
Montclair State University Montclair State University 

Montclair State University Digital Montclair State University Digital 

Commons Commons 

Theses, Dissertations and Culminating Projects 

5-2021 

Towards Secure and Verifiable Computation of KNN Queries in Towards Secure and Verifiable Computation of KNN Queries in 

Outsourced Environments Outsourced Environments 

Gowri Pandian Sundarapandi 
Montclair State University 

Follow this and additional works at: https://digitalcommons.montclair.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Sundarapandi, Gowri Pandian, "Towards Secure and Verifiable Computation of KNN Queries in Outsourced 
Environments" (2021). Theses, Dissertations and Culminating Projects. 757. 
https://digitalcommons.montclair.edu/etd/757 

This Thesis is brought to you for free and open access by Montclair State University Digital Commons. It has been 
accepted for inclusion in Theses, Dissertations and Culminating Projects by an authorized administrator of 
Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu. 

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/etd/757?utm_source=digitalcommons.montclair.edu%2Fetd%2F757&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu


Abstract

The popularity of cloud computing has increased significantly in the last few years

due to scalability, cost efficiency, resiliency, and quality of service. Organizations are

more interested in outsourcing the database and DBMS functionalities to the cloud

owing to the tremendous growth of big data and on-demand access requirements. As

the data is outsourced to untrusted parties, security has become a key consideration to

achieve the confidentiality and integrity of data. Therefore, data owners must trans-

form and encrypt the data before outsourcing. In this paper, we focus on a Secure and

Verifiable Computation for k-Nearest Neighbor (SVC-kNN) problem. The existing

verifiable computation approaches for the kNN problem delegate the verification task

solely to a single semi-trusted party. We show that these approaches are unreliable in

terms of security, as the verification server could be either dishonest or compromised.

To address these issues, we propose a novel solution to the SVC-kNN problem that

utilizes the random-splitting approach in conjunction with the homomorphic proper-

ties under a two-cloud model. Specifically, the clouds generate and send verification

proofs to end-users, allowing them to verify the computation results efficiently. Our

solution is highly efficient from the data owner and query issuers’ perspective as it

significantly reduces the encryption cost and pre-processing time. Furthermore, we

show the correctness of our solution using Proof by Induction methodology to prove

the Euclidean Distance Verification. Finally, with a thorough analysis and the empir-

ical results on a real data set, we demonstrate the efficiency and effectiveness of our

protocol.
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1 Introduction

1.1 Background and Motivation

Outsourcing data and computational tasks to the cloud is gaining importance as it provides

efficiency and flexibility to data owners. It also reduces the infrastructure needs of orga-

nizations by providing hardware, software, storage, and maintenance as a service [1] [2].

Cloud computing is known to offer database as a service (DBaS) that helps organizations

to achieve improved productivity, better standards, and data security. However, it raises

some concerns about preserving the privacy and accuracy of data. In other words, the

clouds can be compromised or behave dishonestly due to financial incentives or malicious

activities [3], [4].

In this project, we study the kNN problem where the data owner outsources the data and the

computational tasks to the cloud. Besides, the end-user submits queries and obtains the top

k records from the database. Since the clouds are untrusted parties, there are high chances

that they provide inaccurate results to the end-user. Errors can occur unintentionally dur-

ing the computation process or intentionally due to monetary gain or malicious activities.

Specifically, the cloud might choose to return a random result instead of executing heavy

computations assuming that it is difficult to detect this behavior due to the lack of a veri-

fication mechanism at the end-user [5]. Therefore, it is essential to develop a scheme that

protects the confidentiality of data and verifies the accuracy of returned results. We focus

on addressing the problem of (1) secure processing of queries over encrypted data in the

cloud and (2) verifying the correctness of the kNN results.

In our approach, we consider the Euclidean Distance as the distance metric to compute the

top k records for a given query Q. More specifically, given a query Q, the scheme should

compute the distance between Epk(Q) and encryption of each tuple Epk(ti) in the database
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(DB) and return (1) the k-nearest tuples to Q and (2) proofs to verify the correctness of the

results. To preserve confidentiality, all computations should be implemented on encrypted

data, and the scheme must hide the data access patterns during the query processing and

the verification phase [6], [7].

Several papers have addressed the computation of the SkNN problem [8], [9], [10]; how-

ever, they did not take the verification of results into account. The proposed methods

in [9] [10] are not CPA-secure. Moreover, the schemes in [9] [11] [12] incur heavy com-

putations at the end-user during the query processing step, and [11] returns approximate

kNN results to the end-user. While the proposed SkNN protocol in [8] is considered to be

secure, it requires the data owner to encrypt the entire database before outsourcing, which

consumes the data owners computational resources. Further, [13] produces a method to

verify the integrity of outsourced frequent itemset mining by transforming some real tuples

to fake and vice-versa. The correctness and completeness are verified by checking against

the fake itemsets. However, using similar verification methods for the kNN problem is in-

appropriate because the results for kNN computation depend on the user’s query, which is

different and unpredictable. Lastly, researchers in [14] proposed a verification protocol for

the kNN problem. However, there are significant security issues with their approach. First,

it involves a single party in the verification process. Second, the scheme uses Asymmetric

Scalar Product Encryption, which is insecure against Known Plaintext Attacks. Finally, the

scheme reveals the data access patterns to the cloud as the information about indices of

fake tuples is disclosed to the verifying server.

2



1.2 Problem Definition

Suppose a data owner owns a database DB of n records, denoted by t1,..., tn, and m

attributes. Let ti,j represents the jth attribute value of record ti. Before outsourcing, the

data owner adds nf fake tuples to the DB, randomly splits the database attribute-wise

into two shares DB1 and DB2, and sends them to a Cloud Service Provider1, CSP1 and

Cloud Service Provider2, CSP2, respectively. Moreover, future query processing tasks are

delegated to the clouds. Similarly, an authorized end-user randomly splits the query Q =

〈q1,...,qm〉 attribute-wise into two shares Q1 and Q2, and sends them to CSP1 and CSP2,

respectively. The two clouds collaborate to obtain the Epk(DB) and Epk(Q), compute the

top k records, and send the results to the end-user. It is important to mention that the two

clouds do not collude with each other.

In the SVC-kNN protocol, the data owner generates auxiliary information once during the

Database Outsourcing Stage. The clouds will use this information to verify the computed

top k records. Specifically, CSP1 and CSP2 employ the auxiliary information to construct

the proofs δ1, δ2, H(ζ1), and H(ζ2). In addition to the computation results, the clouds send

the proofs to the end-user for verification purposes. We divide the verification process into

the Euclidean Distance Verification and Sort Verification. We emphasize that our verifi-

cation scheme is probabilistic and the proofs are constructed using only fake tuples. We

assume that if verification were successful, the returned results are correct with a high prob-

ability. Moreover, it is important to mention that the contents of Q1, Q2, DB1 and DB2

remain confidential throughout the query processing and verification phases. Furthermore,

the data access patterns are also hidden from the clouds. Figure 1 shows the information

flow across different parties in the proposed framework.

3



Figure 1: System Model

1.3 Our Contributions

We propose a novel SVC-kNN protocol to verify the correctness of the top k records.

Firstly, we verify the results of the computed Euclidean distances (di), and we prove that

our theorem always holds for validating euclidean distances. Secondly, we verify the sorted

distances. Moreover, the SVC-kNN protocol minimizes the workload and the encryption

cost on the data owner and the end-user because it does not require them to directly encrypt

DB and Q. Instead, it allows them to randomly split their data and send each share to

the corresponding CSP . Subsequently, CSP1 and CSP2 coordinate to obtain Epk(DB)
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and Epk(Q), which improves the efficiency. Besides, the data owner is not required to

participate in kNN computation and result verification. Furthermore, the protocol is secure

under the semi-honest model and satisfies the following requirements:

•Data confidentiality–The contents ofDB andQ should always remain confidential.

• Hide data access patterns from the cloud – information about the k-nearest tuples

to the Q should not be revealed to any intermediate party.

• Accurately compute the k-nearest neighbors of query Q.

•Minimize computation overhead on the data owner.

• Final results should not be revealed to the cloud.

• Accurately generate proofs for verifying the computed results.

We emphasize that our probabilistic verification scheme utilizes two cloud service providers,

CSP1 and CSP2, to construct the proofs. Each CSP sends its proof to the end-user for

each verification stage: Euclidean Distance Verification and Sort Verification. The end-user

obtains proofs for each verification step to check the equality. It is important to mention that

the clouds start the sort verification only if the Euclidean distance verification is successful.

