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ABSTRACT 

The article deals with the system of information collection and transfer from a centralized 

relay protection and automation system for medium voltage electrical units based on a passive 

optical bus. The issues of electromagnetic compatibility of technical devices are also 

considered, and the intensity of electromagnetic interference is calculated in the distribution 

center of medium voltage. Since the electric power industry objects are characterized by a 

complex electromagnetic environment, including a significant adverse effect on the reliability 

and full functionality of modern microprocessor relay protection and anti-emergency 

automatic systems, the solution is considered for a centralized relay protection and 

automation system based on xPON passive optical network technology. 
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I. INTRODUCTION 

The distribution points of6-35 kV (hereinafter - DP) are an important element of power 

supply systems for industrial enterprises and medium voltage distribution networks providing 

direct power supply to high-voltage electricity consumers. 

The DP is a sectional electrical unit consisting of bus bars, a certain number of cells and a 

control corridor. Electrical equipment is located in cells: circuit breakers, current transformers 

(CT), line and bus disconnectors, fuses, voltage transformers (VT), overvoltage protection 

devices (arresters or excess-voltage suppressors). Figure 1 shows the DP circuit with the 

voltage transformation consisting of seven cells: 

- two supply lines, each of which is connected to the corresponding bus section; 

- two outgoing cable lines; 

- one cell with the arrester; 

- one cell with the power reducing transformer T and the 0.4 kV assembly; 

- one cell with the voltage transformer. 

The power transformer T is used for power supply of 0.4 kV consumers. Its presence makes it 

possible to classify a DP as a distribution transformer substation (DTS). 

In addition to high-voltage equipment, the DP also includes relay protection and automation 

devices, measuring instruments, etc.  
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Fig.1. Schematic diagram of the distribution point with seven cells [1]: Q - oil circuit breaker; 

QS - disconnector; QF - circuit breaker; S - switch; F - fuse; QRG - earthing switch 

 

An electric power system is operated in real time mode - therefore, there are high 

requirements to ensure reliability, continuity and operation quality, including to relay 

protection and emergency control systems for individual electrical units and the electric 

power system as a whole. 

The modern level of information technologies and computing facilities, as well as a clearly 

traced trend towards the digitalization of electrical networks, allow us to reconsider the 

approaches to the development and the improvement of traditional relay protection functions 

of electrical units with various voltage classes, primarily of medium voltage, as the most 

common and, thus, the most significant for end users [1]. 

When PSP are replaced or reconstructed, the issue of significant financial investments arises, 

due to which a complete replacement of relay protection systems is a very difficult task for a 

significant number of medium voltage electrical units. 
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It should be noted that the development of PSP equipment in the world, the transition to 

microprocessor-based digital complexes of PSP and the distribution of such international 

standards as IEC 61850 also revealed the problem of the incompatibility concerning the 

outdated electromechanical and microelectronic equipment with the new digital PSP systems.  

 

II. Centralized system of relay protection for medium voltage distribution point 

In order to solve the problem of economical, functional and reliable replacement of a large 

number of out-of-date devices of relay protection and automation units in medium voltage 

networks also from the point of view of electromagnetic compatibility (EMC) a method is 

proposed and a centralized system of relay protection and automation (Hereinafter referred to 

as CENTRALIZED RELAY PROTECTION SYSTEM, CRPS) is proposed on the basis of 

this method, where a passive optical bus can be used as a system for data collection and 

transfer between interconnection devices and a centralized microprocessor. 

CRPS is a multifunctional unit providing the protection of medium voltage power plants 

(primarily the DP of 6-10 kV) from all types of damage and abnormal operation modes [3], 

and with the advantage of centralization and complex protection functions, as well as with 

self-check, remote control and monitoring features, an operative modification and the 

adjustment of RP algorithms and making them adaptable to the operating modes of an 

electrical unit. 

A communication passive optical bus developed and used in CRPS will provide structured, 

secured and reliable organization of information networks for data transmission and 

processing (information collection and transmission systems - ICTS) in CRPS [3]. 

The peculiarity of CRPS is the transfer of relay protection and automation logic to the central 

server, and the leaving of PDO (Pairing device with an object) logic on outgoing lines: 

- Digitization of analog signals (LFF, ADC units); 

- Switch control (logic outputs); 

- Passive optical communication interface (communication with the server) (Figure 2). 
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Fig.2. Structural diagram of proposed CRPS; CT-circuit transformer, LPF – Low-pass filter, 

ADC analog-to-digital converter, CP – central processor, DSP – digital signal processor. 

