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Abstract 
The Quadratic rank transmutation map was proposed and studied for introducing skewness and flexibility into 

probability models with a single parameter known as the transmuted parameter. This methodology has received 

greater attention and application using several classical distributions. However, the Exponential Inverse 

Exponential distribution has not been transmuted since its introduction. This article used the Quadratic rank 

transmutation map to add flexibility to the Exponential Inverse Exponential distribution which resulted to a new 

continuous distribution called “Transmuted Exponential Inverse Exponential distribution”. This paper has 

presented the definition, validation, properties, applications and estimation of unknown parameters of the 

transmuted Exponential Inverse Exponential distribution using the method of maximum likelihood estimation. 

The new distribution has been applied to three real life datasets and results provided evidence that it is better than 

the other existing distributions based on the datasets used. Thus, this new model can be applied fully in modeling 

real life problems most especially in survival analysis 

Keywords: Quadratic Rank Transmutation Map, Transmuted Exponential Inverse Exponential Distribution, 

Definition, Validity, Properties, Maximum Likelihood Estimation, Applications. Survival Analysis. 

 

1. Introduction  

An Exponential distribution which can be used in Poisson 

processes gives a description of the time between events. 

Some of its applications have been carried out in life 

testing experiments. The distribution exhibits 

memoryless property with a constant failure rate which 

makes the distribution unsuitable for some real-life 

problems and hence creating a vital problem in statistical 

modeling and applications [1].  

Despite the applications of Exponential distribution and 

its attractive properties, its usage has been very limited in 

modeling real life situations due to the fact that it has a 

constant failure rate [1]. Another limitation of the 

exponential distribution is found in its memoryless 

property, this is because the memoryless assumption is 

hardly obtained in real life situations. To make up for 

these limitations, Keller et al. [2] proposed a modified 

version of the Exponential distribution called the Inverse 

Exponential distribution and it has also been studied in 

some details [3]. The modified version of the Exponential 

distribution known as Inverse Exponential distribution 

was found adequate for modeling datasets with inverted 

bathtub failure rates [2]. But it also has a limitation which 

is its inability to efficiently analyze datasets that are 

highly skewed [4]. This, therefore, creates room for 

introducing skewness and flexibility into the Inverse 

Exponential distribution to enable it adequately model 

heavily skewed datasets. 

There are many families of continuous probability 

distributions useful for adding one or more parameters to 

a distribution function which makes the resulting 

distribution more flexible for modeling heavily skewed 

dataset. Some of these methods or families of distribution 

among others include the beta generated family (Beta-G) 

[5], Transmuted family of distributions [6], Gamma-G 

(type 1) family [7], the Kumaraswamy-G family [8], 

McDonald-G family [9], Gamma-G (type 2) family [10], 

Gamma-G (type 3) family [11], Log-gamma-G family 

[12], Exponentiated T-X family [13], Exponentiated-G 

(EG) family [14], Weibull-X family [15], Weibull-G 

family [16], Logistic-G family [17], Gamma-X family 

[18], a Lomax-G family [19], a new generalized Weibull-

G family [20], Beta Marshall-Olkin family of 

distributions [21], Logistic-X family [22], a new 

Weibull-G family [23], a Lindley-G family [24], a 

Gompertz-G family [25]and Odd Lindley-G family [26]. 

In order to address the problem of memoryless property 

and constant failure rate of the exponential distribution 
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and to add skewness and flexibility to its modification 

(Inverse Exponential distribution), many authors have 

proposed different extensions of the distribution and 

some of these recent studies include the Exponential 

Inverse Exponential distribution [27], the Kumaraswamy 

Inverse Exponential distribution [28], the exponentiated 

generalized Inverse Exponential distribution [29], a new 

Lindley-Exponential distribution [30], the Lomax-

exponential distribution [31], the transmuted odd 

generalized exponential-exponential distribution [32], 

the transmuted exponential distribution [33], transmuted 

inverse exponential distribution[34], the odd generalized 

exponential-exponential distribution [35], the transmuted 

Weibull-exponential distribution [36] and the Weibull-

Exponential distribution [37]. This paper focuses on the 

Exponential Inverse Exponential distribution which has 

been found to be an improvement over other extensions 

of the Inverse Exponential distribution [27].  

The probability density function (pdf) of the Exponential 

Inverse Exponential distribution (EIED) according to 

Oguntunde et al. [27] is defined by 
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The corresponding cumulative distribution function (cdf) 

of Exponential Inverse Exponential distribution (EIED) 

is given by 
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where, 𝑥 > 0, 𝜃 > 0, 𝛼 > 0; 𝛼 is the shape parameter and 

𝜃 is a scale parameter. 

More about the important mathematical and statistical 

properties, maximum likelihood estimation of 

parameters and applications of the Exponential Inverse 

Exponential distribution showing its efficiency over 

Inverse Exponential distribution using real life datasets 

can be found in the literature [27]. 

The aim of this paper is to introduce a new continuous 

distribution called the Transmuted Exponential Inverse 

Exponential distribution (TEIED) using the proposed 

quadratic rank transmutation map [6]. The whole paper 

is presented in sections as follows: definition of the new 

distribution with the proof of its validity and its graphs 

provided in section 2. Section 3 derived some properties 

of the new distribution with an estimation of parameters 

using maximum likelihood estimation (MLE). A 

comparison of the new model to other existing 

distributions using three real life datasets was done in 

section 4 and some useful conclusions are made in 

section 5 

2. The Transmuted Exponential Inverse Exponential 

distribution (TEIED) 

2.1    Definition 

The pdf and cdf of the transmuted Exponential Inverse 

Exponential distribution (TEIED) are defined using the 

steps already proposed [6]. According to Shaw and 

Buckley [6], a random variable X is said to have a 

transmuted distribution function if its pdf and cdf are 

respectively given by; 

𝑓(𝑥) = 𝑔(𝑥)[1 + 𝜆 − 2𝜆𝐺(𝑥)]                                (3)  

and  

2( ) (1 ) ( ) [ ( )]F x G x G x                                   (4)
 

where; x > 0, and −1 ≤ 𝜆 ≤ 1is the transmuted 

parameter, G(x) is the cdf of the continuous distribution 

to be modified or transmuted while f(x) and g(x) are the 

associated pdf of F(x) and G(x) respectively.  