1.4 Organization

The remaining sections are organized as follows. Section 2 reviews related works. Section

3 reviews preliminaries. Section 4 describes the problem and the proposed framework

for secure computation of kNN and secure verification of kNN. Section 5 focuses on the

verification scheme. We divide the verification into three subsections: Proof Preparation,

Euclidean Distance Verification and Sort Verification. Section 6 demonstrates the efficiency

of the proposed SVC-kNN protocol through various experiments and analyses. Finally, we

conclude the paper with future work.
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2 Related Works

2.1 Secure kNN Outsourcing

Researchers have addressed the problem of outsourcing SkNN problem in several papers.

Wong et al. [10] proposed the Asymmetric Scalar-product Preserving Encryption (ASPE)

scheme, which compares distances by preserving scalar product between the query Q and

tuples t in the database DB. The database and queries are encrypted and outsourced to the

cloud. However, the decryption key sk is revealed to the end-user and the scheme is vulner-

able to chosen-plaintext attacks. Zhu et al. [12] proposed an improved SkNN scheme that

does not reveal the decryption key. However, it requires the end-user to involve in heavy

computations during the query processing step, which contradicts the concept of outsourc-

ing the computations to the cloud. Furthermore, it releases partial information about the key

to end-users while performing kNN computation. Yao et al. [11] proposed a SkNN scheme

that depends on partition-based secure Voronoi diagram (SVD). In their proposed solution,

they required the cloud to return a relevant encrypted partition Epk(G) for Epk(T ) in which

G is guaranteed to contain the k-nearest neighbors to the Q. However, this method returns

inaccurate results to the end-user. Besides, it requires the end-user to involve in the query

processing phase, which is inefficient. Moreover, the proposed solutions in [10], [9], [12]

do not protect the data access pattern from the cloud. Samanthula et al. [8] proposed a

novel SkNN protocol based on the Paillier Cryptosystem’s homomorphic properties. Their

scheme solves the SkNN accurately and guarantees the confidentiality of data and queries.

It also hides the data access patterns from the cloud; however, it requires the data owner to

encrypt the database, which consumes the data owner’s resources.
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2.2 Verifiable Computation on kNN

Wong et al. [15] addressed the problem of the verification of outsourced frequent itemset

mining. They constructed a set of fake (in)frequent itemsets by inserting fake items into the

outsourced database, and check against the fake (in)frequent itemsets to verify the mining

results. They assumed that the server do not have knowledge about these itemsets in the

outsourced datasets. However, the server may be able to collect information about the

outsourced database and escape from the verification step [16], [13]. Dong et al. [13]

adopted a slightly different method to verify outsourced frequent itemset mining. They

constructed the set of (in)frequent itemsets from the real items. They used this set as

evidence to check the integrity of the mining results returned by the cloud. Nevertheless,

in SkNN, mining results depend on the query Q given by the end-user. Therefore, using

the aforementioned methods for verifying kNN results is not possible. Wang et al. [14]

proposed a verifiable approach of secure kNN computation. Their scheme verifies the

outsourced kNN computation by utilizing the algebraic properties of Asymmetric Scalar

Product Encryption Scheme; however, this scheme is proved to be insecure against chosen

and known plaintext attacks [10]. Moreover, their verification entirely depends on one

server, assuming that it is a fully trusted party. We argue that such an assumption may

not stand in practice, as the server may not be able to successfully verify results due to

(1) mistakes during verification phase, (2) financial incentives, (3) or malicious activities.

Furthermore, their scheme reveals information about indices of fake tuples and does not

hide data access patterns from the verifying server.

7



3 Preliminaries

3.1 Paillier Cryptosystem

The Paillier cryptosystem is a probabilistic asymmetric encryption scheme [17]. Data is

encrypted using the public key, pk, and decrypted using the secret key, sk. Let N be the

product of two large prime numbers, p and q, that is, N = p∗ q and φ(N) denotes the Euler

function, which is equal to φ = (p − 1) ∗ (q − 1) such that gcd(N, φ(N)) = 1. Consider

g is the generator in the group Z∗N2 . The public key pk = (N, g), and the private key

sk = (λ, µ), in which, λ = lcm(p− 1, q − 1) and µ = (L(gλ mod N2))−1 mod N , where

L(x) = x−1
N

.

The paillier encryption scheme has the following properties:

1. Homomorphic Addition

Epk(a+ b)← Epk(a) ∗ Epk(b) mod N2; a, b ∈ ZN

2. Homomorphic Multiplication

Epk(a ∗ b)← Epk(a)b mod N2; a, b ∈ ZN

3. Semantic Security

The encryption scheme is semantically secure [7]. Given a ciphertext, an adversary

cannot learn any information about the plaintext.

3.2 Random Splitting of Data

Consider Bob has x and wants to randomly split it into two shares, x1 = x + r mod N

and x2 = N − r, and sends them to CSP1 and CSP2, respectively. Let r be a random

number selected by Bob and N be the group size. The summation of the two shares yields

the original value x, that is, (x+ r) + (N − r) mod N = x.

8



3.3 Euclidean Distance (d)

Euclidean distance (d) is a metric that measures the distance between two data points.

Considering two vectors X = 〈x1, x2, ..., xm〉 and Y = 〈y1, y2, ..., ym〉:

d(X, Y ) =
√∑m

i=1(xi − yi)2

In this paper, we assume that a data owner outsources the encryption task to two semi-

honest clouds: CSP1 and CSP2. We assume that CSP2 holds the secret key sk, and all

the encryption is done under the Paillier cryptosystem. Table I summarizes some notations

that will be used extensively in this paper.

Table 1: Common Notations

pk CSP2’s public key

sk CSP2’s secret key

DB1 CSP1’s share of DB

DB2 CSP2’s share of DB

Q1 CSP1’s share of Q

Q2 CSP2’s share of Q

Epk(di) The encryption of the Euclidean Distance of tuple ti
nf Number of fake tuples inserted into DB

εa1 and εb1 Vectors with n random values to randomize the ti and di
εa2 and εb2 Vectors with nf random values to randomize the fake tuples and the fake distances

εc Vector with n random numbers to randomize (ti,j −Qj)

εd1 Vector contains all possible combination of fake tuples

εd2 Vector contains the summation of each possible combination of fake tuples

µ Represents the aggregate value of the randomized fake tuples

β The summation of all possible combinations of fake tuples in two pairs

δ1 and δ2 Proofs of the Euclidean Distance verification

H(ζ1) and H(ζ2) Proofs of sort verification

9



4 Problem Description and Framework

In this section, we introduce our system model, and the framework of our solution, which

consists of four stages:

• Stage 1 - Database Outsourcing: CSP1 and CSP2 encrypt their share of the database,

DB1 and DB2, and the latter sends its encrypted share to CSP1. Then, CSP1 adds the two

encrypted randomized data, Epk(DB1) and Epk(DB2), attribute-wise to obtain the original

database Epk(DB) in the encrypted format.

• Stage 2 - Query Outsourcing: Similar to the previous stage, each CSP encrypts its share

of the query, Q1 and Q2. At the end, CSP1 obtains Epk(Q).

• Stage 3 - Secure Computation of kNN: This stage consists of Secure Computation of the

Euclidean Distance (d) and Secure Sorting of the Euclidean Distances.

• Stage 4 - Secure Verification of kNN: This stage consists of Proof Preparation, Euclidean

Distance Verification, and Sort Verification.

The stages are explained in detail in the following subsections.

4.1 Stage 1 - Database Outsourcing

Consider a data owner who owns a private databaseDB that has n records andm attributes,

and randomly splits it attribute-wise, in which, each attribute is divided into two random

shares. Suppose, DB1 and DB2 denote the shares of the database. Let N be the group size

and ri,j be a set of random numbers selected by the data owner, where 1 ≤ i ≤ n and 1 ≤

j ≤m. Algorithm 1 summarizes the steps of random splitting.

