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Abstract 

 

In this paper, we analyse the effects of peer-educator’s campaign on the dynamics of HIV. We 

present a sex-structured model for heterosexual transmission of HIV/AIDS in a community. The 

model is formulated using integro-differential equations, which help to account for a time delay 

due to incubation period of infective before developing AIDS. The sex-structured HIV/AIDS 

model divides the population into two subpopulations, namely; females and males. Both disease 

Free equilibrium and the endemic equilibrium points for the model are determined and their 

stability are examined. The model is extended to assess the effect of peer- educational campaigns 

in slowing or eradicating the epidemic. The exposure risk of infection after each intervention is 

obtained. Basic reproductive numbers for these models are computed and compared to assess the 

effectiveness of each intervention in a community. The models are numerically analyzed to assess 

the effectiveness of the treatment free measure, namely; peer educational campaign on the 

transmission dynamics of HIV/AIDS using demographic and epidemiological parameters of 

Rwanda. The study demonstrates the use of sex-structured HIV/AIDS models in assessing the 

effectiveness of educational campaigns as a preventive strategy in a heterosexually active 

population 
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1. Introduction 

 

One of the most serious global public health menaces is the human immunodeficiency virus (HIV) 

which emerged since in the 1980s. It is associated with the syndrome of opportunistic infections 

which lead to the late stage HIV disease, known as the acquired immunodeficiency syndrome 

(AIDS). HIV/AIDS dynamics provides a large number of new problems to mathematicians, 

biologists, physicians and epidemiologists because it has many features different from traditional 

infectious diseases and its study has stimulated the recent development of mathematical 

epidemiology. This virus has been killing people for more than 3 decades and will continue doing 

so if no nothing is made towards better condition. According to UNAIDS, the estimated number of 

people living with HIV is 34 million in the world with 2.5 million newly infected and 1.7 million 

AIDS deaths occurring. Of these, 23.5 million live in Sub-Saharan Africa [15].  Since HIV/AIDS 

epidemic first became visible, research on how to prevent transmission has been conducted. 

Mathematical models enable us to make predictions about the qualitative behaviour of disease 
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outbreaks and evaluation of the impact of prevention or intervention strategies. Various 

mathematical models have been proposed to describe the population dynamics of HIV/AIDS, see 

for example [19]. These models tended to focus on the theoretical study of the HIV/AIDS. 

Incorporation of interventions into these models has attracted significant attention in recent years 

[1].  Efforts to respond to the disease surfaced early in Uganda. One prevention effort in Uganda 

was ABC, (Abstinence, Be faithful and Condom use). Abstinence has not borne much fruits 

especially among the young, unmarried people and married couples have failed to be faithful to 

their often-monogamous wives thus making the use of condom the only option essential.  

Numerous experimental and classical studies have been conducted to ascertain the effectiveness of 

condom use as a tool for controlling the spread of HIV. The overall consensus of estimated 

condom effectiveness is between 60%-90% with a mean of 87% (see for instance [11], [16]) 

The most conclusive evidence of condom effectiveness in reducing HIV/AIDS transmission has 

come from studies of serodiscordant couples, and another evidence is the Thailand 100% condom 

policy, which required commercial sex workers and their clients to use condoms every act of 

intercourse, which reduced sexually transmitted infections (STIs) from 410,406 in 1987 to 29,362 

in 1994 with increase in condom use from 14% to 94% [14], [18].  

Different studies presenting models have been done to assess the effects of condom use in 

controlling HIV/AIDS in a community (See for instance [5], [8], [9], [10], [11], [12] just to 

mention a few). Analysis of the dynamics of a two-group deterministic model for assessing the 

impact of condom use on the sexual transmission of HIV/AIDS within homosexual population was 

done by Greenhalgh et al. [5]. Their study show that although condom use reduce the reproduction 

number ( 0R ) to values less than one, it does not guarantee eradication of the disease, controlling 

the initial sizes of the susceptible and infected populations (for  
0 1R  ) can lead to eradication of 

the disease. Moghadas S.M et al. [11] constructed and analyzed a deterministic model for assessing 

the effect of condom use based on efficacy and compliance in controlling HIV/AIDS in a 

community. Their study focused on determining the minimum condom efficacy and compliance 

rates needed for community – wide eradication of HIV/AIDS and in their analysis, they showed 

the product of efficacy and compliance, preventability (  ) has negative effect on the epidemic as 

increasing  , decreases the level of epidemicity. Further they showed that the threshold 

preventability ( c ) increases with increasing average number of HIV- infected patterns of 

susceptible individuals especially in the AIDS stage. 

In this paper, we construct a sex-structured HIV/AIDS model using differential equations which is 

shown to be equivalent to delay differential equations, to analyze the effect of peer-educator’s 

campaign which in this context is used to mean any type of educational campaign which attempts 

to reduce high risk behaviours. 