Substituting equations (1) and (2) in (3) and (4) and 

simplifying, the cdf and pdf of the TEIED are obtained as 

given in equations (5) and (6) respectively: 
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 where𝑥 > 0, 𝛼 > 0, 𝜃 > 0, −1 ≤ 𝜆 ≤ 1
,
𝛼 is the shape 

parameter and 𝜃 is the scale parameter while 𝜆is called 

the transmuted parameter. 

2.2   Validity of the model f(x) 

Recall that for any valid continuous probability 

distribution, the following integral in (7) must hold. 

 

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
                                                           (7) 

 
Proof 

Considering the pdf of the transmuted Exponential 

Inverse Exponential distribution in (6) and substituting 
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this pdf in equation (7) above and simplifying, (7) 

becomes: 
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Substituting for 𝑑𝑥1 and 𝑑𝑥2 in (8) and simplifying the 

resulting expression gives: 

∫ 𝑓(𝑥)𝑑𝑥 =
∞

0
(1 − 𝜆) ∫ −𝑑𝑦1 + 𝜆 ∫ −𝑑𝑦2

∞

0

∞

0
= −(1 −

𝜆) ∫ 𝑑𝑦1 − 𝜆 ∫ 𝑑𝑦2
∞

0

∞

0
 (9)  

Integrating and applying the limit in equation (9) above 

results in the following: 

∫ 𝑓(𝑥)𝑑𝑥 =
∞

0
− (1 − 𝜆)[𝑦1]0

∞ − 𝜆[𝑦2]0
∞ (10) 

                              
but recall that 

11

x

x

e

ey e










 
 


 
  


 and 

2

12

x

x

e

ey e










 
 


 
  


 

Hence, substituting for y1 and y2 in equation (10) and 

simplifying will result in the following: 
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which proves that equation (6) is a probability density 

function.  

2.3   Graphical Description of the Pdf and Cdf of TEIED 

The pdf and cdf of the TEIED using some parameter 

values are displayed in Figures 2.1 and 2.2 as follows: 
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Figure 2.1: PDF of the TEIED for Different Values of the Parameters. 

Figure 2.1 indicates that the TEIED distribution is 

positively skewed and takes various shapes 

depending on the parameter values. The values of the 

parameters were chosen and varied against each other 

to detect the effects in the plots with respect to the 

variations.  
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Figure 2.2: CDF of the TEIED for Different Values of the Parameters. 

Also, from the above plots of the cdf in Figure 2.2, it is 

clear that the cdf equals to one (1) when 𝑥 approaches 

infinity and equals zero when 𝑥 tends to zero as normally 

expected.

 3. Mathematical and Statistical Properties of TEIED 

In this section, some properties of the TEIED distribution 

are defined and studied as follows:  

3.1   Asymptotic behavior 

 Here, we investigate the asymptotic properties of the 

TEIED, that is, the limit of the PDF and CDF of the 

TEIED as 𝑥approaches infinity (𝑥 → ∞) and as 𝑥 tends 

to zero (𝑥 → 0). This is demonstrated as follows 

Lemma 1: The limit of the PDF of the TEIED as 

𝑥approaches infinity (𝑥 → ∞) is equal to zero (0) and the 

limit of the PDF of the TEIED as 𝑥 tends to zero (𝑥 → 0) 

is equal to zero.  
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(i) The limit of the f(x) of the TEIED as 𝑥 
approaches infinity (𝑥 → ∞) 
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   
   

1 1
lim

0 0
2 22 2

1 1
( ) 1 2 0 1 2 0

0 0
x f x

x x
e e

  
   

   
    

   


 
        

 
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 
   lim

22

1
( ) 0 1 2 0 0

0
x f x

x


       

                                               

(12)

 
(ii) The limit of f(x) of the TEIED as 𝑥tends to zero 

(0), 𝑥 → 0 

lim lim

1 10 0 22
( ) 1 2

1

x xx

x x

x

e e

e ex x

e
f x

x e
e e

 

 



 
 

 

 

   
   

    
         



  
 

    
       

                      

(13)

 
Recall that 𝑒−

𝜃

𝑥 is the CDF of the Inverse Exponential 

distribution and its limit as 𝑥 tends to zero (𝑥 → 0) is 

equal to zero, therefore simplifying the equation above 

gives: 

 

 

0 0
lim

1 0 1 0
0 22

0
( ) 1 2

1 0
x f x

x
e e

 
 

   
    

    


 
   

  

 
   

 

 
   

0 0
lim

1 0 1 0
0 22 2

0 0
( ) 1 2 1 1 2 1

11 0
x f x

x x
e e

  
   

   
    

    


 
        

  

 

      lim

0 2
( ) 0 1 1 2 1 0x f x

x


       

(14) 

Lemma 2: The limit of F(x) of the TEIED as 

𝑥approaches infinity (𝑥 → ∞) is equal to one (1) and the 

limit of F(x) of the TEIED as 𝑥tends to zero (0) (𝑥 → 0) 

is equal to zero (0).  

