' 11" 960-1040 94 139 

Foča 43° 24' 58" 18° 52' 38" 1000-1126 347 304 
Olovo 44° 07' 43" 18° 34′ 54" 900-1000 258 268 
Potoci 44° 28' 59" 17° 24' 45" 1010-1030 216 247 

Kneževo 44° 23' 12" 16° 39' 39" 850-950 310 240 

Table 3. Monitoring dates. 

 
Progeny test Srebrenica Progeny test Drinić 

Monitoring date Monitoring date 
Year I II III IV I II III IV 

2013. Apr 24 May 4 May 8 - May 2 May 5 May 15 - 

2015. May 7 May 11 May 16 May 21 May 9 May 13 May 19 May 24 
2016. May 8 May 13 May 19 May 25 May 10 May 16 May 21 May 26 

 

 

Figure 1. Geographical position of native populations and progeny tests. 
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The data were recorded in binary code: 0 for closed bud and 1 for budburst. 
The bud was considered as open (budburst) from the moment the winter sheath was 
started to be discarded and a new, green terminal bud starts to appear (Figures 2 and 
3). To determine the time of budburst, Hannerz (1994) temperature sum methodology 
was applied. The methodology implies that the start of monitoring is performed from 
that ordinal day in the year on which the average daily temperature for 3 consecutive 
days exceeds 5oC. After that, the average daily temperatures are summed up by days 
and the beginning of budburst is monitored. The budburst rate was presented as a 
percentage of seedlings with budburst, in relation to the total number of seedlings per 
population in progeny tests. 

 

 

Figure 2. Closed bud. 

 

Figure 3. Budburst. 
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The temperatures in the experiments were recorded by automatic 
meteorological stations PCE-FWS 20. Meteorological stations were set up in the 
immediate vicinity of the experiments at 100 m in Srebrenica and 2 km in the progeny 
test in Drinić. The data on temperature sums was calculated as a cumulant of average 
daily temperatures which were calculated according to the formula: 

𝑇 =  
𝑇7ℎ + 𝑇14ℎ + 𝑇21ℎ ∙ 2

4
 

where the following are: 
T7h - temperature at 7 a.m. 
T14h - temperature at 2 p.m. 
T21h - temperature at 9 p.m. 
The time of budburst was determined based on the intersection of the linear 

function describing the dynamics of budburst and the x-axis (ordinal number of days in 
the year). The linear function has been used as the simplest and the most comparable 
among the observed years and populations. 

3 Results and discussion 

3.1 Temperature sums  

Temperature sums are shown in Figures 4 and 5 for the Srebrenica and Drinić 
sites. In the progeny test Srebrenica, the initial day of monitoring the temperature 
sums was different for the observed years. The monitoring on temperature sums on 
the Srebrenica site was recorded starting from the 96th day (April 6th), in 2013, from 
the 95th day (April 5th) in 2015 and from the 32nd day (February 1st in 2016), (Figure 4). 

 

Figure 4. Temperature sums in progeny test Srebrenica in 2013, 2015 and 2016. 

In the Drinić progeny test, monitoring the average daily temperatures began 
on the: 69th day (March 10th) in 2013, 110th day (April 20th) in 2015, and 9th day 
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(January 9th) in 2016 (Figure 5). Data about temperature sums are very variable 
depending on the geographic position and it can range for 150 days as it was recorded 
for some European countries (Hannerz, 1994). 

 

Figure 5. Temperature sums in progeny test Drinić in 2013, 2015 and 2016. 

3.2 Budburst dynamics   

The budburst dynamics differed among the years and the population. In the 
progeny test in Srebrenica, the fastest budburst was found in 2013 in the populations 
of Han Pijesak 1 and the slowest in the populations of Han Pijesak 2 and Foča (Figures 
6a). In 2015, the fastest budburst was recorded for the population Kneževo, while all 
other populations had the budburst with approximately the same dynamics (Figure 
6b). During 2016, the dispersion of budburst among populations was higher. The 
seedlings from the Kneževo population had the fastest budburst, while Olovo and Foča 
populations had the slowest budburst (Figure 6c). 

In progeny test Drinić the fastest budburst in 2013 was recorded on the 
seedlings originating from the population Kneževo, and the slowest budburst was in 
the population Han Pijesak 1. The differences in the period during the budburst 
process are negligible at the beginning and end, and the differences are significant in 
the second observation period. At that time, the differences in budburst seedlings 
from the population of Kneževo and other populations were 10-25% on average 
(Figure 7a). 

During 2015, the situation is similar in the order of populations, but the 
differences among them are greater. Thus, these differences go up to 35% of the 
higher number of budburst in the period of the second and third observation (figure 
7b). 