 

In the proposed centralized system, all the logic of protection and automation is concentrated 

in one device - the server; An important role in this case is played by the server 

communication line with the coupling units in the switchgear [3].  

 

 

а) Output line 6 (10) kV 

 

 

б) PDO connection to the current transformer, where BC – baycontroller. 
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в) connection of BC to voltage transformer 

 

Fig.3. Implementation of standard BC connection to measuring transformers in switchgear: a) 

outgoing line of 6 (10) kV  

b) BC connection to the current transformer in switchgear, c) BC connection to the voltage 

transformer in switchgear 

 

A communication system must provide the necessary speed of protection and automation, its 

reliability contributes to the overall reliability of the system with a central server. A 

communication line should provide speed and reliability of transmission/reception, also from 

EMC point of view [4]. 

The device of interface with an object realizes the connection of CRPS with the technical 

process in an electrical unit. The main elements of PDO are: a filtering unit, a digitizing unit, 

a communication unit, including the passive optical bus interface GPON/EPON, and a 

communication unit with a computer to tune with the FEC-RS 232. A passive optical bus in 

CRPS is built using GPON\EPON technology. The network layer is implemented using the 

protocol IEC 60870-5-104 [4]. 

The example of a standard PDO connection implementation to measuring transformers [5] in 

the switchgear cell of 6-10 kV is shown on the following figure (Figure 3). 

The main PDO functions [5] in a switchgear, DP and RTP are the quantitative determination 

of the technological process current state and the conditions of is operation due to the 

processing of analog current and voltage signals; the performance of input/output functions 

and the processing of discrete signals and control functions by switching devices; At that the 

support of various communication channels (RS485, Ethernet, OF) and the use of xPON 

technology (GPON/IEC 60870-5-104)) are provided [6]. 

Data exchange between a central server (servers) and PDO is performed via communication 

lines using GPON/IEC 60870-5-104 technology [6]. 

You can use an industrial SCADA controller (Front-EndController - FEC) or a separately 

manufactured device (hereinafter a central server) as a central CRPS server [7]. 
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The central server (CS) CRPS performs continuous monitoring of the state [8], protected by 

DU and determines the triggering conditions in accordance with the analysis of parameter 

values coming from the measuring transducers (PDO). Also a self-diagnostic module is 

implemented for diagnostics and signaling, which ensures the self-diagnosis of CS, the 

control of transmitted data correctness and, if necessary, the transfer of error information 

(error code) concerning measurements to the upper-level automated control systems (ACS).  

During receiving/transmission of the measurements received from PDO, they are given time 

marks obtained with GPS and GLONASS sensors. The communication port serves to transfer 

the available information to other digital systems (APCS, etc.) (Figure 4).  

 

Fig.4. Structural diagram of CRPS: Protected object of DP, BC-bay controller, SFP GPON-

SFP module ONTGPON, FEC controller - central server CRPS, Q - switch, OF - OFTS. 

 

Figure 4 shows that the reception and the transmission of teleinformation and signals are 

carried out using an optical passive bus (OF).  

 

III. The influence of the electromagnetic environment on the operation of centralized 

relay protection 

Electric power facilities are characterized by a complex electromagnetic situation, and in the 

most unfavorable case, a significant negative impact may take place on relay protection and 

automation systems [9], APCS, etc., including the communication lines deployed in an 

electrical device of a communication line, primarily in traditional "copper" lines. External 

electromagnetic fields [10] induce in communication line circuits, based on copper 

conductors, interferences, which not only reduce the quality of transmission, but also can 
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excite large voltages and currents, leading to the destruction of communication lines and the 

equipment connected to it [11]. 

According to static data, an incorrect operation of relay protection and automation devices 

based on microprocessors [12] is caused by insufficient EMC in 10% of cases. The reason is 

that the sensitivity of traditional microprocessor relay protection devices to electromagnetic 

interferences is very small and does not meet modern requirements. 

IEC 60050 [13] specifies the existing boundaries between an apparatus (a system and an 

installation) and an electromagnetic environment which provide the same apparatus (a system 

or an installation) with intrasystem and non-system electromagnetic compatibilities [16], 

namely, the ability to function satisfactorily in the electromagnetic environment created by 

system and external sources, without the creation of unacceptable interference to other 

components. Another aspect of the electromagnetic compatibility is the interference emission 

monitoring and the provision of adequate noise immunity. 