Proof 

The limit of F(x) of the TEIED as𝑥approaches infinity 

(𝑥 → ∞) 

 
2lim lim

1 1( ) 1 1
x x

x x

e e

e ex xF x e e

 

 
 

 

 

 

   
   

    
         

 
 

    
  

                   

(15) 

Recall that 𝑒−
𝜃

𝑥 is the CDF of the Inverse Exponential 

distribution and its limit as 𝑥approaches infinity, 𝑥 → ∞ 

is equal to one (1), therefore simplifying the equation 

above gives: 

 
1 1

2lim
1 1 1 1( ) 1 1x F x e e

 
 

   
    

    
           

      
1 1

2lim
0 0( ) 1 1 1 1 0 0x F x e e

 
   

   
    

   
        

 

                      𝑥→∞
𝑙𝑖𝑚(1−𝜆)(0)(0)

                                                  

(16) 

(i) The limit of F(x) of the TEIED as 𝑥tends to zero 

(𝑥 → 0) 

    
 

2lim lim

1 10 0( ) 1 1
x x

x x

e e

e ex xF x e e

 

 
 

 

 

 

   
   

    
         

 
 

    
  

                       

(17) 

Recall that 𝑒−
𝜃

𝑥 is the CDF of the Inverse Exponential 

distribution and its limit of the CDF, F(x) of the TEIED 

as 𝑥tends to zero (0), 𝑥 → 0 is equal to zero (0), therefore 

simplifying the equation above gives:    

 
0 0

2lim
1 0 1 0

0 ( ) 1 1x F x e e
 

 
   

    
    

    
 

       
0 0

2lim
1 1

0 ( ) 1 1 1 1 1 1x F x e e
 

   
   

    
   

        
 

          
𝑥→0
𝑙𝑖𝑚(1−𝜆)(1)(1)

                                    (18) 

This demonstration above affirms that the distribution 

i.e., the TEIED has at least one mode or it is a unimodal 

distribution and that it is a valid probability distribution. 

3.2     Moments 

Let X denote a continuous random variable, the nth 

ordinary moment or moment about the origin of a random 

variable X is 
 

'

0

( )
nn

n
E f x dxxX



  
given by: 

                           (19) 

Where  f(x) the pdf of the TEIED is as given in equation 

(6) as: 

  2

1 12 2
2 2

1 2
( )

1 1

x xx x

x x

x x

e e

e e

e e
f x

x e x e
e e

  

 

 

   
 

 

    
   

 
   
       

 


 

    
      

(20)  

Before substitution in (19), we perform the expansion 

and simplification of the pdf as follows: 

First, by expanding the exponential term in (20) using 

power series, we obtain: 

 
1

0

1
exp

!1 1

x x x

x

x x

kk ke

e

k

e e

ke e
e

  



 

 






    


 
    



     
               



(21) 

 2

1

0

2
exp 2

!1 1

x x x

x

x x

kk ke

e

k

e e

ke e
e

  



 

 






    


 
    



     
               



(22) 

Making use of the result in (21) and (22) above, equation 

(23) becomes: 
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𝑓(𝑥) = (1 − 𝜆)𝛼𝜃 ∑
(−1)𝑘𝛼𝑘

𝑘!

∞
𝑘=0

𝑒
−

𝜃
𝑥

𝑥2[1−𝑒
−

𝜃
𝑥]

2 (
𝑒

−
𝜃
𝑥

1−𝑒
−

𝜃
𝑥

)

𝑘

+

2𝜆𝛼𝜃 ∑
(−2)𝑘𝛼𝑘

𝑘!

∞
𝑘=0

𝑒
−

𝜃
𝑥

𝑥2[1−𝑒
−

𝜃
𝑥]

2 (
𝑒

−
𝜃
𝑥

1−𝑒
−

𝜃
𝑥

)

𝑘

                              

𝑓(𝑥) = (1 − 𝜆)𝛼𝜃 ∑
(−1)𝑘𝛼𝑘

𝑘!

∞
𝑘=0 𝑥−2𝑒−

𝜃

𝑥
(𝑘+1)

[1 −

𝑒−
𝜃

𝑥]
−(𝑘+2)

+ 2𝜆𝛼𝜃 ∑
(−2)𝑘𝛼𝑘

𝑘!

∞
𝑘=0 𝑥−2𝑒−

𝜃

𝑥
(𝑘+1)

[1 −

𝑒−
𝜃

𝑥]
−(𝑘+2)

               

𝑓(𝑥) = 𝛼𝜃 ∑
𝛼𝑘

𝑘!
((−1)𝑘(1 − 𝜆) +∞

𝑘=0

2𝜆(−2)𝑘) 𝑥−2𝑒−
𝜃

𝑥
(𝑘+1)

[1 − 𝑒−
𝜃

𝑥]
−(𝑘+2)

                     (24) 

Also, using the generalized binomial theorem, we can 

write the last term from the above result in equation (24) 

as: 

[1 − 𝑒−
𝜃

𝑥]
−(𝑘+2)

= ∑
𝛤(𝑙+𝑘+2)

𝑙!𝛤(𝑘+2)
𝑒−

𝜃

𝑥
𝑙∞

𝑙=0               (25) 

Making use of the result in (25) above in equation (24) 

and simplifying, we obtain: 

𝑓(𝑥) = 𝛼𝜃 ∑ ∑
𝛼𝑘𝛤(𝑙+𝑘+2)

𝑘!𝑙!𝛤(𝑘+2)
((−1)𝑘(1 − 𝜆) +∞

𝑙=0
∞
𝑘=0

2𝜆(−2)𝑘) 𝑥−2𝑒−
𝜃

𝑥
(𝑘+𝑙+1)

                                            (26) 

Hence, the pdf in equation (26) can also be written in its 

simple form as follows: 

𝑓(𝑥) = 𝜂𝑘,𝑙𝑥
−2𝑒−

𝜃

𝑥
(𝑘+𝑙+1)

                                              (27)

 
where  

𝜂𝑘,𝑙 = 𝛼𝜃 ∑ ∑
𝛼𝑘𝛤(𝑙+𝑘+2)

𝑘!𝑙!𝛤(𝑘+2)
((−1)𝑘(1 − 𝜆) +∞

𝑙=0
∞
𝑘=0

2𝜆(−2)𝑘) 

 
Now, using the simplified form of the pdf of the TEIED 

in equation (27), the nth ordinary moment of the TEIED 

is derived as follows: 

 
 1

2' ( )
,

0 0

k l
n xnnE f x dx x x e dxxXn k l





     
       

 

 

 
 1

2' ( )
,

0 0

k l
n xnnE f x dx x e dxxXn k l




    

   

(28) 

Making use of integration by substitution method in 

equation (28), we perform the following operations: 