In 2016, the differences between the percentages of budburst among 
populations are smaller than in the previous two years of observation and the 
differences range up to 20% (Figure 7c). 
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Figure 6 a, b, c. Budburst dynamics in progeny tests Srebrenica in 2013 (a), 2015 (b) and 2016 (c). 
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Figure 7 a, b, c. Budburst dynamics in progeny tests Drinic in 2013 (a), 2015 (b) and 2016 (c). 
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3.3 Estimation of budburst beginning   

Hannerz (1994) and Hannerz et al. (1999) stated that budburst timing 
predicted with a high accuracy (two-day accuracy) can be attained during only one 
year of temperature and the dynamics of budburst monitoring, which could help to 
solve the problem of adequate starting population selection for the production of 
seedlings resistant to late spring frosts. 

In the progeny test in Srebrenica, the earliest budburst was recorded on 114th 

day in the populations of Han Pijesak 1 and Kneževo in 2013, at a temperature sum of 
27°C. In 2013, which was the year of the earliest budburst, the earliest beginning of 
budburst and the lowest temperature sum were determined. An average, 118.8 days 
was needed for budburst at the progeny test level. The latest budburst was recorded 
for the population Han Pijesak 2 - 128 days, with a temperature sum of 175.80°C. The 
difference between the beginning of budburst of the seedlings from the populations 
of Han Pijesak 1 and the seedlings from the populations of Han Pijesak 2 and Kneževo 
was 2 weeks. Based on the ranking population by date of budburst, this is a 
significantly larger difference among populations in comparison to the progeny test 
Drinić, where in 2013 the time of budburst was only 3 days. In 2015, the earliest 
budburst was recorded for seedlings from the populations of Foča and Kneževo - 122 
days and a temperature sum of 74°C. At the latest, budburst occurred on seedlings 
originating from the Han Pijesak 2 population - 128 days and with a temperature sum 
of 175.80°C. Compared to 2013, the beginning of budburst was delayed by 7 days 
(Table 4). 

Table 4. Estimation of the beginning of bud opening in the progeny test in Srebrenica. 

Year Population Function Correlation Budburst start Temperature sum 

2
0

1
3

 

Han Pijesak 1 5.2847x - 596.72 R² = 0.9967 114 27,00 

Han Pijesak 2 5.6289x - 718.83 R² = 0.9334 128 175,80 

Foča 5.1203x - 587.28 R² = 0.9836 115 36,7 

Potoci 6.0438x - 694.22 R² = 0.9815 115 36,7 

Olovo 5.0456x - 640.59 R² = 0.9331 127 170,0 

Kneževo 5.5851x - 638.71 R² = 0.9987 114 27,0 
2

0
1

5
 

Han Pijesak 1 4.998x - 633.54 R² = 0.8918 127 135,5 

Han Pijesak 2 5.6289x - 718.83 R² = 0.9334 128 141,6 

Foča 5.3597x - 682.64 R² = 0.9512 122 74,0 

Potoci 5.1175x - 650.65 R² = 0.9604 127 135,5 

Olovo 5.0456x - 640.59 R² = 0.9331 127 135,5 

Kneževo 4.1695x - 509.12 R² = 0.9515 122 74,0 

2
0

1
6

 

Han Pijesak 1 4.3493x - 541.47 R² = 0.9975 124 77,5 

Han Pijesak 2 4.4596x - 560.01 R² = 0.9997 126 82,4 

Foča 4.4755x - 567.57 R² = 0.9786 127 88,0 

Potoci 4.1927x - 521.06 R² = 0.9985 124 77,5 

Olovo 4.1916x - 530.13 R² = 0.9912 126 82,4 

Kneževo 3.5464x - 426.18 R² = 0.9961 120 67,5 

 
In 2015, the earliest budburst was recorder for the seedlings from the 

population of Kneževo and Foča - 122 days, at a temperature of 74°C. The latest 
budburst was recorded for the seedlings from the Han Pijesak population for 2 - 128 
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days, at a temperature sum of 141.6°C. The difference between the first and the last 
day of the budburst by populations was 6 days, with a difference of temperature sums 
of 67.6°C. 

In 2016, the earliest budburst was recorded in the population of Kneževo – on 
120th day, with temperature sums of 67.5°C. The latest budburst opening was 
determined for the seedlings from the population Foča - 127 days with a temperature 
sum of 88°C. The difference between the earliest and the latest budburst was 7 days, 
while the difference in temperature sums is only 27.5°C (Table 4). 

In both progeny tests, the seedlings originating from the population Kneževo 
had the earliest budburst and were thus most exposed to the risk of later spring frosts. 
This is in accordance with the previous research on genetic variability where Norway 
spruce populations in the wider Kneževo area stand out as introduced compared to 
other B&H populations (Ballian et al. 2006; 2007; Cvjetković et al. 2017). 