The mathematical model subdivides the human population under consideration into three classes 

that are, susceptible ( )iS t , Infected ( )iI t  and AIDS cases ( )iA t , where ,i f m= , denotes female 

or male populations respectively. Each class is further subdivided into two compartments, high risk 

and low risk which will be denoted by the subscripts 1 and 2  respectively. The mathematical 

model only considers heterosexual transmission of HIV. This is because HIV transmission 

vertically and through intravenous methods can be totally controlled using Prevention of Mother -

to-Child Transmission (PMCT) and blood screening respectively. The few cases which arise from 

these methods are insignificant in the HIV/AIDS dynamics thus neglected in our mathematical 

model. Sex structured models have been studied by several authors [2], [3], [6], [13]. Hirsch in [6], 
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[7] studied sex structured model for HIV treatment and behavior change, in which the sex 

structured model is reduced to simpler one –sex formulation using a conservation of contacts under 

assumption that each heterosexual contact involves only one male and one female. Related work 

can be found in [13]. They incorporated a parameter which modeled the number of sexual partners 

interacting with each infective. They modeled HIV/AIDS dynamics incorporating discrete time 

delay to capture the long incubation period. In their work, they did not consider transmission by 

AIDS cases. To the best of our knowledge, no work has been done on developing mathematical 

models for assessing the effect of peer-educator’s campaign in controlling HIV/AIDS in the 

context of sex-structured incorporating discrete time delay due to the long incubation period of the 

disease, especially with the use of anti-retroviral drugs ( ARVs)  which prolongs the survival time 

of HIV- infected individual, but not lead to viral eradication within infected individuals hence do 

not cure and over time causes the pool of potential transmitters to grow. In this study, we will also 

incorporate transmission by AIDS patients who are currently not easily identified because of the 

use of ARVs. Unlike most of the developed HIV/AIDS models, we consider male and female 

populations interaction, and use a constant to model the number of sexual exposures instead of 

number of sexual patterns, which is a more realistic approach in the modeling of HIV/AIDS 

preventive and therapeutic strategies because: 

(a) Some intervention strategies depend on sex such as vaginal microbicides and condoms. In 

case of condoms, there are male and female condoms, 

(b) HIV transmission from male to female and female to male are different, the probability of 

transmission from male to female is high due to the large mucosal structure of the vagina 

and the high concentration of the virus in semen [13], 

(c) Number of sexual exposures is a better measure because it takes into account sexual 

exposures with non-sexual patterns, e.g. having forced sex through rape, and the fact that 

the probability of infection depends on the number of sexual acts and not only the number 

of sexual patterns, 

(d) Number of sexual exposures for males and females are usually different in a community. 

We begin by developing a general sex-structured population with no peer-education. Thresholds 

and equilibrium are determined and stabilities examined. We extend the model to incorporate peer 

education campaign. The effect of  0R  is assessed when peer education is introduced. The model is 

numerically analysed to assess the effectiveness of using public health education in a community 

using demographic and epidemiological parameters of Rwanda. 

 

This paper is organized as follows. The section 2 deals with setting on a sex-structured HIV/AIDS 

mathematical model. The positivity of solutions and the stability of disease-free equilibrium and 

endemic equilibrium are presented in this section. The peer- educators’ campaign mathematical 

model equations are presented in the section 3. This section focuses on the stability of equilibrium 

points and basic reproduction number for this model. The situation in Rwanda related 

mathematical model of previous section is trailed in section 4 where the numerical simulations are 

done.  The summary and concluding remarks are presented in section 5. 
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2. Mathematical Model Formulation 

 

We begin by formulating and studying a sex-structured HIV/AIDS model with any other 

intervention. The model divides the population into classes or compartments which are: 

(a) Susceptible ( )iS t ,  containing individuals in sex group i  who have had no contact with the 

virus, 

(b) Infected ( )iI t , individuals in sex group i who are infected with the virus but have not yet 

developed AIDS symptoms  

(c) AIDS cases ( )iA t ,  individuals who have developed fully symptomatic AIDs and exhibit 

specific clinical features 

The subscript ,i f m=  denotes female and male respectively. 

The variables and parameters are defined as follows:  

(i) ( )iS t , ( )iI t  , ( )iA t , ,i f m=  Susceptible, Infected and AIDS cases 

(ii)   is the constant sexual maturity rate 

(iii)  is the natural death rate 

(iv)   is the accelerated death rate due to HIV infection or AIDS case 

(v)   is the constant incubation period 

(vi) 
i , ,i f m= , is the per exposure risk of infecting the other pattern when no 

protection of any kind is used  

(vii) 
ic , ,i f m= , denotes the constant number of sexual exposures per year 

(viii) m  is the per capita emigration rate 

(ix)   is the proportion of children who will mature to be females 

(x) ( )1 −  the complimentary proportion of children who will mature to be males 

(xi)   is the sexual contact rate of a susceptible with an AIDS case 

(xii) ( ) ( ) ( ) ( )i i i iN t S t I t A t= + +  where ,i f m=  proportion of sexual interacting 

males and females 

The parameters   in (xi) models the relative infectiousness of individuals infected with HIV and 

showing clinical symptoms of AIDS. This is because individuals in AIDS stage of infection are 

more infectious than individuals who have not progressed to AIDS stage. This is so because people 

in AIDS stage have a higher viral load compared with their counterparts and there is a positive 

correlation between viral load and infectiousness. 