10



Algorithm 1 Random Splitting (DB, ri,j , N ) −→ DB1, DB2

1: Initialize: Array DB1, DB2

2: for i = 1 to n do
3: for j = 1 to m do
4: DB1i,j = ti,j + ri,j mod N
5: DB2i,j = N − ri,j
6: return DB1, DB2

Then, the data owner sends DB1 and DB2 to CSP1 and CSP2, respectively. Specifically,

CSP1 receives ti,j + ri,j mod N and CSP2 receives N − ri,j . We emphasize that the

summation of these two shares represents the original value ti,j as shown below:

(ti,j + ri,j) + (N − ri,j) mod N ≡ ti,j

CSP2 will encrypt DB2 using pk and send Epk(DB2) to CSP1. The latter will also en-

crypt its share, DB1, using pk. The next step is to use the additive homomorphic property

to obtain Epk(DB); that is, Epk(DB1 +DB2) = Epk(DB1) * Epk(DB2) mod N2. We em-

phasize that the addition is attribute-wise and the result is known only to CSP1. Table I and

II show the values of DB1 and DB2 after randomly splitting DB in Example 1 from [8].

Table 2: Sample Heart Disease Dataset (DB1)

record-id age sex cp tresbps chol fbs slope ca thal num

t1 63 + r1,1 1 + r1,2 1 + r1,3 145 + r1,4 233 + r1,5 1 + r1,6 3 + r1,7 0 + r1,8 6 + r1,9 0 + r1,10
t2 56 + r2,1 1 + r2,2 3 + r2,3 130 + r2,4 256 + r2,5 1 + r2,6 2 + r2,7 1 + r2,8 6 + r2,9 2 + r2,10
t3 57 + r3,1 0 + r3,2 3 + r3,3 140 + r3,4 241 + r3,5 0 + r3,6 2 + r3,7 0 + r3,8 7 + r3,9 1 + r3,10
t4 59 + r4,1 1 + r4,2 4 + r4,3 144 + r4,4 200 + r4,5 1 + r4,6 2 + r4,7 2 + r4,8 6 + r4,9 3 + r4,10
t5 55 + r5,1 0 + r5,2 4 + r5,3 128 + r5,4 205 + r5,5 0 + r5,6 2 + r5,7 1 + r5,8 7 + r5,9 3 + r5,10
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Table 3: Sample Heart Disease Dataset (DB2)

record-id age sex cp tresbps chol fbs slope ca thal num

t1 N − r1,1 N − r1,2 N − r1,3 N − r1,4 N − r1,5 N − r1,6 N − r1,7 N − r1,8 N − r1,9 N − r1,10
t2 N − r2,1 N − r2,2 N − r2,3 N − r2,4 N − r2,5 N − r2,6 N − r2,7 N − r2,8 N − r2,9 N − r2,10
t3 N − r3,1 N − r3,2 N − r3,3 N − r3,4 N − r3,5 N − r3,6 N − r3,7 N − r3,8 N − r3,9 N − r3,10
t4 N − r4,1 N − r4,2 N − r4,3 N − r4,4 N − r4,5 N − r4,6 N − r4,7 N − r4,8 N − r4,9 N − r4,10
t5 N − r5,1 N − r5,2 N − r5,3 N − r5,4 N − r5,5 N − r5,6 N − r5,7 N − r5,8 N − r5,9 N − r5,10

4.2 Stage 2 - Query Outsourcing

The steps of query outsourcing are similar to the Database Outsourcing Stage. Briefly,

an end-user randomly splits the query into Q1 and Q2, and outsources them to CSP1 and

CSP2, respectively. CSP2 encrypts its share and sends Epk(Q2) to CSP1. CSP1 obtains

Epk(Q1) and then utilizes the additive homomorphic property to obtain Epk(Q).

Algorithm 2 shows the complete steps for data preparation: Database Outsourcing (stage1)

and Query outsourcing (stage 2). We emphasize that the randomization and the encryption

of data are computed attribute-wise.

Algorithm 2 Data Preparation (DB1, DB2, Q1, Q2) −→ Epk(DB), Epk(Q)

1: The data owner sends DB1 to CSP1 and DB2 to CSP2

2: CSP1 and CSP2:
(a) CSP2 encrypts DB2 and sends Epk(DB2) to CSP1

(b) CSP1 encrypts DB1

3: for i = 1 to n and j = 1 to m do:
(a) CSP1 performs:

• Epk(DBi,j) = Epk(DB1i,j) ∗ Epk(DB2i,j) mod N2

4: Bob sends Q1 to CSP1 and Q2 to CSP2

(a) CSP2 encrypts Q2 and sends Epk(Q2) to CSP1

(b) CSP1 encrypts Q1

5: CSP1:
(a) Epk(Q) = Epk(Q1) ∗ Epk(Q2) mod N2
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4.3 Stage 3 - Secure Computation of kNN

This paper slightly modifies the proposed scheme of computing SkNN in [8] and focuses

on proposing a probabilistic approach for verifying SkNN returned results. For the com-

putation phase, we will adopt Algorithm 6 proposed in [8]; however, we do not require the

data owner and the end-user to encrypt DB and Q. Specifically, we outsource the encryp-

tion task to the cloud to reduce the workload on the data owner and the end-user. Besides,

we added a few steps to Algorithm 6 in [8] to combine the computation and the verification

phases. The following are the various stages in the secure computation of kNN.

4.3.1 Secure Computation of the Euclidean Distance di

The clouds start computing the Euclidean Distance between Epk(Q) and Epk(ti) where 1

≤ i ≤ n. The protocols used to compute Epk(di) are briefly explained below. Interested

readers can refer to [8] for more details.

• Secure Multiplication (SM):

ConsiderCSP1 hasEpk(a), Epk(b) andCSP2 has sk, they jointly involve to compute

Epk(a ∗ b). CSP1 selects different random numbers, ra and rb, to randomize Epk(a)

and Epk(b). Then, it sends the randomized encrypted values to CSP2 that decrypts,

multiplies the numbers, encrypts the result and sends it to CSP1. Subsequently,

CSP1 utilizes the additive homomorphic property to remove the randomness from

the result as shown below:

a ∗ b = (a+ ra) ∗ (b+ rb)− a ∗ rb − b ∗ ra − ra ∗ rb

The output Epk(a ∗ b) is known only to CSP1.
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• Secure Squared Euclidean Distance (SSED):

Consider CSP1 has a tuple, Epk(ti) = 〈Epk(t1), Epk(t2), . . . ., Epk(tm)〉 and CSP2

has a query Epk(Q) = 〈Epk(q1), Epk(q2), . . . ., Epk(qm)〉 , then, the Squared Eu-

clidean Distance between Epk(ti) and Epk(Q) is:

m∏
j=1

Epk(ti,j − qj)2

CSP1 hasEpk(ti,j−qj), CSP2 has sk, they jointly involve to compute SM(Epk(ti,j−

qj), Epk(ti,j − qj)). At the end of this protocol, CSP1 adds the squared differences

and computes the final distance between Epk(ti) and Epk(Q).

4.3.2 Secure Sorting of the Euclidean Distance di

The following protocols are utilized to sort the Euclidean Distances:

• Secure Bit-Decomposition (SBD):

This protocol is adopted from [18]. It takes the encryption of a digit as input and

outputs the encryption of individual bits that represent this digit. Let CSP1 has

Epk(x) and CSP2 has sk. SBD should outputs a vector that contains the encryption

of individual bits that represent x, [x] = 〈Epk(x1), ...., Epk(xl)〉 where x1 and xl

represent the most and the least significant bits of x. The final result is known only

to CSP1.

• Secure Minimum (SMIN):

This algorithm takes two encrypted vectors as input and outputs the minimum value.

Consider [x] and [y] are two vectors that represent the encryption of individual bits
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of two values, x and y, respectively. CSP1 has ([x], [y]) and CSP2 holds sk. The

protocol outputs [min(x, y)], and it is only known to CSP1.

• Secure Minimum out of n Numbers (SMINn)

This algorithm takes all the distances, in the encrypted format of each individual bit,

between the query and each ti as input and outputs the smallest distance di. Consider

CSP1 has ([d1],...,[dn]) and CSP2 has sk where 1 ≤ i ≤ n, and for each vector

[di] = (Epk[di,1],...,Epk[di,l]) , in which, di,1 and di,l represent the most and the least

significant bits of di, respectively. The output [min(d1, ..., dn)] is known to only

CSP1.

It is important to mention that the above protocols are directly adopted from the literature.

In SVC-kNN, we added Stage (1) and Stage (2) to outsource the encryption of DB and Q

to the cloud. The purpose of adding these stages is to maximize the use of the clouds and

reduce the workload on the data owner and the end-user which is more efficient.

