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ABSTRACT

The challenge in unsupervised Hidden Markov Model (HMM) training for a POS tagger is

that the training depends on an untagged corpus; the only supervised data limiting possible

tagging of words is a dictionary. Therefore, training cannot properly map possible tags. The

exact morphemes of prefixes, suffixes and circumfixes in the agglutinative Malay language is

examined to assign unknown words’ probable tags based on linguistically meaningful affixes

using a morpheme-based POS guessing algorithm for tagging. The algorithm has been

integrated into Viterbi algorithm which uses HMM trained parameters for tagging new

sentences. In the experiment, this tagger is first, uses character-based prediction to handle

unknown words; next, uses morpheme-based POS guessing algorithm; lastly, combination of

the first and second.
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1. INTRODUCTION

Recently, there is some interest to move further in research of Malay Natural Language

Processing. For example, a Malay POS Tagger based-on supervised training reported by [1].

POS tagging is very important as it is a low-level parsing of natural language to build many

Natural Language (NLP) applications. Another example is a parallel language corpus as a

resource for Malay language reported by [2] and a basic tokenizer tool for Jawi writing

reported by [3].

The Malay language is categorised as an agglutinative or derivative language where most of

the words are formed by merging affixes with root words [4-5]. Affixation is performed by

adding the affix at the beginning (prefixes), middle (infixes) or at both the ends (circumfixes)

of the root word. Due to the well-defined affixation rules, the word class of Malay derivative

words can be intuitively guessed. This paper examined the effectiveness of using Malay affix

morphemes for handling unknown words in the unsupervised Hidden Markov Model (HMM)

POS tagging. For under-resourced languages such as Malay using the unsupervised training

method helps to avoid the need of a large annotated corpus which is labour intensive, time

consuming and high in costs.

Several researchers have conducted the efforts to train unsupervised HMM POS tagger to

cater for words that are not listed in the dictionary and ambiguous words as well.Among the

common methods used are exploiting words’ ending to enlarge the training dictionaries [6-7]

or directly estimating the initial emissions for unknown words [8-9] or directly estimating the

lexical probabilities for ambiguous words [10].

Other researches focus on building an annotated corpus automatically and training the HMM

using the supervised approach [11-12]. This paper emphasises on the morphological

characteristics of the Malay origin as opposed to the traditional basic statistical POS tagging,

which is linguistically independent and does not explicitly include linguistic features. This

study aims to examine the effectiveness of using actual affix morphemes of the Malay

language rather than the use of the words’ ending characters as features for predicting the POS

of unknown words. Therefore, a suitable combination of methods in the Viterbi tagging for

Malay is identified. The similar works are in [13-14]. In [13]applies affixation and word
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relation rules which is clearly rule-based approach. On the other hand, in [14] uses

morphological analyser and applies machine learning technique. The other related work is in

[15], which applies statistical unsupervised method using N-gram and Dice Coefficient for

similarity measurement purpose. The other proposed methods for Malay POS tagging are

based on supervised methods [16-17] and syntactic drift with data-driven approach [18-19].

1.1.Malay Tag Set

To define a linguistically motivated Malay tag set, while at the same time determining a

suitable number of tags for the statistical approach, the classification of Malay words

described in Malay grammar textbooks written by many scholars [4, 20-21] are refined. The

descriptions provide guidance in designing a tag set, rather than trying to adopt from English

or other languages.The tag-sets built for English do not cover all the characteristics of the

Malay language; some English tags are not useful for Malay and there is a lack of tags to

cover some Malay word classes, such as numeral classifiers [22].

Accordingly, many monolingual or bilingual Malay dictionaries already associated word

classes of entries, which coincided with Malay grammar in textbooks [23-25]. A complete set

of Malay tags are listed in Table 1, considering the proposed modifications on the tag sets of

the dictionary to suite with HMM training. The modifications are as follows:

1.2.Auxiliary Words (Kata Bantu)

There are two type of auxiliary words in Malay i.e. modal auxiliary (Kata Bantu Ragam) and

aspectual auxiliary (Kata Bantu Aspek). The modal auxiliary illustratesthe mood of the act on

the verbs; for example, hendak(want), mahu(wish), harus(should), mesti (must), boleh (can)

and dapat (can). There are no clear verb tenses in Malay as opposed to English. Therefore,

aspectual auxiliaries are used to indicate whether the state of the verb; past, still on-going or

yet to be done. For example, telah (already past), sudah (already past), pernah (ever), sedang

(still), masih (still), akan (will) and belum (not yet).

