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Reproduction and sexual dimorphism in the montane viviparous lizard, 
Pseudocordylus capensis (Sauria: CordyJidae) 
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Pseudocordylus capensis, a melanistic lizard, is regarded as a basal species in the phylogeny of the family 
Cordylidae and is endemic to the Cape Fold Mountains. Data for this study were obtained from measurements 
and dissections of museum specimens (N = 68). Sexual maturity in both sexes is attained at around 80--90 mm 
snout-vent length (SVL). Body sizes (SVL) differed significantly between sexes, the mean SVL of adult males 
being 92.3 mm (range 78.4--104.2) and that of adult females 95.9 mm (range 83.1-108.5). Although the rate of 
increase in head measurements did not differ significantly between sexes, analysis of covariance (ANCOVA) 
indicated that head dimensions are marginally, but significantly, larger in males than in females of equivalent 
SVL. The slight female-plus dimorphism in SVL and male-plus dimorphism in head dimensions is suggested to 
be related to life in the cold montane environment, and to differential growth to increase female reproductive fit
ness, rather than to be the result of sexual selection. Males exhibit testicular recrudescence during autumn, with 
full spermiogenesis during winter maintained through spring (October). The testicular cycle shows characteris
tics of both 'post-nuptial' and 'pre-nuptial' cycles previously described in Cordylidae lizards. Small testicular vol
ume, associated with testicular regression. was recorded during summer (November/December). Spermatozoa 
were present in the epididymis from May through to October. In synchrony with the spermatogenic cycle, the 
onset of vitellogenesis in females starts in autumn, culminating in ovulation during spring (September-Dctober). 
Females are gravid during summer and give birth to 2-3 young in late summer (December-January). The timing 
of events during the reproductive cycle of females corresponds to the autumn cycles reported for all other 
female Cordylidae lizards studied to date, therefore pointing to strong conservatism regarding the timing of 
female reproductive cycles in this lizard family. Fatbody size in individuals of both sexes is largest during late 
summer and autumn, and progressively declines during winter to reach smallest sizes during the summer 
months. The fact that this phylogenetically basal species exhibits well-synchronised male and female autumn 
gonadal cycles adds to the data that suggest these reproductive traits evolved during the early divergence from 
the Cordyliformes ancestor and that the evolution of viviparity may be linked to this event or followed soon after. 

.. To whom correspondence should be addressed 

Detailed information on the biology of southern African liz
ard species is restricted to only a few of the approximately 
480 species known from the region. The bulk of the informa
tion regarding reproductive cycles comes from the family 
Cordylidae (see van Wyk & Mouton 1996 for review). The 
family Cordylidae. including four genera (Chamaesaura, 
Pseudocordy/us, P/atysaurus & Cordy/us) is endemic to 
southern Africa (Branch 1988; Lang 1991) and believed to 
have originated in the southern Cape region (Mouton & van 
Wyk 1997). 

Apart from members of the genus P/atysaurus, all other 
Cordylidae lizards are known to be viviparous (Branch 1988; 
van Wyk & Mouton 1996). Past studies have shown that 
female reproductive cycles in members of the Cordylidae, 
oviparous and viviparous, all exhibit the same basic pattern of 
autumn/winter vitellogenic activity, with winter/spring ovula
tion and gestation in the following late summer or autumn 
(van Wyk 1989. 1991; Flemming & van Wyk 1992; Flem
ming 1993a; van Wyk & Mouton 1996). 

A clear dichotomy, however, "has emerged in the timing of 
testicular cycles in Cordylidae lizards (van Wyk 1990; Flem
ming 1993b.c; van Wyk 1995; van Wyk & Mouton 1996). In 
one group, peak spennatogenetic activity takes place during 
late autumn through spring, prior to mating activity in spring 
(pre-nuptial cycle). Sperm availability decreases as testicular 
regression sets in during summer, since no meaningful spenn 
storage in the epididymis or vas deferens occurs. In the other 
group, spermatogenesis starts much earlier, in summer, after a 

spring/summer mating period, with the peak in sperm iation in 
autumn, followed by testicular regression during winter. In 
contrast to lizards exhibiting pre-nuptial cycles, sperm is 
stored for extensive periods in the epididymis and vas defer
ens until mating in late winter or spring through early summer 
(post-nuptial cycle). Although the definition of a post-nuptial 
cycle in males accentuates the time when mating occurs 
(Licht 1984), we shift the emphasis from time of mating to 
the phenomenon of sperm storage while the testes are in a 
state of regression (see Bradshaw 1986; van Wyk 1995). It is 
possible that early matings could occur in autumn with 
females also storing sperm, which then strictly speaking 
would make it a pre-nuptial phenomenon rather than post
nuptial. 