In order to have explicit dynamical relations we make the following model assumptions: 

(a) The model assumes that vertical and intravenous transmission of HIV is minimal and can 

be ignored and only HIV transmission through sexual intercourse is considered. 

(b) Susceptible and Infected are removed at a constant natural death rate 

(c) Constant emigration rate m is positive for sexually mature susceptible and infective 

(d) The model assumes a constant incubation period 0   
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(e) The model assumes homogeneous mixing, thus it assumes standard incidence of the form 

( )
( ) ( )( )

( )

( )
:

j i i j jn

j i

j

c S t n I t n A t n
S t n

N t n

 


− − + −
− =

−
, 

where 0,n =  and 
j ic , ,i f m= ,  i j   are the average number of adequate contacts of 

one infective individual per unit time 

(f) AIDS cases are not easily recognized in the population because of the use of  Highly 

Active Antiretroviral Treatment (HAARTs) and thus contribute in the spread of the 

epidemic 

The assumptions made above leads to the following differential equations that describe the 

dynamics of the epidemic 

                

( ) ( )( )
( )

( )

( ) ( )( )
( )

( ) 

( ) ( )( )
( )

( )

'

'
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( ) exp ( ) ,

( )
( ) ( )

i j j

i j i i

j

t
i j j
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i j j

i j i i

j

S t I t A t
S t c m S t

N t

S u I u A u
I t c m t u du

N u

S t I t A t
A t c k A t

N t




  


 

   
  



−

+
=  − − +

+
= − + −

− − + −
= − +

−

                     (1) 

where ,i f m= , i j . In order to analyze the AIDS model in equations (1), the second integral 

equation of (1) should be written in an equivalent delay differential equation.   

 Thus the model becomes  

            

( ) ( )( )
( )

( )

( ) ( )( )
( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

'

'

'

( )
( ) ( ),

( ) ( )
( ) ( )

( )
( ) ( ) (2)

i j j

i j i i

j

i j j i j j

i j i j i i

j j

i j j

i j i i

j

S t I t A t
S t c m S t

N t

S t I t A t S t I t A t
I t c c k m I t

N t N t

S t I t A t
A t c k A t

N t
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  



   
  



+
=  − − +

+ − − + −
= − − +

−

− − + −
= − +

−

,  

where  
( )m

k e
 − +

=  is the probability that an infected individual will survive until he or she 

develops AIDS after time    (incubation period) and the parameters , , , , ,i ic m    and 

; ,i f m + =  .  System (2) represents the sexually mature age group between 14 and 59 years 

and it is this age that is responsible for the spread of HIV/AIDS through sexual intercourse. The 

model (2) has initial conditions at time 0t =  given by: 

             ( ) ( ) ( ) ( )  ,0 ,00, 0 ,0i i i iS s S s I s I s s =  =    −  

             with  ( ) ( ) ( )0 0, 0 0, 0 0i i iS I A    where    ,i f m=  

Based on biological considerations, the model (2) will be studied in the following region 
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( ) 

( ) 

( )
( ) ( )

0
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0
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, , , | 0, 0, 0, ( ) 0

, , , | 0, 0, 0, ( ) 0;

i i i i i i

i i i i i i

i i i i i i

S I A N S I A N t
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S I A N S I A N t N
m
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 
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  

+

+

=    

=    

   
=       

+ +  

 

where  ,i f m=  is positively invariant with respect to the model system (2) 

 

 

2.1. Positivity and Boundedness of solutions 

 

Model (2) describes human population dynamics and therefore it is important to prove that all the 

state variables ( ( ), ( ),S t I t and ( )A t ) are non-negative for all time t . We show that all solutions 

of the system (2) with positive initial data will remain positive for all 0t   and are bounded in R 

Theorem 2.1. 

