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ABSTRACT

Title of Thesis: CAPTURING LOW PROBABILITY BEHAVIOR OF DISEASE

DYNAMICS IN COUPLED POPULATIONS

Jackson Burton, Master of Science, 2011

Thesis directed by: Dr. Lora Billings

Department of Mathematical Sciences

Researchers using mathematical models have made significant contributions to the field 
of epidemiology in recent years. These models have both explanatory and predicative 
power to describe disease dynamics. More recent work has considered multi-population 
models and the effects vaccinations have on the population as a whole. One such example 
can be seen in the West African country of Cameroon, which has two distinct patterns of 
measles outbreaks. By considering Cameroon as two subpopulations, a deterministic 
model is developed that includes the effect of vaccinations. Stability analysis is then 
performed on the model over a range of coupling and vaccination rates to establish 
thresholds between disease absence and persistence. Stochastic methods are then used to 
capture low probability events near these thresholds. We identified significant differences 
in vaccination rates predicted deterministically for disease absence versus vaccination 
rates that are effective at inducing disease absence.
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1 Introduction
One common method to study diseases mathematically involves constructing com- 
partmental models [1]. These models can be tailored to capture the most important 
dynamics in the spread of a disease of interest. Such models are useful for devel­
oping, testing, and implementing theories about disease dynamics. These models 
help give a clearer understanding of overall dynamics and can aid in developing 
optimal strategies for reducing disease transmission in populations [4]. Many com- 
partmental models focus on the disease dynamics of a single population. However, 
we observe that most populations are not isolated but instead are linked by cou­
pling, i.e the flux of individuals from one population to another. Because of this, 
we are interested in how coupling and vaccination affect the disease dynamics of 
distinct populations.

We consider a specific case involving the northern and southern regions of 
Cameroon. These two subpopulations display distinct patterns of outbreaks of 
measles. [2]. Measles is generally not a life threatening disease, although lack of 
adequate medical resources and sanitation has resulted in many deaths. This has 
been the case in both the northern and southern regions of Cameroon. To fight this, 
vaccination campaigns are in place to vaccinate children at a young age. However, 
even though vaccinations incur life long immunity, measles is nonetheless endemic 
[8] ,

Incidence has been particularly low for certain provinces in the north and south. 
However a new pattern of recent outbreaks are emerging. [2]. The country has 
attracted the attention of researches who are interested in evaluating the effective­
ness the current vaccination campaigns. We are motivated to model the effects of 
coupling and vaccination on disease dynamics by developing a deterministic system 
of ordinary differential equations. Documented demographical data will be used 
for parameters, while other important parameters, namely the coupling and vac­
cination rates, will be analyzed over a range of values. Using stability analysis, 
we can establish bifurcations of disease absence versus disease persistence. These 
deterministic values of the bifurcation points will describe qualitative changes of 
the mean behavior of the system. To capture dynamics that can not be seen in a 
deterministic system, a stochastic representation of the model will be used to ex­
amine the behavior of the system near these bifurcation points. The primary goal 
is to establish differences between deterministic and stochastic threshold values for 
disease absence in terms of vaccination rates.

2 C om partm ental M odels
Compartmental models separate a population into mutually exclusive classes. An 
individual of the population is located in exactly one of them at any given time. The 
various epidemiological states are dependent upon the disease being modeled. Indi­
viduals with certain childhood diseases such as chicken pox, measles, and mumps for 
example, will go through four distinct disease states: susceptible, exposed, infected,
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and recovered. The classes represent each of these states and the variables 5, E, I  
and R  are typically used to represent them. The variable S  refers to the number of 
individuals who are susceptible to contracting the disease. E  refers to the number 
of individuals who have contracted the disease but can not yet transmit it. I  refers 
to the number of individuals who have contracted the disease and can transmit it, 
and R  refers to the number of individuals who have recovered and are now immune 
from the disease.

Although many diseases have a latent period, they are much more difficult to 
perform analysis on. Because of that, we oftentimes will analyze a simpler com- 
partmental model that uses the S, /, and R  classes only. In fact much analysis has 
already been performed the Susceptible-Infected-Recovered (SIR) model [4].

2.1 The Basic SIR Model
The basic SIR compartmental model is used to describe an epidemic that occurs 
over a relatively short period of time within a population. The model was first 
introduced by Kermack and McKendrick [6] who were motivated by Bernoulli’s 
work on smallpox deaths [9]. This model assumes the population is closed, i.e. 
individuals do not enter or leave a class via birth, death, or external migration. This 
is a reasonable assumption over a short time period. The SIR model is described by 
a system of differential equations describing the change in the number of individuals 
in each class over time. The system is given below:

d S  - p s i
dt
dl_
dt

N
p s i
N

— kL
( i )

dR—— — ACi.
dt

Here, N  denotes the population size and ¡3 > 0 describes the average number of 
contacts that can sufficiently transmit the disease per unit time. Thus (31/N  is 
the average number of contacts one susceptible will have with infectives per unit 
time, and (3SI/N describes the number of new infections per unit time. The rate 
of recovery is assumed to be exponentially distributed, i.e. individuals recover at 
a rate proportional to the population of infectives. Therefore the mean recovery 
period is kT 1 and we use k to represent the average rate of recovery. The recovery 
rate is a biological parameter depending solely on the disease itself, whereas the 
contact rate depends on the disease as well as the population density and overall 
mixing.

An important fact about this model is that the population size, A, at any time is 
the sum of the number of individuals in each class. Therefore, since A is a constant 
quantity with S  + I  +  R  = A, then

dS dl  dR dN
( 2 )dt

dl
+  T t + dt =  1 = 0. 

dt
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As we make modifications to this model, we will ensure that the time derivative 
dN/dt = 0 for all t > 0. This result implies that the value of any one single 
class can be completely determined by the others. For example in the SIR model, 
R — N  — S  — I . This allows us to ignore analysis on the recovered class and reduces 
the model to a 2-dimensional system. We will employ this result for the remainder 
of the models used.

Although Eq. (1) cannot be solved in closed form, we can describe an epidemic 
from a qualitative perspective as follows. Note that dS/dt < 0 for all t > 0 and 
dl /dt  > 0 implies

dl_
dt

ß S I
~Ñ~ — ni  — I >0. ( 3 )

Hence dl/dt  > 0 if and only if S > kN//3. Since S  decreases for all t, I  will 
eventually decrease and approach zero. Let 5(0) — So. Then, if 50 < kN/P, then 
I  decreases to zero monotonically. However, if So > kN/P, then dl/dt  > 0 and I  
will first increase to a maximum at S  = kN / ft before decreasing to zero. This case 
illustrates an epidemic outbreak.

To determine the behavior of trajectories of Eq (1), we can analyze the relation­
ship between S  and I  and consider

dl  ß S I / N  -  kI  
dS ~  —ß S I / N

Solving by separation of variables yields

I  = —S  +
k N

T ln S  +  c.