After the data preparation phase explained in Algorithm 2, CSP1 and CSP2 will start the

Secure Computation of kNN. In general, for each encrypted tupleEpk(ti), CSP1 andCSP2

will compute the SSED, that is:

1. CSP1 has Epk(Q) and Epk(ti).

2. CSP1 computes the difference between the query and each tuple attribute-wise.

3. CSP1 and CSP2 jointly execute SM(Epk(ti,j − Qj), Epk(ti,j − Qj)) to compute

Epk((ti,j −Qj)
2).

4. Upon receiving the SM results fromCSP2, CSP1 will use the additive homomorphic

property to obtain Epk(di), which is equivalent to Epk(ti −Q)2. This result is only

known to CSP1.

Then, CSP1 and CSP2 start the Secure Sorting of the Euclidean Distance di. For each
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distance di, the clouds execute SBD to compute the encryption of individual bits that repre-

sent the encryption of the distance, in which Epk[di] = 〈Epk(di,1), Epk(di,2),...., Epk(di,l)〉

where di,1 and di,l represent the most and the least significant bits of the distance. The

clouds execute this protocol n times, and pass the outputs as parameters to the SMINn pro-

tocol. We emphasize that all data is encrypted, all the computations are on the encrypted

data, and the outputs of all the protocols are only known to CSP1.

After that, CSP1 and CSP2 will compute the k-nearest records to Epk(Q) in an iterative

way. The steps are similar to Algorithm 6 in [8] with slight variations and are shown in

Algorithm 3.

Briefly, CSP1 andCSP2 executes SMIN protocol n times instead of k times in order obtain

the complete sorted distances. Then, CSP1 computes the difference between the minimum

distance dmin and every other distance di, permutes them and sends the encrypted vector

β to CSP2. Upon receiving β, CSP2 decrypts and observes only one attribute with the

value 0. Then, it computes vector U such that the attribute containing value 0 is updated as

Epk(1) and the other attributes as Epk(0), and sends U to CSP1.

CSP1 performs the inverse permutation on U to get V . It then raises each encrypted value

in vector V to the power of its respective index and then applies the summation. Using

the additive homomorphic property of pailler cryptosystem, CSP1 performs this operation

by itself to obtain the sorted encrypted indices. The distance vectors are updated for every

iteration using SBOR protocol.

CSP1 obtains the encryption of all the sorted indices, permutes them and sends them to

CSP2 for the verification step. Besides, during the verification step, CSP1 obtains the

hashes of the indices of fake tuples H(ξ) from CSP2. It is important to mention that

the SVC-kNN requires this information to obtain the final k nearest records. Specifically,

CSP1 checks if any of the hashes of fake tuples H(ξi) is equal to any of the hashes of
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sorted indices i′s. If this statement were executed, CSP1 adds 1 to ctr. At the end of the

iterations, CSP1 updates k; that is, k′ = k + ctr.

Finally, CSP1 obtains the top k′ records, discards the fake tuples, and sends k real records

to user. More Specifically, CSP1 executes SM protocol of vector V and actual tuple, and

then applies a summation. This yields only one tuple that corresponds to the minimum

distance and the process is repeated for k′ iterations where k′ is the updated value of k

based on the existence fake tuples. Finally, CSP1 removes the tuples that correspond to the

hashes of fake indices, and sends the actual k nearest records to the end-user.

4.4 Stage 4 - Secure Verification of kNN

This stage concentrates on verifying the integrity of the computed k-nearest records. Sim-

ilar to the Secure Computation of kNN, CSP1, CSP2, the data owner, and the end-user

participate in the Secure Verification of kNN. As mentioned earlier, during the Database

Outsourcing Stage, the data owner generates auxiliary information, randomly splits it, and

sends the shares to CSP1 and CSP2. Moreover, the clouds require a variety of information

to construct the proofs δ1, δ2, H(ζ1), and H(ζ2). In detail, the information used in evidence

construction is, the encrypted Euclidean Distance Epk(di), four random vectors, εa1 and

εa2 ,εb1 , and εb2 , vector µ that represents the aggregate values of the randomized fake tuples,

and vector β that represents the aggregate of the product of all possible combinations of µ

in two pairs. We emphasize that the Secure Verification of kNN involves CSP1 and CSP2

in constructing evidence such that each evidence requires different steps and distinct vari-

ables. Our solution in this paper incorporates several verification steps: Proof Generation,

Evidence Preparation, Euclidean Distances Verification, and Sort Verification, which we

will discuss in the next section. It is important to mention that the computation and the ver-
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Algorithm 3 SkNNm (di) −→ Isorted, 〈 (t′1), ...., (t′k′) 〉
1: CSP1 and CSP2:

(a). CSP1 obtains E(Q) in Algorithm 2
(b). for i = 1 to n do:

• Epk(di)← SSED(Epk(Q), Epk(ti))
• [di]← SBD(Epk(di))

2: for s = 1 to n do:
(a). CSP1 and CSP2:

• [dmin]← SMINn([d1], ..., [dn])
(b). CSP1:

• Epk(dmin)←
∏l−1

γ=0 Epk(dmin,γ+1)
2l−γ−1

• for i = 1 to n do:
– τi← Epk(dmin) * Epk(di)N−1

– τ
′
i ← τ rii , where ri ∈ R ZN

• β ← π(τ ′); send β to CSP2

(c). CSP2 :
• Receives β from CSP1

• β ′i ← Dsk(βi), for 1 ≤ i ≤ n
• Computes U, for 1 ≤ i ≤ n

– if β ′i = 0 then Ui = Epk(1)
– else Ui = Epk(0)

• Send U to CSP1

(d). CSP1:
• Receive U from CSP2 and compute V ← π−1(U)
• Ys ← V

• V ′i = V i
i

• Epk(is)←
∏n

i=1 V
′
i

(e). CSP1 and CSP2, for 1 ≤ i ≤ n:
• Epk(di,γ)← SBOR(Vi, Epk(di,γ)), for 1 ≤ γ ≤ l

3: CSP1 :
(a). Based on the sort verification step, the value of k′ is determined.

• for i = 1 to k do:
• for j = 1 to nf do:
• if H(is) = H(ξj)
• ctr + +
• k′ = k + ctr

4: for s = 1 to k′ do:
(a). CSP1 :

• V ′i,j ← SM(Ys,i, Epk(ti,j)), for 1 ≤ i ≤ n and 1 ≤ j ≤m
• Epk(t′s,j)←

∏n
i=1 V

′
i,j

• Epk(t′s) = 〈 Epk(t′s,1), ...., Epk(t′s,m) 〉
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ification steps are closely associated. However, in this paper, they are explained separately

for more clarity and convenience.
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5 Verification Scheme

In this section, we design a probabilistic verification approach that verifies the kNN results.

More specifically, this approach captures any unexpected behavior that may return wrong

k-nearest records. The proposed scheme utilizes the computational resources of the cloud

and avoids assigning heavy computations to the data owner. Figure 2 shows the Verification

Scheme. The following explains the verification stages in detail.

Figure 2: Verification Scheme

5.1 Proof Preparation

As mentioned in the Database Outsourcing Stage, the data owner inserts nf artificial tuples

into the dataset; that is, the randomly split DB includes both the real and the fake tuples.
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The data owner records the number of fake tuples in nf , and the indices of fake tuples in

a vector [If ]. The reason behind adding these tuples is to use them in (1) The Euclidean

Distance Verification and (2) Sort Verification. Moreover, the data owner constructs the

following:

• A random vector εa1 ; that is, εa1 = 〈εa11 , ..., εa1n〉. This vector contains n random num-

bers for randomizing all the real and the fake tuples. This vector is only known to CSP1.

• A random vector εa2; that is, εa2 = 〈εa21 , ..., εa2nf 〉. We highlight that εa2 is a subset of

εa1; that is, εa2 ⊂ εa1 , and stores nf random numbers for only the fake tuples. This vector

is only known to CSP2.

• A random vector εb1; that is, εb1 = 〈εb11 , ..., εb1n〉. This vector stores n random numbers

for randomizing all the Euclidean DistancesEpk(di). This vector is only known toCSP1.

• A random vector εb2; that is, εb2 = 〈εb21 , ..., εb2nf 〉. This vector stores nf random num-

bers, and is a subset of εb1; that is, εb2 ⊂ εb1 . CSP2 requires this vector to remove the

randomness from the randomized Euclidean Distances dir between Q and each fake tu-

ple. This vector is only known to CSP2.

• A verification vector, µ =
∑nf

i=1 (εa2i + ti).