 

Let the initial data be 

( ) ( ) ( ) ( ),0 ,00, 0, [ ,0)i i i iS s S s I s I s s =  =    − with  

( ) ( ) ( ),0 ,0 ,00 0, 0 0, 0 0i i iS I A   . Then the solutions ( ) ( ),i iS t I t  and ( )iA t  of the system 

(2) are positive for all 0t  . For the model system (2), the region R is positively invariant and all 

solutions starting in D-0 or D+0 approach, enter or stay in D+0 

Proof 

Under the given initial conditions, it is easy to prove that the components of solutions of the 

system (2), ( ) ; ,i iS S t i f m= =  is positive for 0t  . In this case, the first part of system (2) can be 

written as 

( ) ( )( )
( )

( )'
( )

( ) ( )
i j j

i j i i

j

S t I t A t
S t c m S t

N t


 

+
= − − + .                                                         (3) 

If not, we assume a contradiction that ( ) ; ,iS t i f m= , is not positive for all 0t  . By continuity 

of  ( )iS t and the fact that ( ),0 0 0iS   , then ; ( ) 0iS t   implies that there exist an initial time 
0T  

such that ( ) ( )'

0 00, 0i iS T S T=   and ( ) 0iS t   for 00 t T   

Now integrating (3) from 0 to 0T , we get 

                                          (4) 

                                                              

This is a contradiction and 

hence ( )iS t is positive for all 

0t   

Similarly, to show that ( ) 0; ,iI t i f m = , we assume that there exist a first time T , such that 

( ) 0iI T =  and ( )' 0iI T   and ( ) 0iI t   for all 0 t T  . In this case, it follows from system (2) 

that for T   

.0)(
)(

)()(
exp)(

0

0
0, 
























+−

+
−  dtm

tN

tAtI
cStS

j

jj

ij

T

ii 



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( ) ( )( )
( )

( ) ( )( )
( )

( )'
( ) ( )

( ) ( ) 0
i j j i j j

i j i j i i

j j

S t I t A t S t I t A t
I t c c k m I t

N t N t

    
  



+ − − + −
= − − + 

−

which is a contradiction, thus ( )iI t  remain positive for all 0t   

Similarly, using the same argument, we can show that ( )iA t remain positive for all 0t  . Thus, 

we conclude that solutions of the system (2) remain positive for all 0t  . 

Since ( )T iN t A , then ( ) ( )'( ) ( ) ( )T T TN t N t m N t   − +    − +  implies that ( )TN t is 

bounded and all solutions starting in the region D+0 or D+0 approach, enter or stay in R. 

 

2.2. Disease-free state and its stability 

 

We analyze the system (2) by finding its equilibriums and studying their linear stability. The 

disease-free equilibrium is given by 

( )
( )0 0 0 0 0 0

0

1
, , , , , , ,0,0,0,0f m f m f mE S S I I A A

m m



 

 − 
= =  

+ + 
. 

We compute the basic reproduction number, following the next generation operator approach by 

Dickmann et al. [3] , van Deen Driesche and Watmough [17]  approaches in which they define the 

reproduction number 
0R  as the spectral radius of the next generation operator. Using the given 

approach, the basic reproduction number 
0R is defined by  

                                          ( )1

0R FV −= ,                                                                             (5) 

where F is non-negative matrix, V is a non-singular M matrix− and 1FV − is the next-generation 

matrix of the model and ( )A  denotes the spectral radius of matrix A . For the model system (2) 

we obtain 

( )

( )

0

0

0

0

1 0
0

;
1

0
0

m f f

m

f m m

f

c k S m

S
F V

c k S

mS
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



 − + 
   
   = =   −
   
  +  

 and 1

1
0

1
0

m

V

m





−

 
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 

=  
 
 
 + 

 (6) 

And the basic reproduction number is 

                                     
( )

( )
0 0 0

1f m f m

f m

c c k
R R R

m

 



−
= =

+
                                                      (7) 

where 
( )

( )
0

1f f

f

c k
R

m





−
=

+
   and 

( )

( )
0

1m m

m

c k
R

m





−
=

+
 are females and males contribution to the basic 

reproduction number, 0R  respectively. In this respect, we can define 0R as the geometric mean of 

0 fR  and 0mR  
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2.3. Global stability of disease-free equilibrium 

 

Theorem 2.2.   

If 
0 1R  , the disease-free equilibrium is globally asymptotically stable and if 

0 1R  , this 

equilibrium is unstable. 

Proof 

We first rewrite ( )iI t  and ( )mI t  from system (1) as 

                    
( )

( )( ) 
( ) ( ) ( )

( ) exp
( )

t
f i m

i m f

mt

N u I u I u
I t c m t u du

N u
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 
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             and 
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−
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Where ( ) ( )( ) ( )f f f fN u S u I u A u= + +  and  ( ) ( ) ( )( )m m m mN u S u I u A u= + +  Using 

substitution x t u= − , taking the lim sup of both sides of equation (8) and applying the fact 

that limsup limsupfn fn  , we get 
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                                                                                                                                                      (10) 

(From (9) and making substitution x t u= − ) 
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( )( ) ( )
( ) 

( )( ) ( )
( ) 

( )( ) ( )( )
( )( )

1 ( ) ( )
limsup limsup ( )exp

( )

1 ( ) ( )
limsup limsup ( ) exp

( )