( 4 )

( 5 )

For any initial condition (5(0), 7(0)) =  (So, 7o) we have

, r, kN  , ry t „ kN  .7 — 5  H— In 5 + 7q + 5q-- In So- ( 6)

As mentioned above, the maximum number of infectives occurs at 5  =  k,N//3 and 
thus

kN kN kN k,N
¿max — ~ß----1----~ß~ m — ----b 7q +  So----- -ß~ In So- ( 7 )

But, we also know that 7 approaches zero as time increases. Thus, we can describe

lim (5,7) =  (5,0) (8)

with 5 interpreted as the number of susceptibles who escaped infection. For any ini­
tial condition (5o, 70), the trajectory approaches (5,0) where 5 is defined implicitly 
by

yv /— yv/"
0 =  —5 H——  In 5  + 7q + 5q----—  In 5q. (9)

We can numerically simulate trajectories of Eq. (1) using parameter values N , 
P, and k, from Table 1, given below. The parameter values used, although not
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Table 1: Sample Parameter Values for SIR models

Parameter Value Units Description
N 1000 people Population size
p 200 year-1 Contact rate
n 100 year-1 Recovery rate
[i 2 year-1 Birth and death rate
V [0,1] per capita Vaccination rate

Figure 1: (a) Simulation of trajectories of the Basic SIR model. All trajectories with initial 
condition So > kN//3 first increases to a maximum given by Eq. (7). (b) Simulation of a single 
trajectory of the Basic SIR model with births and deaths. The limiting behavior is approaching 
(S , /), a stable spiral sink.

corresponding to a particular disease, fall within a reasonable range of real disease 
and demographic parameters. This has been done so that scales of plots will allow 
for clear graphical results. See Fig. 1(a) for a simulation of various trajectories 
of Eq. (1). The simulation was created using Matlab’s ode45 differential equation 
solver, a Runga-Kutta 45 scheme [10]. Future simulations of models will all make 
use of the ode45 solver, and unless otherwise specified, no modifications or change 
of variables will be performed on the original systems.

The quantity /3Sq/ ( kN) is a threshold quantity such that if /3S0/ ( kN) > 1, then 
an outbreak will occur. On the other hand, if /3So/ ( kN)  < 1 then no outbreak will 
occur. If we consider an almost completely susceptible population so that So «  N  
and Iq «  0, then the threshold quantity becomes /3/ ac. We define this quantity as 
the basic reproductive number R0. Since ¡3 is the number of infections one infective 
makes per unit time and 1/« is the mean length of the infective period, we interpret 
Ro to be the number of secondary infections one infective produces in a completely 
susceptible population.

In summary, there have been two interpretations of the basic reproductive num­
ber although they refer to the same phenomena. The one interpretation describes



Ro as a threshold value for which a disease will spread or fade out. The other 
interpretation describes Rq as the number of secondary infections one infective can 
produce in a completely susceptible population. A central goal for the remainder of 
this paper is to define the basic reproductive number for modified models based off 
of Eq. (1) thus allowing us to characterize thresholds for differing disease dynamics.

2.2 The SIR Model with Births and Deaths
In order to model long term disease dynamics, we must include the events of birth 
and death in the SIR model. This will allow an influx of new susceptibles through 
birth and removal of susceptible, infected, and recovered individuals through death. 
This modification to the basic SIR model allows for an endemic state to exist, i.e. 
the state in which the disease persists. Let \x > 0 represent both the birth and 
death rate, with yii“1 representing the average life span of an individual.

The SIR model with births and deaths is given by

dS
dt
dJ
dt

■ p si
N

p s i

+ ¡iN -  fj,S,

N
— K.I — yU/,

—— =  kI  — uR. 
dt r

( 1 0 )

Here, ¡iN refers to the number of individuals who are born susceptible per unit 
time, while the terms fiS, ///, and fiR refer to the number of individuals who are 
removed from the classes due to natural death per unit time. This assumption that 
the birth and death rates are the same ensure that dN/dt  =  0. Therefore, the 
population remains constant as before with R — N  — S — / , and we do not need to 
consider R  in our analysis.

For the remainder of the paper, maple will be used exclusively for all symbolic 
manipulation and computation. Setting the time derivatives in Eq. (10) equal to 
zero and solving yields two fixed points. One of the fixed points, (S,I) = (IV, 0), 
represents the disease free equilibrium (DFE), the state in which the disease is 
absent. The stability of the DFE can be determined by evaluating the Jacobian of 
the system at (N, 0) and analyzing the eigenvalues. This linearization about the 
fixed point will characterize the stability.

Let dS/dt = Fi(S, /), d i /dt = F2(S, I) and F =  (Fi ,F2). The Jacobian of F is

Jf —
FL _NPLN

PS
N

_M  IN
— K — •

The Jacobian evaluated at (N, 0) is

(ii)
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^f |(AT,0) ( 12)
-H  -(3  
0 (3 — k — /d ’

with eigenvalues
Ai = —/i,

A 2 =  (3 — K  — ¡1.

In order for the DFE to be stable, the real parts of Ai and A2 must be negative. 
Clearly Ai and A2 are real values with Ai < 0. We see that A2 < 0 if and only if 
(3/(k, -f n) < 1. Therefore, if (3/(k + fi) < 1, then the DFE becomes locally stable. 
We define R0 = (3/(k +  n) as the threshold quantity for which the disease will die 
out or persist in the population. If R0 > 1, then the DFE becomes unstable and 
the other fixed point

, o  f s _ ( +  ¿t) /xA

( ’ } V P ’ £(* + /*) )
(14)

becomes locally stable. This fixed point represents the endemic equilibrium (EE), 
the state in which the disease persists. In the case prior when R0 < 1, the EE 
was unstable. The change in stability between the DFE and EE is a transcritical 
bifurcation. Transcritical bifurcations describe the interchange of stability between 
two fixed points, such as the instance where the DFE goes from stable to unstable 
resulting in the EE going from an unstable sink to stable sink. The bifurcations 
found in the remainder of this paper will all be transcritical bifurcations.

We can linearize about (-S’,/) . The eigenvalues of the Jacobian evaluated at 
(5,7) are

1̂,2 —
~H/3 ±  ^Jii[(32n +  4(k, + ¿¿)2( - /l  +  ac + /i)]

(15)
2 ( ac +  ¡i)

Clearly, both of these eigenvalues have negative real parts. Further, if 
(32/j, + 4( ac + /r)2(—(3 T ac + ¡j)  < 0, then both eigenvalues are complex conjugate 
pairs. We can determine when this condition is true by considering

(32fi +  4 ( ac -j- / r ) 2 ( —/3 - T  ac -f- fi) = 0  =$■

(k+ m)s
4(P-k- h) _=  0

R‘20 - f a  + »)(Ro - l )  = 0

d(^ +  fi)Ro +  ^(ac + fi) = 0

2 (/i-f-/i±-C«i(m+k))

(16)

Ro —

by the quadratic formula. Therefore, the eigenvalues are complex conjugate pairs 
when

2 ÂC fi — -\JAc(// +  Ac)̂  2 ÂC +  [1 +  y jAv(/i +  Ac)̂
< Ro < (17)
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We note that when
2 ( k -fi — yjk(h -fi /c

1 < R0 < (18)

then (S',/) is a stable sink. However, if Eq. (17) holds, then the fixed point (S ,/) 
is a stable spiral sink. See Fig. 1(b) for a numerical simulation of a trajectory of 
Eq. (10) using the parameters from Table 1.

