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Abstract  

 

This research paper investigated the dynamics of malaria transmission in Rwanda using the 

nonlinear forces of infections which are included in SEIR-SEI mathematical model for human 

and mosquito populations. The mathematical modeling of malaria studies the interaction among 

the human and mosquito populations in controlling malaria transmission and eventually 

eliminating malaria infection. This work investigates the optimal control strategies for 

minimizing the rate of malaria transmission by applying three control variables through Caputo 

fractional derivative. The optimal control problems for malaria model found the control 

parameters which minimize infection. The numerical simulation showed that the number of 

exposed and infected people and mosquito population are decreased due to the control strategies. 

Finally, this work found out that the transmission of malaria in Rwanda can be minimized by 

using the combination of controls like Insecticide Treated bed Nets (ITNs), Indoor Residual 

Spray (IRS) and Artemisinin based Combination Therapies (ACTs). 

 

Keywords: Mathematical model, malaria, force of infection, reproduction number, Caputo 

fractional derivative, optimal control and numerical simulation. 

 

1. Introduction 

Malaria is a contagious disease caused by Plasmodium. The dynamics of malaria disease can be 

started from humans or mosquitoes. In the world, the disease is widespread in the most region 

such as Sub-Saharan Africa, Latin America and Asia [8]. In 2015, the World Health 
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Organization (WHO) reported 214 million cases of malaria and about 438 thousands resulted 

into deaths [14]. In fact, the disease treatment cost is heavy to poor countries. Even if malaria has 

been investigated for many years, it is still one of the major public health problem in the most 

countries where in widespread regions, pregnant women and children under five years old have a 

big number of malaria death [5]. 

In Rwanda, malaria is considered as a seasonal disease and environment related, where the 

Eastern region is more epidemic prone than other provinces. Malaria is one of the biggest health 

problem to be studied by both researchers and which the Government in Rwanda should mind 

[2]. In fact, the rate of malaria transmission increases during rainy seasons. Between 2012 to 

2016, malaria incidence increased every year in Rwanda from 4.8% in 2012 to 40.3% in 2016 

[14]. Malaria is still one of the biggest health issues in the society today, thus the epidemiologists 

and others are still using more effort in understanding and controlling the dynamics of malaria 

[5]. 

In 2017, the Eastern and Southern Provinces of Rwanda, were considered as the regions where 

malaria was most predominant. In these provinces, there are five districts, namely Bugesera, 

Gisagara, Gatsibo, Kirehe and Nyagatare, where malaria infection risk is highest [14].  

The mathematical model is very important tool to find more information on transmission and 

control of infection disease [10]. In 1911, the study of malaria using mathematical model was 

started by Ronald Ross [9]. In 1957, Macdonald updated Ross’s concept saying that, to minimize 

the number of mosquitoes was not enough in endemic region [3]. In 2019, Mojeeb AL et al. 

updated their SEIR-SEI model done in 2018 and they found that the use of the insecticide spray 

on the breeds grounds, treated infected individual and ITNs are the best combination in the 

reduction of mosquitoes [4]. 

In 2016, Okello Gabriel [7] found that IRS use and effort treatment are the best in endemic areas 

[7]. In 2007, C.E.G. Smith et al. defined a basic reproduction number as the number of secondary 

infections obtained from one primary infection into another susceptible. Population. The disease 

will continue in a population when R0 >1 otherwise it will disappear [12]. 

The Government of Rwanda got, in 2005, a donation from the US-Presidential Malaria Initiative 

(PMI) to minimize malaria deaths by using ITNs, prompt use of Artemisinin based Combination 
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Therapies (ACTs) and IRS with insecticides. These involvements played a role in the reduction 

of malaria transmission [1].  

The current aim of Rwanda National Malaria control strategic plan is to improve the healthiness 

of Rwandans by trying to eliminate malaria. Rwanda had adopted a strategy to realize malaria 

pre-eradication phase in 2017, with an ambitious target of reaching near zero deaths due to 

malaria [11]. In 2019, the goal of Rwanda Government was then to work with PMI which helped 

countries to further reduce the number of deaths and illness due to malaria, towards the goal of 

elimination in extended period [14].  