The earliest budburst in the progeny test in Drinić occurred in 2013, on 119th 

day from the beginning of the year at a temperature sum of 82.10°C. In 2013, the 
earliest budburst was recorded for seedlings from the Kneževo population. In that 
year, the seedlings of all populations needed 120.7 days an average for budburst start. 
The differences in the ordinal number of days of bud opening were minimal, only 2-3 
days and the differences in temperature sums were 36.4°C (Table 5). 

Table 5. Estimation of bud opening in the offspring test in Drinić. 

Year Population Function Correlation Budburst start Temperature sum 

2
0

1
3

 

Han Pijesak 1 6.4358x - 772.26 R² = 0.9952 120 90,50 

Han Pijesak 2 7.0353x - 857.59 R² = 0.9439 122 118,50 

Foča 7.0112x - 851.82 R² = 0.9931 121 106,80 

Potoci 6.7815x - 820.27 R² = 0.9948 121 106,80 

Olovo 6.779x - 817.51 R² = 0.9967 121 106,80 

Kneževo 6.2403x - 743.34 R² = 0.9993 119 82,10 

2
0

1
5

 

Han Pijesak 1 5.5235x - 708.45 R² = 0.9799 128 218,03 

Han Pijesak 2 5.4762x - 711.77 R² = 0.9603 131 242,80 

Foča 5.906x - 760.44 R² = 0.9829 129 227,53 

Potoci 6.0208x - 778.08 R² = 0.9668 129 227,53 

Olovo 5.257x - 676.08 R² = 0.9872 129 227,53 

Kneževo 5.4071x - 681.61 R² = 0.9764 126 199,25 

2
0

1
6

 

Han Pijesak 1 4.8622x - 623.41 R² = 0.9958 128 158,58 

Han Pijesak 2 4.921x - 637.7 R² = 0.9778 130 171,18 

Foča 5.0814x - 661.47 R² = 0.9732 130 171,18 

Potoci 5.149x - 669.03 R² = 0.9716 130 171,18 

Olovo 4.4053x - 562.27 R² = 0.9951 128 158,58 

Kneževo 4.7787x - 604.09 R² = 0.9908 126 149,05 

 
In later years (2015 and 2016), budburst began on average 8 days later than in 

2013. The earliest budburst was recorded on the seedlings from the population of 
Kneževo. The number of days required for budburst was 126 at a temperature sum of 
199.25°C. The latest budburst began on the seedlings from the Han Pijesak 1 
population. The opening of buds in this population began on 131st day at a 
temperature sum of 242.80°C. The difference among the populations with the earliest 
and the latest budburst was 5 days, while the difference in the temperature sum was 
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43.55°C. The seedlings originating from other populations began to budburst at 
approximately the same time (Han Pijesak 1 – 128th day, Foča, Potoci and Olovo - 
129th). The temperature sums reached higher values, over 200°C, except in the 
population of Kneževo where this sum was approximately 200°C (Table 5). 

The budburst in 2016 follows the pattern from 2015, with the temperature 
sums being slightly lower. The earliest budburst was recorded on the seedlings 
originating from the population Kneževo - on the 126th day, with a temperature sum of 
149.05°C, while the latest budburst was recorded on the seedlings originating from 
the populations Han Pijesak 2, Foča and Potoci - on the 130th day with a temperature 
sum of 171.18°C. The difference between the beginning of budburst of the first and 
the last population was 4 days (Table 5). It can be stated there is a consistent pattern 
in temperature sum requirements among populations in three years. Populations had 
similar budburst ranking over the years. 

Hannerz (1994), based on Prescher (1982) research, found that the 
temperature sum required for Norway spruce budburst in the former Yugoslavia 
varied between 193 and 196°C, averaging 195°C for seedlings aged four and five years. 
Rötze and Chmielewski (2001), found that bud opening and flowering begin three days 
later with an increase in altitude of 100 m, 0.6 days per every 100 km going from west 
to east and 2.4 days later every 100 km going from south to north. 

If we compare the results of the research with other European research, the 
results partially coincide. Thus Beuker (1994) cites a wide range of values of the initial 
day of budburst - from 114 days to 263 days, depending on the origin. The results of 
Norway spruce research in progeny tests in B&H coincide with the values of northern 
Norway spruce populations. According to Hannerz (1994) and Hannerz et al. (1999) 
data obtained for progeny tests are in the range of Norway spruce from the 
Scandinavian area which needs a minimum temperature sum of 96°C for the budburst. 
Based on the obtained results, it is not possible to establish the exact temperature 
sum at which the budburst on the seedlings from different provenances starts but 
most of them are higher than 96°C in progeny test Srebrenica and lower in progeny 
test Drinić which indicate a strong impact of others environmental conditions in 
combination with the seedling’s origin. Hannerz's (1994) research, who recalculate 
earlier Prescher (1982) data for the area of former Yugoslavia indicates that seedlings 
aged 4-5 years require a temperature sum of 193-195°C, while in these studies these 
temperature sums are significantly lower except for year 2015 in the progeny test in 
Drinić. When it comes to the variability between the budburst among populations, the 
values range from the interval reported by Rötzer and Chmielewski (2001) which is 6 
days on average, while the maximum values are around 12-13 days, which was also in 
line with the obtained results. 