The basic reproductive number defined for Eq. (10) differs from the one defined 
for Eq. (1) in that it describes the threshold between either disease absence or disease 
persistence as the long term behavior. Contrasted to that, the basic reproductive 
defined for Eq. (1) defines the threshold for disease outbreak with long term behavior 
always being disease absence.

2.3 SIR M odel with Births, Deaths and Vaccinations
We now modify Eq. (10) to include the effects of vaccinations. Let v be the rate 
of vaccination per capita. Assuming that vaccination occurs near the birth age, we 
immediately remove a percentage of individuals who would enter the susceptible 
class and place them in the recovered class. The following SIR model with births 
and deaths includes the effects of vaccinations.

dS
dt
d'I 
dt

dR
dt

-/3SI
N

/3SI

-fi (1 — v)/j,N — ¡iS,

N
— ni  — / i l ,

=  k,I -fi v/iN — (iR.

(19)

As before, the population remains constant and we do not need to consider 
the recovered class in our analysis. This system has two fixed points represent­
ing the DFE and the EE, with the DFE given by (»S',/) =  (A(l — u),0). Similar 
to the SIR model with births and deaths, we can linearize about the DFE. Let 
dS/dt — Fi(S, /), dl/dt  = F2(S, /)  and F =  (F1? F2). The Jacobian of F is

J-p — ÊLN

§S "I
N

PS
N K, — /I

The Jacobian evaluated at (N( 1 — v), 0) is

Jf \(N(1-v),0)
- n  - P ( l - v ) ,

0 /3(1 — v) — k — n

( 2 0 )

( 21)
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Figure 2: Numerical Simulations of the SIR model with births, deaths, and vaccinations. The 
dotted line in (a) shows the transition to vaccinating at a rate sufficient to ensure Ro < 1. We see 
the solution converging to the DFE. The dotted line in (b) shows the transition to vaccinating at 
an insufficient rate leaving Ro > 1. Here we see the number of infectives converging to non-zero 
solution.

with eigenvalues
Ai =  -/x,

A2 — p(l  — v) — K — /JL. (22)

The fixed point (S,1) =  (N(l — v), 0) representing the DFE is locally stable when

(3( 1  -  v) / ( k +  /x) <  1

and unstable when (3(1 — v) / (k +  /x) > 1. We define R 0 = (3(1 — v) /(k + /x). If 
R0 > 1, then the fixed point

,a ñ ( N{k. + íí) nN{/3( 1 - v) - h - k}\
( ’ } V P ’ /3(« + a*) )  ( )

becomes locally stable.
Vaccinating provides a way to have some control over disease dynamics. A par­

ticular disease may have an unstable DFE, and therefore vaccinations can reduce 
Ro < 1. We can examine this scenario by looking at a time series of infectives 
in which a fixed vaccination rate is incorporated after a certain time. We use the 
parameter values from Table 1. See Fig. 2(a) for a time series displaying the effect 
of a vaccination rate v such that Rq < 1. Even if the maximum attainable vaccina­
tion rate can not reduce the value of R 0 below one, it can still have advantageous 
quantitative effects on the number of infected individuals as seen in Fig. 2(b).
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3 Coupled M odels
We use the term coupled to describe how individuals from two or more populations 
mix with one another. There are two types of coupling that will be used in the 
following model: linear migration and mass action mixing. Linear migration is 
defined as the event in which an individual permanently moves from one population 
to another. The rate is given by individuals per unit time. Mass action mixing is 
defined as the event when an individual temporarily moves to another population 
but eventually returns to their home population.

The motivation of coupling two single population models is based in capturing 
vital disease dynamics of measles between the northern and southern regions of 
Cameroon. Much work has been done to consider the effects on disease dynamics 
caused by mass action mixing [5]. In a more recent work, the importance of linear 
migration was established motivating our work to consider the relationship between 
both types of coupling [7].

3.1 Full Cameroon Model
The following model considers two single population models given by Eq. (19) linked 
by mass action mixing and linear migration. Let 5*,, Ik) and Rk denote the disease 
classes, fik denote the birth/death rates, and Vk denote the vaccination rates of 
population Nk for k = 1,2. To model linear migration, let C\ denote the rate of 
migration from population two to population one and vice versa for the rate c2. 
Mass action mixing will be modeled as a scaling of the number of infectives from 
one population who temporarily move into the second population and mix with the 
susceptibles to produce additional infections per unit time. We will let C3 represent 
the scaling value of the infectives for the mass action mixing.

dS i
dt
dJ1 
dt

dR\
dt

dS2
dt
d h
dt

dt

C 3 ——------b ( 1  — v i j f i i N i  — H i  S i  +  C 1 S 2  — C201,Ni Ni
p S ih  pS i l2

+  C3- ~ Hih ~  +  ci^2 ~  C2/1,Ni Ni

— kI  1 — H1R 1 T ViHiN i +  C1R2 — C2R 1 ,

—PS2I2 PS2I 1
n 2 Cy n 2

P S 2I 2 , p s 2h
No

+  c3- No

+  (1 — V 2 ) fJ>2 N 2 — H 2S 2 +  C2S 1 — Ci S 2 ,

— H2I2 ~ KI2 + C2I 1 — C1I2,

— KI2 — H2R2 "b V2H2N2 +  C2R 1 — C1R 2.

(24)
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We have allowed for different birth/death and vaccination rates while we kept the 
contact and recovery rates the same. Based on demographical research, the contact 
rates are approximately the same whereas the birth/death rates have been found 
to be different for the northern and southern regions [2]. The recovery rate is a 
parameter that is derived from the biological characteristics of measles only and 
is minimally dependent upon demographics. The vaccination rates are different to 
allow for the possibility that the northern and southern regions vaccinate at different 
rates. The parameter values used for this model can be found in Table 2.

Table 2: Parameter Values for Full Cameroon Model

Parameter Value Unit Description
Ax 4451000 people Population size
n 2 10212000 people Population size
P 2.2943 none Ratio of N2/N 1

p 700 year-1 Contact rate
K 100 year-1 Recovery rate
Pi .0428 year-1 Birth and death rate of Afi
p2 .0329 year-1 Birth and death rate N2
Vi [0,1] per capita Vaccination rate of Afi
V2 [0,1] per capita Vaccination rate of N2
Cl [0,0.1] year-1 Linear migration rate
C3 [0,0.3] none Scale of mass action mixing

If we add the time derivatives for population one only, (that is dS\/dt + dI\/dt + 
dRi/dt) and cancel like terms, we are left with a collection of terms whose sum 
is not necessarily equal to zero. If we set the sum of these terms to zero, then 
population one will remain constant and consequently, population two will remain 
constant. Since this will greatly aid in the analysis we set this collection equal to 
zero and simplify.

C2(*S'i +  I\ +  R\) — Cl{S2 + R  + R 2) — 0
C2N 1 — C1N2 — 0 = >  (25)

C2 =  C1N2/  N\.

Let p — N2/N 1 so that C2 =  C\p. This relationship keeps both populations constant 
and therefore we do not need to consider both recovered classes in our analysis.

