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ABSTRACT 

Customer care plays an important role in a company especially in 

Telecommunication Company. Churn is perceived as the behaviour of a customer to leave or 

to terminate a service. This behaviour causes the loss of profit to companies because acquiring 

new customer requires higher investment compared to 

necessary to consider an efficient classification model to reduce the rate of churn. Hence, the 

purpose of this paper is to propose a new classification model based on the Rough Set Theory 

to classify customer churn. The results of the study show that the proposed Rough Set 

classification model outperforms the existing models and contributes to significant accuracy 

improvement. 
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1. INTRODUCTION 

Telecommunication is becoming the number one need in today’s environment due to the 

advancement of computer and network technologies. Due to this phenomenon, the 

telecommunications industry has become a rapidly growing market. The increasing number of 

Telecommunication Company has led to intense competition. Thus, customer churn is 

currently the number one concern for Telecommunication Company. It is important to identify 

customer churn in the near future since acquiring a new customer is more expensive 

compared to retaining the existing subscribers [1]. Furthermore, customers can actively 

exercise their rights to switch from one company to another that satisfies their needs which 

trigger them to ‘churn’.  

There are two types of ‘churn’ such as voluntary churn and involuntary churn [2]. Involuntary 

churn occurs when customers are disconnected by the service provider for fraud or 

non-payment. Voluntary churn can be varied and more complex. It can be further classified as 

incidental churn and deliberate churn. Incidental churn includes customers’ financial problems 

and customers relocating to a new geographical location where the company’s service is not 

available. For deliberate churn, the customer decides to terminate the current service provider 

due to poor network coverage or poor customer service and chooses to subscribe to the 

competitor instead. Companies should put more effort to prevent deliberate customer churn 

since there are many reasons for deliberate churn to occur such as more attractive service 

packages from competitor, bad network service and matters related to technology. The focus 

in this paper is to overcome deliberate voluntary churn. By the end of this study, it was found 

that if firms are fully aware of which segment of the customers poses high risk of churn, the 

firm can design a treatment program to address the issue. Hence, the key to survive and 

outperform the industry is to overcome issues that lead to ‘churn’.  

According to [2], there are two basic approaches to mitigate customer churn namely 

untargeted and targeted approach. Relying on superior products and mass advertisement to 

increase brand loyalty and retain customers are categorized as untargeted approach, while in 

targeted approach, firms will identify customers who are likely to churn and offer direct 

incentives to avoid that to happen. Targeted approach is divided into two categories namely 1) 

reactive approach and 2) proactive approach. For reactive approach to occur, the company 
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will wait until customers decide to terminate their subscription. Then, the company offers 

incentives on the spot. For example, a rebate or cheaper packages, to encourage customer to 

stay with the current service provider. Meanwhile, for proactive approach, the company tries 

to identify subscribers who are likely to churn in the near future, then targets these customers 

with special packages or incentives to keep them from churning. Proactive approach has an 

advantage in lowering incentive cost. However, this approach will not be effective if the 

customers are not accurately classified because firms will waste financial resources for 

wrongly targeted customers. For this reason, customer churn classification should be as 

accurate as possible. This current research uses the proactive approach to classify deliberate 

customer churn.  

1.1. Related Works 

Data mining is a process to extract hidden patterns, relationships and useful information in a 

bundle of data [3]. Recently, data mining techniques have been used extensively in many 

fields. For example, they are utilized in mining student’s academic [4] and developing 

innovative applications in agriculture using data mining [5]. Classification is the most vital 

part in data mining. Generally, classification can be referred to as a process to categorize 

objects according to the characteristics of the objects. Rapid developments in the 

classification field allow researchers to develop classification modelling for customer churn 

using various data mining techniques such as artificial neural network [24-27], decision tree, 

regression and rough set theory. 
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Fig.1.Single layer perceptron neural network and multi-layer perceptron neural network 

 

Fig.2. Example of decision tree classification 

1.2.Artificial Neural Network (ANN) 

Artificial neural network (ANN) can be defined as a model of thought which mimics human 

brains. In ANN, there are connections between nodes and links. ANN consists of three main 

elements which are weight, bias and activation function. ANN can be categorized into single 

layer or multi-layer perceptron (MLP) [23]. Fig. 1 illustrates three elements in ANN for single 

layer and multi-layer perceptron [6]. ANN approach has advantages in less statistical training 

however comes with greater computational and proneness to over fitting. 