International Standard IEC 61000-2-5-95 classifies electromagnetic interferences as low-

frequency ones (the spectrum of electromagnetic radiation is spread in the range up to 9 kHz), 

high-frequency interference (the spectrum of electromagnetic radiation spreads in the range 

much higher than 9 kHz) and electromagnetic disturbances generated by electrostatic 

discharges [15, 16]. The nomenclature specified in the international standard defines certain 

types of electromagnetic interference: for example, the emitted low-frequency noise is 

determined by the influence of magnetic and electric fields [17]. The conductive low-

frequency electromagnetic disturbances defined in the standard are manifested in an electric 

network as follows: 

- by harmonics and interharmonics of the power supply voltage; 

- by the voltages of signals transmitted in power supply systems; 

- by power supply voltage fluctuations; 

- by dips, short-term interruptions and power voltage emissions; 

- by power supply voltage deviations; 

- by the asymmetry of voltages in three-phase power supply systems; 

- by the changes of supply voltage frequencies; 

- by induced low-frequency voltages; 

- by permanent components in AC power supply networks. 

Inadmissible electromagnetic environment is also determined by non-linear loads, which 

create the currents of high harmonics of industrial frequency, 50 Hz (2 - 3 kHz). When such 

currents take place in the high, medium, low voltage power supply system, harmonic 
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distortion of voltages are created. These distortions can be destructive for a large number of 

electronic products used in a distribution network. 

Moreover, local high-frequency fields created by control, signaling, data transmission devices 

and other devices used in relay protection, accounting, control and monitoring systems in 

such installations can be observed at power facilities. 

A peculiar special case of electric field undesirable influence [19] on the secondary part of 

medium voltage distribution network is the discharges of electrostatic charges on conducting 

parts. Charges are accumulated on dielectric information carriers when passing through the 

input-output and print devices, as well as on the servicing electric engineering personnel 

(operators). 

 

IV. Calculation of electromagnetic interference intensity at a medium-voltage substation 

In order to determine the degree of an electromagnetic interference intensity, let's consider the 

effect of conductive high-frequency and low-frequency electromagnetic disturbances, which 

may be manifested by dips, short-term interruptions and voltage ejections in a DP (Figure 1) 

at Unom = 10 kV. 

The occurrence of dips and short-term power interruptions can be associated with the 

accidents at high-voltage or medium-voltage power lines, short circuits in low-voltage 

switchgears, and with the switching of high-power loads. The abnormal mode of a medium 

voltage distribution network operation also does not exclude the possibility of 

electromagnetic interferences. The networks with isolated neutral can operate in single-phase 

earth fault mode (SPEF) for a long time. This contributes to the wear of insulation, thereby 

increasing the risk of multiphase damages [19]. 

In accordance with the international standard IEC 61000-2-5-95, which establishes the 

classification of electromagnetic interference and the environment for various locations of 

electrical, electronic and radio electronic product and equipment placement [15], the 

MATLAB software simulates a medium voltage distribution network (Figure 5), which 

includes a distribution point of medium voltage (RTP). During the development of the 

mathematical model, they used Simulink and SimPowerSystems library units. The mechanism 

of the of asymmetric electromagnetic interference effect from the power source to secondary 

devices (equipment or system) with a single-phase earth fault in the network was considered 

in the mathematical model of the distribution network [18]. That is, when the source of 

interference originating from the main part of the medium voltage distribution network caused 
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by a single-phase earth fault acts on the secondary part of the medium voltage distribution 

network. 

The circuit developed in MATLAB represents a complex "bridge" [18]. When the circuit is 

balanced or symmetrical, the voltage drop caused by the source of interference is not observed 

on the secondary circuit. However, at a single-phase earth fault (SPEF), the absence of a 

network symmetry is observed near the source of interference (SPEF point). In an unbalanced 

and asymmetric circuit, a voltage drop in the secondary circuit U2 is observed due to the U1 

interference source [18], which distorts the network voltage. 