Some researchers have been worked on the mathematical model about the control malaria 

transmission using SEIR-SEI model [4]. In [4], they applied the optimal control to SEIR-SEI 

model, then they found that malaria can be minimized in coming years. In Rwanda, the 

mathematical models of malaria dynamics are not frequently used, thus some people are still at 

risk of malaria even if there are many measures that have been taken to control it, due to the 

reliable information through mathematical models which are insufficient to bring malaria 

infection at the nearest of  zero case. 

This paper aims at analysis the role of controls measures of malaria transmission in Rwanda 

based on SEIR-SEI mathematical model and advice the policy makers to set a program that will 

reduce the infected individual  and control disease from the country. It focuses on the study of 

the modified SEIR-SEI mathematical model that was done in [4] by introducing nonlinear 

saturating feature that inhibits the force of infection and determination of optimal controls 

measures through Caputo fractional derivative. 

The next sections of this paper are arranged as follows: the section 2 presents the methods and 

material. Section 3 deals with qualitative study of mathematical model. The solution of optimal 

control is described in section 4. The section 5 covers the estimation of parameters. The section 6 

presents the numerical test, while conclusion of the paper is finally drawn in section 7. 
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2. Methods and material 

2.1. Data set 

The data help to estimate the parameters of the malaria model. Secondary data from malaria 

report for Rwanda were used [15]. In the US-PMI [13], the hot region of Rwanda where the 

mosquitoes are predominant were considered. Additionally, the data about Anopheles 

mosquitoes were collected in some sectors of Nyagatare, Bugesera, Kirehe and Ngoma districts 

in 2016, 2017 and 2018 by using human landing catch and pyrethrum spray catch. Referring to 

collected mosquitoes from these sectors, Enzyme-Linked Immunosorbent Assay (ELISA) test 

used in idendification of susceptible, exposed and infected mosquitoes, then their numbers was 

estimated per district. 

2.2. Mathematical model formulation 

Let us consider Susceptible humans ( hS ), Exposed humans ( hE ), Infected humans ( hI ), and 

Recovered humans ( hR ), Susceptible mosquitoes ( mS ), Exposed mosquitoes ( mE ), and Infected 

mosquitoes ( mI ). The logistic function is used to model the variation of the nonlinear force of 

infection of malaria in human individual as 

 
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where hN  is a total human population and 
)0(hS
 is susceptible humans at initial time and  is 

positive number.  tfN hh
S 1  is a nonlinear saturating feature that inhibits the force of infection 

coming from infected mosquitoes to susceptible human. Similarly, the logistic function for 

mosquitoes is given by  
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where mN  is a total mosquito population,  )0(mS   is susceptible mosquitoes and    is positive 

coefficient. 
 tf
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  is nonlinear saturating feature where the antibodies generate the antigens 

contacted from infected human at the rate. In line with this, a saturated force of infection from 
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mosquito to the human of the form )(tISSb mNhh h
  was used, with b  is the mosquito biting rate 

and h  refers to the probability of biting by an infected mosquito. Considering a saturated force 

of infection from human to mosquito of the form )(tISSb hNmm m
 , the parasite is transmitted to a 

susceptible mosquito at probability of biting m  then, 



 k

k

e

ke
k 






1
 is the rate of losing immunity 

with k  is the rate of mean constant and partial immunity appears at an interval of   units of 

time. h  and m  are recruitment rate for human and mosquito respectively. h  is the rate of 

being recovered and h  is human death rate due to malaria infection. Humans and mosquitoes 

can be died at the natural death rates h  and m  respectively. h  and m  are the progression 

rates from hE  to hI  compartment and mE  to mI  compartment, respectively. The Figure 1 shows 

the schematic diagram of interaction between the seven compartments. 