3.2 DFE Analysis with Symmetric Vaccination (SV)
We are interested in the stability of the fixed points of Eq. (24). Until otherwise 
specified, we assume the vaccination rates are symmetric so that v\ = V2 — v. 
Although this is a stronger condition, as an initial step, it will greatly reduce the 
complexity of the analysis and will also lead to an important fact about vaccinating 
at symmetric rates.
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There are two fixed points of Eq. (24) that represent the two familiar distinct 
disease states: the DFE and the EE. For the remainder of the paper, we will focus 
solely on the stability of the DFE. The DFE is given by

(ft, /i, f t , I2) = (Afi(l -  v), 0, - N lP(v -  1), 0). (26)

As before, we let dSi/dt = F\(ft, I\, S2, h) ,  dli/dt = F2(ft, A, f t ,  J2), dS2/dt = 
F3(S2, h , S 2, / 2), dl2/dt = F4(S2, / 2, S2, 12), and F =  (F1,F2,F3, F4). The Jacobian 
of F is

Ji J2
J f  —

J 3 J 4

where

(27)

/?(/i +  C3I2) PSi r c3(3Si -|
Nl to c'p 

(3{h +  c3I2) 0S,
Ni

, h  =
C1 “  Nl

L° Nl + C lJNi Ni
- K - P 1 - C 1P

Jz =
Cip

c3(3S2 

pN1
c3/3S2

0 r: h Cip 
p N i

Ja =

(3(I2 +  C3/1)
plVi 
^ ( /2 +  c3ii)

PN,

P'2 ~  Cl
WVi

p2 ~  Ci

The Jacobian of F evaluated at (Si, A, S2, / 2) is

{Pi + Cip) -/3(1 -  v) Cl - c 3p( 1 - v )

0 /5(1 — v) — K, — fl, — ClP 0 C3P(1 - v ) + C l

ClP - c 3P{ 1 - v ) — (/i2 +  Cl) - P ( l  -  v)
0 c3/3(1 -  v) +  cip 0 P(l -  v) — K — /i2 -  Cl
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with eigenvalues

Ai — — -  ^ci (p +  1) +  Pi +  P2 ~ y/(c1 ( l +p)  + fil -  P2)2 — 4 Ci (pi — H2) j  ,

X2 = — -  ^ci (p +  1) + Pi + P2 + \ J (ci (1 + p) + Pi — P2)2 — 4 Ci (pi — ^2)^ j 

A3 =  /^(l — u) — ac — — (ci (1 + p) +  P2 +  Pi)

+  2 \ / ( Cl i/5 +  1) + Mi — ^2)2 ~ 4 Ci (pi — P2) +  4c3^(1 — v)(cs(3(l — v) +  ci(p 4-1)), 

A4 =  /5(1 — n) — ac — -  (ci (p + 1) +  P2 +  Pi)

~ 2  \ / ( ci (M +  1 )  +  Mi ~  ^ 2) 2 ~  ^ ci (/^i  “  M2) +  4 c3 ^ ( 1  — v)(cz(3(l — v) - f  C i ( p  +  1 ) ) .

The DFE is stable when all the eigenvalues have negative real parts. To analyze 
the eigenvalues, we first consider the various cases in which one type of coupling is 
absent. We want to examine how the vaccination rate needed for a stable DFE is 
affected by only that type of coupling.

3.2.1 Basic Reproductive Number: Linear Migration Only

We let C3 =  0 for this section and analyze the effect linear migration has on the 
stability of the DFE. In this case, the eigenvalues of Eq. (24) reduce to

A i =  — \ ( c i( p  +  1) +  p i  +  p 2 — \J(c i(p  +  1) +  p i  — P 2)2 — 4 c i(p i — P 2)^ ,

A2 — — 2 ( C l (^  +  1 ) +  Mi +  ^2 +  y j ( c i( p  +  1 ) +  p i  — P 2 ) 2 — 4 c i ( p i  — ¡¿2))  >
(28)

A3 — /2 (1  — v)  — AC +  A i,

A4 — (3(1 — v) — AC +  A 2.

In order to define the basic reproductive number for this case, we need to analyze 
the real parts of the eigenvalues in Eq. (28). First, let

01 — Ci(p +  1) +  pi +  P2,

02 — (cl(P + 1) +  Pi — P2)2 — 4ci(pi — P2).
(29)

If we consider 02 as a quadratic expression in Ci with leading coefficient (p +  l)2, it 
attains an absolute minimum at d92/dc\ =  0. Solving this equation gives Ci =  -[yy/yl ■ 
Substituting this expression into 92 to find the absolute minimum gives

M t h  -  M2)2
( p + 1 ) 2

(30)
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which is clearly positive. Hence, 92 > 0, and all the eigenvalues are real valued. 
Upon inspection we see that 9\ > 0 and therefore A2 < 0. In considering Ai,
if 91 > \/02, then Ax < 0 .  Simplifying 0\ > \f9~2 yields cx > — . Since

Pp +  1/^2

Ci > 0 > — - -- --- is always true, then Ax < 0.
Pp +  l/x2

Since $x, $2 > 0, then #x -f- \/^2 > $i — \/$2 — \(@i +  y/@2) < ~'2(^i — y/fyi)
and so A2 < Ax. Therefore, for 93 = (3(1 — u) — k,

A3 — #3 +  Ai, 

^4 =  $3 +  ^2 5
(31)

it is clear that since A3 > A4 and Ax, A2 < 0 for all parameter values, then A3 dictates 
the stability of the DFE. For A3 =  (3(1 — v) — k +  Ax, we see that A3 < 0 when

¡3(1 — v) < k — Xi . Thus A3 < 0 implies ——— < 1. Define
k, — Ai

Ro,
(3(1 ~ v)
K — Ax

(32)

We interpret R0l as the threshold value that describes the threshold between 
disease absence and persistence in both populations when v\ = v2 = v and c3 =  0. 
Based on this definition, R0l depends on /3, /c, cx, p, and v. We see that a bifurcation 
occurs when R0l = 1. Suppose cx =  0. Then the eigenvalues in Eq. (28) reduce to

II ~ P21

IICN
<< ~  Ph

IICO (3(1- v ) rH3.1sé1
II (3(1 -  v) — K — p2

These are the eigenvalues of the uncoupled system, i.e. when cx =  c3 =  0 with A4 
being the dominant eigenvalue. We fix the parameters in A4 using the values from 
Table 2, and solve for the value of v, say v to ensure Ro1 = 1 when cx — c3 = 0. 
We are interested in seeing the effect linear migration has on the stability of the 
DFE. We let cx vary within the interval [0,0.1] and examine the change to Ro1. 
Figure 3(a) shows the effect linear migration has on the value of R0l. We see that 
increasing linear migration lowers the value of R0l thus reducing the vaccination 
rate needed for DFE stability. However, the effect is very minimal. We recall the 
assumption that both the northern and southern regions are vaccinating at the rate 
v. We conclude that linear migration contributes very little to the stability of the 
DFE when vaccination rates are symmetric between the populations.
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Figure 3: (a) The value of Rq1 as linear migration is increased with v — .8575, C3 = 0 and 
remaining parameter values given in Table 2. (b) The value of Ro2 as mass action mixing is 
increased with v =  .8575, c\ — 0 and remaining parameter values given in Table 2.