• A verification vector, β =
∑n−1

i=1 (εa2i + ti) ∗
[∑n

i=i+1 (εa2i + ti)
]

It is important to mention that µ and β are known only to CSP1. Algorithm 4 shows the

construction of µ. Let n be 5 and nf be 3, meaning that there are only three artificial tuples

and two real tuples in DB. Let N be the group size; then, εa1 = 〈 εa11 , εa12 , εa13 , εa14 , εa15

〉 and εa2 = 〈 εa21 , εa22 , εa23 〉. Consider (x1, y1), (x2, y2), (x3, y3) three fake tuples that

represent t1, t2, and t3, respectively. µ1 = (x1 + εa11 , y1 + εa11), µ2 = (x2 + εa12 , y2 + εa12),

µ3 = (x3 + εa13 , y3 + εa13); then µ is the summation of µ1, µ2, and µ3:

µ = [(x1 + εa11) + (x2 + εa12) + (x3 + εa13), (y1 + εa11) + (y2 + εa12) + (y3 + εa13)]
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Algorithm 4 Construction of µ
1: Require: εa2 , ti
2: Initialize: µ
3: for i = 1 to nf do:

(a). Initialize: µi
(b). for j = 1 to m do:

• µi,j ←εa2i + ti,j
(c). µ += µi

Then, using the information of µ, the data owner construct vector β, such that β = (µ1 * µ2)

+ (µ1 * µ3) + (µ2 * µ3). We emphasize that the number of combinations of µ depends on

the number of fake tuples; and is based on the combination permutation formula, c(n, r) =

n!
(n−r)!∗r! , where n = nf and r = 2 because the number of pairs is two.

We emphasize that the data owner randomly splits all the auxiliary information between

CSP1 and CSP2. Then, CSP1 and CSP2 consolidate the randomly split auxiliary infor-

mation to obtain the encryption of each one. For the information known to CSP1, CSP2

encrypts its share and sends the encrypted values to CSP1. CSP1 also encrypts its share,

and then obtains the encryption of the original value using the additive homomorphic prop-

erty, and vice-versa for the information known to CSP2.

5.2 Euclidean Distance Verification

Each CSP is responsible for constructing and sending the evidence to the end-user. Based

on the auxiliary information, CSP1 and CSP2 construct δ1 and δ2, respectively. Upon

receiving the proofs, the end-user verifies if ∆ = δ1 - δ2 = 0, that is if, δ1 = δ2. Besides,

each cloud utilizes different parameters to construct its proof; however, both equations

must compute the exact final result. In this section, we produce a novel theorem to verify

the computation of Epk(di). We show that δ1 ≡ δ2 using Proof by Induction methodology.

22



Interested readers can refer to Appendix A.

δ1 =
m∑
i=1

[
µ ∗ (µ− 2Q)− 2β + nf

(
Q2
)]

(1)

δ2 =

nf∑
i=1

[
di + εa2i

(
m ∗ εa2i + 2

m∑
j=1

(ti,j −Qj)

)]
(2)

Algorithm 5 δ1 Computation (µ, β,Q, nf ) −→ δ1

1: Require: CSP1 has µ, β,Q, nf and CSP2 has sk
2: Initialize: r
3: CSP1 computes:

(a). Epk(2Q)← Epk(Q) ∗ Epk(Q) mod N2

(b). Epk(A)← Epk(µ) ∗ Epk(2Q)N−1

(c). Epk(B)← Epk(β) ∗ Epk(β) mod N2

4: CSP1 and CSP2 performs:
(a). Epk(C)← SM(Epk(µ), Epk(A)), send Epk(C) to CSP1

(b). Epk(D)← SM(Epk(Q), Epk(Q)), send Epk(D) to CSP1

(c). Epk(E)← SM(Epk(D), Epk(nf )), send Epk(E) to CSP1

5: CSP1 computes:
(a). Epk(F )← Epk(C) ∗ Epk(B)N−1

(b). Epk(δ1)← Epk(F ) ∗ Epk(E) mod N2

(c). Epk(δ1r)← Epk(δ1) ∗ Epk(r) mod N2

(d). Send Epk(δ1r) to CSP2, send r to end-user
6: CSP2 :

(a). δ1r ← Dsk(δ1r), send δ1r to end-user
7: End-user:

(a). δ1 = δ1r - r

5.2.1 Construction of Proof1 (δ1)

CSP1 constructs Proof1 and sends it to the end-user. Equation (1) shows δ1 construction,

and Algorithm 5 explains the steps of implementation. Although CSP2 assists CSP1,

the workload assigned to CSP2 is minimal. Besides, CSP2 cannot learn any information
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because it computes all the operations on randomized data. We emphasize that CSP1 only

knows Epk(δ1) and the final result δ1 is only known to the end-user.

Algorithm 6 Proof2 Preparation (Epk(εb1), Epk(di), Epk(ti,j−Qj))→ (Epk(dir), Epk(ti−
Q)r)

1: Initialize: vector εc
2: CSP1 :

(a). Epk(ti −Q) =
∑m

j=1(Epk(ti,j −Qj))
(b). for i = 1 to n do:

• Epk(dir)← Epk(εb1i) * Epk(di) mod N2

• Epk(ti −Q)r ← Epk(εci) * Epk(ti −Q) mod N2

(c). Send Epk(dir) and Epk(ti −Q)r to CSP2

5.2.2 Construction of Proof2 (δ2)

CSP2 constructs δ2 in two steps. Firstly, it computes the randomized proof δ2r; then, it

removes the randomness to obtain δ2.

5.2.2.1 Randomized Proof δ2r :

The reason behind adding this step is that computing δ2 requires (1) the encrypted Eu-

clidean Distance between the query Q and each fake tuple ti, and (2) the encrypted dif-

ferences between the query Q and each fake tuple ti. Besides, CSP1 cannot send (1) and

(2) because it does not know the indices of fake tuples in DB. Also, since CSP1 knows

the tuple and the query in the encrypted form, it is not secure to reveal the indices of fake

tuples to it, as it could cheat by doing the computations properly only for the fake tuples.

Furthermore, CSP2 holds sk; hence, CSP1 must not send the Euclidean Distances and

the differences for all tuples to CSP2. Therefore, CSP1 randomizes Epk(di) using εb1 and

Epk(ti −Q) using vector εc. We highlight that εb1 is generated by the data owner and εc is

generated by CSP1. The reason behind assigning εb1 to the data owner is that we will need
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to securely share the random numbers added to the distances of fake tuples with CSP2 as

it requires them to solve equation (4). Therefore, the data owner generates εb1 and εb2 , and

sends them to CSP1 and CSP2, respectively. Algorithm 6 explains Proof2 Preparation.

After CSP1 sends Epk(dir) and Epk(ti − Q)r to CSP2, the latter selects the randomized

distances and differences for only the fake tuples based on the indices in If . Then, it

computes δ2r using (3), which is similar to equation (2) but it outputs δ2r. Algorithm 7

illustrates the computation of δ2r. It is important to mention that CSP2 decrypts all the

randomized data before performing δ2r computation.

δ2r =

nf∑
i=1

[
dir + εa2i

(
m ∗ εa2i + 2

m∑
j=1

(ti,j −Qj)r

)]
(3)

Algorithm 7 δ2r Computation (dir, εa2 , (ti −Q)r) −→δ2r
1: Require: CSP2 has m, εa2 , dir, (ti −Q)r, and If
2: CSP2 performs:

(a). δ2r = 0
3: for i = 1 to nf do:

(a). CSP2 computes:
• a = (ti −Q)r + (ti −Q)r
• b←m * εa2i
• c← a + b
• d = c * εa2i
• δ2r + = dir + d

5.2.2.2 Remove randomness from δ2r :

CSP1 receives the auxiliary information from the data owner during the Database Out-

sourcing Stage. It will use this information to locally perform a set of operations that are

required to remove the randomness from all δ2r . We emphasize that CSP1 executes the

following steps only once for each database:
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• Computes Rti based on εa1 , εb1 , and εc where 1 ≤ i ≤ n, as per equation (4):

Rti = (εb1i + εa1i(2 ∗ εci)) (4)

• Generates all possible combinations of fake tuples in pair of nf , and stores them in vector

εd1 . Each attribute in εd1 represents one combination of indices. For instance, suppose n

= 3 and nf = 2; then, the vector εd1 = 〈(1,2),(1,3),(2,3)〉.

• Constructs vector εd2 by adding the Rt values for each combination in εd1 . For instance, if

a combination stored in εd1i is (1, 2), the corresponding index in εd2i contains Rt1 + Rt2 .

• Sends εd1 and εd2 to CSP2.