 

Fig. 1: Schematic diagram of malaria transmission 

The following system of differential equations is obtained by applying all above assumptions.  
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3. Qualitative study of mathematical model 

We first focus on the positivity of solution of (1). Let us set  

),()()()( and )()()()()( tItEtStNtRtItEtStN mmmmhhhhh   

be the total human and mosquito population size at time  t   respectively. We have 
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Since hN  is constant, we get  0
dt
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Finally, we generalize the domain of positivity of the system (1) as follows 
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3.1. Stability of disease free equilibrium 

In this study, a disease free equilibrium (DFE) is defined as a steady state solution where the 

malaria infections do not exist in the population. In absence of the disease, the DFE 

0X  for SEIR-SEI model (1) is 
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The method of next generation matrix is used in computation of the basic reproductive number 

0R  . Let  
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We have the following result which the proof focuses on the similar way used in [8] 

 Proposition 3.1.  When 10 R  then; DFE 0X  of system is locally asymptotically stable and 

it is unstable if 10 R . 

3.2. Stability of endemic equilibrium (EE) point 

EE point ),,,,,,(   mmmhhhh IESRIESX  is a positive steady state solution where 

the disease persists in the population [8]. 

 Proposition 3.2. The EE point of the model (1) exists when 10 R  and it doesn't exist when 

10 R  . 

Proof: We set the system of differential equations (1) to zero as follow  
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 By solving this system of equations (3), we get all state variables as follow  
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We transform the first equation of the system (3) using the first equation in the system (4) to get  
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By considering the calculation done in (6), it is implied that 0
dt
dZ , thus the point 

X  is globally 

asymptotically stable. 

4. Solution of optimal control 

Let us first define the notion of Caputo derivative. Consider that f  is a function which defined 

from ],[ ba  to R  , and let 0q  be a real number representing the order of Caputo derivative of  

f , nqn 1  if Nq  and qn   if Nq  where Nn . The Left Caputo Fraction Derivative 
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(LCFD) is defined as  

 
    .)(

1
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1

dssfst
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d
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n
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q
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 


  

When nq  , we obtain that  

)7().()()( 0 tf
dt

d
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dt

d
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ta

q

t

c

a   

Then  
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dt
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t )(
)(

)1(
)(1)(

1 



   

is the Right Caputo Fraction Derivative (RCFD). When  nq   , we find that  

     8).(1)(1)( 0 tf
dt

d
tf

dt

d
ItfD

n

n
n

n

n

bt

nq

b

c

t   

The optimal control problem is formulated using the method of Caputo fractional derivatives. 

We define the set of controls as Tvvvv ),,( 321 , given that iv  is measurable set with 1)(0  tvi , 

when 1iv  , the proportion of control usage is maximum,  Tt ,0 , where 3,2,1i  and )(1 tv  

is the use of IRS, it kills the mosquitoes in the house, )(3 tv  is the use of ACTs, it increases the 

number of recover human population, 1  is a constant rate due to the use of ITNs, 2  is constant 

rate due to the use of IRS and 3  is a constant rate due to the use of ACTs. The following is the 

inclusion of control parameters in the system (1).  
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Definition 4.1:  

We set L in the following form  

)10(,),,( 2

3

2

2

2

1 FvEvDvCIBIAEtvxL mhh   

where the constants BA,  and C  are weight of the exposed individual population, infected 

individual population and mosquito population, respectively; ED,  and F  are weighting 

constants in the prevention strategies; 2

1Dv  is the cost of protection with ITNs; 2

2Ev  is the cost 

prevention with IRS; 2

3Fv  is the cost of treatment of infected individual population. Define the 

objective function as follows,  

)11(,),,()(
0

dttvxLvJ
T

i   

 subject to  

),,,()(0 tvxGtxDq

t

c   

 where T

mmmhhhh IESRIEStx ),,,,,,()(   vector state, ],0[ Tt , L  is Lagrangian and G  is a 

system (9). Using the optimal control strategies )(tvi , the number of exposed and infected 

human and mosquito population are minimized, while minimizing the cost of controls [10]. 