Let 𝑢 =
𝜃

𝑥
(𝑘 + 𝑙 + 1) ⇒ 𝑥 =

𝜃(𝑘+𝑙+1)

𝑢
= 𝑢−1[𝜃(𝑘 + 𝑙 +

1)]  

𝑑𝑢

𝑑𝑥
= −

𝜃

𝑥2
(𝑘 + 𝑙 + 1) ⇒ 𝑑𝑥 = −

𝑥2𝑑𝑢

𝜃(𝑘+𝑙+1)
  

Substituting for 𝑥, 𝑢and 𝑑𝑥 in equation (28) and 

simplifying; we have: 

   

22' ( )
, 1

0 0

n u x dunnE f x dx x exXn k l k l




         
  

 

 
 

1' ( )
,1

0 0

n unnE f x dx x e duxXn k lk l




           

 

 
 

 
1' ( ) 1

,1
0 0

nn unnE f x dx u k l e duxXn k lk l
 



                 

 

      
1' ( ) 1 1

,
0 0

n n unnE f x dx k l u e duxXn k l
 


 

       

 

      
1 1 1' 1 1

,
0

n n unE k l u e duXn k l
 




       
     

(29) 

Hence, recall that ∫ 𝑡𝑛−1𝑒−𝑡𝑑𝑡 = 𝛤(𝑛)
∞

0
 and that 

∫ 𝑡𝑛𝑒−𝑡𝑑𝑡 = ∫ 𝑡𝑛+1−1𝑒−𝑡𝑑𝑡 = 𝛤(𝑛 + 1)
∞

0

∞

0
 

Thus, we obtain the nth ordinary moment of X for the 

TEIED as follows: 

        
1' 1 1 1

,

nnE k l nXn k l
 



                   

(30)  

Again, recall that 𝜂𝑘,𝑙 is a constant and making use of its 

value as defined above, we can write the expression for 

the nth ordinary moment of TEIED as: 

 
          

    
 

  
1 1

0 0

1 2 1 1 2 2
'

! ! 2 1 1

k kk

n
k l

l k
nE Xn

k l k k l n

  




 

  
 

       
 

     


(31) 

The mean (𝜇1
′ ), variance (𝜎2), coefficient of variation 

(𝐶𝑉), coefficient of skewness (𝐶𝑆) and coefficient of 

kurtosis (𝐶𝐾) can be calculated from the ordinary and 
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non-central moments using some well-known 

relationships such as: 

𝜇1
′ = 𝐸(𝑋),𝑉𝑎𝑟(𝑋) = 𝜎2 = 𝜇2

′ − {𝜇1
′ }2,  

𝐶𝑉 = {
𝜎2

(𝜇1
′ )

2}

1

2
𝐶𝑆 = 𝐸 (

𝑥−𝜇1
′

𝜎
)

3

=
𝜇3

(𝜎)3     and 

𝐶𝐾 = 𝐸 (
𝑥−𝜇1

′

𝜎
)

4

=
𝜇4

(𝜎)4  

3.3    Moment Generating Function 

The moment generating function of a random variable X 

can be obtained as 

𝑀𝑥(𝑡) = 𝐸[𝑒𝑡𝑥] = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
                            (32) 

Recall that by power series expansion, 

𝑒𝑡𝑥 = ∑
(𝑡𝑥)𝑟

𝑟!
= ∑

𝑡𝑟

𝑟!

∞
𝑟=0

∞
𝑟=0 𝑥𝑟                                     (33) 

Therefore, the moment generating function can also be 

expressed as: 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!

∞
𝑟=0 ∫ 𝑥𝑟1

0
𝑓(𝑥)𝑑𝑥 = ∑

𝑡𝑟

𝑟!

∞
𝑟=0 𝐸(𝑋𝑟) =

∑
𝑡𝑟

𝑟!

∞
𝑟=0 [𝜇𝑟

′ ]  

Using the result in equation (33) and simplifying the 

integral in (32) therefore we have: 

𝑀𝑥(𝑡) =

∑
𝑡𝑟

𝑟!

∞
𝑟=0 [𝛼𝜃 ∑ ∑

(−1)𝛼𝑘𝛤(𝑙+𝑘+2)((−1)𝑘(1−𝜆)+2𝜆(−2)𝑘)

𝑘!𝑙!𝛤(𝑘+2)(𝜃(𝑘+𝑙+1))
−(𝑟−1)

(𝛤(1−𝑟))
−1

∞
𝑙=0

∞
𝑘=0 ] 

                                                                                        

(34) 

3.4     Characteristics Function 

The characteristics function of a random variable X is 

defined by: 

𝜑𝑥(𝑡) = 𝐸(𝑒𝑖𝑡𝑥) = ∫ 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

0
                             (35) 

Again, applying power series expansion and simplifying 

equation (35), we obtained the characteristics function of 

X as: 

𝜑𝑥(𝑡) =

∑
(𝑖𝑡)𝑟

𝑟!

∞
𝑟=0 [𝛼𝜃 ∑ ∑

(−1)𝛼𝑘𝛤(𝑙+𝑘+2)((−1)𝑘(1−𝜆)+2𝜆(−2)𝑘)

𝑘!𝑙!𝛤(𝑘+2)(𝜃(𝑘+𝑙+1))
−(𝑟−1)

(𝛤(1−𝑟))
−1

∞
𝑙=0

∞
𝑘=0 ] 

(36) 

3.5    Quantile Function 

Hyndman and Fan [38] defined the quantile function for 

any distribution in the form 𝑄(𝑢) = 𝑋𝑞 = 𝐹−1(𝑢) where 

𝑄(𝑢) is the quantile function of F(x) for 0 < 𝑢 < 1 

Taking F(x) to be the cdf of the TEIED and inverting it 

as above will give us the quantile function as follows: 
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(37) 

Simplifying equation (37) above and solving for X 

presents the quantile function of TEID as: 

𝑄(𝑢) = 𝑋𝑞 = 𝜃 {𝑙𝑜𝑔 [(−
𝑙𝑜𝑔(1−𝑢)

3𝛼
)

−1

+ 1]}
−1

             (38)

 This function is used for obtaining some moments like 

skewness and kurtosis as well as the median and for 

generation of random variables from the distribution in 

question.  