The mathematical model (Figure 5) was developed using the numerical units of MATLAB 

software such as the generator (Г); switching devices (B1 and B2); current transformer (CT); 

measuring units (IB1 and IB2); oscillograms (S1, S2, S3); timer; power lines (L); load (N); 

short-circuit (K), by the means of which a single-phase earth fault is simulated at the point 

"A", i.e. in the power part of the medium voltage distribution network. Then let's consider the 

effect and the consequence of a single-phase earth fault that occurred at point "A" on the 

secondary circuit of electrical devices in a medium-voltage distribution network. The use of 

measuring unit 1 and 2 is necessary, since by the means of these units the values of linear and 

phase currents and voltages are determined automatically and with the help of oscillograms 

these values are displayed in a graphical form of a value (Fig. 6, Fig. 7). 
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Fig.5. Mathematical model RTP - 10 kV: generator (Г); switching devices (B1 and B2); current transformer (CT); measuring units (IB1 and 

IB2); oscillograms (S1, S2, S3); timer; power lines (L); load (N); short-circuit (K). 
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10 kV distribution network operates with an isolated (ungrounded) neutral as a rule. In the 

normal mode, the network phase voltage (UA, UB, UC) relative to the ground is symmetrical 

and equal to the phase voltage (10 / 3 kV). The value of the single-phase ground fault 

currents is conditioned to the currents flowing through the distributed capacitances of the 

phases.  

In the international standard IEC 61000-2-5 [14], in case of an unacceptable electromagnetic 

situation, the voltage change in power supply systems is set with the frequency of 50 Hz 

ranging from 10% -99% Unom (voltage dips, [delta] U), as well as short-time power 

interruptions, at which [delta] U = 100% Unom with the duration from  up to a few seconds.  

The standard IEC 61000-2-5 states that voltage dips and short-term power interruptions can 

be caused by accidents on medium-voltage or high-voltage power lines or in other network 

equipment, accompanied or not accompanied by a re-inclusion (with the duration of 100-600 

ms) [14]. 

In our case, the single-phase short circuit (Figure 6) on the ground lasts: 

    (1), 

there tozz is the duration of a single-phase earth fault; tcon - end time of SPFP; tnach is the initial 

time of SPFP, which is accompanied by electromagnetic interference. 

SPFP (tnach SPFP = 0,4 s) is accompanied by the voltage drop of 100% Unom at phase A, with 

the duration of 0.2 s, at that the voltage in the remaining phases makes U'B≈8.56 kV, U'C≈8.56 

kV (figure 6). Such a voltage jump on the undamaged phases is explained by the fact that the 

protection is triggered in the case of SPFP and the switch is switched. At SPFP of the phase-

A, the earth's surface at the point of damage acquires the potential of this phase, and the 

voltages of the undamaged phases relative to the ground, would be equal to the phase-to-

phase voltages ideally at 10 kV: U'B = UBA, U'C = UCA, but the occurrence of SPFP is 

accompanied by electromagnetic interferences, which last 200 mcs in the time range from 0.4 

to 0.6 and their influence obviously affects the values of currents and voltages of intact phases 

B and C, i.e. these values change discontinuously under the influence of electromagnetic 

interference, in this case, during the analysis of electromagnetic interference effect on the 

medium voltage distribution network, the voltage values at phases B and C make 8.56 kV, 

respectively (Figure 7). The long-term high-frequency noise cardinally affects the values of 

voltages in the undamaged phases B and C and make 8.56 kV. The currents and the voltages 

of phase A, B and C are determined by the means of unit 1 and 2 measuring. 
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At that, the interference derivative, which determines the maximum interference voltage on 

the power part of the distribution network Usmax, in this case is equal to: 

[15]   (2), 

where x is the maximum value of electromagnetic interference amplitude; х – s the 

amplitude of electromagnetic interference change; t is the change of time. 

I.e. the voltage at the undamaged phases B and C increased by 0.428 kV, which could lead to 

the heating of conductors, an increased wear of insulation and, subsequently, to an emergency 

situation. 

The frequency of oscillations for a high-frequency electromagnetic interference is: 

=    (3) 

 

With the appearance of a long electromagnetic interference in the distribution network, a 

pulsed electromagnetic interference is observed, with the duration of 200 mcs (Figure 6, 

Figure 7). 

The power section also has derivative interferences, determined by the maximum interference 

voltage on the secondary circuit Usmax, taking into account that [18] the impulse interference 

can not be more than 10 V. In the secondary circuits, the values of currents and phase 

voltages are shown as in the power part using the measuring devices: ammeter and voltmeter. 