1.3. Decision Tree 

Another popular classifier applicable in customer churn risk analysis is the decision tree. 
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Decision tree is a nonparametric approach for building classification models [7]. In the 

decision tree, it defines ‘nodes’ to classify objects. There are three types of nodes: root node, 

internal node and leaf or terminal node. Leaf or terminal node is assigned to a class label, 

while non-terminal node (internal and root node) contains attribute test conditions to separate 

records that have different characteristics. Fig. 2 shows the example of mammal classification 

problem using the decision tree [8]. According to [9], the decision tree is feasible and 

effective enough to classify customer churn. 

1.4. Regression Analysis 

Regression analysis is a statistical classifier approach to investigate relationships between 

variables. In [10] stated that regression analysis is a good technique for identifying and 

predicting customer satisfaction. Equation (1) displays a simple linear regression 

y = a + bx+ ei     (1) 

 

where y = dependent variables or predicted values, α = constant population value when the 

value of x is zero, x = value of independent variables, b = constant of independent variables 

(slope for the population) and ei = error values or noise or disturbance. 

1.5. Rough Set Theory 

Rough Set Theory (RST) was introduced by [17] and had attracted many researchers’ and 

practitioners’ attentions because this new mathematical approach tackles imperfect and 

uncertain knowledge. Table 1 summarizes several previous work of customer churn 

classification based on rough set theory. 
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Table 1.Previous work for customer churn classification using rough set theory 

References Descriptions 

[11] Utilized RST and back-propagation (BP) neural network 

[12] Classifying customer churn based on historical data by proposing RST-based 

feature reduction algorithm 

[13] Combined RST and flow network graph to predict customer churn of credit 

card in Taiwan 

[14] Explored four RST-based reduction algorithms which were Exhaustive, 

Genetic, Covering and Learning from Example Module (LEM2) to identify 

the most appropriate algorithm for generating a set of rules for rough set 

classification 

RST guarantees an efficient and feasible algorithm to find hidden patterns and rules in data 

mining. These hidden patterns and rules can be found through data reduction to make up a 

minimal set of data. According to [15], RST has advantages in locating minimal datasets. 

Patterns and rules are in human-readable format which can be easily understood. Furthermore, 

results obtained can be clearly interpreted and are suitable for parallel processing. In addition, 

it does not require any preliminary or additional information about data, similar to probability 

in statistics and grade of membership in the fuzzy set theory. Therefore, implementing the 

Rough Set Theory for customer churn classification modeling is currently relevant. 

 

2. METHODOLOGY 

Rough Set Theory is one of the new generation techniques available for classification. It is an 

extension of the traditional set approach [16]. Since then, RST has attracted many researchers 

and practitioners in various fields of science and technology. In classification area, RST has 

been applied in many real-life applications such as in image segmentation [17], marketing 

evaluation [18], medical diagnosis [19], stock prices [20] and multimedia data management 

[21]. The advantages of utilizing RST over other techniques are that it does not need any 

preliminary or additional information about the data and it offers straightforward 

interpretation from the obtained results [22]. Moreover, RST is employed to represent 

imprecise and uncertain information. The elements of the Rough Set Theory consist of 
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indiscernibility relation, lower and upper approximations, as well as attribute reduction. 

2.1. Rough Set Theory Approximation Concept 

Rough set deals with data analysis in a tabular format called the decision table, which makes 

up an information system. Fig. 3 illustrates a decision table. Each row in the table represents 

an object, for instance a case or an event. Meanwhile, each column in the table represents an 

attribute or feature of the object such as a property or a variable. There are two types of 

attributes namely condition attribute and decision attribute and each object is assigned with 

some attribute values.  

