Journal of Fundamental and Applied Sciences

Research Article

ISSN 1112-9867

Special Issue

Available online at

tentral and Applied Sciences

http://www.jfas.info

BIODEGRADATION OF CARBAMAZEPINE USING FUNGI AND BACTERIA

N. M. Nasir¹, S. A. Talib², S. N. Hashim³ and C. C. Tay^{1,2,*}

¹Faculty of Applied Science, UniversitiTeknologi MARA, 40450 Shah Alam, Selangor, Malaysia

²Faculty of Civil Engineering, UniversitiTeknologi MARA, 40450 Shah Alam, Selangor, Malaysia

³Faculty of Applied Science, UniversitiTeknologi MARA, 35400Tapah, Perak, Malaysia

Published online: 10 November 2017

ABSTRACT

Carbamazepine is an anti-epileptic pharmaceutical compound which is frequently detected in wastewater. However, this compound is hardly degraded naturally due to its persistency. Thus, carbamazepine presents in water stream and household water supply as well as wastewater treatment plant. This paper focuses on various species of fungi and bacteria used in carbamazepine biodegradation and the carbamazepine degrading-enzymes involved in the degradation pathways. Selected research papers on carbamazepine biodegradation using fungi and bacteria were reviewed. The efficiency and approaches in term of methodologies and technologies used were highlighted in this paper. Such study sheds light on gaps of study and future research direction on carbamazepine biodegradation.

Keywords: biodegradation; carbamazepine; method; pharmaceuticals.

Author Correspondence, e-mail: taychiay@gmail.com

doi: http://dx.doi.org/10.4314/jfas.v9i6s.12

1. INTRODUCTION

Emerging pollutants are new chemicals without regulatory status and the impacts on health and environment are poorly understood [1]. An example of emerging pollutants is pharmaceutical carbamazepine.

Fig.1. Carbamazepine structure

Carbamazepine (5H-dibenzo[b,f]azepine-5-carboxamide) is an anticonvulsant pharmaceutical commonly used in treatment of epilepsy, bipolar disorder, schizophrenia and trigeminal neuralgia [2]. Upon consumption by patients, approximately 72% of carbamazepine was absorbed, metabolized and excreted through urine. However, 28% failed to transform and discharged into water through faeces[3]. This compound eventually flows into wastewater.

Carbamazepine is frequently detected in wastewater and difficult to be degraded due to its complex structure and resistance to biodegradation [3]. Current wastewater treatment plants are not designed for removal of pharmaceuticals. Thus, this compound presents in treated wastewater at concentration ranging from ngL^{-1} to μgL^{-1} [2].

Carbamazepine in wastewater causes negative effects to environment and animals. Carbamazepine was detected in embryo of pregnant mice when the mother was exposed to environmental concentration of carbamazepine through drinking water [4]. Exposure of carbamazepine on fish Jenynsiamultidentata caused irregular cortisol activity and aggressive behaviour[5]. A study conducted on other fishes species Pimephalesnotatus and Ictaluruspunctatus showed detection of carbamazepine in brain, liver, plasma and white muscle after exposed to carbamazepine for 28 days [2]. Another study on insect, midge Chironomusriparius showed an increase in mortality of the species when carbamazepine was applied [6]. Since various studies demonstrated that carbamazepine causes adverse effects on animals, biodegradation of this compound is crucial to protect animals and the environment. Biodegradation is an effective method for carbamazepine degradation [3]. However, complete degradation of this compound is hardly achieved. This paper focuses on efficiency of

carbamazepine biodegradation using variety of fungi and bacteria. Both fungi and bacteria have extracellular enzymes that function to cleave the complex compound bonds, hence reducing carbamazepine concentration. This paper also provides list of carbamazepine-degrading enzymes involve in biodegradation.

2. BIODEGRADATION USING FUNGI

Biodegradation of carbamazepine using fungi is conducted since fungi are known to have capabilities in degrading persistent pollutants [7]. The fungi species used in carbamazepine biodegradation include Trichodermaharzianum[8], Pleurotusostreatus (normal strain [8], AC9 [9]), immobilized Trametesversicolor[10], Trametesversicolor (ATCC [11], ATCC 42530 [12], ATCC 7731 [13] and NRRL 66313 [14]), Aspergillusniger[15], Cunninghamellaelegans ATCC 9254 [16], Umbelopsisramanniana R-56 [16] andPhanerochaetechrysosporium (mobilized strain F-1767 [17] and immobilized strain F-1767 [18]).

Summary of carbamazepine degradation by fungi according to species is listed in Table 1. Efficiency, different types of system applied, experimental condition and enzyme involved were discussed in following sections.