1 1
limsup (

m
t

m f m m

f m i
t tft

m
t

m f f m m m

i
t tf t

m m

m f f m

i
t

c e N t x I t x
c I t x m x dx

m N t x

c c e N t I t
I t m x dx

m N t

c c e e
I t

m m

 



 



   


 



 




 

 

− +

→ →
−

− +

→ →
−

− + − +

→

− − − −
 − − +

+ −

− −
 − +

+

− −


+ +





2

0) limsup ( )i
t

R I t
→

=

 

                                                                                                                                                     (11) 

Thus if

( )( ) ( )( )
( )( )

2

0

1 1
1

m m

m f f mc c e e
R

m m

   
 

 

− + − +
− −

= 
+ +

, we have a strict inequality  

limsup ( ) limsup ( )m m
t t

I t I t
→ →

 ; unless  limsup ( ) 0m
t

I t
→

= . 

From the former case, we have 2

0limsup ( ) limsup ( )i i
t t

I t R I t
→ →

  and from the latter case, we have 

2

0limsup ( ) limsup ( )m m
t t

I t R I t
→ →

  for 
0 1R   which are strict inequalities and contradictions, we 

conclude that the disease-free equilibrium is globally asymptotically stable if 
0 1R   

 

2.4. Endemic equilibrium and its stability 

 

The endemic equilibrium for the system (2) ( ), , , , ,e e e e e e

e f m f m f mE S S I I A A=  is 

( )( )
( )( )

( )( )
( )( )

( )

( )( )

( )

( )( )2 2

0 0

1 1
, , , , ,

1 11 1

e e e e
f m f m f m f me e

f m

m c k I m c k I m kI m kI
I I

k v k vR m R m

     

  

 + + − + + − + +
 
 − + − +− + − +
 

      (12) 

where, 

( )( )( ) ( )( )
( ) ( )( ) ( )( )( ) ( )( )( )

2

2

1 1

1 1 2 1

me

f

m f m f f m m f f m f m

k m m R
I

m c k m c k m c k c m c c k

  

          

 − + + −
=

+ − + + + + + − + + + −

( )( )( )( ) ( )( )
( ) ( )( ) ( )( )( ) ( )( )( )

2

2

1 1 1

1 1 2 1

me

m

m f f m m f f m f m f m

k m m R
I

m c k m c k m c k c m c c k

  

          

 − − + + −
=

+ − + + + + + − + + + −

since the model (2) monitors human population, the endemic equilibrium point ( )eE should always 

be positive. We can conclude from expressions for 
e

fI  and e

mI  that the endemic equilibrium is 

positive when 0 1R  . This result can be summarized in the following theorem: 

Theorem 2. 3.  

The endemic equilibrium eE  exists and is positive if 0 1R   
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3. Peer- Educators’ Campaign 

 

We analyze the effects of Peer-educators campaign as a single strategy for HIV/AIDS prevention. 

We define peer-education campaign as the counselling of individuals to engage in safe sex or low 

risk sexual behaviours. 

High risk behavior includes sex after getting “high”, having many sexual patterns, having 

unprotected sexual relations, polygamy, having sex with commercial sex-workers just to mention 

but a few. Low risk behavior includes any non-risk behavior e. g delayed sexual; debut, being 

faithful with one partner, always using a condom among others. It is believed that the most 

effective counselling session is between a trained person and a client of almost the same age. This 

call for the need to have peer-counsellors instead of public health campaign 

In this context, the following additional parameters are used and assumptions are made to model 

the effects of peer-education campaign 

 

3.1. Assumptions and parameters 

 

(i) the model in equation (1) is modified to have high and low risk susceptible, high and low risk 

infected and high and low risk AIDS cases denoted 
1iS  and 

2iS  ; 
1iI  and 

2iI and 
1iA  and 

2iA  

respectively, where ,i f m=  and the subscript 1, 2  denote high-risk and low-risk sexual activities 

respectively. 

(ii) Individuals in category 
1iS are educated and transfer to low-risk susceptible class 

2iS  at a rate  

i . 

(iii) Upon becoming infected with HIV, a proportion 
i of educated individuals enter 

2iI  and the 

complementary proportion ( )1 i− enter the high-risk class 1iI  

(iv) Individuals in 1iA  move to the low risk AIDS classes 2iA  at a constant rate of ia due to peer-

educational campaign. 

(v) High risk infected individuals progress to AIDS stage at a rate ( )j i ikS t  −  and low risk 

infected individuals progress to AIDS stage at a rate ( ) ( )1j i ikS t  − − . 