3.6   Skewness and Kurtosis 

This paper presents the quantile-based measures of 

skewness and kurtosis due to non-existence of the 

classical measures in some cases.  

According to to Kenney and Keeping [39], the Bowley’s 

measure of skewness based on quartiles is given by: 

𝑆𝐾 =
𝑄(

3

4
)−2𝑄(

1

2
)+𝑄(

1

4
)

𝑄(
3

4
)−𝑄(

1

4
)

                                                (39) 

Also, the Moors kurtosis based on octiles proposed [40] 

and is given by; 

𝐾𝑇 =
𝑄(

7

8
)−𝑄(

5

8
)−𝑄(

3

8
)+(

1

8
)

𝑄(
6

8
)−𝑄(

1

8
)

                                            (40)  

Where𝑄(. ) is obtainable with the help of equation (38). 

3.7     Reliability analysis of the TEIED. 

This section presents the derivation and study of the 

survival (or reliability) function and the hazard (or 

failure) rate function. Also, the cumulative hazard 

function, the reverse hazard function and the odds 

function are obtained for the TEIED. 

The Survival function describes the likelihood that a 

system or an individual will not fail after a given time. 

Mathematically, the survival function is given by: 

𝑆(𝑥) = 1 − 𝐹(𝑥)
                                                       

(41)

 Applying the cdf of the TEIED in (41), the survival 

function for the TEIED is obtained as: 
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 
   
 
 

(42) 

The following are plots for the survival function of the 

TEIED using different parameter values as shown in 

Figure 3.1, the selection of parameter values was done 

based on the range of values of the parameters and in such 



Terna G. Ieren et al.: Statistical Properties and Applications of a Transmuted Exponential-inverse Exponential Distribution 

113 
 

a way as to detect the changes in the plots or shapes with 

respect to the variation in the parameter values. 

 

 

 
Figure 3.1: Survival Function of the TEIED at Different Parameter Values.

 
 

The plots in Figure 3.1 shows that the probability of 

survival equals one (1) at initial time or early age and it 

decreases as time increases and equals zero (0) as time 

approaches infinity.
 

Hazard function are plots probability that a component 

will fail or die for an interval of time. The hazard function 

is defined as; 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑓(𝑥)

1−𝐹(𝑥)
                                                  (43) 

Meanwhile, the expression for the hazard rate of the 

TEIED is given by: 
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(44)               

where 𝛼, 𝜃 > 0 and−1 ≤ 𝜆 ≤ 1. 

The following is a plot of the hazard function for arbitrary 

parameter values in Figure 3.2, the selection of parameter 

values was done based on the range of values of the plots 

or shapes with respect to the variation in the parameter 

values.
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Figure 3.2: Hazard function of the TEIED. 

The Figure above revealed that the TEIED has increasing 

failure rate which implies that the probability of failure 

for any random variable following a TEIED increases as 

time increases, that is, probability of failure or death 

increases with age. 

The cumulative hazard function is defined as: 

𝐻(𝑥) = ∫ ℎ(𝑡)
𝑥

0
𝑑𝑡 = ∫

𝑓(𝑡)

1−𝐹(𝑡)

𝑥

0
𝑑𝑡 = − 𝑙𝑛 𝑆 (𝑥)     (45)                    

Considering the cdf of the TEIED in (5), the cumulative 

hazard function for the TEIED is derived as:  

1 1( ) ln 1
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e eH x e e
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 

     
    

   

(46) 

The reversed hazard function of a distribution is obtained 

by dividing the pdf by the cdf in. It is mathematically 

defined as: 

𝑅ℎ(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
                                                                  (47) 

Making use of the pdf and cdf of the TEIED in (47), the 

reverse hazard function for the TEIED is obtained as: 
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(48)                

Also, the odds function of a distribution is obtained by 

dividing the cdf by the reliability (survival) function. 

That is: 

𝑂(𝑥) =
𝐹(𝑥)

1 − 𝐹(𝑥)
=

𝐹(𝑥)

𝑆(𝑥)
                                         (49) 
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Using the cdf of the TEIED in (49), the odds function for 

the TEIED is obtained as: 

 
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(50) 

where 𝑥 > 0, 𝛼, 𝜃 > 0 and −1 ≤ 𝜆 ≤ 1. 

3.8   Entropy Measurement 

Entropy is a function used to quantify the uncertainty, 

disorderliness or randomness in a system or a probability 

distribution. In this section, we present the most 

frequently used measure of entropy known as Renyi 

entropy [41]. The Renyi entropy of a random variable X 

which represents a variation of the uncertainty is defined 

as: 

𝐼𝛿(𝑋) =
1

1−𝛿
𝑙𝑜𝑔 ∫ 𝑓𝛿(𝑥)𝑑𝑥

∞

−∞
                                       (51)

 

 

for 𝛿 > 0and𝛿 ≠ 1. 

Now, using the pdf of the TEIED in equation (51) we get: 

𝐼𝛿(𝑋) =
1

1−𝛿
𝑙𝑜𝑔 [∫ (𝜂𝑘,𝑙)

𝛿
𝑥−2𝛿𝑒−

𝜃

𝑥
(𝑘+𝑙+1)𝛿𝑑𝑥

∞

𝑥=0
]    (52) 

 
where  

𝑓𝛿(𝑥) = (𝜂𝑘,𝑙)
𝛿

𝑥−2𝛿𝑒−
𝜃

𝑥
(𝑘+𝑙+1)𝛿

 and 

𝜂𝑘,𝑙 = 𝛼𝜃 ∑ ∑
𝛼𝑘𝛤(𝑙+𝑘+2)

𝑘!𝑙!𝛤(𝑘+2)
((−1)𝑘(1 − 𝜆) +∞

𝑙=0
∞
𝑘=0

2𝜆(−2)𝑘)  