Fungi	Efficiency	System Applied	Condition	Enzyme	Refere
				Involved	nces
Trichoder	72%	Culture: Batch flask	Initial concentration:	Cytochrom	[8]
maharzia		Extraction: SPE HLB	$4\mu g L^{-1}$	e P450	
num		cartridge	Period: 15 days	enzymes	
		Analysis: Liquid	Temperature: 25 °C		
		chromatography-high	pH: 7.6		
		resolution tandem	Medium: Murashige		
		mass spectrometry	and Skoog media		
			(liquid)		
Pleurotus	68%	Culture: Batch flask	Initial concentration:	Cytochrom	[8]
ostreatus		Extraction: SPE HLB	$4\mu g L^{-1}$	e P450	

T 11 1	T 1	1 1	C 1	•
I a hie i	Fungal	degradation	of carbam	azenine
Table 1	•I ungui	acgradation	or curbuin	uzepine

cartridgePeriod: 15 daysenzymesAnalysis: LiquidTemperature: 25 °Cchromatography-highpH: 7.6resolution tandemMedium: Murashigemass spectrometryand Skoog media(liquid)PleurotusGP: 99%Culture: GlucoseGP: Initialpeptone (GP), solidconcentration: 37e P450PC9state fermentationmmolg ⁻¹ enzymes,using cotton stalkPeriod: 25 daysepoxideExtraction: Not statedTemperature: 28 °Chydrolase	9]
Analysis: LiquidTemperature: 25 °Cchromatography-highpH: 7.6resolution tandemMedium: Murashigemass spectrometryand Skoog media(liquid)(liquid)PleurotusGP: 99%Culture: GlucoseGP: Initialpeptone (GP), solidconcentration: 37e P450PC9state fermentationmmolg ⁻¹ enzymes,using cotton stalkPeriod: 25 daysepoxideAnalysis: LiquidpH: Not stated	9]
chromatography-highpH: 7.6resolution tandemMedium: Murashigemass spectrometryand Skoog media(liquid)PleurotusGP: 99%Culture: GlucoseGP: Initialpeptone (GP), solidconcentration: 37e P450PC9state fermentationusing cotton stalkPeriod: 25 daysepoxideExtraction: Not statedpH: Not stated	9]
resolution tandemMedium: Murashigemass spectrometryand Skoog media(liquid)PleurotusGP: 99%Culture: Glucoseostreatuspeptone (GP), solidconcentration: 37PC9state fermentationmmolg ⁻¹ using cotton stalkPeriod: 25 daysepoxideExtraction: Not statedTemperature: 28 °Chydrolase	9]
mass spectrometryand Skoog media (liquid)PleurotusGP: 99%Culture: GlucoseGP: InitialCytochromostreatuspeptone (GP), solidconcentration: 37e P450PC9state fermentationmmolg ⁻¹ enzymes,using cotton stalkPeriod: 25 daysepoxideExtraction: Not statedTemperature: 28 °Chydrolase)]
PleurotusGP: 99%Culture: GlucoseGP: InitialCytochromostreatuspeptone (GP), solidconcentration: 37e P450PC9state fermentationmmolg ⁻¹ enzymes,using cotton stalkPeriod: 25 daysepoxideExtraction: Not statedTemperature: 28 °ChydrolaseAnalysis: LiquidpH: Not stated)]
PleurotusGP: 99%Culture: GlucoseGP: InitialCytochromostreatuspeptone (GP), solidconcentration: 37e P450PC9state fermentationmmolg ⁻¹ enzymes,using cotton stalkPeriod: 25 daysepoxideExtraction: Not statedTemperature: 28 °ChydrolaseAnalysis: LiquidpH: Not stated	9]
ostreatuspeptone (GP), solidconcentration: 37e P450PC9state fermentationmmolg ⁻¹ enzymes,using cotton stalkPeriod: 25 daysepoxideExtraction: Not statedTemperature: 28 °ChydrolaseAnalysis: LiquidpH: Not stated	
PC9 state fermentation mmolg ⁻¹ enzymes, using cotton stalk Period: 25 days epoxide Extraction: Not stated Temperature: 28 °C hydrolase Analysis: Liquid pH: Not stated Image: Complexity of the stated	
using cotton stalk Period: 25 days epoxide Extraction: Not stated Temperature: 28 °C hydrolase Analysis: Liquid pH: Not stated	
Extraction: Not statedTemperature: 28 °ChydrolaseAnalysis: LiquidpH: Not stated	
Analysis: Liquid pH: Not stated	
chromatography-high Medium: Glucose	
Solid state resolution mass peptone media (liquid)	
fermentati spectrometry SSF on cotton stalk	
on (SSF) Initial concentration:	
using 110 mmolg ⁻¹	
cotton Period: 60 days	
stalk: Temperature: 28 °C	
More than pH: Not stated	
80% Medium: Cotton stalk	
(solid)	
Pleurotus No Culture: Flask culture Initial concentration: Manganes [9]
ostreatus inhibitor: of cytochrome P450 10 mgL^{-1} , $1 \mu \text{gL}^{-1}$ e	
PC9 99% (CYP450) enzyme Period: 32 days peroxidase	
inhibitor, flask culture Temperature: 28 °C , versatile	
CYP450 of manganese pH: 4.5 peroxidase	
inhibitor: peroxidase inhibitor Medium: Glucose	
30% Extraction: Not stated peptone media (liquid)	