With the above additional parameters and assumptions, the model in equation (1) becomes 

https://dx.doi.org/10.4314/rjeste.v2i1.8
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( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( ) 

( ) ( )( )
( )

( ) 

1 1 1'

1 1

1

2 2 2'

2 2

2

1 1 1

1

1

2 2 2

2

2

( )
( ) ( ),

( )
( ) ( )

( )
( ) exp ( ) ,

( )
( ) exp ( )

i j j

i j i f i

j

i j j

i j i f i

j

i j j

i j i

jt

i j j

i j i

jt

i

S t I t A t
S t c m S t

N t

S t I t A t
S t c m S t

N t

S u I u A u
I t c m t u du

N u

S u I u A u
I t c m t u du

N u

A










   


   


 


 

−

−

+
=  − − + +

+
=  − − + +

+
= − + −

+
= − + −





( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

1 1 1'

1 1

1

2 2 2'

2 1 2

2

( )
( ) ( )

( )
( ) ( ) ( )

i j j

f f j i f i

j

i j j

i j i f f i

j

S t I t A t
t a c k a v A t

N t

S t I t A t
A t c k a A t v A t

N t

   
  



   
 



− − + −
= − + +

−

− − + −
= + − +

−

    (13) 

where , ,i f m i j=  . In order to analyze the AIDS model in equation (1), the third and fourth 

parts of (13) should be written in an equivalent delay differential equation, thus the model becomes 

( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( ) ( )( )
( )

( )

( ) ( )

1 1 1'

1 1

1

2 2 2'

2 2

2

1 1 1 1 1 1'

1 1

1 1

2 2 2'

2

( )
( ) ( ),

( )
( ) ( )

( ) ( )
( ) ( )

(
( )

i j j

i j i f i

j

i j j

i j i f i

j

i j j i j j

i j i j i i

j j

i j j

i j i

S t I t A t
S t c m S t

N t

S t I t A t
S t c m S t

N t

S t I t A t S t I t A t
I t c c k m I t

N t N t

S t I t A t
I t c


   


   

    
  






+
=  − − + +

+
=  − − + +

+ − − + −
= − − +

−

+
=

( )
( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

2 2 2

2

2 2

1 1 1'

1 1

1

2 2 2'

2 1 2

2

) ( )
( )

( )
( ) ( )

( )
( ) ( ) ( )

i j j

j i i

j j

i j j

i f f j i f i

j

i j j

i j i f f i

j

S t I t A t
c k m I t

N t N t

S t I t A t
A t a c k a v A t

N t

S t I t A t
A t c k a A t v A t

N t

   
 



   
  



   
 



− − + −
− − +

−

− − + −
= − + +

−

− − + −
= + − +

−

        (14)                                                                                                                                           

where ( ) expk m = − +  is the probability that an infected individual will survive until he or 

she develops AIDS after time    (incubation period). 
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3.2. Equilibrium points and stability 

 

The system (14) has the disease-free equilibrium 

( )
( )0 0 0 0 0 0

0 1 1 1 1 1 1

1
, , , , , , ,0,0,0,0f m f m f mE S S I I A A

m m



 

 − 
= =  

+ + 
 and the endemic equilibrium point 

(EEP) of this model will be 

( )

( ) ( )

( )( )
( ) ( )

( )( )

( )( )
( )( )

( )( )( )

( )( )

1 1 1 1 1 1, , , , ,

1 1 11
( , , , ,

1 1 1
, )

e e e e e e

e f m f m f m

e e

f m f f

e e e e
f m f f f m f f

e e
f f f f m m m m m f

e e

f f m f f f

E S S I I A A

k k

v v m v m v

k b a k b a

v v v v

    

             

       

         

=

−  −  − −
=

+ + + + + + + + + + + + + +

− +  − + − 

+ + + + + + + + + +

 

where 
( )1 1

1

e e

j i j je

j e

j

c I A

N




+
=  

 

3.3. The basic reproduction number 

 

In obtaining the basic reproduction number 
1fR  for the system (14), we consider a single newly 

infected high risk male entering the disease-free population at equilibrium. The individual is still 

present and infectious at t  with probability ( ) exp m t− + and in this case infects females at 

rate 

0

1

0

1

f

f m f

m

S
c

S
  . 

Hence, the expected number of females infected by this high risk male is approximately 

( )

( )
( )

0 0

1 1

1 0 0

1 10

1
f m t f m f f

f f m f

m m

S c S
R c e dt k

S m S


  

 


− +
= = −

+                                                                 (15) 

Similarly, the expected number of males infected by each of these females is approximately 

( )

( )
( )

00
11

1 0 0

1 10

1
m t m f m mm

m m f m

f f

c SS
R c e dt k

S m S


  

 


− +
= = −

+ .                                                               (16) 

Considering the high risk female AIDS case entering the disease-free population at equilibrium in 

a similar fashion we have, 

( )( ) ( ) ( )( )
( )

00
11

2 0 0
10 1

1
1 f

f m f f m f fa v tf

f f m f f m f

m f m

a c kSS
R a c k e dt

S v S


   

   
 


− + +

+ −
= + − =

+ +
 .          (17) 

In the same way we find                   
( )( )

( )

0

1

2 0

1

1m f m m f m m

m

m f

a c kS
R

v S

   

 