As mentioned previously, CSP1 performs the previous steps only once for each database,

and sends vectors εd1 and εd2 to CSP2. Similarly, CSP2 receives these two vectors only

once for each DB, and uses them every time to remove the randomness from the all δ2r .

Specifically, CSP2 selects the correct combination of fake tuples from εd1; then, it finds the

value in the corresponding index in εd2 . Finally, CSP2 obtains δ2 as shown in (5):

δ2 = δ2r − εd2i (5)

5.3 Sort Verification

Similar to the Euclidean Distance Verification stage, each CSP is responsible for con-

structing and sending evidence to the end-user. Using the computed Euclidean distances,

each CSP sorts the distances of fake tuples di, and constructs H(ζ1) and H(ζ2). Upon

receiving the proofs, the end-user verifies if Z = H(ζ1) - H(ζ2) = 0; that is, H(ζ1) = H(ζ2).

Each hash value, H(ζ1) and H(ζ2), represents the concatenation of θ and the hash values
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of the sorted indices of fake tuples. The computation of the hash values of all indices is

assigned to CSP2 that generates a random salting value η. CSP2 concatenates η to each

index and computes the hash value over the result as shown in equation (6).

H(ξi) = η|ξi (6)

We emphasize that η is generated for each query processing operation, used for computing

the hash value of each indexH(ξi) and is only known to CSP2. We also emphasize that the

final hash value H(ζ) is computed using a different salting value θ that is known to both

CSP1 and CSP2. H(ζ) represents the hash values of the sorted and concatenated indices

of all fake tuples as per equation (7). Algorithm 8 explains the steps for Sort Verification.

5.3.1 Construction of H(ζ1)

As mentioned in Algorithm 3, CSP1 obtains the sorted indices V ′ at step 2(d). CSP1 will

permute V ′ and send the permuted vector ρ to CSP2. Upon receiving ρ, CSP2 decrypts

and computes the hash value for each index using equation (6), and sends ρ′ to CSP1.

CSP1 implements the inverse permutation on ρ′ to obtain κ vector that represents the hash

values of sorted indices.

Besides, CSP1 receives another vector of hashes denoted by σ from CSP2. Specifically, σ

represents the hash values of unsorted indices of fake tuples. Next, CSP1 sorts σ using the

information stored in κ. Finally, CSP1 computes H(ζ1) and sends it to the end-user:

H(ζ1) = H[θ|(H(σ1)|H(σ2)|H(σ3)|.....|H(σnf ))] (7)
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5.3.2 Construction of H(ζ2)

Based on the Euclidean Distance Verification step, CSP1 sends Epk(dir) to CSP2. Using

the information If and εb2 shared by the data owner, CSP2 decrypts Epk(dir) and Epk(εb2)

for only fake tuples. Then, it obtains the real distances of fake tuples di; that is, di =

dir - εb2 . Then, using the distance information di, CSP2 sorts the indices of fake tuples,

and computes the hash value for each index in If as per equation (6). Finally, CSP2

concatenates the sorted hashes, adds the salting value θ, computes H(ζ2), and sends it to

the end-user.

We highlight that εb2 contains the random numbers added to only fake distances and it is

impossible for CSP2 to obtain the distances of real tuples since it does not have the random

values.

The end-user concludes that the Euclidean distances were computed and sorted properly

with a high probability only if H(ζ1) = H(ζ2). After that, CSP1 obtains the top k records

as explained in Algorithm 3, randomizes them, and sends them to CSP2 who is responsible

for decryption. Upon receiving the random numbers from CSP1 and the randomized top

k records in the plain format from CSP2, the end-user will remove the randomness and

obtain the k-nearest tuples.
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Algorithm 8 Sort Verification (V ′)→ H(ζ1), H(ζ2)

1: Require: CSP2 knows η, dir, CSP1 and CSP2 know θ, CSP1 knows V ′

2: for i = 1 to n do:
(a). CSP1:

• ρ← π(V ′); and sends ρ to CSP2

(b). CSP2 :
• Decypt ρ to obtain the permuted indices
• H(ξ)i = η | ξi
• ρ′i← H(ξ)i, and sends ρ′ to CSP1

(c). CSP1 :
• κ← π−1(ρ′)

3: for i = 1 to nf do:
(a). CSP2 :

• H(ξ)i = η | ξi
• σi← H(ξ)i, and sends σ to CSP1

(b). CSP1 :
• HeapSort(σ) based on κ
• σ′← concatenated sorted σ
• H(ζ1) = θ | σ′

• Send H(ζ1) to end-user
(c). CSP2:

• dir ← Dsk(dri)
• εb2 ← Dsk(εb2)
• di = dir - εb2
• disorted ← HeapSort(di)
• for each index in Isorted, compute:

– H(ξi) = η|ξi
• H(ζ2) = H[θ|(H(ξ1)|H(ξ2)|H(ξ3)|.....|H(ξnf ))]
• Send H(ζ2) to the end-user
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6 Experimental Results

In this section, we present the experiments to analyze the accuracy, computation and secu-

rity of our proposed protocol.

6.1 Accuracy Analysis

We ran the experiment to validate the accuracy of Euclidean distance verification. In this

way, a lazy or malicious cloud server that provides incorrect results could be caught with

a high probability. We implemented Euclidean Distance Verification in Java and the exper-

iments are conducted on Intel(R) Core(TM) i5-1035G7 CPU @ 1.20GHz processor with

8.00 GB memory running 64-bit operating system. The experiment was conducted on Let-

ter Recognition data set, a real data set from UCI Repository, containing 20000 instances

with 16 dimensions [19].

To evaluate the accuracy of our verification protocol, a set of fake tuples (2%, 4%, 6%, 8%,

10%) consisting of random attributes are inserted and evenly distributed into our real data

set. Furthermore, we randomly insert errors into the computed Euclidean Distances di, to

catch the incorrect computation of di with a high probability. It is important to mention

that the errors are distributed evenly such that either the real tuples, the fake tuples or both,

could be affected. We have run the experiment for hundred times to calculate the average

precision, recall and f-measure.

Figures 3 and 4 show the average precision and f-measure values respectively. It is evident

that the precision as well as f-measure increase consistently as the number of fake tuples

or errors increase. However, the recall value remains to be 1.0 through out the experiment.

This is due to the fact that there are no "False Negative" cases, meaning that, at least 1

real tuple is affected with an error in Euclidean Distance di. It is apparent that when the

30



Figure 3: Precision

number of errors in results increase, lesser number of fake tuples are required to achieve

nearly the same level of precision and f-measure. Specifically, 0.125% of errors and 10%

of fake tuples (nf ) are sufficient to achieve the precision and f-measure of over 90%.

6.2 Computation Time

In our protocol, we maximize the utilization of computational resources provided by cloud

servers thus reducing the computation time of data owner and Bob. Specifically, the com-

putation complexity of data owner is bounded by O(n ∗m + nf ) additions. In reality, the

value of nf is significantly smaller than n ∗ m; therefore, the computation complexity of

data owner is bounded by O(n∗m) additions. Similarly, the complexity of Bob is bounded

byO(k∗m) additions. On the other hand, the computation complexity of CSP1 and CSP2

are bounded by O(n2 log n) multiplications and (n ∗ SMINn) executions.
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Figure 4: F-Measure

In practice, the computation costs depends on the encryption key size; however, our scheme

completely outsources the encryptions and decryptions to the cloud servers. Further, the

running time of data owner and Bob are relatively low as they are only required to perform

addition operations which is remarkably faster than encryptions and decryptions. There-

fore, the end-users with limited computational capability can efficiently perform a highly

secure kNN search over the encrypted database.

6.3 Security Analysis

In this section, we present the security analysis of our proposed scheme with respect to each

party: Data Owner, Bob and the Clouds. In our model, the data owner neither sends the

database and auxiliary information in clear form nor encrypts them. Instead, he randomly

splits the database and auxiliary information into share1 and share2 and sends it to CSP1
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and CSP2, respectively. This technique greatly improves the performance and decreases

the cost of data owner. At the same time, the random splitting approach is highly secure

as the random number r is uniformly selected from a large group N . It is important to

mention that only CSP1 obtains the share2 from CSP2 to get the complete database and

auxiliary information in the encrypted form but the outsourced data remains protected as

CSP1 does not have the secret key sk. In other words, only CSP2 has sk but it never

gets share1 of database, query and auxiliary information pertaining to CSP1. Similarly,

Bob randomly splits the query attribute-wise and sends Q1 and Q2 to CSP1 and CSP2,

respectively. Although CSP1 obtains the Epk(Q2) from CSP2 and adds it to Epk(Q1), it

still gets the Query in the encrypted form Epk(Q). Thus, the query issued by Bob remains

confidential from data owner and clouds due to semantic security of Paillier cryptosystem.