Associated with the variation in male testicular cycles goes 
variation in synchronization among male and female repro
ductive (gonadal) cycles. The autumn breeding phenomenon 
and the presence of asynchronous reproductive activity in 
males and females has now been reported for several lizard 
species inhabiting temperate habitats in Mexico, Argentina, 
New Zealand and South Africa (see Ramirez-Pinilla 1991. 
1994; Guillette & Mendes-de la Cruz 1993; Cree & Guillette 
1995; van Wyk 1995; van Wyk& Mouton 1996 for reviews). 
In several of these studies the phenomenon of asynchronous 
reproductive activity in males and females has been reported 
in montane species and Guillette & Mendez-de la Cruz 
(1993) suggested that autumn reproductive activity may be 
associated with the evolution of viviparity in certain squa
mate genera. 
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Sexual dimorphism, including body size, body proportions, 
and/or coiouration, is another phenomenon/trait that varies 
interspecifically in the Cordylidae (van Wyk 1992; Mouton & 
van Wyk 1993; Cordes, Mouton & van Wyk 1995). Dichoto
mies of maJeMplus versus female-plus body proportions and 
brightly coloured males versus dull colouration have emerged 
in recent studies. Such diversity in the degree and type of sex
ual dimorphism displayed may be explained by the associated 
variation in the type of mating system (Mouton & van Wyk 

1993; Shine & Fitzgerald 1995; Hews 1996). Although varia
tion in these traits has been explained by adaptationist 
hypotheses, the described diversity could follow broad phylo
genetic lines (Shine & Fitzgerald 1995). It is therefore clear 
that, without knowledge of the variation in any of the above
mentioned traits within a phylogenetic lineage, and a robust 
phylogenetic hypothesis, answering questions regarding 
adaptationist hypotheses or phylogenetic conservatism 
remains problematic. 

The melanistic graceful crag lizard, Pseudocordylus capen
sis, is regarded as a montane species (mostly above 900 m 
altitude) over most of its range and is endemic to the Cape 
Fold Mountains (Branch & Bauer 1995). Pseudocordylus 
capensis is an agile, highly rupicolous species that prefers 
vertical rock faces (Branch 1988). Two races were earlier rec
ognised, but Herselman, Mouton & van Wyk (I 992), because 
of a continuum of variation in several morphological traits, 
synonymized the races. As one of the most basal species in 
the Cordylidae clade (Herselman 1991; Mouton & van Wyk 
1997), knowledge regarding the reproductive cycle and sex
ual dimorphism in P. capensis will contribute to the under
standing of the evolution of these traits within the family 
Cordylidae. Information regarding the reproductive cycles 
and sexual dimorphism in members of the genus Pseuda-
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cordy/us is limited to the Drakensberg crag lizard, P. me/ana
tus (Flemming 1993b,c; Mouton & van Wyk 1993). P. 
melana/us exhibits pronounced male-plus sexual dimorphism 
in morphological features, associated with bright male col
ouration (Mouton & van Wyk 1993). Similar to other Cordy
lidae lizards, female vitellogenic activity in P. melanatus 
occurs in autumn. Spermatogenetic activity in autumn, and 
sperm storage in the epididymis and vas deferens through 
winter and parts of summer, categorise the male cycle as typi
cal post-nuptial, with male and female reproductive cycles 
not well synchronised (Flemming 1993b, c). 

Apart from the important contribution to the understanding 
of the evolution of CordyJidae reproductive cycles, this study 
represents the first concerned with the reproductive cycle of a 
lizard endemic to the Cape Fold Mountains. Studies regarding 
the biology of the endemic montane fauna, especially the her
petofauna, as part of our natural mountain sanctuaries is long 
overdue. Since the conservation status of this endemic pseu
docordylid lizard remains unknown, we restricted this study 
to available museum material, and therefore small sample 
sizes, to provide basic information on sexual dimorphism and 
seasonal reproduction. 

Material and methods 

We examined specimens of the graceful crag lizard P capen
sis (N· = 68) in the collections of the John Ellerman Museum 
of the University of Stellenbosch and the Port Elizabeth 
Museum. These specimens were collected from several local
ities between Nieuwoudtville (31 °3 3' J6"S, 19°07'38"E) in the 
west along the Cape Fold Mountains to the Kammanassieberg 
range in the east (33°36'62"S, 22°52'42"E; Figure I). Clima
tological data from a reference site within the distribution 
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Figure I Geographic distribution based on known localities of P. capensis (after I-Ierselman et at. 1992). Country borders and the Matroosberg 

Weather Station (33°26'S, 19°49'E) are indicated (.). 
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Figure 2 .\th::nn monthly maximum temperature (solid circles), 

mOlllhly minimulTI (solid squares), total monthly rainfall (histo

gram). and photoperiod (solitiline) al the Malroosherg \\/ealiler Sta

tiOll in the distribution range of P. capensis (Figure I) for the period 
1931-1976. 

range of P. ('apensi5, Matroosberg Weather Station (33°26'5, 
19'4Y'E) (Figures 1 & 2), were obtained from the South Afri
can Weather Bureau (WB40-report 1980). These data show 
that !'. capensis experiences typical high altitude (1000 m -
2000 m) Mediterranean-type climatic conditions. i.e. hot and 
dry summers followed by wet and cooler winters (Figure 2), 
\!Iaximum ambient temperatures during summer range 
between 25-30(':C and during winter between 10-15':)C. Pho
toperiod regimes were calculated using the formula in van 
Leeuwen (1981 ). 