+ −
=

+ +
 

The average expected number of secondary cases per generation produced by each infectious male 

is   1 1 2 1 1 2 2 2f m f m f m f mR R R R R R R R+ + + . 
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 Interpreting generation as alternating male and female cases and the expected average number of 

secondary cases per generation produced by each infectious female              

                        
1 1 2 1 1 2 2 2f m f m f m f mR R R R R R R R+ + + , 

the reproduction number 
0R for the model (14) can be written as 

( )

( )

( )

( )

( )( )
( )

( )( )
( )

( )( ) ( )( )

( )( )

1

22

2

0
2

1 11 1

1 1

m f f f f f m m m mf m

mf

f m f m

f f f f m m m m

f m

b a b ak k k

v vvm
R c c

k b a b a

v v

      

   
 

   

   

   − + − +− −   + + +
  + + + + ++

   =
  

− + − +  
   + + + +

  

 

                                                                                                                                                        (18)   

3.4. Effects of Peer- Educational campaign on  0R   

 

We use the computed 0R to estimate the effects of peer-educational campaign in controlling 

HIV/AIDS in a community for the following cases, 

(i) Case 1: When there is completely no educational campaigns, 1i i ia b = = =   and   0i =  . for 

this case we have 

( )

( )

( )

( ) ( )( )

2 2

0 1 2, , 1

1 1 1 1
lim

i i i
f m f m

a b

k k k k
R R c c

v v v vm
 

     →

 − −  
= = + + +   + + + + ++   

 ,             (19) 

where  1R  is the reproductive number when there is no educational campaign. 

We have that  1 0R R  suggesting that lack of educational campaigns in communities with 

HIV/AIDS, results in an increase in the number of secondary infections. 

(ii) Case  2: When there is effective educational campaigns, 0i i ia b = = =    and  0i  . For this 

case we shall have  0 1
, , 0
lim 0

i i ia b
R R

 →
= = .                             

We have the effective peer-group educational campaigns in a community, the number of secondary 

infections is reduced to zero thus the effective educational campaigns help slow or eradicate the 

epidemic if properly implemented in communities affected by the epidemic  

 

4. Situation in Rwanda 

 

4.1. Evolution of HIV/AIDS in Rwanda 

 

The first cases of HIV in Rwanda have been reported in 1980. In this year, 4257 cases have been 

recorded. Since then, the evolution of HIV increased like in other developing countries. The 

following figure illustrates the evolution of HIV in Rwanda. The highest rate of HIV was reported 

in 1999.  
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Figure 1: HIV evolution in Rwanda 1980-2014 

Considering   the number of infectious for each of the mentioned year, and considering the 

transition matrix for both male and female, the basic reproduction number is estimated to 3.92 for 

male and 3.25 for female.  

In 2010,   a random sample of 13,522 individuals were tested for HIV in the whole country; the 

following table summarizes the information about that survey  

 

Table 2: Factors for spreading HIV in Rwanda 

 

Back Ground Characteristics    Number (%)                 HIV Status 

PROVINCE 

North 

South 

East 

West 

Kigali City 

Total 

 

2069 

3186 

3273 

2983 

2011 

13522 

  Positive     Negative 

66(3.19%) 

99(3.11%) 

93(2.84%) 

110(3.69%) 

61(3.03%) 

429(3.17%) 

2003(96.81%) 

3087(96.89%) 

3180(97.16%) 

2873(96.31%) 

1950(96.97%) 

13093(96.83%) 

PLACE OF RESIDENCE 

Urban 

Rural 

Total 

 

2482 

11040 

13522 

 

357 (14.38%) 

72 (0.01%) 

429 (3.17%) 

 

  2125 (85.62%) 

10968 (99.99%) 

13093 (96.83%) 
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AGE GROUP 

15-19 years 

20-24 years 

25-29 years 

30-34 years 

35-39 years 

40-44 years 

45-49 years 

50-54 years 

55-59 years 

Total 

 

3065 

2463 

2237 

1562 

1041 

933 

869 

806 

545 

13522 

 

90(2.93% 

91(3.70% 

59 (2.64%) 

48(3.08%) 

30(2.88%) 

29(3.11%) 

35(4.03%) 

31(3.85%) 

16(2.94%) 

429(3.17) 

 

2975(97.06% 

237296.3% 

2178(97.36%) 

1514(96.92%) 

1011(97.12%) 

904(96.89%) 

834(95.97%) 

775(96.15%) 

529(97.06%) 

13093(96.83%) 

EDUCATION 

No education 

Primary 

Secondary 

Higher 

Total 

 

1734 

8777 

2648 

363 

13522 

 

47(2.71% 

303(3.45% 

61(14.2%) 

18(4.2%) 

429 

 

1687(97.29%) 

8474(64.7%) 

2587(19.8%) 

345(2.6%) 

13093 

GENDER 

Male 

Female 

Total 

 

11158 

2364 

13522 

 

359(3.22%) 

70(2.96%) 

429(3.17%) 

 

10799(96.78%) 

2294(87.04%) 

13093(96.83%) 

 

Among these factors, only the education factor was significant. That is why a great attention has 

been taken to this factor in order to reduce the speed of spreading HIV in Rwanda. First of all 

“clubs against HIV” have been organized both in schools and out of the schools for youth 

sensitization.  23 Youth-friend centers are operational. The main objective of these clubs is to 

sensitize the youth to the danger of this endemic. To assess the results obtained from this policy, A 

voluntary counseling and testing has been conducted in 2012 and 3,041,056 people were tested for 

HIV status and 98% knew their status. The percentage of HIV positive was found to be around 3%. 