In stage 3 of our framework, we adopt Algorithm 6 in [8] with slight variations for secure

computation of kNN as shown in Algorithm 3. It uses various protocols such as SM, SSED,

SBD and SBOR. These protocols are directly adopted from literature and they are proven

to be secure.

The verification approach is probabilistic in nature and hence it depends on the fake tuples.

Therefore during the verification phase one of the two clouds needs to know the Indices

of fake tuples If . If CSP1 knows If , it could cheat by providing accurate results only for

fake tuples and return random results for real tuples, thereby avoiding heavy computations

and still making the verification successful. Therefore, we reveal If only to CSP2 which

always receives the tuples, query and auxiliary information in randomized form. Further,

data owner sends random vectors εa1 and εb1 containing n random numbers for real as well

as fake tuples to CSP1, to hide the number of fake tuples nf .

In stage 4, at step 4 of Algorithm 5, CSP1 sends auxiliary information and query to CSP2

for multiplication operations to compute δ1. However, CSP1 implements SM protocol that
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allows CSP2 to observe and perform operations only on randomized data upon decryption.

Thus, all the intermediate results between CSP1 and CSP2 are encrypted or randomized,

therefore the data leakage is negligible. To compute δ2r, CSP2 requires di and (ti,j−Qj) of

fake tuples; however, CSP1 sends this information for all the tuples as it does not know If .

Also, it is not secure to directly send this encrypted values to CSP2 as it has sk. Therefore,

at Step 2 of Algorithm 6, CSP1 randomizes the data to avoid leaking the data access pattern

to CSP2. Nevertheless, CSP2 can still obtain the actual distance values of fake tuples as it

has the random vectors εa2 and εb2; however, the real tuples remain protected.

During the sort verification, at step 2 of Algorithm 8, CSP1 reveals the sorted indices

of tuples to CSP2; however, permutation by CSP1, prevents CSP2 from tracing back to

corresponding tuples. Further, our protocol uses two different salting values η and θ to

hash the indices of tuples and concatenated sorted indices of fake tuples, respectively. We

emphasize that η is known only to CSP2 and hence it is impossible for CSP1 to construct

the same hash value for an index and eventually it cannot evade detection as the hash

functions are deterministic.

In summary, the k-nearest records 〈t′1, ..., t′k〉 to Q are known only to Bob and the clouds

cannot identify its correspondence to the database. Thus, our proposed scheme achieves

confidentiality of data, protects the privacy of query issued by end-user and obscures the

data access patterns

6.4 Comparison with Existing Work

In this section, we compare our protocol with the Verifiable Secure kNN (VSkNN), the one

and only existing work on integrity verification of kNN computation in cloud environments

[14]. In the VSkNN scheme, the data owner and Bob are required to encrypt the database
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and query, respectively. On the contrary, our scheme completely eliminates the encryption

cost of the data owner and Bob, and rather uses random splitting approach which consists

of only addition and subtraction operations making the outsourcing much efficient. Further,

VSkNN scheme incurs additional computation on Bob to decrypt the final results but the

proposed SVC-kNN protocol utilizes CSP2 for decryption, and minimal computation is

incurred on Bob. Most importantly, in the existing scheme, the verification is solely relied

on a single verification server which itself is a third-party; therefore it can either cheat or

get compromised. consequently, our scheme utilizes both the cloud servers to generate

verification proofs and allows Bob to verify the results, in this way, misbehaving cloud

servers are caught with high probability.

The VSkNN scheme uses Asymmetric Scalar Product-Preserving encryption (ASPE) which

can resist only level-2 attacks that correspond to known-sample attacks in database litera-

ture [10]; whereas, Paillier Cryptosystem, the underlying encryption scheme in our model,

is secure against Chosen-Plaintext Attacks. Furthermore, our protocol does not reveal any

intermediate results to CSP1 and CSP2. This in turn incurs heavy computations on the

cloud servers; however, this is the price we have to pay to achieve a high level of security.

We believe that our protocol is practical to implement by making use of resource pooling,

rapid elasticity and distributed computing features of cloud environment, which are meant

to be utilized. Further, the performance of our protocol can be greatly improved by per-

forming parallel processing on multiple nodes. Table 4 shows that the proposed SVC-kNN

protocol is superior than the existing scheme in terms of security.
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Table 4: Scheme Comparison

Scheme VSkNN SVC-kNN

Efficient data outsourcing × X

CPA-secure encryption scheme × X

Probabilistic verification approach X X

Multiple verification servers × X

Proof validation by end-user × X

Confidentiality of intermediate results × X

Minimal end-user computation × X
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7 Conclusions

Data owners tend to outsource the computation and the verification of data to the cloud,

which raises security and privacy concerns about the confidentiality and the integrity of

data. In this paper, we proposed a novel framework SVC-kNN that combines the computa-

tion and the verification of the k-nearest neighbor problem. It consists of four parties: Data

Owner, End-User, CSP1, and CSP2. The SVC-kNN utilizes the homomorphic properties

of the Paillier cryptosystem. Besides, it is secure under the semi-honest model. Addition-

ally, this scheme maximizes the usage of the cloud’s computational power due to assigning

the encryption of data to CSP1 and CSP2. This will reduce the computation overhead on

query issuers and data owners. The latter randomly split the database and send each share

to the corresponding CSP ; then, the clouds consolidates the data and obtain Epk(DB).

Moreover, we adopted the computation of k-nearest records from the literature; however,

we slightly changed the existing solution and combined it with our verification scheme.

Furthermore, our solution for the Secure Verification and Computation of kNN (SVC-kNN)

consists of three stages: Evidence Preparation, Euclidean Distance Verification, and Sort

Verification. We emphasize that our verification scheme is probabilistic, and the SVC-kNN

involves two clouds in verifying the top k records under the assumption that these clouds do

not collude with each other. This framework verifies the Euclidean Distance at first. Only

if the Euclidean Distance verification were successful, the cloud proceeds toward the sort

verification. For the Euclidean Distance verification, CSP1 and CSP2 construct evidence

using different parameters, send δ1 and δ2 to the end-user, respectively. A similar concept

applies to Sort Verification. Each CSP sends H(ζ1) and H(ζ2), and the end-user verifies

the equality of both values. Based on the empirical results, it is evident that the proposed

protocol is highly effective and efficient. Also, a client with minimal computational and
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storage capabilities can securely perform kNN search over encrypted database and effec-

tively verify the results returned by an untrusted third-party. We leave further performance

improvements, and the extension of our proposed SVC-kNN to other security models to

future work.
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Appendices

A Theorem 1

We provided δ1 and δ2 equations in Section 4, and mentioned that they are mathematically

equivalent. We will prove by induction methodology that, δ1 ≡ δ2 for all n ∈ Z, where Z

represents all possible integers.

m∑
i=1

[
µ (µ− 2Q)− 2β + nf (Q

2)
]

=

nf∑
i=1

[
di + εa2i

(
m ∗ εa2i + 2

m∑
j=1

(ti,j −Qj)

)]

The random values of fake tuples are exactly the same in εa1 and εa2 . For simplicity reasons,

we use r to denote these random values. Also, we assume that m = 1, meaning that each

tuple has one attribute.

µ =
∑nf

i=1 (εa2i + ti)

β =
∑n−1

i=1 (εa2i + ti) ∗
[∑n

i=i+1 (εa2i + ti)
]

(1) Base Case: Prove that the equation holds when n = 1,

Since n = 1, µ = r+ ti = t+ r, β = 0 because the number of combinations of µ is 0; then:

L.H.S (δ1) = µ(µ− 2Q)− 2β + nf (Q)2

= (t+ r)[(t+ r)− 2Q]− 2(0) + (1)Q2

= (t+ r)2 − 2Q(t+ r) +Q2

= t2 + r2 + 2tr − 2Qt− 2Qr +Q2

= t2 + r2 +Q2 + 2tr − 2Qt− 2Qr

= (Q− t− r)2

R.H.S (δ2) =
∑nf

i=1[
∑m

j=1(ti,j −Q)2 + ri(mri + 2(ti,j −Q))]
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= (t−Q)2 + r[r + 2(t−Q)]

= t2 − 2tQ+Q2 + r[r + 2t− 2Q]

= t2 − 2tQ+Q2 + r2 + 2tr − 2Qr

= t2 +Q2 + r2 + 2tr − 2tQ− 2Qr

= (Q− t− r)2

Therefore, both sides are equal when n = 1.