Data obtained on each preserved museum specimen 
included: (I) snout-vent length (mm, SVL); (2) head width 
(mm, HW) (at widest point), (3) head length (mOl, HL) (tip of 
snout to posterior edge of parietals) (4) longest and shortest 
axes of the testes (mm); (5) number and diameter of the lar
gest ovarian follicles (nearest 0.1 mOl); (6) stage of follicular 
development; (7) presence of oviductal eggs; (8) dry mass 
(air dried for 2411; nearest 0.1 g) of fatbodies. Testicular vol
litHe (mm::) was calculated by using the formula of an ellip
soid (F - 4/3 lw~b. where a - ti: shortest diameter and h = 

largest diameter). Paraffin sections (I 0-8 ~Lln) were taken 
from the middle of the right testis and stained with Harris 
hematoxylin and eoslll. Spermatogenetic activity was 
assessed qualitatively by using an eight-stage classification 
scheme described in van Wyk (I Y95). The presence of sper
matozoa in the lumen of the epididymis was also noted. 
Female reproductive activity was classified, based on the 
appearance of the follicles and the presence of developing 
embryos. as non-vitellogenic, early vitellogenic. advanced 
vitellogenic or gravid. Paraffin sections (10-8 pm) were 
taken from early vitellogenic ovarian follicles in order to 
establish the seasonal tim ing of the onset of vitellogenesis. 

Data were log-transformed and then subjected to the Kol
mogorov-Smirnov normality test and Bartlett's test for homo

geneity of variances respectively. One-way analysis of 
variance (ANOVA) was performed to establish whether signifi
cant seasonal variation existed in traits. In cases where the 
data did not meet the assumptions of normality, Kruskal-Wal-
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lis (Kruskal) procedure was employed as a nonparametric 
analysis of variance and the Mann-Whitney U-test for com
paring two means. To test whether organ mass was affected 
by variation in body size, least-squares linear-regression ana
lysis was perfonned to regress variables on SVL. Neither tes
ticular volume nor mean follicular diameter of the range of 
adult sizes included in this study was affected by SVL, mak
ing it unnecessary to adjust organ masses. We also used least
squares linear-regression analysis to examine relationships 
between SVL and head measurements (IIW, IlL). In all cases, 
the variances passed the normality and homoscedasticity 
tests, allowing us to proceed with parametric ANOVA. We 
used analysis of covariance (A"t\'COVA), with sex as factor 
and SVL as the covariant, to compare the slopes and inter
cepts of regressions (head measurements on SVL). In addi
tion, we calculated an index of head dimorphism (0 1) as the 
female regression slope/male regression slope for the specific 
parameter (Cordes e/ al. 1995). A size dimorphism ratio (D,) 
was calculated as the mean female trait (SVL, HW, HL)! 
mean male trait. Percentage dimorphism was taken as the 
absolute value of [(dimorphism ratio - I) x 100)] (Cordes d 

af. 1995). Statistical procedures were performed in concord
ance with Sokal & Rohlf (1985) and Glantz (1992). using the 
SIGMASTAT (Jandel Scientific) and IllOMstat (Rohlf & Slice 
1995) statistical software packages. 

Results 

Size, sexual maturity and dimorphism 

Sexual maturity, i.e. signs of vitellogenesis and spermiogen
esis, for P. capet/sis was estimated to be at about 80 111111 SVL. 
Although the smallest gravid female measured 83.1 111m SVL, 
a few females with SVLs smaller than 90 mm were found to 
be non-gravid during the breeding season. The mean SVL of 
adult males used in this study was 9~.3 mm (range 78.4 
104.2; n = 31) and for adult females 95.9 mm (range 83.1-
108.5: 17 ~ 32). The female-plus sexual dimorphism in body 
size (SVL) was found to be statistically significant (A;';OVA: 
F 1,61:-:- 5.90,p = 0.02). It is obvious from Figure 3 that the fre
quency distribution of female SVLs in the sample is skewed 
towards larger SVLs, and therefore possibly affects the mean 
SVL. The dimorphism ratio (DJ. based on mean SVL ror the 
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Figure 3 Distribution of bod~ sizes (SVL) for male and fcillille P 

caper/sis studied. 
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I' cupensis sample is 1.04. a percentage dimorphism of 4%. 
Our analyses revealed no significant differences in either 
mean head width (HW)(AM)V;\: F"" ~ 3.11, p > 0.05) or 
mean head length (Hl)(A:-:OV;\: F,.o(l ~ 2.16, I' > 0.14) 
between adult males and adult temales. However, when com
paring A~COv.' A adjusted means for HW (F, 6~ = 40.1 J, p -0:. 

0.05) and III (F'i,Q ~ 27.29. I' ' 0.05), head dimensions 
proved to be marginally. but significantly larger in males. 