Therefore, solving the integral above, the Renyi entropy 

of X~TEIED after simplification reduces to: 
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 (53) 

3.9 Distribution of order Statistics 

Suppose 𝑋1, 𝑋2, . . . . . , 𝑋𝑛 is a random sample from the 

TEIED and let 𝑋1:𝑛, 𝑋2:𝑛, . . . . . , 𝑋𝑖:𝑛 denote the 

corresponding order statistic obtained from this same 

sample. The pdf, 𝑓𝑖:𝑛(𝑥) of the ith order statistic can be 

obtained by 
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Using (5) and (6), the pdf of the ith order statistics𝑋𝑖:𝑛, can 

be expressed from (54) as; 
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Hence, the pdf of the minimum order statistic 𝑋(1) and 

maximum order statistic 𝑋(𝑛) of the TEIED are 

respectively given by:
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and 
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                      (57) 

3.10 Estimation of Unknown Parameters of the TEIED 

Via MLE 

In this section, the estimation of the parameters of the 

TEIED is done by using the method of maximum 

likelihood estimation (MLE). Let 𝑋1, 𝑋2, . . . . . . . . . . , 𝑋𝑛 be 

a sample of size ‘n’ independently and identically 
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distributed random variables from the TEIED with 

unknown parameters α, θ and λ defined previously.  

The likelihood function of the TEIED using the pdf in 

equation (6) is given by; 
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                 (58) 

Let the natural logarithm of the likelihood function 

be,𝑙(𝜂) = 𝑙𝑜𝑔 𝐿 (𝑋̱|𝛼, 𝜃, 𝜆)
, 

therefore, taking the natural 

logarithm of the function above gives: 
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Differentiating 𝑙(𝜂) partially with respect to α, θ and λ 

respectively gives the following results;  
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Making equation (60), (61) and (62) equal to zero (0) and 

solving for the solution of the non-linear system of 

equations produce the maximum likelihood estimates of 

parameters 𝛼, 𝜃and 𝜆. However, these solutions could not 

be obtained manually except numerically with the aid of 

suitable statistical software R using adequacy model 

package.  

4. Applications to Three Real Life Datasets 

This section presents the three real life datasets, their 

descriptive statistics, graphical summary and 

applications. The section compares the fits of the 

transmuted Exponential Inverse Exponential distribution 

(TEIED), Exponential Inverse Exponential distribution 

(EIED), Inverse Exponential distribution (IED) and 

Exponential distribution (ED) using three real life 

datasets (dataset A, dataset B and dataset C). 

To compare the above listed distributions, we have 

considered some model selection criteria which include 

the value of the log-likelihood function evaluated at the 

maximum likelihood estimates (ℓ), Akaike Information 

Criterion, AIC, Consistent Akaike Information Criterion, 

CAIC, Bayesian Information Criterion, BIC, Hannan 

Quin Information Criterion, HQIC, Anderson-Darling 

(A*), Cramѐr-Von Mises (W*) and Kolmogorov-

smirnov (K-S) statistics. The details about the statistics 

A*, W* and K-S are discussed in [42]. Some of these 

statistics are computed with the following formulas: 

𝐴𝐼𝐶 = −2ℓ + 2𝑘,𝐵𝐼𝐶 = −2ℓ + 𝑘 𝑙𝑜𝑔(𝑛) , 𝐶𝐴𝐼𝐶 =

−2ℓ +
2𝑘𝑛

(𝑛−𝑘−1)
and𝐻𝑄𝐼𝐶 = −2ℓ + 2𝑘 𝑙𝑜𝑔[𝑙𝑜𝑔(𝑛)]

 
Where ℓ denotes the value of log-likelihood function 

evaluated at the MLEs, k is the number of model 

parameters and n is the sample size. Meanwhile, when 

taking our decisions, we consider any model with the 

lowest values for these statistics to be a best model that 

fit the dataset. The required computations are carried out 

using the R package “Adequacy Model” which is freely 
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available from http://cran.r-

project.org/web/packages/AdequacyModel/AdequacyM

odel.pdf. 

Tables 4.1 (for dataset A), 4.5 (for dataset B) and 4.9 (for 

dataset C) list the Maximum Likelihood Estimates of the 

model parameters whereas the statistics AIC, CAIC, BIC, 

HQIC, A*,W* and K-S for the fitted TEIED, EIED, IED 

and ED models are given in Tables 4.2, 4.3 & 4.4 for 

dataset A, 4.6, 4.7 & 4.8 for dataset B and 4.10, 4.11 & 

4.12 for dataset C. 

Dataset A: The dataset represents the survival times (in 

days) of 72 guinea pigs infected with virulent tubercle 

bacilli reported by [43]. They are the Regiment 4.3, Study 

M.: 10, 33, 44,56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 

102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 

116,120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 

146, 153, 159, 160, 163, 163, 168, 171, 172, 176,183, 

195, 196, 197, 202, 213, 215, 216, 222, 230,231, 240, 

245, 251, 253, 254, 255, 278, 293, 327,342, 347, 361, 

402, 432, 458, 555.  

Table 4.1: Descriptive Statistics for dataset A 

parameters n Minimum 𝑸𝟏 Median 𝑸𝟑 Mean Maximum Variance Skewness Kurtosis 

Dataset A 72 10.0 108.0  149.5  224.0  176.8 555.0  10705.1  1.34128  1.98852  

 

 
Figure 4.1: A Graphical Summary of Dataset A 

Based on the descriptive statistics in Table 4.1 and the 

histogram, box plot, density and normal Q-Q plot 

generally known as graphical summary shown in Figure 

4.1 above, it is seen that dataset A is skewed to the right 

or positively skewed.

 

Table 4.2: Maximum Likelihood Parameter Estimates for dataset A 

Distribution θ ̂ α ̂ λ ̂ 

TEIED 9.74623485  0.09072364  -0.99742240  

EIED 8.81638559  0.04973562  - 

IED 9.879388  - - 

ED 0.01326009  -  

The values in Table 4.2 are estimates of the parameters of the fitted distributions for dataset A and the empty spaces 

in the cells of the table is as a result of the fact that some distributions have less than three parameters unlike the 

proposed TEIED.  