 
Fig.3. Decision table illustration 

Table 2.Example of information table 

Obj Conditional Attribute 

Sex Pckg Monthly Com. Call Plan S. Rental 

O1 1 1 1 1 1 

O2 1 2 2 1 4 

O3 1 3 3 2 2 

O4 1 4 4 2 2 

O5 0 4 4 2 2 

O6 0 5 5 2 2 

Table 2 shows the example of an information table. Then, let IS = (U, A, C, D) be the 

information system in which U is a non-empty finite set called universe and A is an attribute 

set. A consists of condition attribute C and decision attribute D such that A=C ∪ D and C ∩ D 

= ∅. D is not necessarily constant on the equivalence class. Therefore, two objects may belong 

to the same equivalence class but the decision attribute may be varied. For example, if D is 
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inserted into IS in Table 2, it will produce an IS as in Table 3. 

Table 3.Example of decision table 

Obj Condition Attribute Decision Attribute 

Sex Pckg Monthly Com. Call Plan S. Rental Churn? 

O1 1 1 1 1 1 1 

O2 1 2 2 1 4 1 

O3 1 3 3 2 2 0 

O4 0 4 4 2 2 0 

O5 0 4 4 2 2 1 

O6 0 5 5 2 2 1 

From Table 3, it can be observed that O4 and O5 are having the same equivalence class with 

respect to Packages, Monthly Commitment and Call Plan attributes but they are classified 

differently. This information table can be regarded as inconsistent. As a solution, a condition 

application of the object is required. Objects O4 and O5in Table 3 can also be classified as 

having indiscernibility relations. The example of indiscernibility relations are: 

i. IND (Sex) = {{O1, O2, O3}, {O4, O5, O6}} 

ii. IND (Call Plan, Service Rental) = {{O1}, {O2}, {O3, O4, O5, O6}} 

iii. IND (Sex, Packages, Monthly Commitment) = {{O1}, {O2}, {O3}, {O4,O5}, {O6}} 

Based on Equations (3) and (4), the lower approximation and upper approximation of X from 

Table 3 can be classified as follows: 

P(X)-lower= {O1, O, O3, O6} 

P(X)-upper= {O1, O2, O3, O4, O5, O6} 

The boundary as explained in Equation (5) can be defined as PN  ={O , O }. 

Indiscernibility relation is the relation between two objects or more where all the values are 

identical in relation to a subset of a considered attribute. For example, given a subset of 

attributes,α∈A and B ⊆A, each such subset defines an equivalence relation INDA (B) called 

an indiscernibility relation that can be defined as follows. 

(B) = {(x,x)∈U2|∀α ∈B,α(x)= α(x)}   (2) 

The sets of objects are divided into an equivalence class. In that subset of attributes it will 

defined a classification process of the universe into sets such that each object in a set cannot 
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be distinguished from other objects in the set using the attributes in B only (refer Equation 

(2)). 

 
Fig.4.RST approximation concept 

The RST concept of border can be expressed by lower and upper approximation. The concept 

of approximation is required to class the objects based on the equivalence class. Two 

approximations namely P-lower and the P-upper approximation of X are defined in Equation 

(3) and (4) respectively where 

P(X) = {x ∈ U ∶ [x]P ⊆ X}   (3) 

P(X) = {x ∈ U ∶ [x]P ∩ X ≠  ∅}   (4) 

Fig. 4 illustrates RST approximation concept. The lower approximation is the set that contains 

all objects for which the equivalence class corresponds to the object which is the subset of the 

set. This set contains all objects, which certainly belong to the set X. Meanwhile, upper 

approximation is the set containing the objects for which the intersection of the object 

equivalence class and the set is not the empty set. This set contains all objects, which possibly 

belong to set X. The boundary of X for the given B⊆A and X ⊆U in IS can be defined as 

PN =  )( XP − )( XP     (5) 

P consists of objects that certainly do not belong to X on the basis of A. 

2.2. Attribute Reduction Concept  

A reduction set or the so-called ‘reduct’ is a minimal set of attribute after removing redundant 

and insignificant attributes, but still preserving the original classification. In some cases, not 
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all attributes are required to classify an object. A reduct of A is defined as minimal set of 

attributes in original classification defined by  B ⊆  A such thatIND (B) = IND (A). In this 

example, to discern between the different equivalence classes, only attributes Packages and 

Call Plan are necessary and the example of reduct is: 

IND  ({Packages, Call Plan}) =  IND( ) 

Table 4 shows an example of the decision table after the reduction process, in which attributes 

Gender, Monthly Commitment and service Rental are dropped. As a result, decision rules in 

the 4th and 5th rows in Table 4 have the same conditional attributes but different decisions. 