3.2.2 Basic Reproductive Number: Mass Action Mixing Only

We let Ci = 0 for this section and analyze the effect mass action mixing has on the 
stability of the DFE. In this case, the eigenvalues of Eq. (24) reduce to

Al —

Ac
(34)

A3 =  P(1 -  v) -  K -  \  (/¿l +  /¿2 -  \/4/32c |(l -  V)2 + (^1 -  ¿/2)2) ,

A4 =  /5(1 -  v) -  K -  \  (ri + 112 +  \/Wc%{ 1 -  v)2 +  (fix -  //2)2) •

In order to define the basic reproductive number in this case, we must analyze 
the real parts of the eigenvalues in Eq. (34). Clearly, Ai and A2 are negative. Note 
that the expression under the common radical is the sum of two positive quantities 
and therefore is positive. Hence, A3 and A4 are real valued. To simplify notation, 
we set

O3 = y/*/324 { l  -  v )2 + (fi2 ~ Vi)2- (35)
Upon inspection, it is clear that A3 > A4. Similar to the case with linear migration, 
A3 > A4 and A1? A2 < 0 for all parameter values. Therefore A3 dictates the stability
of the DFE. We see that A3 < 0 when ¡3(1 — v) — k — \  {/i\ + //2 — 03) < 0 . We define

/3(1 - v )
R\o2 + \(i l 2 + l1! ~  3̂)

(36)

as the basic reproductive number for Eq. (24) when C\ = 0 and v\ = u2 = v. Similar 
to before, Rq2 is interpreted as the value that describes the threshold between disease 
absence and persistence in both populations.
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Similar to before, we are interested in the effect mass action mixing has on the 
stability of the DFE. We let C3 vary within the interval [0,0.3] and examine the 
change to Rq2 where v is defined as before. Figure 3(b) shows the effect mass action 
mixing has on the value of Rq2. We see that the stability of the DFE is much 
more sensitive to the value of C3. However, we must consider the assumption that 
accompanies mass action mixing. Namely, that the infectives from one population 
who are mixing with the susceptibles are doing so in a spatially uniform sense. In a 
country such as Cameroon, we would expect that short term movement takes place 
largely at the border between the Northern and Southern regions. Therefore, we do 
not expect larger values of C3 to be realistic within this model.

3.3 DFE Analysis with Non-sym m etric Vaccination (NSV)
Up to this point, we have results that describe how coupling affects the vaccination 
rate needed to ensure that the DFE is locally stable. We concluded that linear 
migration has a very minimal effect on the stability under the assumption that the 
vaccination rate was symmetric. We now analyze the case when vaccination is non- 
symmetric, i.e. v\ V2- We explore the possibility that coupling causes different 
qualitative effects on the stability of the DFE when vaccination is non-symmetric.

We begin by solving for the fixed point representing the DFE of Eq. (24). This 
point is given by

(S1 , i 1 ,S 2, i 2) = (Nl ( l - 6 1) ,0 ,N 1p ( l - S 2),0), (37)

where

H2PV2C1 +  P2P1V1 + P\V\Ci P2PV2C1 + P2P1V2 +
0\ —---------------------------------, Ó2 —--------------------------------- • (38)

M2M1 T P2C1P + P\C\ P2P1 +  P2C1P +  P\C\

In order to characterize the stability of the DFE when C\ and C3 are not both zero, 
we evaluate the Jacobian of Eq. (24) at (Si, Ii, S2, 12) and seek out the dominant 
eigenvalue. The first two eigenvalues are identical to Xi and A2 in Eq. (28) which 
have been shown to be negative. The other two eigenvalues, A3 and A4 are conjugate 
pairs given by

^3 = Vb), A4 = ~ ( a  + y/b). (39)

The expressions a and b are given below:

CL =  C\(p +  1 )  +  / li  -f- /^2 +  (3( 2̂ +  h i  — 2) +  2/c, 
b = 4 ( 1  — 62) ( 1  — Ji) c32/32 +  (¡3 (Ji — 62) + Pi — P2) +

(P +  l )2 c l 2 +  2Ci (p — 1 ) (p\ — P2) +  yd(4 (1 — J i )  C3C1P  +

4 ( 1  — 62) C3C1 +  2ci (p — 1 )  (Ji — J 2 ) ) -

We see 0 < < 1 for i = 1,2 because 0 < V\,V2 < 1. Thus (1 — J¿) > 0 for
i — 1,2. If we assume Vi > v2, then by inspection all the terms are positive in
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b with parameter values given in Table 2. Otherwise, the expression b must be 
checked for the parameters of interest. Therefore, if b > 0, then A3 and A4 are 
real-valued, and the sign of A3 determines the stability of the DFE.

We are interested in the relationship between the vaccination rates. Fixing all 
parameter values except v\ and v2, we set A3 =  0 and solve for the non-spurious 
function v2 = f (v  1) to give the relationship describing the bifurcation points of the 
DFE. Because this relationship depends on the coupling, various values for C\ and 
c3 are considered. These changes to the coupling will allow us to examine how the 
bifurcations of the DFE are affected. Refer to Fig. 4(a-d).

Each of these figures display the bifurcation points of the DFE for various values 
of Ci and c3. The black dotted lines represent the uncoupled vaccination rates needed 
to ensure the DFE is stable in each population. These rates were computed using 
the eigenvalues in Eq. (33). They are a reference that allows us to examine how 
coupling effect the vaccination rates needed for stability.

For each point in the (v\,v2) space and fixed coupling parameters, if v2 > f (v  1) 
then the point (iq, v2) will be located in a stable region and the disease will die out. 
Otherwise, if v2 < f ( v i), then the point (iq, v2) is located in an unstable region and 
the disease will persist. From these diagrams it is clear that increasing the linear 
migration rate Ci enlarges the region of stability for a specified mass action coupling 
rate c3. However, as c3 is increased the region of stability reduces. We can see this 
distinction when we compare Fig. 4(a) and 5(b).

These figures also give us a graphical verification of the fact stated earlier; that 
linear migration has a very minimal effect on the stability of the DFE when vac­
cination is symmetric. The line v2 = V\ in the parameter space (y\,v2) intersects 
the curves describing the bifurcation points at approximately the same point. This 
point is on each of the curves generated with different values of C\ thus verifying 
that stability of the DFE is essentially independent of the value of C\ for symmetric 
vaccination.

4 N um erical A nalysis and Verification
Numerically solving Eq. (24) can help us determine important quantitative informa­
tion about the system that would otherwise be too analytically complex to derive. 
For example, finding the fixed point representing the EE of Eq. (24) is algebraically 
intractable and therefore can not be easily manipulated. However, the EE can be 
found numerically using specified parameter values. In this section we will compute 
the EE, as well as verify the results established thus far. Before continuing though 
we note that due to the very small magnitudes that arise in the coupled system, the 
ode45 solver loses accuracy. For example, when I\ asymptotically approaches zero, 
values approach machine precision causing numerical error. We must first transform 
Eq. (24) using a change of variables to avoid this problem.
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F igure  4: Plots of v2 =  f (v  1) describing the bifurcation points of the DFE with varying values 
of ci- Parameter are given by the values in Table 2. The mass action rate was varied for each of 
the figure with (a) C3 =  0, (b) C3 =  0.003, (c) C3 =  0.03, (d) C3 =  0.3.