		Analysis: Liquid			
	Manganes	chromatography-mass			
	e	spectrometry			
	peroxidase				
	inhibitor:				
	99.7%				
Trametes	57%	Culture: Batch flask	Initial concentration:	Laccase	[12]
versicolor		Extraction: Not stated	0.067 mgg^{-1}		
ATCC		Analysis: High	Period: 72 hours		
42530		performance liquid	Temperature: 25 °C		
		chromatography	pH: 4.5		
			Medium: Bioslurry		
			(solid)		
			Carbon source:		
			Glucose		
Trametes	Batch	Culture: Batch flask	Batch flask: Initial	Laccase	[11]
versicolor	flask: 94%	and bioreactor	concentration: 9		
ATCC	for 9	Extraction: Solid	mgL^{-1} , 50 μgL^{-1}		
	mgL^{-1} and	phase extraction (SPE)	Period: 6 days, 7 days		
	61% for 50	Analysis: High	Temperature: 25 °C		
	$\mu g L^{-1}$	performance liquid	pH: 4.5		
		chromatography-UV	Medium: Kirk		
			medium (liquid)		
			Bioreactor: Initial		
	Bioreactor		concentration: 200		
	: 54%		$\mu g L^{-1}$		
			Period: 15 days		
			Temperature: 25 °C		
			pH: 4.5		

			Medium: Kirk		
			medium (liquid)		
			Carbon source:		
			Glucose		
Trametes	Biocatalyti	Culture: Biocatalytic	Biocatalytic	Laccase	[10]
versicolor	c	membrane reactor,	membrane reactor		
(immobili	membrane	membrane hybrid	Initial concentration:		
zed	reactor:	reactor	20µM		
laccase on	40%	Extraction: Not stated	Period: 96 hours		
TiO ₂		Analysis: High	pH: 7		
nanoparti		performance liquid	Medium: Permeate		
cles)	Membrane	chromatography	media (liquid)		
	hybrid		Membrane hybrid		
	reactor:		reactor: Initial		
	68%		concentration: 20 μM		
			Period: 96 hours		
			pH: 7		
			Medium: Permeate		
			media (liquid)		
			*temperature not		
			stated		
Trametes	0%	Culture: Magnetic	Initial concentration:	Laccase	[20]
versicolor		biocatalyst	100 μgL ⁻¹		
(immobili		Extraction: Not stated	Period: 12 hours		
zed		Analysis: Not stated	Temperature: 20 °C		
laccaseon			pH: 7		
chitosan			Medium: Sodium		
nanoparti			acetate buffer (liquid)		
cles)					

Trametes	Less than	Culture: Aerated batch	Initial concentration:	Laccase,	[14]
versicolor	60%	reactor	350 μgL ⁻¹	lignin	
NRRL		Extraction:	Period: 8 days	peroxidase	
66313		Liquid-liquid	Temperature: 25 \pm	and	
		extraction	2 °C	manganese	
		Analysis: High	pH: 4.5	peroxidase	
		performance liquid	Medium: Kirk media		
		chromatography-phot	(liquid)		
		odiode array detection,	Carbon source:		
		gas	glucose (5 gL ⁻¹)		
		chromatography-time-			
		of-flight mass			
		spectrometry			
Trametes	10%	Culture: Batch flask	Initial concentration:	Laccase	[13]
versicolor		Extraction: Not stated	930 μgL ⁻¹		
ATCC		Analysis: High	Period: 22 hours		
7731		performance liquid	Temperature: 25 °C		
		chromatography-UV	pH: 4.5		
			Medium: Liquid		
Cunningh	43%	Culture: Batch flask	Initial concentration: 1	Not stated	[16]
amellaele		Extraction: Ethyl	μM		
gans		acetate and sodium	Period: 25 days		
ATCC		sulphate	Temperature: 28 °C		
9254		Analysis: High	pH: Not stated		
		performance liquid	Medium: Potato		
		chromatography,	dextrose broth (liquid)		
		liquid			
		chromatography-mass			
		spectrometry			

-

Umbelop	26%	Culture: Batch flask	Initial concentration: 1	Not stated	[16]
sisramann		Extraction: Ethyl	μM		
iana R-56		acetate and sodium	Period: 25 days		
		sulphate	Temperature: 28 °C		
		Analysis: High	pH: Not stated		
		performance liquid	Medium: Potato		
		chromatography,	dextrose broth (liquid)		
		liquid			
		chromatography-mass			
		spectrometry			
Phaneroc	60-80%	Culture: Sequence	Initial concentration: 5	Lignin	[17]
haetechry		plate bioreactor	mgL^{-1} and 1 mgL^{-1}	peroxidase	
sosporiu		Extraction: 0.25 µm	Period: 100 days	,	
m BKM		membrane	Temperature: 34-37 °C	manganese	
F-1767		Analysis: High	pH: Not stated	peroxidase	
		performance liquid	Medium: Kirk media		
		chromatography	(liquid)		
Phaneroc	80%	Culture:	Initial concentration:	Manganes	[21]
haetechry		Countercurrent	1000 μgL ⁻¹	e	
sosporiu		seepage bioreactor	Period: 165 days	peroxidase	
m BKM		Extraction: Not stated	Temperature: 30 °C		
F-1767		Analysis: High	pH: Not stated		
(immobili		performance liquid	Medium: Modified		
zed)		chromatography	Kirk media (liquid)		
Phaneroc	More than	Culture: Rotating	Initial concentration:	Lignin	[18]
haetechry	90%	suspension cartridge	$1000 \ \mu g L^{-1}$	peroxidase	
sosporiu		reactor	Period: 160 days	,	
m BKM		Extraction: Not stated	Temperature: 25 °C	manganese	
F-1767		Analysis: High	pH: Not stated	peroxidase	

(immobili		performance liquid	Medium: Modified		
zed)		chromatography	Kirk media (liquid)		
Aspergill	9%	Culture: Batch flask	Initial concentration:	Not stated	[15]
usniger		culture	11.4 mgL^{-1}		
		Extraction:	Period: 7 days		
		Centrifugation (retain	Temperature: 26 °C		
		supernatant)	pH: Not stated		
		Analysis: High	Medium: Minimum		
		performance liquid	mineral salt media		
		chromatography-diode	(liquid)		
		array detector	Additional carbon: 3		
			gL ⁻¹ glucose		

2.1. Efficiency of Fungi Degradation According to Methods

Different types of methods used in carbamazepine biodegradation include batch culture, bioreactor, biocatalyst and solid state fermentation.