Different results of temperature sums indicate the need to include a wider 
range of factors in the analyses. One of the factors that can affect the dynamics of 
budburst is winter temperatures. The emergence of the so-called “warm spells” can 
slow budburst (Hannerz 1999; Heide 2003; Partanen et al. 2005; Häinninen 2006; 
Søgaard et al. 2008; Granhus et al. 2009; Hännien and Tanino 2011; Junttila and 
Hänninen 2012; Olsen et al. 2014; Körner and Bassler 2014; Lange et al. 2016; Konnert 
et al. 2015; Olsson et al., 2016; Partanen et al. 2016; Partanen et al. 2020). If average 
daily temperatures are observed, it is evident that there was a significant variation in 
temperature in both progeny tests each year. The differences in the beginning of 
budburst at the level of years (between 2013 on the one hand and 2015 and 2016 on 
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the other hand) could be attributed to significantly lower temperatures at the end of 
the vegetation period in 2012. For the other two years, temperatures below 0°C did 
not occur until almost the last days of December and the first days of January. This can 
partially explain the difference in the budburst at the level of observed years, i.e. that 
low temperature in the autumn of the previous year was a kind of a "trigger" for the 
earlier budburst the following year. Chilling requirement was found to be necessary 
for Norway spruce budburst (Hannerz et al. 1999; Konnert et al. 2015). Thus Søgaard 
et al. (2008) state that the influence of the cold period accelerates the budburst 
especially if Norway spruce is not exposed to warmer conditions which is in line with 
results obtained by Körner and Bassler (2014); Partanen et al. (2005); Häinninen 
(2006); Junttila and Hänninen (2012); Olsen et al. (2014), which point out the 
importance of the cold period, as well as the importance of cumulative temperatures 
on the dynamics of budburst. Combination of cold temperatures and mild spells can 
promote budburst (Granhus et al. 2009) which happened in the winter 2012 in both 
progeny tests. 

There are other factors that might influence the budburst dynamics which can 
be considered such as the length of the photoperiod (Partanen et al. 2001; 2005; 
Søgaard et al. 2009; Migliavacca 2012; Lee et al. 2014; Luoranen and Sutinen 2017; Lee 
et al. 2017; Wallin et al. 2017), Körner and Basler 2010; 2014; Basler and Körner 2012), 
the influence of fertilizer and the type of planting material (Fløistad and Kohmann 
2004; Luoranen and Rikkala 2011; Johansson et al. 2012), relative humidity (Laube et 
al. 2014), the method of seedling production as well as a the combination of factors 
(temperature, precipitation, light), (Čepl et al. 2020). 

4 Conclusions 

Studies on Norway spruce have shown that there are significant differences in 
the budburst and the budburst dynamics. The seedlings originating from the Kneževo 
seed stand had earliest budburst in comparison to the other populations. Planting new 
forests with seedlings originating from the Kneževo seed stand should be done in the 
areas where the risk of late spring frosts is lower. The latest budburst opening, on 
average, was recorded in the population of Han Pijesak 2. The seedlings originating 
from other populations behaved differently, depending on the year of observation and 
the progeny test. Bearing in mind that earlier budburst for tested population does not 
mean faster and better growth, which was found in previous research (Cvjetković et 
al., 2015; Cvjetković et al. 2016), it is justified to choose populations with late 
budburst. 

Temperature sums did not prove to be reliable for defining the budburst since 
they were different each year. This leads to the fact that it is necessary to include 
other parameters that can affect the opening of the buds, such as photoperiod and 
the influence of the cold period during winter. Although the connection between 
temperature sums and budburst has not been clearly proven, the obtained results can 
be used from the aspect of the classification of forest reproductive material sources 
according to the beginning and the dynamics of budburst. This can place emphasis on 
the production of planting material that reduces the risk of the damage caused by late 
spring frosts. The influence of weather conditions in the previous year should also be 
related to the events in the current year, but several parameters such as photoperiod 
should be taken into account. 
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Changes in phenology, in correlation with frosts, must be taken into account in 
the production of planting material and the raising of new forests in order to reduce 
the losses after afforestation due to frost damage. 
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