4.1 Full Cameroon Model: Change of Variables
We perform a change of variables to the Eq. (24) with the prior substitution c2 =  C\p 
to deal with the numerical error that would arise from using the original system. 
First, ignoring the recovered classes, we normalize the populations by making the 
following substitutions:

for k — 1,2. Next,
&k ^k/Nki k̂ '■ Ifc/Vfc, (40)

dsk 1 dSk dik 1 dlk
(41)

dt Nk dt ’ dt ~  N~k ~dt ’
for k — 1,2. Note that this normalization restricts our domain to the interval [0,1] 
for each class. We then use the following logarithmic change of variables:

xk = lnsk, Uk = lnifc, (42)
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for k = 1,2. This change of variable essentially ’stretches’ the domain thereby 
allowing for accurate computation. Note though that the domain for each disease 
class is [0,1] which must be restricted to (0,1] so that the logarithmic change of 
variables is well defined. By the chain rule,

dxk = 1 dsk dyk = 1 dik 
dt sk dt ’ dt ik di

The resulting sytem is

dx i
—  =  -f3eX2 -  csp(3ey2 + (1 -  Vx)pie~Xl -  P\ + Cipeyi~Xl -  cxp

- 7  ̂ =  (3exi + csp/3exl+V2~x2 — k — p\ + C\pey2~x2 — C\p 
dt

= ~/3ey2 -  - c 3/deX2 + (1 -  v2)p2e~yi ~ P2 +  Ciexi~yi -  cx dt p

=  (3eyi H— cs/3eyi+X2~V2 — k, — p,2 + C\eX2~V2 — C\. 
dt p

4.2 Simulations and Verifications
A trajectory of the EE of Eq. (44) can be simulated using parameter values from 
Table 2 with V\ — v2 — 0 and non-zero coupling rates. The initial condition used 
is slightly perturbed off the number of infectives at the theoretical EE so that the 
transient behavior can be observed. Figure 5 shows a numerical simuations of a 
trajectory of Eq. (44). The oscillatory nature of the transients tell us that the EE 
is a stable spiral sink. We can see this oscillatory behavior clearly by looking at the 
EE for each population in the (Sk, Ik) phase plane for k =  1, 2.

To verify an instance where a bifurcation occurs as the linear migration rate 
increases, we simulate Eq. (44) for parameter values that ensure an unstable DFE. 
After a specified amount of time, we then increase the linear migration rate and 
examine the changes to the number of infected individuals. See Fig. 7(a) and (b). 
For these simulations, V\ and v2 were chosen to ensure that the DFE was unstable 
for Ci =  0,  0 . 0 0 1 ,  0 . 0 1 ,  but stable for Ci =  0 . 1 .

5 Stochastic Approach
The model given by Eq. (24) is deterministic. It describes the mean behavior of 
the quantities involved. For any initial condition in a neighborhood of the phase 
space, the trajectory is uniquely determined and will approach a stable steady state. 
These trajectories have no fluctuations due to external noise. Because noise induced 
phenomenon is a much more realistic interpretation of real world characteristics, it 
motivates us to analyze our model stochastically. This type of analysis will allow 
low probability events, i.e. events induced by noise, to be captured that would 
otherwise go unnoticed in a completely deterministic system. For example, disease
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F igure  5: Numerical simulation of Eq. (44) displaying the endemic equilibrium for N\ and 
N 2 with vi — v2 = 0, ci =  0.01, c3 =  0.003, and parameter values given in Table 2. The 
resulting solution was tranformed back to the quantities Ii, 1, 2 representing the number of infected 
individuals.

Figure 6: Trajectories showing that the EE for each population is a stable spiral sink for v\ =  
v2 — 0 and C\ =  0.01 and c3 =  0.003. The resulting solution was tranformed back to the quantities 
/ i ,  / ,  2, S \ ,S 2 representing the number of infected individuals.

fade out, i.e. the event when the disease becomes absent in the population, can not 
happen when the basic reproductive number is greater than one in a deterministic 
system. Any initial condition will be attracted to the stable EE and therefore both 
I\ and I2 will be greater than zero for all t > 0. Using a stochastic approach, this 
type of scenario is perfectly possible, and in fact, will be the type of behavior we 
seek out exclusively.

We see that disease fade out is captured stochastically when the fluctuations 
about the mean behavior cause the number of infectives to spontaneously go to zero. 
Because oscillations are inherent due to the EE being a spiral sink, fluctuations due
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Figure 7: (a) Infectives of N\ and (b) Infectives of AT2 as c\ is increased from 0 to 0.1 with 
V\ — 0.75, V2 =  0.94, and C3 =  .003. The resulting solution was tranformed back to the quantities 
I\, 1,2 representing the number of infected individuals.

to noise about this mean behavior will create more pronounced fluctuations. Thus 
allowing for the infectives to spontaneously go to zero more easily. Since vaccination 
is the primary way to control the number of infectives quantitatively, we seek the 
minimal vaccination rate to ensure a consistent fade out. We will make use of the 
results established thus far about non-symmetric vaccination to maximize its effect.

5.1 Stochastic Representation of Full Cameroon Model
The stochastic algorithm used for this research is based on the method described 
by Gillespie [3]. The algorithm is similar to a Monte Carlo process in that it uses 
repeated random sampling. First, a random number is used to generate a time step 
t. At this time step, another random number is used to select an event. An event is 
represented by a term within the model. For example, the term kI i is the event in 
which a person moves from the infected class to the recovered class in population 
one. The probability that an event is selected at some time step is its numerical 
value divided by the sum of the numerical values of all the events in the system. 
Once the event is selected, the necessary change is made to each compartment of 
the model corresponding to that event. This process is repeated many times to 
attain a stochastic time evolution of the model.

To stochastically represent the deterministic system using the Gillespie method, 
we must consider each distinct term in the system as a particular probabilistic 
event with a specific outcome. Let X =  (Si(tk), hitk), Ri^k))
denote the value of each class at time tk and r =  (7*1, r2, r3, r4, r5, r$) with the 
ordered components denoting the increments in S2, h i  and R 2 at time tk+i
respectively. Define W (X : r) as the transition rate for an event. The transition
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rates and their corresponding events for Eq. (24) are:

W (X : (1.0,0,0,0,0)) =

W (X : (0,0,1,0,0,0)) = v&iNx

W (X : (-1 ,0 ,0 ,0 ,0 ,0)) = /ilSi
W (X : (0,-1 ,0 ,0 ,0 ,0)) — P> lh

W (X : (0,0 ,-1 ,0 ,0 ,0)) — n\R\

W (X : (-1,1 ,0 ,0 ,0 ,0)) _ PSih 
Ni

W (X : (-1 ,1 ,0 ,0 ,0,0» _  .  PSil2
-  C3 Ni

W (X : (0 ,-1 ,1 ,0 ,0,0» = kI i

W (X : (1 ,0 ,0 ,-1 ,0,0» = c A

W (X : (0 ,1 ,0 ,0 ,-1 ,0)) — c j 2

W (X : (0 ,0 ,1 ,0 ,0 ,-1)) — C\R2
W (X : (0,0,0,1,0,0» = (1 — v2)h2N2

W (X : (0,0,0,0,0,1)) = v2/j,2N2

W (X : (0 ,0 ,0 ,-1 ,0 ,0)) — 1̂2 S2

W (X : (0 ,0 ,0 ,0 ,-1 ,0)) — P 2-̂ 2
W (X : (0 ,0 ,0 ,0 ,0 ,-1)) =  1̂2 R2

W (X : (0 ,0 ,0 ,-1 ,1 ,0)) _ PS2I2pN±
W (X : (0 ,0 ,0 ,-1 ,1 ,0)) _ .  PS2Ii

~  °3 pNi
W (X : (0 ,0 ,0 ,0 ,-1 ,1 » = Kl2
W (X : (1 ,0 ,0 ,-1 ,0,0» — cipSi

W (X : (0 ,1 ,0 ,0 ,-1 ,0 » = Ciph

Birth in Ni, 

Vaccination in

Death in Si, 

Death in R , 

Death in R i , 

Infection in Ni, 

Infection in Ni, 

Recovery in N\, 

Migration of susceptible from N2 to N i , 

Migration of infective from N2 to Ni, 

Migration of recovered from N2 to N\,

Birth in V2, 

Vaccination in N2, 

Death in S2, 

Death in / 2, 

Death in R2, 

Infection in JV2, 

Infection inV2, 

Recovery in V2, 

Migration of susceptible from Ni to N2, 

Migration of infective from N\ to 7V2, 

Migration of recovered from Ni to N2.W (X : (0,0,1,0,0, —1)) =  C\pR\

The next time step f/t+i is computed by the expression

tk+i = t k + r  (45)

where
r  =  — In ( —}  , (46)

and a0 is the sum of all the numerical values of all the events at time tk, and r\ is a 
randomly generated number in the interval [0,1]. We note that r  is using the same 
distribution. Initially, to = 0 and
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Figure 8: Deterministic and stochastic trajectories of Eq. (1) with parameters given by the values 
in Table 1.

< S i( *o ) ,/ i( io ) ,  ¿>2(io)j h ( t o ) ,  R z ( t o ) )  —  < f t (0), / i ( 0), i? i(0), ¿>2(0), ^ ( O ) ,  #2(0)).
It is important to note that this discrete time step in not uniform since the step 
size is inversely related to aq. Hence, smaller time steps are created as the event’s 
numerical values increase resulting in greater frequency of repeated samples.

An actual event is selected at tk by first generating a second random number r2 
in the interval [0,1]. The product a0r2 can therefore be thought of as some random 
location on the interval [0,a0]. If the order of the values of the events are kept 
track of, then aor2 ’falls’ onto precisely one subinterval of [0, ao] corresponding to 
exactly one event. Since the event is known, its transition rate is applied to X and 
tk+i is generated. This process is then repeated a large number of times. For the 
remainder of the paper, we will refer to the stochastic representation of Eq. (24) 
as the Full Stochastic Model (FSM) using parameter values given in Table 2 for all 
simulations.

5.2 Stochastic Simulations and Verifications
To visual the effect between deterministic and stochastic solutions, we can use 
the Gillespie algorithm to simulate trajectories of basic models. Using Eq. (1) 
as an example, we simulate the deterministic and stochastic time series with the 
same initial condition and parameters in Fig. 8(a) and 8(b). It is easy to identify 
fluctuations about the mean behavior in these figures. We can also see fadeout 
occurring in the stochastic simulation, whereas the number of infectives in the 
deterministic simulation asymptotically approach zero.

A simulation of the FSM can be seen in Fig. 9(a). The number of infectives at 
the initial condition is set to the exact values at the EE. The pronounced oscillatory 
behavior is a result of the mean oscillatory behavior in the deterministic time series. 
The large fluctuations bring the number of infectives to very low values in some 
instances, which is precisely the behavior that we are looking to capture as we
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Figure 9: (a) Stochastic simulation of the FSM with c\ =  0.01, C3 =  0.003, and v\ = V2 = 0. 
(b) Average number of infectives in each population computed from the stochastic simulation for 
a fifty year interval.

increase the vaccination rates.
Because the Gillespie algorithm uses repeated sampling, verifying the mean be­

havior stochastically requires us to average the long term endemic behavior for a 
sufficient time. In Fig. 9(b), the average number of infectives is computed and dis­
played. The mean values derived from the stochastic simulation are nearly identical 
to the deterministic values verifying that the stochastic simulation does indeed os­
cillate around the deterministic mean with some distribution. It is also worth noting 
that we do not see any convergent behavior toward the EE. In fact, regardless of the 
number of time steps used in a single simulation, convergence will not be observed.

5.3 Stochastic Analysis of Fadeout with NSV
As described before, fadeout is the event when the number of infectives sponta­
neously go to zero. We have already demonstrated that large fluctuations about 
the mean occur in the FSM. Since nonzero vaccination rates lower the value of 
the deterministic mean, then the fluctuations observed in simulations of the FSM 
should lead to fadeout. In Fig. 4, we have already established the bifurcation points 
in the (vi, v2) of the deterministic system. Certainly, using any (ui,v2) describing 
a bifurcation point will lead to fadeout. What is of interest now is to establish 
how much (v i,^ ) can be lowered so that fadeout occurs consistently in a small 
interval of time. We expect that there is a certain threshold in which the disease 
will stay endemic below this threshold. Informally, we will refer to this threshold as 
the effective basic reproductive number denoted Re0. It will describe the threshold 
between endemic behavior and fadeout.
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Figure 10: (a) Average fadeout time for c\ =  0.1 , C3 =  0.003, and V2 — 0.9. The red dotted lines 
shows the deterministic value of v\ where the bifurcation occurs describing the change in stability 
from the DFE to the EE. The blue dotted line shows the value of v\ where the average time to 
fadeout is two years, (b) Average fadeout time limited to three years and lower.

5.3.1 Capturing Fadeout

To capture fadeout, we will choose one of the vaccination rates and fix it at some 
value. Next, we fix the coupling rates, and then begin decreasing the other vaccina­
tion rate starting at the value of one. The resulting time to fadeout is then recorded. 
We repeat this a large number of times to obtain an average time to fadeout for each 
vaccination rate before it is lowered. We think of the Re0 as the vaccination rate 
where the average time to fadeout begins to increase at a rate significantly higher 
than previous values. Without loss of generality, we will now consider a specific 
example and then give the main results without detail.

Let ci =  0.1, c3 =  0.003, and v2 =  0.9. A bifurcation occurs at Vi = 0.798 as seen 
in Fig. 4(b). Therefore, for any value v\ > 0.798, the DFE will be stable. Simulating 
the FSM with the initial condition set at the EE and (^1,^2) =  (1,0.9), we record 
the time to fadeout. We repeat the simulation as described five hundred times 
and find the average time to fadeout. Next, the vaccination rate is lowered by two 
percent, and the process described above is repeated. The resulting average times 
to fadeout are shown in Fig. 10(a). If we look closer at the lower fadeout times in 
Fig. 10(b), we can see an exponential increase occurring just below the deterministic 
value of V\ .  However, the time to fadeout is still minimal and therefore and can 
possibly be considered as the value of Re0.