The head measurements (ilL and HW) of P. capensis were 
highly correlated with SVL in juveniles (undetermined sex). 
adult females and adult males (Figures 4a & 4b). Although 
the rate of increase in head measurements, HW (Figure 4a; 

slopes homogeneous F"., ~ 0.001, P > 0.05) and Hl (Figure 
4b; slopes homogeneous F"" ~ 0.00 I, p > 0.05) did not differ 
significantly between sexes (common slopes: 0.95 and 0.72 
respectively). intercept comparisons further pointed to larger 
head dimensions in males than females of equivalent SVL. 
(Figures 4a & 4b: HW, intercepts heterogeneous, F2,6~ --,-- 25.8, ,,< 0.05; HL, intercepts heterogeneous. F"., ~ 14.3, p < 0.05). 
The slightly largl:r dimensions of male head measurements 
also showed in the dimorphism ratios, suggesting a percent

age dimorphism of 3% towards males. The low number of 
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juveniles (n - 5) in the sample precluded a confident compar
ison of regression slopes and intercepts alllong juveniles and 
adults. but the current data suggest that the IIW slope of adu It 
females flattened Ollt when compared to the HW slope of 
juveniles (Figure 4a). 

No obvious sexual difference was noted in adult coloura
tion, both sexes being melanistic. Epidcrmal glands. femoral 
and generation glands (llerselman 199 L van Wyk & Mouton 
1992) may be present in both sexes. Although indications are 
that both gland types are more functional in males. detailed 
studies are necessary to confirm this. 

Male reproductive cycle 

Significant seasonal variation in testicular volume (Al"OV,,\: 

F'i,~2 = 11.8, P <. 0.05) demonstrates an annual spermatoge
netic cycle (Figure 5). lIistological study disclosed testicular 
recrudescence (stages 3---4. Figure 5) during early autumn 
(March April) \vith associatcd increments in testicular voi

ume. Metamorphosing spermatids and free spermatozoa in 
the lumina of seminiferous tubules, epididymis and vas defer
ens were present in lizards collected during late autumn 
(April-May, Figure 5) through late spring (October). Testicu
lar volumes decreased during late spring and summer (Octo
ber-November), and although spermatid numbers were 
reduced, free spermatozoa were still abundant (stages 7 & 8. 
Figure 5). Complete testicular regression (stage I). character
ized by involuted seminiferous tubules together with an 
absence of free spermatozoa in the lumina of the epididyl11is 
and vas deferens_ characterized males collected during 
December and January (Figure 5). Lumina of cpididY'll1i and 
vas deferens remained devoid of free spermatozoa from mid
summer (December) through late autumn (April-May) in the 
following year. Testicular recrudescence in late summer/early'" 
autumn (February/March) coincided \ .... ith decreasing <lmbient 
temperatures and decreasing photoperiod, but increasing 
monthly rainfall (Figures 2 & 5). 

Female reproductive cycle 

The mean diameter of the largest ovarian follicles varied sig
nificantly (,\NOVA: F,,, - 8.81." < 0.05) throughout the sea
sons (Figure 6). Although P. c(Jpensis females are viviparous. 
vitellogenesis still contributes to the dynamic changes 
observed during the ovarian cycle. Histologically. the pres
ence of deutoplasrnic droplets in the follicular ooplasm 
marked the onset of vitellogenesis during autumn (May). 
Increasing follicular diameter associated with vitellogenic 
activity continued through autumn and winter to reach maxi
mum pre-ovulatory sizes in spring (September. Figure 6). 

Gravid females, with embryos in different stages of develop
ment, were collected during spring through autumn in the fol
lowing year (Octoher-ApriL Figure 6). Clutch size was 
limited to two young (n - 14) produced as a single clutch per 
annum. Females collected around the same date were gener
ally observed to be well synchronised regarding ov"uian 
development and embryonic development in the oviduct of 
gravid females (Figure 6). although a single gravid female 
collected in late summer contained an early developmental 
stage embryo at a time when most adult females contained 
well-developed embryos. The onset of vitellogenesis during 
autumn coincided with decreasing ambient temperature and 
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igure 6 Seasonal variation in mean diameter of largest ovarian follicles in P. capensis. Each symbol represenh one lizard with one of four 

lemale reproductive groups indicated (-0- pre-vitellogenic. -.- vitdlogenic, 0 pre-ovulatory, -0- gravid). 

photoperiod regimes (Figures 3 & 6), but with increasing 
monthly rainfall. Embryonic development continued through 
the warm summer period and birth of young occurred at the 
onset ofthe autumn/winter rainy season. 

Abdominal fatbody cycles 

Although Figure 7 suggests a seasonal pattern in the variation 
in abdominal fatbody reserves, statistically this variation, in 
both males (Kruskal; H ~ 12.8, 7 df, p > 0.05) and females 
(ANOYA; Fm ~ 2.19, P > 0.05), was not significant. but 

proved to be significant when lumping male and female data 
(Kruskal; H ~ 19.16. 9 df. " < 005). Increased abdominal 
fatbody reserves were observed in males and females during 
late sLImmer and autumn (Figure 7). Fatbodics were small in 
both sexes in spring and early summer during the time when 
the females were gravid and males shO\ .... ed signs of testicular 
regression (Figure 7). 