According to the simulation results, the voltage in the secondary circuit increased by 4 V 

(Figure 7). And the rate of interference change is: 

[17]   (4), 

where х is the maximum value of the electromagnetic interference amplitude; [Delta] х is the 

amplitude of electromagnetic interference change; [Delta] t is the change of time. 

Those. The voltage on the undamaged phases B and C increased by 4 V. 

And the frequency of impulse interference oscillations is: 

   (5), 

The power part of the distribution network at 0.4 s - 0.6 s has the voltage decrease in B and C 

phases by 20.01%, i.e. U’B =8,56 kV U’C=8,56 kV. In the secondary circuit, the values 

determined by measuring units show that the voltage is reduced to U’B =800 V U’C=800 V 
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After the circuit breaker triggering in the power section of the 10 kV distribution network, the 

voltage in all phases becomes equal to 10.3 kV according to the indices of the measuring unit 

1 and 2. 
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Fig.6. Voltages at SPFP: the values of phase A are marked in red, the values of phase B in pink and the values of phase C in blue 
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The appearance of electromagnetic interference in the medium voltage distribution network is 

determined by such parameters as frequency ƒ and amplitude Am [15], which determine the 

interference voltage in the secondary circuits. As is known from [18], the range of 

electromagnetic interference duration makes from tens of nanoseconds to milliseconds at the 

outputs of secondary device communication line (apparatuses, systems). 

The effect of electromagnetic interference extends not only to the power part of the medium 

voltage distribution network, but also on the secondary part of the distribution network, so 

that the value of voltage in phase A within the power and the secondary part, according to 

Figures 6 and 7 is reduced to zero and further - the acquisition of oscillatory character, at that 

the whole process lasts for 0.2 s, i.e. 

- In the power part, the voltages are attenuated in phase A, and the voltages in the undamaged 

phases B and C increase to the values equal to 8.56 kV, 

- The voltages within phase A are attenuated in the secondary circuit, and the voltages in the 

undamaged phases B and C increase to the values equal to 800 V. 

In the power section the voltage fluctuations in phase A are damped after 0.4 s - 0.6 s, and the 

voltages on the undamaged phases B and C are reduced to the values of 8.9 kV. 

In the secondary circuit the phase A voltage is attenuated after 0.4 - 0.6 s, and the voltages in 

the undamaged phases B and C are reduced to 800 V. 

Interference propagates both in general and in differential mode, the first of which is 

dominant. In the differential mode electromagnetic interference appears between the phases of 

the power source and is transferred to the equipment, and the source of interference is external 

interference caused by the damage of an electrical network. In this case, it can be seen from 

Figures 6 and 7 that the electromagnetic interference caused by the abnormal operation of the 

distribution network appears on each conductor (phase). 

In order to reduce the influence of the device susceptibility [18] (equipment or system), it is 

necessary to reduce the inductance of the communication line and the secondary power 

circuits, since the amplitude of the interference voltage depends not only on the rate of 

interference change, but also on the inductance of the communication line, i.e.  

   (6), 

where U1(p) is a single voltage jump in phase А, Lп is the inductance of the secondary circuit 

line, and L is the inductance of the interference source. 

In order to reduce the inductance (Lп) of the communication line, it is necessary to reduce the 

area of the loop formed by the forward and reverse communication wires, i.e. the use of 

twisted pairs, coaxial cables, flat cables, in which each communication line has 2 or 3 wires. 
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In order to reduce the inductance of the secondary power circuits, it is necessary to increase 

the cross-section and the area occupied by the conductors and conductive surfaces of the 

secondary supply circuit system. 
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Fig.7. Voltages at SPFP in the secondary circuit of the distribution network: the values of phase A are indicated in red, the values of phase B in 

pink and the values of phase C in blue 
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Summarizing the simulation, it can be noted that they determined the influence of 

electromagnetic low-frequency and high-frequency conductive interference with the 

predominance of high-frequency conductive interference in the developed mathematical 

model of the switchgear. Having understood the types of interference, according to the 

international standard it is necessary to establish the degree of intensity concerning the 

influence of electromagnetic interference taking into account the frequency, which was 

calculated in the course of the experiment - 1.59 MHz and 1.59 kHz. 