One characteristic of the Fig. 10(b) to note is that it takes a little more than a 
year for the disease to dieout even as the vaccination rate is increased to one. This 
time describes how long it takes for the disease to go from the EE to DFE. Interest­
ingly enough, this time is relatively unaffected once the vaccination rate surpasses 
the deterministic value of v\ required for a stable DFE. Therefore, one conclusion 
we can draw is that vaccinating beyond what is deterministically predicated is un­
necessary.
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5.3.2 Determining the Effective Basic Reproductive Number

Although we can visually approximate reasonable values for v\ where the average 
time to fadeout is sufficiently low, we want to be more thorough in defining Re0. In 
order to do this, we will go back to our example in the previous section. Referring 
back to Fig. 10(b), we can see a sharper increase in the average time to fadeout 
occurring at v\ =  0.74. For v\ < 0.74, the average time to fadeout appears to 
exponentially increase. If we look at the log of this increase, we can determine 
a line of best fit since we expect a linear trend. Similarly, a line of best fit can 
be found for the fadeout times occurring with V\ > 0.74. It seems reasonable to 
consider the data as two distinct groups, since we have seen the time to dieout 
predicted deterministically is essentially constant as v\ increases. We can consider 
the intersection of the two lines of best fit as the critical value of R e0 = V\ where 
the time to fadeout begins to exponentially increase.

Figure 11: (a) The first collection displayed exponential growth, while the second group displayed 
constant behavior, (b) The lines of best fit for the log of the average fadeout time for each group.

Fig. 11(a) shows how the data was separated into an exponential and constant 
group. The log of each of these groups was taken in Fig. 11(b) with the correspond­
ing lines of best fit. The value of Vi =  0.72 from the intersection of the lines of best 
fit is the critical value where we see the average fadeout time beginning to increase 
exponentially.

5.3.3 Effective Reproductive Numbers Results

In this section we will give the graphical results for various changes to the linear 
migration and the initial fixed vaccination rate. For this section, we fix C3 =  0.003. 
Again, we find this to be reasonable since mass action mixing is likely to occur 
only at the border between the northern and southern regions. Fig. 12(a-c) display 
the average times to fadeout for fixed values of C\.  Interestingly enough, inspection 
of the figures show that the average times to fadeout are not greatly affected by
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Table 3: Effective Reproductive Numbers

Fixed value of c\ Fixed value of v2 v\ for Ro = 1 v\ for Reo
0.001 0.70 - .712
0.001 0.75 - .739
0.001 0.80 - .736
0.001 0.85 .993 .734
0.001 0.90 .856 .736
0.01 0.70 - .864
0.01 0.75 - .750
0.01 0.80 .996 .762
0.01 0.85 .874 .740
0.01 0.90 .849 .733
0.1 0.70 .974 .721
0.1 0.75 .937 .702
0.1 0.80 .900 .720
0.1 0.85 .862 .692
0.1 0.90 .836 .763

differing values for c\. Whereas the values of C\ have a greater impact on the 
deterministic values of v\ and v2 to ensure a stable DFE.

Another interesting result is that when v2 =  0.7, we achieve consistent fadeout 
in approximately two years for v\ ~  0.75 and greater. We recall, from Fig. 4, that 
for v2 — 0.7, there is no value of v\ G  [0,1] to ensure a stable DFE. Thus, we have a 
clear example of the contrast between the deterministic and stochastic approaches 
to analyze disease absence.

To determine the effective reproductive numbers for the variety of cases we are 
analyzing, we can repeat the method described in the beginning of the section 
by finding the intersection of the two best lines of fit for the data points that 
display exponential and constant behavior respectively. Omitting the details of 
each calculation, we collect our findings in Table 3.

Each row of Table 3 gives a comparison between the deterministic value of v\ 
to ensure stability and the stochastic value of v\ to achieve consistent fadeout in a 
reasonable amount of time. Similar to the previous example, for some values of c\ 
and u2, the deterministic vaccination rate v\ needed to ensure stability is outside of 
the domain [0,1] yet we see consistent fadeout for a value of v\ nonetheless.

We intuitively expected there to be a trend displaying a indirect relationship 
between the linear migration rate and Re0 since this was the case deterministically. 
The relationship displays more of an independent relationship, that is, increase 
in linear migration has little effect on Re0. This is a vital difference between the 
deterministic and stochastic interpretations. Specifically, if only the deterministic 
system was taken into consideration, then predicated vaccination rates would be 
much higher than what is effective based on this model.
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Figure 12: Average Times to Fadeout for varying linear migration rates. The rates are fixed at 
(a) ci =  0.001, (b) ci =  0.01, (c) ci =  0.1. The remaining three figures (d), (e), and (f) show 
the same displays corresponding to the figure above with an upper limit of five years for average 
fadeout time.

6 Sum m ary
Beginning with the basic SIR compartmental model, we developed the theory de­
scribing the deterministic threshold for disease outbreak. The model was then 
extended to model long term disease dynamics by adding the effects of births and 
deaths. We then introduced the effects of vaccination and defined the basic repro­
ductive number which was dependent on the vaccination rate. The models devel­
oped up to this point captured vital disease dynamics of a single population.

Next, using two types of coupling, two single population SIR models with births, 
deaths, and vaccinations were linked together. This model was created to reflect the 
disease dynamics of measles in the northern and southern regions of Cameroon. Sta­
bility of the DFE was analyzed in two separate cases; symmetric and non-symmetric 
vaccination. The case of symmetric vaccination showed us that linear migration has 
little effect on the stability of the DFE, while the opposite was true for mass action 
mixing. But due to the assumption of spatially uniform mixing for mass action, we 
concluded that its value is realistically very low. In the second case, we saw the 
increased linear migration rates act to enlarge the regions of stability of the DFE.

Lastly, using a stochastic representation of the coupled Cameroon model, we 
showed that vaccinating at rates lower than the predicted deterministic values de­
scribing a stable DFE, in fact lead to consistent disease fadeout. These lower vac­
cination rates were referred to as effective basic reproductive numbers. We found
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the effective reproductive numbers describing reasonable fadeout time by analyz­
ing parts of the average times to fadeout that displayed exponential and constant 
behavior.

Although this work has established potential useful results about the influence 
vaccination has on the disease dynamics of measles in Cameroon, it is important to 
describe a number of significant assumptions and simplifications. One of the biggest 
modifications is that we have ignored the exposed class for describing measles, 
which has a latent rate of approximately fourteen days. The primary reason for 
doing so was to allow for the analysis to be performed. Models that incorporate the 
exposed class are much more difficult to determine criterion for stability analytically. 
Possible future work could include this class and use more advanced numerical 
methods to derive results for an SEIR coupled model.

Another important limiting factor of this analysis is the accuracy of parameter 
values. One of the most important parameter values, the contact rate, is difficult 
to determine from data. It not only depends on the biological characteristics of 
the disease, but also on social, economic, and environmental factors that influence 
how individuals come in contact with one another. We have used a value that is 
realistic, but possibly inaccurate.

In conclusion, we have established the important differences between stochas­
tic and deterministic analysis. Both methods were important as the deterministic 
work gave us foundational results about mean behavior, while the stochastic analysis 
then helped to find trends about disease behavior we could not have seen determin­
istically. It is also clear how multi-population models can capture vital dynamics 
inherent in the coupling. Future work could certainly include the addition of more 
subpopulations of Cameroon. In addition, more research about the demographics 
of Cameroon would lead to more accurate modeling of disease dynamics.
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