2.1.1. Batch Culture

Fungi Trichodermaharzianum degraded 72% of carbamazepine within 15 days, meanwhile Pleurotusostreatus degraded 68% of the compound within 15 days at similar condition in Murashige and Skoog media [8]. Another study conducted by [9] showed Pleurotusostreatus of strain PC9 managed to degrade 99% of carbamazepine in 25 days when glucose peptone (GP) media was used for degradation experiment. Another study also showed consistent result where Trametesversicolor strain ATCC 42530 degraded 57% of carbamazepine within 72 hours in bioslurry medium with glucose as additional carbon source [12].

Different types of media affect degradation efficiency. Since Murashige and Skoog media contains limited minerals, fungi utilize carbamazepine as sole carbon source immediately for growth and result in fast degradation. Glucose peptone contains carbon source for fungi growth. Thus, fungi in this media utilized both carbon source from glucose peptone and carbamazepine slowly, resulted in slower but higher degradation percentage.Fungi Aspergillusniger reported only managed to degrade 9% of carbamazepine after 7 days eventhough additional carbon of 3 gL⁻¹ glucose was added [15]. This reveals that different

types of fungi species require different types of carbon source.

For effects of enzymes on carbamazepine degradation, fungi Pleurotusostreatus PC9 demonstrated 99% carbamazepine degradation within 32 days when enzyme inhibitor was absence in the culture. When enzyme inhibitors were added, degradation efficiency changed. The culture with cytochrome P450 enzyme inhibitor experienced reduction in degradation efficiency resulted in only 30% degradation. Favourably, another system with manganese peroxidase inhibitor resulted in a slight increment with degradation efficiency of 99.7% [19]. This suggests that addition of enzyme inhibitor has positive or negative effect on fungi carbamazepine degradation as it depends on fungi metabolism system.

Next, there are also studies that investigated the effect of different initial concentration on degradation efficiency. FungiTrametesversicolor of strain ATCC resulted in 94% of 9 mgL⁻¹ carbamazepine degradation within 6 days. However, this fungi species only degraded 61% of 50 μ gL⁻¹ carbamazepine at similar condition [11]. It can be hypothesized that high concentration of carbamazepine provided more carbon source, hence the degradation was more efficient. Another study also showed relatively the similar findings where Trametesversicolor of strain ATCC 7731 managed to degrade only 10% of low concentration 930 μ gL⁻¹ carbamazepine within 22 hours [13].

There is also study that investigated the potential of non-ligninolytic and ligninolytic fungi for carbamazepine degradation. Fungi Cunninghamellaelegans ATCC 9254 and Umbelopsisramanniana R-56 resulted in only 43% and 26% of carbamazepine degradation respectively after 25 days at similar condition [16]. The result showed non-ligninolytic fungi only capable to degrade less than 50% degradation. From the study, it can be hypothesized that ligninolyticfungi was more efficient in degrading carbamazepine where the efficiency reached 99% when ligninolytic fungi Pleurotusostreatus was used [19].

2.1.2. Bioreactor

Different types of bioreactor used in carbamazepine biodegradation include:

2.1.2.1. Standard Bioreactor

Trametesversicolor ATCC resulted in 54% carbamazepine degradation after 15 days with glucose as additional carbon source [11].

2.1.2.2. BiocatalyticMembrane Bioreactor

Laccase of Trametesversicolor immobilized on titanium oxide (TiO₂) only resulted in 40% carbamazepine degradation after 96 hours [10].

2.1.2.3. Membrane Hybrid Bioreactor

Laccase of Trametesversicolor immobilized on titanium oxide (TiO₂) resulted in 68% carbamazepine degradation at similar condition as biocalytic membrane bioreactor [10].

2.1.2.4. Aerated Batch Bioreactor

TrametesversicolorNRRL 66313 degraded less than 60% carbamazepine after 8 days. Additional carbon source of 5 gL^{-1} glucose was supplied [14].

2.1.2.5. Sequence Plate Bioreactor

Fungi Phanerochatechrysosporium BKM F-1767 resulted in 60-80% carbamazepine degradation after 100 days [17].

2.1.2.6. Countercurrent Seepage Bioreactor

Immobilized Phanerochatechrysosporium BKM F-1767 degraded 80% of carbamazepine within 165 days [21].

2.1.2.7. Rotating Suspension Cartridge Bioreactor

Immobilized Phanerochatechrysosporium BKM F-1767 managed to degrade more than 90% of carbamazepine after 160 days [18].

2.1.2.8. Biocatalyst

Magnetic biocatalyst was conducted using immobilized laccase of Trametesversicolor on chitosan nanoparticles failed to degrade carbamazepine after 12 hours [20].