The stability of this rate is due to the extra effort made to sensitize the population about this 

problem. Now, a new policy is in experimentation where once a week people in the village are 

meeting in the so called “evening of parents”. One of the topics to discuss in these meetings is the 

transmission of HIV this will help people especially in rural area and for non educated people to 

know about this endemic. The achievement of this policy will constitute the basis of peer-

education campaign against the transmission of HIV. The big challenge of this policy is that the 

men don’t want to attend these meetings. 

 

4.2. Numerical Simulation 

 

The parameters that we use for simulations of the models have been obtained from Treatment and 

Research AIDS Center (TRAC) net and Rwanda Biomedical center (RBC), some of them are 

assumed and others estimated. 
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Table 2. Parameters for the sex- structured HIV/AIDS model. 

 

Parameter Symbol Value 

Birth rate into sexually mature age group   0.03 

Proportion of mature female   0.52 

Adult natural death   0.4 

AIDS- related death   0.33 

Emigration rate m  0.2 

Average incubation period   8 

Probability of transmission of HIV when there is no 

protection 
( ),f m   ( )0.49,0.52  

Number of sexual exposures ( ),f mc c  (20,29) 

The basic reproduction number ( )0 , ,f mR R R  ( )3.92, 3.65, 4.21  

the sexual contact rate of a susceptible with an AIDS 

case 

  0,03 

Proportion of educated people ( ),f m   ( )0.5, 0.5  

Rate of individual in Si1who move to the low risk 

class Si2 due to the peer- education campaign 
( ),f m   ( )0.4,0.3  

Rate of individual in Ai1who move to the low risk 

class Ai2 due to the peer- education campaign 
( ),f ma a  ( )0.3,0.2  

 

Taking S=0.35, I=0.10 and A=0.05 as initial data the figure2 represents the sex structured 

dynamics of HIV/AIDS in a population without any intervention, using parameters defined in the 

table 2 

https://dx.doi.org/10.4314/rjeste.v2i1.8
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Figure2. General dynamics of HIV/AIDS without any intervention for female (a) and male (b). 

The solid line shows susceptible (S), the dashed line illustrates infected (I) and the dashdot line 

represents AIDS cases (A) respectively.. 

 

The figure 3 and figure 4 represent the simulation of the dynamics of HIV/AIDS with the effect of 

peer-education campaign, assuming the following initial data 

1 1 2 2 1 1

2 2 1 1 2 2

0.50, 0.35, 0.20

0.15, 0.10, 0.05

f m f m f m

f m f m f m

S S S S I I

I I A A A A

= = = = = =

= = = = = =
 

and the parameters defined in the table 2. 
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Figure 3. General dynamics of low risk of HIV/AIDS with the peer-education campaign for female 

(a) and male (b). The solid line shows susceptible (S), the dashed line illustrates infected (I) and 

the dashdot line represents AIDS cases (A) respectively.  

 
Figure 4. General dynamics of low risk of HIV/AIDS with the peer-education campaign for female 

(a) and male (b). The solid line shows susceptible (S), the dashed line illustrates infected (I) and 

the dashdot line represents AIDS cases (A) respectively 

 

 

5. Conclusion 

 

A sex-structured model for heterosexual transmission of HIV/AIDS in a community is developed 

in this paper. We use the model to assess the peer-education campaign as a single strategy 

approach in HIV prevention. We begin by analyzing the sex-structured model by determining its 

equilibrium, solvability, thresholds and stability. The model is extended to incorporate the effects 

of peer-education campaign (14). The basic reproduction number obtained (18) is a function of the 

parameters of peer-education campaign and when there is effective educational campaigns, the 

parameters 0i i ia b = = =    and 0i  . For this case we shall have 0 1
, , 0
lim 0

i i ia b
R R

 →
= =  and the 

effective peer-group educational campaigns in a community, the number of secondary infections is 

reduced to zero (figure 3 and 4) and the cases of new AIDS cases will also reduce to zero. Thus the 

effective educational campaigns help slow or eradicate the epidemic if properly implemented in 

communities. For Rwanda, to continue supporting Clubs against HIV and any other form of 

campaign that can help people to better know the methods of transmission of HIV 
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