Table 4.3: The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset A 

Distribution 𝓵̂ AIC CAIC  BIC  HQIC Ranks 

TEIED 429.7125  865.4249  865.7779  872.2549  868.144  1st 

EIED 442.9481  889.8962  890.0702  894.4496  891.7089  2nd 

IED 561.9758  1125.952  1126.009  1128.228 1126.858  4th 

ED 480.0832 962.1664  962.2236  964.4431  963.0728  3rd 
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Table 4.4: The A*, W*, K-S statistic and P-values for dataset A.  

Distribution A* W* K-S P-Value (K-S) Ranks 

TEIED 0.585328 0.09079332  0.19861  0.006825  1st 

EIED 0.6156711  0.09710336  0.27903  2.704e-05  2nd 

IED 1.671922  0.2436275  0.80234  2.2e-16  4th 

ED 0.6373625  0.1056187  0.59364  2.2e-16  3rd 

Based on the results in Table 4.3 and Table 4.4 above, it 

can be seen that the TEIED has minimum values of AIC, 

CAIC, BIC, HQIC, A*, W* and K-S statistic for dataset 

A among all the fitted models. This means that the 

TEIED fits the dataset better compared to the other three 

fitted distributions.  

The following figure displayed the histogram and 

estimated densities and cdfs of the fitted models to 

dataset A

 

 
Figure 4.2: Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset A. 

 
Figure 4.3: Probability Plots for the Fit of the TEIED, EIED, IED & ED Based on Dataset A. 
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Dataset B. This data represents the survival times of a 

group of patients suffering from head and neck cancer 

diseases and treated using a combination of radiotherapy 

and chemotherapy (RT+CT) ([44], [45],[46]). The 

observations are as follows:12.20, 23.56, 23.74, 25.87, 

31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 

78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 

133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 

281, 319, 339, 432, 469, 519, 633, 725, 817, 1776. The 

summary is given as follows: 

Table 4.5: Descriptive Statistics for dataset B.  

parameters n Minimum 𝑸𝟏 Median 𝑸𝟑 Mean Maximum Variance Skewness Kurtosis 

Values 44 12.20 67.21  128.5 219.0 223.48  1776.00  93286.4 3.38382  13.5596 

 

 
Figure 4.4: A graphical summary of dataset B 

Using the descriptive statistics in Table 4.5 and the graphical summary in Figures 4.4 above, we observed that the 

second data (dataset B) is also skewed to the right or positively skewed just like the first data (dataset A).  

Table 4.6: Maximum Likelihood Parameter Estimates for Dataset B 

Distribution 𝛉̂ 𝛂̂ 𝛌̂ 

TEIED 9.22948531  0.02576929  0.79001208  

EIED 6.33690078  0.02542512  - 

IED 9.879388  - - 

ED 0.016902  - - 

 The values in Table 4.2 are estimates of the parameters 

of the fitted distributions for dataset B and the empty 

spaces in the cells of the Table is as a result of the fact 

that some distributions have less than three parameters 

unlike the proposed TEIED.  

 

Table 4.7: The Statistics ℓ, AIC, CAIC, BIC and HQIC for Dataset B 

Distribution 𝓵̂ AIC CAIC  BIC  HQIC Ranks 

TEIED 279.9114  565.8228  566.4228  571.1754  567.8078  1st 

EIED 281.7682  567.5365  567.8292  571.1049  568.8598  2nd 

IED 331.4209  664.8418  664.9371  666.626  665.5035  3rd 

ED 345.7314  693.4629  693.5581  695.247  694.1245  4th 
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Table 4.8: The A*, W*, K-S statistic and P-values for dataset B 

Distribution A* W* K-S P-Value (K-S) Ranks 

TEIED 0.5742914  0.09887078  0.12346  0.4762  1st 

EIED 0.7891442  0.1363498  0.19041  0.07171  2nd 

IED 0.2349885  0.03740618  0.65501  2.2e-16  3rd 

ED 1.218726  0.2113589  0.44325  2.145e-08  4th 

Also, it has been observed from Tables 4.7 and 4.8 that the TEIED has the lowest values of AIC, CAIC, BIC, HQIC, 

A*, W* and K-S statistic for dataset B compared to the other fitted distributions. This shows that the TEIED fits the 

dataset better than the other three fitted models.  

The following Figure displayed the histogram and estimated densities and cdfs of the fitted models to dataset B.  

 
Figure 4.5: Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset B. 

 
Figure 4.6: Probability Plots for the Fit of the TEIED, EIED, IED & ED Based on Dataset B

Dataset C: Actuarial Science (Mortality Deaths) data 

This third dataset (dataset C) represents 280 observations 

on the age of death (in years) of retired women with 

temporary disabilities. This dataset has been studied [47]. 

It is important for the Mexican Institute of Social 

Security (IMSS) to study the distributional behavior of 

the mortality of retired people on disability because it 

enables the calculation of long- and short-term financial 

estimation, such as the assessment of the reserve required 

to pay the minimum pensions. 

The data corresponding to lifetimes (in years) of retired 

women with temporary disabilities who died during 2004 
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and which are incorporated in the Mexican insurance 

public system are: 22,24, 25(2), 27, 28, 29(4), 30, 31(6), 

32(7), 33(3), 34(6), 35(4), 36(11), 37(5), 38(3), 39(6), 

40(14),41(12), 42(6), 43(5), 44(7), 45(10), 46(6), 47(5), 

48(11), 49(8), 50(8), 51(8), 52(14), 53(10), 54(13), 

55(11), 56(10), 57(15), 58(11), 59(9), 60(7), 61(2), 62, 

63, 64(4), 65(2), 66(3), 71, 74, 75, 79, 86. Its summary is 

given as follow

Table 4.9: Descriptive Statistics for Dataset C. 

parameters n Min. 𝑸𝟏 Median 𝑸𝟑 Mean Max Var Skewness Kurtosis 

Values 280 22.00 40.00 49.00 55.25 47.79  86.00  108.63  0.06703  0.0524  

 

 
Figure 4.7: A graphical summary of dataset C. 