2.1.2.9. Solid State Fermentation

Fungi Pleurotusostreatus PC9 was used for solid state fermentation using cotton stalk and able to degrade more than 80% carbamazepine after 60 days [9].

2.1.2.10. Summary

Among all methods used in degradation of carbamazepine using fungi, Pleurotusostreatus in batch culture was the most effective where 99% degradation was achieved. Membrane hybrid bioreactor was also effective since laccase of fungi Trametesversicolor capable to degrade carbamazepine with 60% efficiency within short time which was 96 hours. Sequence plate

bioreactor, countercurrent seepage bioreactor, rotating suspension cartridge bioreactor and solid state fermentation using cotton stalk also resulted in high degradation efficiency. However, these experimental methods were time consuming.

2.2. Carbamazepine Degrading Enzymes from Fungi

Carbamazepine-degrading enzymes produced by fungi include:

- Cytochrome P450 enzyme [8, 19]
- Manganese peroxidase [14, 17-19]
- Versatile peroxidase [19]
- Laccase[10-14, 20]
- Lignin peroxidase [14, 18, 22]

All of the conducted studies on carbamazepine degrading enzymes are qualitative study. These enzymes play important role in carbamazepine degradation pathways. A study by [16] proposed that carbamazepine degraded through mixed mono-oxidation reactions (hydroxylation and epoxidation). Both fungi Cunninghamellaelegans ATCC 9254 and Umbelopsisramanniana R-56 produced 10,11-dihydro-10,11-epoxycarbamazepine (CBZ-EP) as major metabolite and 3-hydroxycarbamazepine as one of the minor metabolites. C. elegans also produced 2-hydroxycarbamazepine, while U. ramanniana exhibited new metabolites of hydroxycarbamazepine and 4-hydroxycarbamazepine.

Another study proposed a detailed pathway, where 24 metabolites were identified during carbamazepine degradation [9]. The three pathways involved were oxidation, hydrolysis and methoxylation. The main pathway oxidation of carbamazepine was into 10,11-dihydro-10,11-epoxycarbamazepine (CBZ-EP). This reaction was aided by enzymes cytochrome oxidase and manganese peroxidase. Then, hydrolysis reaction converted the metabolite to dihydroxide carbamazepine (diOH-CBZ). It was suggested that epoxide hydrolase involved in this reaction. The process was followed by methoxylation resulting in formation of 10-methoxy-carbamazepine. The major metabolite identified in this study is similar to [16].

3. BIODEGRADATION USING BACTERIA

Bacteria are also one of the microorganisms group which capable to degrade organic

pollutants [7]. Since bacteria grow rapidly, application of this microorganism group can result in fast degradation of carbamazepine. Studies on biodegradation of carbamazepine using bacteria are limited. There were various carbamazepine biodegradation studies that utilized bacteria such as Streptomyces MIUG 4.89 [23-24], Streptomyces SNA [24], Serratia sp. [25], Rhodococcusrhodochrous[15], Pseudomonas CBZ-4 [3], mixed culture of Aquicella sp., Microvirga sp. and family Rhodobacteraceae[26], mixed culture of Spinghomonas sp., unclassified family of Spinghomonadaceae and Xanthomonandaceae[26], mixed culture of Acetinobacter US1, Bacillus halodurans, Micrococcus SBS-8 and Pseudomonas putida[27], mixed culture of Spinghobacterium sp., Chryseobacterium sp. and Alcaligenes sp. [28] and Paraburkholderiaxenovorans LB400 [29].

Table 2 showed summary of carbamazepine degradation by various bacteria species. This table is classified according to efficiency, different types of system applied, experimental condition and enzyme involved.

Bacteria	Effici	System Applied	Condition	Enzyme	Refere
	ency			Involved	nces
Streptomyce	30%	Culture: Batch reactor	Initial concentration:	Not stated	[23]
s MIUG 4.89		Extraction:	0.2 mgL^{-1}		
		Centrifugation	Period: 7 days		
		(supernatant retain)	Temperature: 25 °C		
		Analysis: High	pH: 6		
		performance liquid	Medium: Basal		
		chromatography	media (liquid)		
			Additional carbon:		
			6.5 gL^{-1} glucose, 2		
			gL ⁻¹ yeast		
Streptomyce	35%	Culture: Batch flask	Initial concentration:	Laccase	[24]
s MIUG 4.89		culture	0.2 mgL^{-1}	Phenoloxi	
		Extraction: Not stated	Period: 7 days	dase	

Table 2. Bacterial degradation of carbamazepine

_

		Analysis: High	Temperature: 25 °C		
		performance liquid	pH: Not stated		
		chromatography	Medium: Minimal		
			media (liquid)		
			Additional carbon: 5		
			gL^{-1} glucose		
Streptomyce	30%	Culture: Batch flask	Initial concentration:	Laccase	[24]
s SNA		culture	0.2 mgL^{-1}		
		Extraction: Not stated	Period: 7 days		
		Analysis: High	Temperature: 25 °C		
		performance liquid	pH: Not stated		
		chromatography	Medium: Minimal		
			media (liquid)		
			Additional carbon: 5		
			gL ⁻¹ glucose		
Rhodococcu	15%	Culture: Batch flask	Initial concentration:	Not stated	[15]
srhodochrou		culture	9.5 mgL^{-1}		
S		Extraction:	Period: 7 days		
		Centrifugation (retain	Temperature: 26 °C		
		supernatant)	pH: Not stated		
		Analysis: High	Medium: Minimum		
		performance liquid	mineral salt media		
		chromatography-diode	(liquid)		
		array detector	Additional carbon: 3		
			gL ⁻¹ glucose		
Pseudomona	46.6	Culture: Aerobic batch	Initial concentration:	Not stated	[3]
s CBZ-4	%	flask culture	9.5 mgL ⁻¹		
		Extraction: Ethyl acetate	Period: 144 hours		