Thus, rules are considered as inconsistent. Meanwhile, rules in the 1st and 2nd rows are 

consistent. The RST approximation concept is required in order to handle inconsistency in 

such decision table. 

Table 4.Example of decision table after reduction 

Obj Decision Attribute Condition Attribute 

Pckg Call Plan Churn? 

O1 1 1 1 

O2 2 1 1 

O3 3 2 0 

O4 4 2 0 

O5 4 2 1 

O6 5 2 1 

From Table 4,  the approximation of the decision, D can be defined by constructing a set 

decision rules. However, decision rules cannot be exactly classified by approximation only. 

Hence, rules are applied as the implication “if…then...” rules. The rules are constructed as 

follows: 

 Rule 1, if (promotion,1) and (call plan,1) then (churn,1)  

 Rule 2, if (promotion,2) and (call plan,1) and then (churn,1) 

 Rule 3, if (promotion,5) and (call plan,2) and then (churn,1) 

 Rule 4, if (promotion,3) and (call plan,2) and then (churn,0) 

 Rule 5, if (promotion,5) and (call plan,2) and then (churn,1)  
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Thus, it can be concludede that Rule 1, Rule 2 and Rule 3 can be certainly classified as churn. 

Meanwhile, Rule 4 can be certainly classified as not churn. Lastly, Rule 5 and Rule 6 can be 

possibly classified as churn and not churn. 

 

3. RESULTS AND DISCUSSION 

The data is retrieved from the local Telecommunication Company for some billing period. 

The dataset contains 21 attributes and 313 objects. However, only 8 significant attributes are 

retrieved after the attribute selection process. Experiments were conducted using different 

split factors and reduction methods (Exhaustive Calculation, Genetic Algorithm and Johnsons 

Algorithm) using Rough Set Technical Analysis Toolkit (ROSETTA).  

In order to evaluate the performance of non-RST based and RST-based classifiers, Regression 

Analysis, J48 (Decision Tree) classifier and Voted Perceptron (Neural Network) classifier 

were applied to the local telecommunication company dataset using the WEKA software. The 

same supervised learning approach was utilized in these experiments. For the RST-based 

classifier, Standard Voting/Tuned (RSES) with Genetic Algorithm reduction method resulting 

from the previous section was chosen. Table 5 depicts the classification accuracy for different 

non-RST based and RST-based classifiers. 

Table 5.Classification accuracy for different non-RST based and RST-based classifiers 

Split Factor Classifiers with Classification Accuracy (%) 

L. Regression J48 V. Perceptron Rough Set Based Classifier 

0.9 19.45 54.80 54.80 90.32 

0.8 38.89 64.50 69.40 75.81 

0.7 43.85 55.30 73.40 75.53 

0.6 44.38 55.30 70.40 76.80 

0.5 43.89 55.10 66.00 76.92 

0.4 39.13 57.80 68.40 69.52 

0.3 31.32 57.80 64.70 71.56 

0.2 27.91 56.00 60.40 72.40 

0.1 37.12 59.89 54.80 60.85 
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4. CONCLUSION 

This research has attempted to classify customer churn data for a local telecommunication 

company. The customer churn classification model was successfully developed in this 

research using RST. In order to yield the best classification accuracy, three reduction 

attributes were assessed. Genetic Algorithm produced rules with the highest classification 

accuracies were considered. Several experiments were also performed to test RST-based and 

non-RST based classifiers. RST-based classifier performed well among the classifiers 

(Regression Analysis, Decision Tree and Voted Perceptron). After analyzing all the results 

from the experiment, one decision was made to establish the more appropriate results for this 

research. All aspects were analyzed to reach the decision that the RST-based classifier was the 

best classifier to categorize the local telecommunication company’s customer churn dataset. 

Consequently, RST has useful methods that can help to produce better results. In addition, the 

set of rules produced by the RST model was very informative. These rules can be converted 

into a predictive system to assist in identifying customer churn for local telecommunication 

companies. 

In conclusion, this research has focused on classifying churners and non-churners in a local 

telecommunication company. The new classification model obtained is capable of classifying 

customer churn with the aid of data splitting, feature selection, data discretization, attribute 

reduction and rule filtering processes. 
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