Discussion 

Pseudoc()r£~~'lus cupcnsis, like most other poikilothermic 
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squamates (Stamps 1993). matures at a hody size less than 
80% of asymptotic hody size. Meaningful post-maturational 
grO\ .... th has also been suggested for other cordylid species C. 
cordy/tis and C. niger (Cordes el al. 1995) and P. me/al70fllS 

(Mouton & van Wyk 1993). In the large-bodied cordylid, C 
giganlclIs, van Wyk (1992). hO\\lever, reported that maturity 
is delayed until close to asymptotic hody size. In several other 
studies and indeed most studies including Cordylidae lizards 
(see Cordes el o!. 1995), size at maturity has been determined 
from cross-sectional data, searching for the smallest individu
als indicating gonadal activity in the sample. Apart from C 
giguntc{/s (vall Wyk 1992), all reports including cordylid liz
ards suggest that size/age at maturity is the same for both 
sexes (van Wyk 1989; 1991; fiemming & van Wyk 1992; 

Flemming 1993a,b,c; Mouton & van Wyk 1993; van Wyk & 

Mouton 1996), thereby, by implication, ruling out the possi
bility of pre-maturational events contributing to adult sexual 
size dimorphism (SSD). Shine (1990) presented data for sev
eral groups of lizard, snake, and fish taxa, suggesting that sex
ual differences in body size are set at maturity. \vith only 
minor modification after sexual maturity_ Therefore, primary 
determinants of SSD include differential pre-maturational 
growth or survival rates, or differences in age at maturity. 
lIews (1996), on the other hand, has shown that Shine's 
(1990) linding may only hold for differences in overall body 
size, and not generalise to head traits that exhibit differential 
grO\vth. Sexual dimorphism in body size and other morpho
logical traits in Cordy1idae lizards could therefore indeed be 
attributed to differential post-maturity influences on growth 
rates. resulting in differences in asymptotic sizes. 

Stamps (1993) pointed out several sampling problems that 
could erroneously suggest SSD in adults. especially when 
adult SSD is less pronounced. The difference in body size 
recorded for P. capensis may be a reflection of temporal and 
spatial variation in the age distribution of the sexes because of 
differential mortality, therefore resulting in a sexually dimor
phic population. Although differences in mean values and the 
rate of increase of head traits. HW and HL, were non-signifi-

cant in P. capensis. :\!\COVA (Ileterogeneous intercepts) and 
comparisons of ANCOVA adjusted means revealed soml: 
degree of morphological dimorphism among sexes. Such dif· 
ferential growth in body size (kinnie-pIus) and head traits 
(male-plus) in P. capensis may" not be directly related to SeX
ual selection, but rather to different energy related selection 
pressures on males and females. For exmnple, Cooper & Vilt 
(1989) suggested that ill Scc/oporlls IIntll//allls, after maturity. 
hcad size dimorphism n:sults (rom females increasing body 
size at a greater rate thall head size. The rationale is that 
females alloClltc relatively more energy to gro\vth of repro
ductively significant characters in situations of limited 
resources sLich as expected \vhen living in cooler climates, for 
example at high altitudes (~OLltOIl & van Vv"yk 1993). It does 
not necessarily exclude male-plus growth in head traits. 
resulting in increased male fitness and therefore contributing 
to sexual dimorphism and maintained by sexual selection 
(Cooper& Vitl1989: Moutoll & van Wvk 1993: [3ull & Pal1l
ula 1996). 

The association or melanistic cord) lid populations with 
cold-climate situations, sLich as high altitude. high incidence 
of fog or incn:ased cloud cover. has recently been pointed out 
(BadcnhorsL Mouton & van \Vyk 1(93). Cordes l'1 (//. (1995) 
reported the absence of pronounced SSD in the melanistic 
Curdy/us 11I~{!.(!r. and attributed the occurrence of the highcr 
frequency of larger sized males in these populations to the 
impact of the unfavourable climatic conditions on energ) 
allocation in females. Although the lack of pronounced SSD 
(male-plus) in P copel1sis lllay be explaincd on the same 
grounds. the higher frequenc; of larger fcmales seems to be 
in contrast to the suggested (expected) slower growth ill the 
montane P. me/w101lIs (\;lOll ton & van \\-'yk 1993) and melan
istic C niger fel11<lles (Cordes /..'1 I.I/. 1995), living under simi
lar cold climatic conditions. MOllton & van Wyk (1993) 
suggested that pronounced SSD (Blaie-pILls) in montane P 
meianullIs· could. in part. be the result of differential energ~ 
allocation in females (lcss energy into gro\\lth of head traits) 
\\-'hich inevitably would effect social structure. i.e. all increase 
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in the degree of polygyny and the associated pronounced 
male.plus sexual dimorphism. As in the case of C niger 
(Cordes et af. 1995), P. capensis has been recognised as 3n 

archaic species (Herselman 1991; Mouton & van Wyk 1997) 