Induction Step: Assuming n = k is true, that is:

∑k
i=1(ti + ri)[

∑k
i=1(ti + ri) − 2Q] − 2

[∑k−1
i=1 (ti + ri) ∗

[∑k
i=i+1(ti + ri)

]]
+ kQ2 =∑k

i=1[(ti −Q)2 + ri[ri + 2(ti −Q)]]

Based on the assumption that n = k is true, we will prove that n = k + 1 is also true, that

is:∑k+1
i=1 (ti+ri)[

∑k+1
i=1 (ti+ri)−2Q]−2

[∑k−1+1
i=1 (ti + ri) ∗

[∑k+1
i=i+1(ti + ri)

]]
+(k+1)Q2 =∑k+1

i=1 [(ti −Q)2 + ri[ri + 2(ti −Q)]]

Proof:

L.H.S =
∑k+1

i=1 (ti + ri)[
∑k+1

i=1 (ti + ri)− 2Q]− 2
[∑k−1+1

i=1 (ti + ri) ∗
[∑k+1

i=i+1(ti + ri)
]]

+

(k + 1)Q2

=
∑k

i=1 µi[
∑k

i=1 µi−2Q]−2
[∑k−1

i=1 µi ∗
[∑k

i=i+1 µi

]]
+kQ2+[µk+1[2(

∑k
i=1 µi)+µk+1−

2Q]− 2[µk+1 ∗
∑k

i=1 µi] +Q2

=
∑k

i=1(ti + ri)
[∑k

i=1(ti + ri)− 2Q
]
− 2

[∑k−1
i=1 (ti + ri) ∗

[∑k
i=i+1(ti + ri)

]]
+ kQ2 +

µk+1

[
2(
∑k

i=1 µi) + µk+1 − 2Q
]
− 2

[
µk+1 ∗

[∑k
i=1 µi

]]
+Q2

Substituting the L.H.S of the induction step with the R.H.S:

=
∑k

i=1[(ti−Q)2 + ri[ri + 2(ti−Q)]] + 2[µk+1 ∗
∑k

i=1 µi] + (µk+1)
2− 2qµk+1− 2[µk+1 ∗
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∑k
i=1 µi] +Q2]

=[[(t1 −Q)2 + r1(r1 + 2(t1 −Q))] + ....+ [(tk −Q)2 + rk(rk + 2(tk −Q))]] + (µk+1)
2 −

2qµk+1 +Q2

=[[(t1 −Q)2 + r1(r1 + 2(t1 −Q))] + ....+ [(tk −Q)2 + rk(rk + 2(tk −Q))]] + (tk+1)
2 +

(rk+1)
2 + 2 ∗ tk+1 ∗ rk+1 − 2Qtk+1 − 2Qrk+1 +Q2

=[[(t1 − Q)2 + r1(r1 + 2(t1 − Q))] + .... + [(tk − Q)2 + rk(rk + 2(tk − Q))]] + (tk+1 −

Q)2 + (rk+1)
2 + 2tk+1rk+1 − 2Qrk+1

=[[(t1 − Q)2 + r1(r1 + 2(t1 − Q))] + .... + [(tk − Q)2 + rk(rk + 2(tk − Q))]] + (tk+1 −

Q)2 + rk+1[rk+1 + 2tk+1 − 2Q]

=[[(t1 − Q)2 + r1(r1 + 2(t1 − Q))] + .... + [(tk − Q)2 + rk(rk + 2(tk − Q))]] + (tk+1 −

Q)2 + rk+1[rk+1 + 2(tk+1 −Q)]

=
∑k+1

i=1 [(ti −Q)2 + ri[ri + 2(ti −Q)]] = R.H.S

B Example - Euclidean Distance Verification

The following example illustrates the Euclidean Distance Verification.

Table 5: Sample Database

t1 1 13 23

t2 12 19 44

t3 5 9 17

t4 70 66 0

t5 2 43 55
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Consider a DB consisting of 5 tuples with 3 attributes as shown in table IV. Assuming that

the first three tuples are fake, that is, nf = 3 and If = 〈1, 2, 3〉, where 2 ≤ nf ≤ n-1

• n = Epk(5).

• nf = Epk(3)

• If = [Epk(1), Epk(2), Epk(3)].

• Q = [Epk(12), Epk(22), Epk(6)].

• εa1 = [Epk(10), Epk(15), Epk(3), Epk(6), Epk(3)]. This Vector is required for random-

izing all tuples - sent to CSP1.

• εa2 = [Epk(10), Epk(15), Epk(3)]. This vector is a subset of εa1 and it contains the

random numbers only for fake tuples - sent to CSP2.

• εb1 = [Epk(2), Epk(6), Epk(3), Epk(2), Epk(7)]. This Vector is required for randomiz-

ing the distances for all tuples - sent to CSP1.

• εb2 = [Epk(2), Epk(6), Epk(3)]. This vector is a subset of εb1 and it contains the

random numbers only for the distances of fake tuples - sent to CSP2.

• µ = [Epk(46), Epk(69) ,Epk(112)]. It is the aggregated value of µ1 to µnf where

– µ1 = [Epk(11), Epk(23), Epk(33)],

– µ2 = [Epk(27), Epk(34), Epk(59)],

– µ3 = [Epk(8), Epk(12), Epk(20)]

• β = [601,1466,3787], computed from:
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– µ1 * µ2 = [Epk(297), Epk(782), Epk(1947)],

– µ1 * µ3 = [Epk(88), Epk(276), Epk(660)],

– µ3 * µ2 = [Epk(216), Epk(408), Epk(1180)]

such that β = (µ1 * µ2) + (µ1 * µ3) + (µ2 * µ3)

Computing δ1.

δ1 = [Epk(46),Epk(69) ,Epk(112)] * ([Epk(46),Epk(69) ,Epk(112)] - [Epk(24),Epk(44),

Epk(12)]) - [Epk(1202), Epk(2932), Epk(7574)] + [Epk(432), Epk(1452), Epk(108)]

= Epk(4221)

Computing δ2r.

– CSP1 selects a random vector εc to randomize the difference between the tuple

and query ti −Q

εc = [Epk(5), Epk(5), Epk(1), Epk(6), Epk(3)]

– CSP1 computes Epk(dir) and Epk((ti − Q)r) as shown in table V and sends

them to CSP2.

Table 6: Random Values for δ2 Computation

Epk(di)
∑m

j=1(tj − qj) dir (ti −Q)r

Epk(491) Epk(−3) Epk(493) Epk(2)

Epk(1453) Epk(35) Epk(1459) Epk(40)

Epk(339) Epk(−9) Epk(342) Epk(−8)

Epk(5336) Epk(96) Epk(5338) Epk(102)

Epk(2942) Epk(60) Epk(2949) Epk(6)
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– CSP2 computes δ2r by using dir and (ti − Q)r provided by CSP1, and m, If

and εa2i that is provided by the data owner as shown below:

for i = 1:

493 + 10 * [3 * 10 + 2(2)]← 833

for i=2:

1459 + 15 * [3 * 15 + 2(40)]← 3334

for i = 3:

342 + 3 * [3 * 3 + 2(-8)]← 321

δ2r = 833 + 3334 + 321

δ2r = 4488

Remove the Randomness from δ2r

– CSP1 computes εd1, which has all possible combinations of fake tuples, that is,

for n=5 and nf=3, the possible combinations are,

εd1 = 〈(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5),

(1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)〉

– CSP1 computes Rti for each record in the database based on equation (4), that

is, Rt1 = 102, Rt2 = 156 Rt3 = 9 Rt4 = 74 Rt5 = 25

– CSP1 computes εd2 by adding the Rt values for each combination in εd1 . For

example, (1, 2, 3) = 102 + 156 + 9 = 267. Similarly, εd2i for each combination

is computed.
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εd2 = 〈267, 332, 283, 185, 136, 201, 239, 190, 255,

108〉

– CSP1 sends Epk(εd1) and Epk(εd2 to CSP2.

– CSP2 decrypts and selects the correct combination (1,2,3) in εd1 and the cor-

responding value (267) in εd2 based on If . Then, it subtract this value from

δ2r

δ2 = δ2r − εd2i

δ2 = 4488 - 267 = 4221

Therefore, δ1 = δ2
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