		Analysis: High	Temperature: 10 °C		
		performance liquid	pH: 7		
		chromatography	Medium: Dominic		
			and Graham media		
			(liquid)		
Serratiasp.	0%	Culture: Batch flask	Initial concentration:	Not stated	[25]
		culture	0.75 mgL ⁻¹		
		Extraction: Chloroform	Period: 20 days		
		application	Temperature: Not		
		Analysis: High	stated		
		performance liquid	pH: Not stated		
		chromatography	Medium: Bushnell		
			Haas media (liquid)		
Aquicellasp.,	Aerob	Culture: Aerobic and	Initial concentration:	Not stated	[26]
Microvirgas	ic:	anaerobic batch amber	50 ngg ⁻¹ , 500 ngg ⁻¹ ,		
p.,	12.8-	bottle culture	5000 ngg ⁻¹		
Rhodobacter	14.5	Extraction: QuECHERS	Period: 14 days		
aceae mixed	%	for soil extraction	Temperature: Not		
bacteria		followed by solid phase	stated		
culture	Anaer	extraction for liquid	pH: Not stated		
	obic:	Analysis: Liquid	Medium: Soil (solid)		
	6.2-1	chromatography mass			
	4.9%	spectrometry			
Spinghomon	More	Culture: Aerobic and	Initial concentration:	Not stated	[26]
assp.,unclass	than	anaerobic batch amber	5000 ngg ⁻¹		
ified family	25%	bottle culture	Period: 14 days		
of		Extraction: QuECHERS	Temperature: Not		
Spinghomon		for soil extraction	stated		
adaceae and		followed by solid phase	pH: Not stated		

Xanthomona		extraction for liquid	Medium: Soil (solid)		
ndaceae		Analysis: Liquid			
mixed		chromatography mass			
bacteria		spectrometry			
culture					
Acetinobacte	60%	Culture: Batch flask	Initial concentration:	Not stated	[27]
r US1.,		culture	100 μgL ⁻¹		
Bacillus		Extraction: Solid phase	Period: 12 days		
halodurans,		extraction	Temperature: 30 °C		
Micrococcus		Analysis: High	pH: 7		
SBS-8,		performance liquid	Medium: LB media		
Pseudomona		chromatography	(liquid)		
s putida					
mixed					
bacteria					
culture					
Sphingobact	With	Culture: Batch flask	Initial concentration:	Not stated	[28]
erium sp.,	acetat	culture	25 μgmL ⁻¹		
Chryseobact	e:	Extraction: Not stated	Period: 14 days		
erium sp.,	20%	Analysis: High	Temperature: 25 °C		
Alcaligeness		performance liquid	pH: Not stated		
p. mixed	No	chromatography-diode	Medium: Minimal		
bacteria	acetat	array detector	media (liquid)		
culture	e:		Additional carbon:		
	10%		100 μgmL^{-1} acetate		
Paraburkhol	100%	Culture: Batch serum	Initial concentration:	Biphenyl	[29]
deriaxenovor		bottle culture (direct	10 mgL^{-1}	dioxygen	
ansLB400		biological method)	Period: 24 hours	ase,	
		Extraction: Ethyl acetate	Temperature: 25 °C	dihydrodi	

Analysis: High	pH: 7	ol	
performance liquid	Medium: Phosphate	dehydrog	
chromatography-diode	buffer (liquid)	enase	
array detector, High			
performance liquid			
chromatography-mass			
spectrometry, gas			
chromatography-mass			
spectrometry			

3.1. Efficiency of Bacteria Degradation According to Methods

Different types of methods used in carbamazepine biodegradation using bacteria include batch flask culture, bioreactor, batch amber culture bottle and batch serum culture bottle.

3.1.1.Batch Flask Culture

Bacteria Streptomyces MIUG 4.89 degraded only 35% carbamazepine during 7 days of experimental period when 5 gL⁻¹ of glucose was added as carbon source [24]. Meanwhile, bacteria Streptomyces SNA resulted in lower carbamazepine degradation which is 30% during similar experimental period and condition. Bacteria Rhodococcusrhodochrous managed to degrade only 15% of carbamazepine after 7 days eventhough additional carbon source of 3 gL⁻¹ glucose was added [15].Another study demonstrated that Pseudomonas CBZ-4 capable to degrade only 46.6% of carbamazepine after 144 hours period [3]. Bacteria Serratia sp. failed to degrade carbamazepine eventhoughit was cultured during a long period of 20 days [25].

Individual flask culture study was less efficient in degrading carbamazepine. None of the individual flaks culture study achieved more than 50% degradation. Moreover, addition of carbon source did not enhance degradation of carbamazepine.