From the technical documents intended for medium-voltage connection protection terminals 

(for low-frequency and high-frequency interference, respectively) the attestation data are 

showed [20] according to the requirements of electromagnetic compatibility. From these data 

it is possible to determine the degree of electromagnetic environment rigidity. Taking into 

account the received indications (1.59 MHz and 1.59 kHz) and on the basis of the 

international standard IEC 255-22-4 we determine the degree of rigidity - 3. 

According to the interstate standard IEC 61000-4-13: 2002 (GOST 30804.4.13-2013) [14], 

the development of electromagnetic interference in power supply networks is caused by the 

appearance of higher harmonic stress components and its oscillations due to the impact of 

electrical equipment with a nonlinear and time-varying current-voltage characteristic. For 

example, the transformers and the motors with high inductive load, controlled actuators with 

electronic regulators, valve converters for electrolysis, gas-discharge lamps, etc. cause non-

sinusoidal currents, which along their path to the electrical equipment create non-sinusoidal 

voltage drops on the full network impedances even with sinusoidal voltage of a network. 

Voltage drops created by consumer currents lead to the distortion of the mains voltage 

sinusoidal form  at the frequency of 50 Hz and to the appearance of harmonics. 

Also, electromagnetic influences can manifest themselves as reversible and irreversible 

disturbances. Thus, acoustic noises (from 100 MHz), radio interference (10 kHz - 1 GHz), the 

interference in data collection/transmission can be examples of reversible disturbances, and a 

failure in the operation of a relay protection system that led to a load removal is the example 

of irreversible disturbances [20]. 

The intensity of radio interference is characterized by the vertical component of the electric 

field strength near the earth's surface (E2). 

The level of radio interference, (dB), is determined by the value [20]:  

   (7) 

where Е1 is the basic electric field strength, mcV/m,  

Y is the level of radio interference, dB. 
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Usually, E1 = 1 mcV/m is taken as the base value, then 

   (8) 

The estimated frequency is 0.5 MHz, as recommended by the International Committee on 

Radio Interference. The level of the useful signal at this frequency makes 60 dB 

approximately. 

It was noted in [20-33] that in order to implement a reliable power supply, to increase the 

efficiency and the service life of equipment, it is necessary to carry out the measures that 

would reduce the effect of electromagnetic interference. Such measures include: correct 

implementation of power systems, the observance of necessary measures for grounding the 

design of relay protection and automation devices, the shielding of communication cables, a 

correct design of hardware for relay protection and automation device, etc. 

 

V. CONCLUSIONS 

In this paper, they simulated the mathematical model of the distribution network, in which 

they considered the mechanism of unbalanced electromagnetic interference effect from a 

power source on secondary devices (equipment or system) at a single-phase earth fault in a 

network. Taking into account the mathematical calculation of electromagnetic interference 

and graphical components of the mathematical model for the medium voltage distribution 

network, the degree of electromagnetic compatibility rigidity was determined taking into 

account the received indications. Taking into account the obtained readings (1.59 MHz and 

1.59 kHz) and based on the international standard IEC 255-22-4 they determined the degree 

of rigidity equal to 3. Also, using the graphically obtained parameters, it can be concluded 

that in the case of an unbalanced distribution of an electric medium-voltage network with a 

single-phase ground fault near the source of interference, there is a voltage drop in the power 

section and in the secondary circuit of electrical installations obtained from the source of 

interference [18]. In order to reduce the effect of electromagnetic interference on devices (or 

systems) a FOCL shall be used as communication channels, which eliminate most of the 

problems associated with interference immunity and a poor quality of transmitted information 

in traditional copper communication channels at a power plant. 

 

VI. SUMMARY 

The main and the cardinal way of interference effect reduction on communication channels in 

the electrical installations of different voltage classes is the transition to fiber-optic 
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communication lines and various optical communication systems, including passive ones, for 

example, according to xPON technology. 

An important advantage of xPON technology is that an optic fiber (OF) is used as a physical 

communication channel, which, among other things, has a high degree of security against 

unauthorized access, unlike other media. 

When a fiber optic is used for the deployment of SSPI for CRPS, the influence of interference 

on CRPS devices is significantly reduced [4] and the reliability of [10] RPA and ASTCP 

systems in DP of 10 kV is increased. 

Accordingly, the use of xPON technology is proposed to reduce or prevent electromagnetic 

interference in the centralized relay protection system and the automation of the medium 

voltage distribution center. 
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