and although subjected to cool climatic conditions for many 
years, does not display pronounced SSD (i.e. male-plus) nor a 
comparable degree of polygyny (unpublished data) when 
compared to P. melanotus. It is clear that research is needed 
to determine the role of constraining ecological factors, such 
as low population densities, low visibility and the evolution 
of melanism to understand the manifestation of sexual dimor
phism in CordyJidae lizards. More infonnation is also needed 
on resource distribution, and its role in determining female 
spacing, which in turn lTIay affect the ability of a male to 
monopolize females (Em len & Oring 1977; Hews 1993). The 
association of melanistic species, such as C. niger and P. cap
ens is. with Mediterranean winter rainfall and dry summer 
conditions (Cordes & Mouton 1996), may indeed retlect the 
effect of resource distribution on social structure and SSD. 
On the other hand, the evolution of melanism during cold cli
matic events some time in the historical past of P. cupensis 
could be seen as the most important constraint for SSLJ to 
have evolved as part of a suite of traits associated with sexual 
selection and a polygynous social system. The fact that, in the 
majority of Cordylidae species studied, larger female body 
size prevails may point to fecundity selection, which favours 
large female size when larger females produce larger clutches 
(i.e. larger reproductive output). As in Anolis lizards (Ball
inger 1983). clutch size (numbers) in most viviparous mem
bers of the Cordylidae are small and do not increase with an 
increase in female body size. Although this may explain why 
anole males are larger than females, it does not explain the 
reverse situation for the majority of gekkonids (Perry 1996) 
anJ Cordylidae species. A more likely explanation seems to 
be that the absence of pronounced male-plus dimorphism or 
the presence of female-plus dimorphism is under phyloge
netic constraint, making a species-specific explanation of 
SSD unnecessary (Shine & Fitzgerald 1995; Perry 1996). A 
possibility in this regard is that together with an ancestral 
monogamous social structure went the selection for a smaller 
adult male body size, for greater mobility in finding females 
(van Wyk 1992). 

As in most Cordylidae lizards studied (see van Wyk & 
Mouton 1996) to date, reproduction is a seasonal phenome
non in both sexes of P. capensis, with cycles reasonably well 
synchronised among individuals. Both male and female 
gonadal cycles are characterized by autumn/winter reproduc
tive activity. culminating in spring at the time of mating, as 
described for several viviparous members of the Cordylidae 
(van Wyk & Mouton 1996). The onset of vitellogenesis dur
ing the ovarian cycle in P. capensis females corresponds to 
the now general pattern of autumn/winter vitellogenic activity 
described for all species of the three genera, Pseudacardylus 
(Flemming 1993b.c), Cordvlus (see van Wyk 1994a, 1995 for 
reviews) and Platysaurus (van Wyk & Mouton 1996) studied 
to date. This phenomenon of pattern conservatism in the vitel
logenic cycles of autumn/winter (fall) vitellogenic activity 
was also reported for Sceloparus (see Guillette & Mendez-de 
la Cruz 1993) and Liolaemus (see Ramirez-Pinilla 1995). 
Flemming (1993b) reported a few gravid P. melanatus 
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females in late winter (July, August), therefore suggesting 
that vitellogenic cycles were completed in w inter, followed 
by subsequent ovulation and mating before the onset of the 
wanner summer months. Whether this phenomenon also 
Occurs in P. capensis is not known, since we had limited 
material available for the winter months. Guillette & Mendez
de la Cruz (1993) suggested that the completion of the ovar
ian cycle during winter in several montane Sce/oporus spe
cies could be an important adaptation to the success of 
reproduction at high altitudes in these viviparous lizards, 
since it will allow for embryonic growth to be completed ear
lier in summer, thereby ensuring a longer growth season for 
young which may contribute to their survival in the montane 
environment. However, in both P. melanotus (Flemming 
1993b) and P capensis (this study) indications are that ovula
tion more frequently occurs in spring and early summer and 
that gestation continues throughout most of summer until 
autumn. 

Compared to other viviparous pseudocordylids, e.g. r 
melanatus (Flemming 1993b) and r microlepidotus (unpub
lished data), P. capensis showed a longer gestation period. 
Although limited, our data suggest that parturition in r cap
ensis takes place during late autumn (April-May). In spite of 
the long gestation period, females seem to reproduce annu
ally. The onset of vitellogenesis before parturition in autumn 
substantiates this suggestion. This is in contrast to females of 
the large cordylid, Cord.v1us gigantcus, from the Highveld 
grasslands, known to skip a breeding cycle after a late "um
mer/early autumn gestation period and birth of young during 
late autumn (van Wyk 1991, 1994a). To date, C gigon/eus is 
the only Cordylidae lizard reported to exhibit biennial female 
reproduction, but also the only member of the Cordylidae 
family known to stay underground, without feeding, through
out the cold winter months (van Wyk 1991, 1994b). It seems 
that the birth of young in autumn. prior to the cold winter 
months, may not affect the survival of young, since van Wyk 
( 1992) reported high survival rates of hatchl ings through w in
ter, in spite ofaphagy. Mortality of C. giganteus hatchlings as 
a result of predation, however, increased dramatically during 
the first summer. Although C. giganteus hatchljng~ did not 
grow during winter (van Wyk 1992). it could be that hatch
lings of montane Cordylidae lizards grow through winter 
because of continued activity and feeding, thereby getting a 
head start in summer. Activity and feeding throughout winter, 
together with the available stored fat reserves, probably 
ensure adequate energy availability for females to continue 
with vitellogent:si~ in the cool montane environment. 