Next, mixed bacteria culure studies were also conducted. Mixed bacteria culture of Acetinobacter US1, Bacillus halodurans, Micrococcus SBS-8 and Pseudomonas putida degraded 60% of bacteria within 7 days of experimental period [27]. This revealed that mixed bacteria was more efficient compared to individual flask culture study. However, another mixed bacteria culture study of Spinghobacterium sp., Chryseobacterium sp. and Alcaligenes

sp. only able to degrade 20% of carbamazepine when 100 μ gmL⁻¹ of acetate was added as additional carbon source. Meanwhile, biodegradation efficiency decreased to 10% when acetate was absence [28]. Mixed bacteria culture may provide synergistic effects or antagonistic effects depending on bacteria species. Additional nutrient source effect study is limited and further investigation should be continued.

3.1.2. Bioreactor

Standard bioreactor was used to degrade carbamazepine using bacteria Streptomyces MIUG 4.89. This strain only degraded 30% of carbamazepine after 7 days with additional carbon source of 6.5 gL⁻¹ glucose and 2 gL⁻¹ yeast [23].

3.1.3. Batch amber Bottle Culture

Degradation experiment was conducted by comparing aerobic and anaerobic condition of batch amber bottle culture in soil medium. Mixed bacteria culture of Aquicella sp., Microvirga sp. and family Rhodobacteraceae only degraded 12.8-14.5% of carbamazepine in aerobic condition within 14 days and only degraded 6.2-14.9% of carbamazepine in anaerobic condition within the same experimental period and condition. Another mixed bacteria culture study of Spinghobacterium sp., Chryseobacterium sp. and Alcaligenes sp. only managed to degrade more than 25% of carbamazepine in soil medium within 14 days [26].

3.1.4. Batch Serum Bottle Culture

Bacteria Paraburkholderiaxenovorans LB400 achieved complete degradation of carbamazepine within 24 hours [29].

3.1.5. Summary

Based on various studies, different biodegradation methods have no significant effects on carbamazepine degradation by bacteria. Bacteria Paraburkholderiaxenovorans LB400 degraded 100% carbamazepine due to its ability to release various types of enzymes that play important roles in carbamazepine degradation. Mixed bacteria culture of Acetinobacter US1, Bacillus halodurans, Micrococcus SBS-8 and Pseudomonas putida also showed efficient degradation with 60% degradation rate. Other individual culture and mixed bacteria culture only degraded less than 50% carbamazepine. In mixed bacteria culture, there was limited nutrient, thus, bacteria die and resulted in inefficient degradation. Hence, bacteria characteristics and its adaptability in carbamazepine environment need to be determine before

study is conducted.

3.2. Carbamazepine Degrading Enzymes of Bacteria

Carbamazepine-degrading enzymes produced by bacteria include:

- Laccase[24]
- Phenoloxidase[24]
- Biphenyl dioxygenase[29]
- Dihydrodiol dehydrogenase [29]

In [29] proposed а pathway of carbamazepine degradation by bacteria Paraburkholderiaxenovorans LB400. The main metabolites includecis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine. The enzyme involved was biphenyl dioxygenase. Further reaction utilized dihydrodiol dehydrogenase coverted the cis-dihydrodiols into carbamazepine-diol 2enzyme and and hydroxycarbamazepine. For laccase and phenoloxidase enzymes, the study only identified the presence of enzymes qualitatively hence, no pathway is proposed.

4. CONCLUSION

Various fungi and bacteria are capable in degrading carbamazepine. The difference in degradation efficiency is mainly affected by fungi and bacteria properties and its ability to release enzymes that aid in carbamazepine degradation. For fungi, different types of methods affect degradation efficiency. Meanwhile, for bacteria applications of advanced methods do not necessarily enhance the degradation efficiency. There are gaps of study in addition of carbon source utilization by both fungi and bacteria. Utilization of carbon source differs according to species. Thus, further study is needed on this topic. Next, for enzymes study, to authors' best knowledge, there is no proposed pathway that involved laccase enzyme in carbamazepine degradation using bacteria and fungi. Hence, detailed study on pathways involving this enzyme is needed. This study leads to further development and application of carbamazepine bioremediation.

5. ACKNOWLEDGEMENTS

We acknowledge the financial support Fundamental Research Grant Scheme (FRGS) 600-RMI/FRGS 5/3 (26/2015) and facilities support from UniversitiTeknologi MARA.

6. REFERENCES

[1] Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, 2011, 214(6):442–448

[2] Garcia S N, Foster M, Constantine L A, Huggett D. Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine. Ecotoxicology and Environmental Safety, 2012, 84:207–211

[3] Li A, Cai R, Cui D, Qiu T, Pang C, Yang J, Ma F, Ren N. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. Journal of Environmental Sciences, 2013, 25(11):2281–2290

[4] Kaushik G, Huber D P, Aho K, Finney B, Bearden S, Zarbalis K S, Thomas M A. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers. Biochemical and Biophysical Research Communications, 2016, 474(2):291–295

[5] Calcagno E, Durando P, Valdés M E, Franchioni L, Bistoni M de los Á. Effects of carbamazepine on cortisol levels and behavioral responses to stress in the fish Jenynsiamultidentata. Physiology and Behavior, 2016, 158:68–75

[6] Heye K, Becker D, Eversloh C L, Durmaz V, Ternes T A, Oetken M, Oehlmann J. Effects of carbamazepine and two of its metabolites on the non-biting midge Chironomusriparius in a sediment full life cycle toxicity test. Water Research, 2016, 98:19–27

[7] Haritash A K, Kaushik C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 2009, 169(1–3):1–15

[8] Buchicchio A, Bianco G, Sofo A, Masi S, Caniani D. Biodegradation of carbamazepine and clarithromycin by Trichodermaharzianum and Pleurotusostreatus investigated by liquid chromatography - high-resolution tandem mass spectrometry (FTICR MS-IRMPD). Science of the Total Environment, 2016, 557–558:733–739

[9] Golan-Rozen N, Seiwert B, Riemenschneider C, Reemtsma T, Chefetz B, Hadar Y.