Considering the values in Table 4.9 and the histogram, box plot, density and normal Q-Q plot in Figure 4.7, it is clear 

to conclude that the third data (dataset C) is normally distributed or approximately normal. 

Table 4.10: Maximum Likelihood Parameter Estimates for dataset C 

Distribution 𝛉̂ 𝛂̂ 𝛌̂ 

TEIED 9.8006389  0.3469193  -0.9773374  

EIED 9.3101940  0.2158965  - 

IED 9.879388  - - 

ED 0.02092807  - - 

The values in Table 4.10 are estimates of the parameters of the fitted distributions for dataset C and the empty spaces 

in the cells of the table is as a result of the fact that some distributions have less than three parameters unlike the 

proposed TEIED.   

Table 4.11: The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset C 

Distribution 𝓵̂ AIC CAIC  BIC  HQIC Ranks 

TEIED 1247.671  2501.343  2501.43  2512.247  2505.717  1st 

EIED 1336.062  2676.124  2676.167  2683.394  2679.04  2nd 

IED 1570.938  3143.877  3143.891  3147.511  3145.335  4th 

ED 1362.683  2727.367  2727.381  2731.002  2728.825  3rd 
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Table 4.12: The A*, W*, K-S statistic and P-values for dataset C 

Distribution A* W* K-S P-Value (K-S) Ranks 

TEIED 2.940039  0.5217251  0.33412  2.2e-16  1st 

EIED 2.829021  0.5020088  0.42078  2.2e-16  2nd 

IED 4.266137  0.7503556  0.68987  2.2e-16  4th 

ED 2.688549  0.4772946  0.43803  2.2e-16  3rd 

From Tables 4.11 and 4.12 above, it is observed that the TEIED has minimum values of AIC, CAIC, BIC, HQIC, A*, 

W* and K-S statistic for dataset C among all the fitted models. This is an indication that the TEIED fits the dataset 

better than the other three fitted models. 

The following figure displayed the histogram and estimated densities and cdfs of the fitted models to dataset C.  

 
Figure 4.8: Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset C. 

 

Figure 4.9: Probability Plots for The Fit of the TEIED, EIED, IED & ED Based on Dataset C. 

Deciding on the best distribution based on the statistics 

in Tables 4.3 and 4.4 and 4.7 and 4.8, we conclude that 

the TEIED distribution has the smallest or minimum 

values of AIC, CAIC, BIC, HQIC, A*, W* and K-S 

statistic for dataset A and dataset B among all fitted 

models. Based on these criteria, it is clear that TEIED 

produces the overall best fit and therefore is selected as 

the most adequate model for explaining the two data sets 

as considered in this paper. The histogram of the data, 

fitted densities and estimated cumulative distribution 

functions displayed in Figures 4.4 and 4.5 for dataset A 

and dataset B respectively also confirm that the TEIED 

performs better than the EIED, IED and the conventional 

ED. Similarly, the Q-Q plots displayed in Figures 4.3 and 

4.6 for dataset A and dataset B respectively also provide 

evidences that the proposed distribution (TEIED) is more 

flexible than the other three distributions (EIED, IED and 

ED) as already shown previously in Tables 4.2 and 4.3 as 

well as 4.6 and 4.7 for dataset A and dataset B 

respectively.  

Again, deciding on the best distribution based on the 

statistics in Tables 4.11 and 4.12, we conclude that even 
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though the TEIED distribution has the minimum values 

of AIC, CAIC, BIC, HQIC, A*, W* and K-S statistic for 

dataset C among all fitted models, it is not a suitable 

model for the data because the dataset is normally 

distributed while the distribution is a skewed model. The 

histogram of the data, fitted densities and estimated 

cumulative distribution functions displayed in Figure 4.8 

for dataset C also confirmed that none of the fitted 

distributions is good for dataset C because it is a normally 

distributed data and therefore not suitable for skewed 

models. Similarly, the Q-Q plots displayed in Figure 4.9 

for dataset C also provide evidences that the proposed 

distribution (TEIED) and the other three fitted 

distributions (EIED, IED and ED) are not good for 

dataset C as already demonstrated previously in Tables 

4.11 and 4.12 as well as Figure 4.9 all for dataset C.  

These results above also prove the fact that Quadratic 

Rank Transmutation Map [6] has additional advantage to 

the Exponential Inverse Exponential distribution by 

increasing its skewness and flexibility in modeling real 

life data and therefore, we agree and conclude that the 

quadratic rank transmutation map proposed [6] is very 

useful in increasing the flexibility of continuous 

probability distributions as seen in the previous studies 

[32-34, 36, 48-49]. 

 5. Summary and Conclusion 
This article proposed a new three-parameter 

generalization of the Inverse Exponential distribution 

named “Transmuted Exponential Inverse Exponential 

distribution”. A very good reason for generalizing a 

classical distribution is that the generalization makes it 

more flexible for analyzing real life data. In this article, 

some mathematical and statistical properties of the 

transmuted Exponential Inverse Exponential distribution 

are derived and studied. These properties include validity 

and limiting behavior of the new model, moments, 

moment generating function, characteristics function, 

quantile function, coefficient of skewness and kurtosis, 

survival function, odds function, hazard function, 

cumulative hazard function, reversed hazard function and 

Renyi entropy. The paper also obtained the density 

function for the distribution of minimum and maximum 

order statistics. It also estimated the unknown parameters 

of the distribution by method of maximum likelihood 

estimation. The new distribution has been applied to 

three real life datasets and the results provided much 

evidence that the transmuted Exponential Inverse 

Exponential distribution is better than the Exponential 

Inverse Exponential distribution, Inverse Exponential 

distribution and the conventional Exponential 

distribution based on the datasets used and therefore it is 

our great hope that this new model will be applied fully 

in modeling real life problems most especially in survival 

analysis. 
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