Although adequate data are lacking. the presence of yolk 
reserves in late-term P. capensis embryos, as in other Cordyl
idae lizards studied to date (van Wyk 1989; Flemming & van 
Wyk 1992; Flemming I 993a,b), seems to indicate that most 
of the nutritional requirements for embryonic development in 
r. capensis are met by yolk reserves deposited during vitello
genesis prior to ovulation. The only cordy lid species studied 
to date that may have meaningrul placental transfer, based on 
indirect evidence. is the large C. giganteus (van Wyk 1994b). 

The spermatogenetic cycle of P. capensis starts in late 
summer/autumn and continues throughout winter and spring. 
with testicular regression during summer (November-Janu
ary). The P. cupensis spermatogenetic cycle conforms to the 
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pre-nuptial spermatogenetic pattern of most temperate lizards 
with the production of sperm immediately prior to mating. 
without prolonged sperm storage in the epididymis or vas 
deferens (see Jameson 1988; van Wyk & Mouton 1996). 
When considering the onset of spermatogenetic activity' in 
late summer/autumn (Guillette & Mendez-de la Cruz 1993; 
Ramirez-Pinilla 1995; van Wyk 1995; van Wyk & Mouton 
\996), rather than in spring, this variation in the pre-nuptial 
pattern is clearly different to the well known spring-summer 
pattern (Fitch 1970; Licht 1984). The onset of spermatogene
sis in late surnmcr/autumn is, however, not the rule in males 
associated with females exhibiting a pattern of autumn/winter 
vitellogenic activity (Guillette & Mendes-de la Cruz 1993; 
van Wyk 1995). 

The phenomenon of post-nuptial spermatogenesis, i.e. 
summer-autumn spermatogenesis associated with sperm stor
age in the epididymis and vas deferens throughout winter 
until mating in spring, has now been described for several liz
ard species (see Guillette & Mendez-de la CruL 1993), includ
ing members of the Cordylidae (Flemming 1993c; van Wyk 
1995). Associated with post-nuptial spermatogenetic cycles 
in autumn-breeding species is the phenomenon of asynchro
nous reproductive activity between males and females (Guil
lette & Mendez-de la Cruz 1993). The spermatogenetic cycle 
of P. capensis clearly shows characteristics of both seasonal 
patterns, spermiogenesis completed before winter (typical 
post-nuptial) but testicular regression associated with the 
summer period (pre-nuptial), therefore 110 extended period of 
sperm storage associated with testicular regression during the 
winter months (post-nuptial). P. capensls exhibits an exten
ded spermiogenic period when compared to the lowland 
Cordylidae species that exhibit pre-nuptial cycles. Interest
ingly, the two pseudocordylid species studied to date, P. 
melanotZls (Flemming 1993c) and P. microlepidotus (unpub
lished data), both exhibit typical post-nuptial spermatogenetic 
cycles, i.e. with testicular regression during winter and spring 
associated with sperm storage during winter through early 
summer. Because of the early completion of spermiogenesis 
(i.e. before winter) in P. capens/s. some degree of asynchrony 
between male and female cycles is evident. Whether winter 
matings with sperm storage in females occur is not known 
and needs further study. The advantages of an extended mat
ing period in low-density populations in an environment 
where visibility among individuals is low and the breeding 
season is relatively short seems obvious. 

Apart from Cordy/us g/ganteus, also exhibiting a post-nup
tial cycle (van Wyk 1995), other representatives of the Cordy
Ius genus studied to date, C polyzol1us (van Wyk 1990; 
Flemming 1993a) and C cordylus (unpublished data), exhibit 
autumn pre-nuptial cycles. Regarding a third genus, the ovip
arOllS genlls Platysau.rus, van Wyk & Mouton (1996), 
recently reported pre-nuptial gonadal cycles in two species. 
Although the phylogenetic position of Platysaurus is not cer
tain, in a preliminary analysis Lang (1991) and Herselman 
(1991) suggested Platysaurus to be imbedded within the 
more advanced Pseudocordylus species (micra/epidntlls and 
me/anaws), exhibiting the post-nuptial spermatogenetic pat
tern. Van Wyk & Mouton (1996), at the time concluded that 
the Platysallrlls pattern along with the oviparous mode of 
reproduction could represent a reversal from post-nuptial, 
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viviparous to pre-nuptial, oviparous, phenomena respectively 
However, recent advances regarding phylogenetic relation
ships within the family Cordylidae suggest that the genus 
Platysauru.s may indeed represent a basal stem from the'-' phy
logenetic tree (Titus unpublished). The similarity of J> capcn
sis cycles to that of the P/otysollrlls species studied 
corroborates the hypothesis that the P/utysaurlls divergence is 
closer to P. capensis. If the Plalysaurlls divergence proves to 
be the most basal. then the association of autumn gonadal 
cycles (van Wyk & Mouton 1996) with the evolution of vivi
parity in this lineage needs reconsideration. [t is clear that 
only a comprehensive comparative study of gonadal cycles 
within the Cordyliformes (Gerrhosauridae & Cordylidae) will 
unravel the evolution of reproductive cycles within the 
Cordylidae. 