Transformation pathways of the recalcitrant pharmaceutical compound carbamazepine by the white-rot fungus Pleurotusostreatus: Effects of growth conditions. Environmental Science and Technology, 2015, 49(20):12351–12362

[10] Ji C, Hou J, Wang K, Zhang Y, Chen V. Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor. Journal of Membrane Science, 2016, 502:11–20

[11] Jelic A, Cruz-Morato C, Marco-Urrea E, Sarra M, Perez S, Vincent T, Petrovic M, Barcelo D. Degradation of carbamazepine by Trametesversicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Research, 2012, 46(4):955–964

[12] Rodríguez-Rodríguez C E, Marco-Urrea E, Caminal G. Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametesversicolor systems. Bioresource Technology, 2010, 101(7):2259–2266

[13] Yang S, Hai F I, Nghiem L D, Roddick F, Price W E. Removal of trace organic contaminants by nitrifying activated sludge and whole-cell and crude enzyme extract of Trametesversicolor. Water Science and Technology, 2013, 67(6):1216–1223

[14] Shreve M J, Brockman A, Hartleb M, Prebihalo S, Dorman F L, Brennan R A. The white-rot fungus Trametesversicolor reduces the estrogenic activity of a mixture of emerging contaminants in wastewater treatment plant effluent. International Biodeterioration and Biodegradation, 2016, 109:132–140

[15] Gauthier H, Yargeau V, Cooper D G. Biodegradation of pharmaceuticals by Rhodococcusrhodochrous and AspergillusNiger by co-metabolism. Science of the Total Environment, 2010, 408(7):1701–1706

[16] Kang S I, Kang S Y, Hur H G. Identification of fungal metabolites of anticonvulsant drug carbamazepine. Applied Microbiology and Biotechnology, 2008, 79(4):663–669

[17] Zhang Y, Geißen S U. Elimination of carbamazepine in a non-sterile fungal bioreactor.Bioresource Technology, 2012, 112:221–227

[18] Li X, Xu J, de Toledo R A, Shim H. Enhanced carbamazepine removal by immobilized Phanerochaetechrysosporium in a novel rotating suspension cartridge reactor under non-sterile condition. International Biodeterioration and Biodegradation, 2016, 115:102–109

[19] Golan-Rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y. Transformation of the

recalcitrant pharmaceutical compound carbamazepine by Pleurotusostreatus: Role of cytochrome P450 monooxygenase and manganese peroxidase. Environmental Science and Technology, 2011, 45(16):6800–6805

[20] Kumar V V, Cabana H. Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuticals. Bioresource Technology, 2016, 200:81–89

[21] Li X, Xu J, de Toledo R A, Shim H. Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaetechrysosporium under non-sterile conditions. Bioresource Technology, 2015, 197:465–474

[22] Zhang Y, Geißen S U. In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase. Journal of Hazardous Materials, 2010, 176(1–3):1089–1092

[23] PopaUngureanu C, Favier L, Bahrim G, Amrane A. Response surface optimization of experimental conditions for carbamazepine biodegradation by Streptomyces MIUG 4.89. New Biotechnology, 2015, 32(3):347–357

[24] Popa C, Favier L, Dinica R, Semrany S, Djelal H, Amrane A, Banrim G. Potential of newly isolated wild Streptomyces strains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environmental Technology, 2014, 35(24):3082–3091

[25] Molina C, Benitez N, Simarro R, Bautista L, Vargas C, Cambero G, Diaz M, Quijano M. Bioremediation techniques for naproxen and carbamazepine elimination: Toxicity evaluation test. ChimicaOggi-Chemistry Today, 2016, 34(2):52–55

[26] Thelusmond J R, Strathmann T J, Cupples A M. The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Science of the Total Environment, 2016, 571:1241–1252

[27] Ha H, Mahanty B, Yoon S, Kim C G. Degradation of the long-resistant pharmaceutical compounds carbamazepine and diatrizoate using mixed microbial culture. Journal of Environmental Science and Health, Part A, 2016, 51(6):467–471

[28] Ribeiro A R, Gonçalves V M F, Maia A S, Carvalho M F, Castro P M L, Tiritan M E. Microbial degradation of pharmaceuticals followed by a simple HPLC-DAD method. Journal of Environmental Science and Health, Part A., 2012, 47(13):2151–2158

[29] Aukema K G, Escalante D E, Maltby M M, Bera A K, Aksan A, Wackett L P. In

silicoidentification of bioremediation potential: Carbamazepine and other recalcitrant personal care products. Environmental Science and Technology, 2016, 51(2):880-888

How to cite this article:

Mohamad-Nasir N, Abdul-Talib S, Ismail H. N and Tay C. C.Biodegradation of carbamazepine using fungi and bacteria. J. Fundam. Appl. Sci., 2017, 9(6S), 124-146.