Taking (10) in (11), we find the optimal control 

iv  the solution of  

)12()(min)( i
Vv

i vJvJ
i

   
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 subject to the system (9). To seek the optimal control, we first find a modified objective function  

   )13(,)(),,(),,()( 0
0

dttxDtvxGktvxLvJ q

t

c
T

   

where Tkkkkkkkk ),,,,,,( 7654321  is the Lagrange multiplier which is called again an adjoint 

variable. By considering the variation of equation (13) with respect to the variables vx,  and k , 

we obtain  

    )14(.)( 00
0

dtxDv
v

G
x

x

G
kxDGkv

v

L
x

x

L
vJ q

t

cq

t

c
T





































    

Using permutation of the variation order and the fractional derivative,  (14) becomes  
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Minimization of )(vJ   exists when the coefficients of ux  ,  and k  in (15) are zero. It means 

that  
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Finding solution of controlled malaria model with fractional derivatives, the first relation of the 

system (16) contains LCFD which is  

)17().,,(0 tvxGxDq

t

c   

Then the solution of state variables X  is obtained through LCFD. For 1q , the equation (17) 

reduces in the following standard methods  

)18();,,()()(0 tvxGtx
dt

d
txDt

c   

The component hdt
d S  should be equal to the first relation of the system of the equations (9), 

meaning that  

,)1( 1 hkhhmNhhhh RSISSbvS
dt

d
h    
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Similarly, we can get the others from the relation (18) and we have  
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From the system (16), the second relation contains RCFD which is  
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Then, the solution of adjoint variables k  is obtained through RCFD. For 1q , the equation (19) 

reduces in the following standard methods  
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Therefore, in (20) we have that  
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with simplification the adjoint variables can be written as  
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In (16), the third relation can be written as  
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After the simplification, the controls are obtained as follow  
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The solution of optimal control 

iv  should be ranged in  1,0  because its control component iv  is 

bounded in  1,0 . From (22), we deduce the optimal control 

iv  as follow;  
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the system (1) becomes,  
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To estimate the model parameter, let us consider  

,))(),...,((,))(),...,(( 11

T

Nmmm

T

Nhhh titiititii 
  

where   denotes the perturbation parameter which is caused by some imprecision on measured 
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data. The optimal control problem is formulated as follows.  

Find  

,),,,,,,,,,,,,,( t

mmmmhhhhhh ku   

 solution of  

 25)(min)( uJuJ
u

  

subject to (24) where 

.)(
22



mmhh iiiiuJ   

Using MATLAB, fminicom is used in numerical simulation to identify the parameters in the 

mathematical model are illustrated in Figures 2 and 3. 

 

Fig. 2: Trend of infected humans. It shows that the solutions of the mathematical model 

(23) (Solid lines) are close to observed data (dashed lines) for infected human 

http://dx.doi.org/00.00000/RJESTE.v0.i0


Rwanda Journal of Engineering, Science, Technology and Environment, Volume 4, Issue 1, June 2021  

eISSN: 2617-233X | print ISSN: 2617-2321 

 

 

 

18 

 

https://dx.doi.org/10.4314/rjeste.v4i1.9  

 

Fig. 3: Trend of infected mosquitoes. 

 

It shows that the solutions of the mathematical model (23) (Solid lines) are close to observed 

data (dashed lines) for infected mosquitoes 

Table 1  The estimate for the mathematical model parameters 

Parameter Value Parameter Value Parameter Value 

h  29.3285 B 39.4232 
h  0.9802 

h  5.9195 
h  6.0048   14.0843 

m  17.6182 
m  0.9517 

m  4.9498 

h  0.8636 
h  46.9972 k  26.4648 

  26.4639 
m  0.8227   28.6799 

 

6. Numerical test 

Basing on the value of parameters and without intervention strategies on malaria transmission in 

Rwanda, we get a basic reproduction number 3250.10 R . This result shows that new infection 

population produced by one typical infective is greater than one and the size of infective class is 

increased. Thus, disease will spread in the population of the country. 
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The numerical simulations of optimal control problem are done using MaTlaB packages with 

solving the optimal control problem with cost function (13) subject to (10) basing on different 

cases of control impact. The results of some methods of malaria prevention are illustrated in 

figures where the dashed lines denote the use of controls while solid lines are related to not using 

control strategy. 