In hoth sexes of P. capens/s. tile fatbody reserves accumu
lated throughout late summer to reach peak values in autulllll 
at the time of the onset of both gonadal cycles. In P. me/uno
tus, the same pattern was reported in both females and males 
(Hemming 1993b,c). It is noteworthy that P. capensis and P 
melaJ/()tus exhibit different spermatogenetic patterns, ,"vhich 
suggests that the dynamics of the male fatbady cycle may be 
unrelated to (uncoupled from) the male spermatogenetic 
cycle. The fatbody cycle reported here for P. carX'l7sis is sim
ilar to that reported for several other cordylid species studied 
to date (van Wyk 1989; van Wyk 1994). However. the l"t
body cycle of C poly:onus collected from Saldanha, within 
the same winter rainfall zone as P. ('opensi.\', was found to 
peak during early summer (rJemming & van Wyk 1992; 
Flemming 1993a). The same species wns reported to exhibit 
the typical autumn fat deposition cycle (Derickson 1976) in 
the Orange free State province known for its colder \vinters 
(van Wyk 1989). It is clear that more data are needed to COI11-

pare the dynamics of fatbody cycles of cordy lid lizards occur
ring in the Mediterranean and sUlllmer rainfall zones !Jl 

relation to their feeding ecology. before we can hope to 
understand the variation in cordy lid fatbody cycles. 

In both C gigantells (van W yk 1994) and P. mc/u}}OfllS 

(Flemming 1993b,c) collected from the cooler Highveld 
grasslands, indirect evidence suggested that, prior to the 
major fatbody huild-up in mid-autumn, food abundance and 
foraging success were high during slimmer and early autulllll. 
Although the importance of fat body bui Id-up for male repro
duction may not be that clear yet. ev idence suggests that fat
body reserves are an important factor determining successful 
reproduction in females (Greenberg & Gist 1985: Etheridge 
et al. 1986; van Wyk 1991; 1994). If the occurrence of bien
nial reproductive activity_ as reported for C giganlclIs 
females (van Wyk 1991; 1994), is an indication of resource 
stress on reproductive activity, the occurrence of annual 
reproduction in the montane lizards, P. me/anotlls and P. cap
ensis, suggests adequate resource availability in late summer 
through autumn months for these lizards in the montane envi
ronment. 

Ambient temperature hns been implicated as one of the 
major factors controlling the onset of reproductive activity in 
reptiles (Duvall, Guillette & Jones 1982; Licht 1984). In all 
the cases, including Cordylidae females and other autumll
breeding lizards studied so far (see Guillette & Mendes-de la 
Cruz 1993), an inverse correlation between autumn/winter 
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gametogenesis and the main proximal factors has been 
reported. However. indications arc that environmental control 
is much more complex than anticipated. Species exhihiting 
different reproductive cycles, i.e. spring/summer and autumn! 
wimer cycles, or the occurrence of asynchronous reproduc

tive activity hehvccn males and females. suggest that we need 
to have a fresh look at the environmental control of reproduc
tion, at least in autumn/winter breeding lizards (Guillette & 
Mendez-de la Cruz 1993). 

It is clear from most studies concerning autumn/winter 
reproductive cycles that female cycles arc relatively invaria
ble (conservative). and therefore under phylogenetic COIl

strainl (Guillette & Mendez-de la Cruz 1993). Whelher 
female cycles \vere fixed during a single evolutionary event, 
in most cases remains unknown. On the other hand, the 
reported variation in the timing of spermatogenesis and, espe
cially the occurrence of asynchrony between male and female 
cycles in species of the same lineage or species of different 
lineages. call for more comprehensive comparative studies to 

understand the evolution of reproductive patterns in such 
groups. To do this, we need a robust phylogeny and historical 
biogeographic information of the group concerned (Losos & 

Miles 1994), othenvise the interpretation of such comparative 
data \vill remain problematic. The family Cordylidae, with 
four genera and relatively few species, provides such an 
oppottunity to study the evolution of viviparity, variation in 
reproductive cycles, synchronization het\veen male and 
female cycles and ultimately environmental control of repro
ductive cycles in lizards. The present study suggests that our 
understanding of the evolution of the reproductive traits in the 
Cordy Ii formes lizards is dependent on a robust phylogeny. 
For example, if the oviparous genus Platysullrus is the most 
basal divergence from the Cordylifonnes ancestors. as 
recently suggested (Titus unpuhlished). then current knowl
edge suggests that the shift from a typical spring-summer to 
autumn-spring gonadal cycle evolved first, \vithout a link to 
the evolution of viviparity. This hypothesis would then sug
gest viviparity to have evolved as a second step in the evolu
tion of reproductive [raits in the Cordylidae. Alternatively. 

the hypothesis put forward earlier by van Wyk & Mouton 
(1996), which suggests that oviparity in the genus f'lalysall

rliS represents a reversal from viviparity. needs more consid
eration before being discarded. It is also ctear that the lack of 
knowledge regarding reproductive cycles of the family Ger
rhosauridae. the oviparous sister family of the family Cordyl
idae (Lang 1991). further contributes to the problem of 
understanding the evolution of reproductive cycles 111 

Cordyliformes lizards. 
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