The method of malaria prevention using one control like treated bed net )0)(( 1 tv  and consider 

)0)()(( 32  tvtv . The Figure 4 illustrate the results of numerical simulations. 

 

Fig. 4: Impact of using treated bed net on the variation of susceptible, exposed 

human and exposed mosquito. 

It is clear that with the use of ITNs; the calculation shows that the reproduction number  

0769.10 R . This result shows that a typical infected population produced more than one 

infected population. This control is not enough for eradicating the disease due to the persistence 

of infected population. 

The method malaria prevention using two controls such as insecticide treated bed nets )0)(( 1 tv  

together with Artemisinin based Combination Therapiest )0)(( 3 tv  are used and )0)(( 2 tv .  

Numerical simulations results are shown in the Figures 5 and 6. 
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Fig. 5: Impact of using insecticide treated bed nets and Artemisinin based Combination 

Therapies on the variation of susceptible, exposed and infected human. 

 

Fig. 6: Impact of using insecticide treated bed nets and Artemisinin based Combination 

 

Therapies on the variation of recover human, exposed and infected mosquito. 
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Using ITNs and ACTs as controls; the calculation shows that the reproduction number  

0299.10 R . This result shows that a typical infected population produced around one infected 

population. This control can stabilize the disease. 

The method of malaria prevention using three controls such as the combination of insecticide 

treated bed nets )0)(( 1 tv , indoor residual spray )0)(( 2 tv  and Artemisinin based 

Combination Therapies )0)(( 3 tv   as controls are used. We get the Figures 7 and 8 

that illustrated the results of numerical simulations. 

 

Fig. 7: Impact of using ITNs, IRS and ACTs on the variation of susceptible, exposed 

and infected human. 
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Fig. 8: Impact of using ITNs, IRS and ACTs on the variation of mosquitoes. 

 

Using the combination of ITNs, IRS and ACTs as controls; the calculation shows that the 

reproduction number 9699.00 R . This result shows that one infected population produced less 

than one infected population. Thus, the disease will die out in the population. However, it will 

take longer to eradicate it.  

The Figure 4 shows that the highest impact of using ITNs is increasing susceptible humans and 

decreasing exposed humans and mosquitoes. Thus, this control is not enough for eradicating the 

disease due to the persistence of infected population. The results from Figure 5 and Figure 6 

show that the highest impact achieved is lowering exposed and infected population and 

increasing susceptible humans. The results from Figure 7 and 8 show that the highest impact of 

this combination is increasing the susceptible humans and human recovery and lowering the 

infected human and mosquitoes at a good level. Therefore, the Figure 4, Figure 5 with Figure 6 

and Figure 7 with 8 showed that the combination of ITNs, IRS and ACTs is better in prevention 

of malaria. 
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7. Conclusion  

In this work, we did the formulation and analysis of the SEIR-SEI mathematical model with 

seven ordinary differential equations describing the dynamics of malaria transmission in the host 

and vector populations, with incidence forces of infections which are nonlinear for human and 

mosquito populations. The formulation and analysis of the model were concluded by control 

strategies which are ITNs, IRS and ACTs. The existence of DFE and EE, and reproduction 

number 0R  were investigated. The optimal control of this malaria model using the Caputo 

fraction derivative were also considered to find the optimal control parameters which minimize 

the spreading of malaria in Rwanda. The mathematical model including the optimal controls (1) 

was solved and numerical simulation showed that the method of using three controls ITNs, IRS 

and ACTs together in endemic region are more effective to the society in minimizing the number 

of infected human and infected mosquito while the recovery humans are increased in coming 

years. In this perspective, the simulation showed that whenever the method of using the 

combination of three controls, ITNs, IRS and ACTs is well followed and implemented, it can 

effectively minimize the rate of malaria transmission in Rwanda. Finally, the malaria will die out 

in our society. 
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