1.3.Function Words (Kata Tugas)

Function words in Malay are limited but they significantly play different roles in a text. They

are used in a sentence or phrase as grammatical functions. Their role includes determiners

(Kata Penentu), imperative words (Kata Perintah), discourse markers (PenandaWacana),
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affirmative words (Kata Pembenar), directional words (Kata Arah), assertion words (Kata

Penekan) and nominalisers (Kata Pembenda). Therefore, function words (Kata Tugas) are

detailed-up as per roles.

1.4.Existential or Kewujudan Tag

A new tag is created to differentiate between verbs in dominantly Subject-Verb-Object Malay

sentence patterns with another special case verb, ada (exist), in the sentence pattern of

Verb-Subject which is very rare. For example, the sentence ‘ada lima puluhekorkambing’

(there are fifty goats) complies with the Verb-Subject pattern as compared to ‘diaada lima

puluhekorkambing’ (he/she has fifty goats), which complies with the Subject-Verb-Object

pattern.

1.5.Relative Pronouns or GantiNamaRelatif for ‘yang’ (which, that)

Many Malay grammar textbooks classify the word yang as a relative subordinating

conjunction (kata hubungpancanganrelatif), which is the subclass of kata hubung

(conjunction). Our corpus indicates that the yang is the most frequently used word. It is good

to classify such words into a single class to avoid a skewed emission probability of HMM

being affected due to high usage of certain words in a class.

Table 1. List of Malay tag set

Tags Description Examples (The Translations

Provided Are In Lateral)

ADA Existential ada(exist)

GEL Title Datuk, Haji

GNR Relative pronoun yang (which, that)

JDH

Numeral classifier or

penjodohbilangan orang (people),buah(fruit)

KA Adjective pandai(clever),bodoh(stupid)

KAD Adverb sekarang(now),tadi(just now)

KAR Directional Word bawah(under),tepi(side)

KBIL Numeral satu(one), 100

KBR Modal Auxiliary mahu(wish),harus(should)
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KEP Abbreviation UKM

KGN Pronoun kamu(you),awak(you)

KH Conjunction dan(and),lalu(then)

KK Verb pulang(return),tidur(sleep)

KN Common Noun rumah(house),kambing(goat)

KNF Negative Word bukan(not) and tidak(no/not)

KNK Proper Noun New York, Pasir Mas

KP Intensifier Sungguh(true/exact)

KPB Nominalizer lajunya(its speed), sakitnya(painfulness)

KPM Narrator ialah(is),adalah(is)

KPN Emphatic Words juga(also),jua, pun

KPR Affirmative Word ya(yes),benar(true)

KPT Assertion Word nampaknya(it seems),bahawasanya

KS Preposition dari(from),pada(at)

KSR Interjection amboi(wow),bedebah(ah)

KTP Imperative Word sila(please),jemput(invite)

KTY Interrogative Word berapa(how),bila(when)

PIN Foreign Word university

PW Discourse Marker kalakian(urging),maka(then)

TEN Determiner ini(this) and itu(that)

EMAIL Email Address/ Web Site hassan.dbangi@yahoo.com

$ Dollar Sign $ RM

# Pound Sign # £

“ Left Quote ‘ “

( Left Parenthesis ( [ { <

) Right Parenthesis ) ] } >

, Comma ,

. Sentence-Final Punctuation ! ? .

: Mid-Sentence Punctuation - ... ; :
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SYM Any Symbols ` ^ _ @ * / \ & % + = | ~

2. RESULTS AND DISCUSSION

The accuracy of the tagging denotes the percentage of the words correctly assigned with tags

as compared to the tagged corpus [33]. Therefore, the tagging performance is often measured

by the overall tagging, known word and unknown word tagging accuracies [28, 34]. Known

words refer to words present in the training corpus and vice-versa. However, in our case, the

definition of unknown words is extended to include the words that may exist in the training

corpus but not listed in the dictionary. Therefore, the accuracy in our evaluation is termed into

five types of accuracies to ease the analysis of tagging.

 Overall-the overall performance of the tagger.

 Seen word with unique tag-the performance of tagging words presents in the training that

exist in the dictionary with only one tag.

 Seen words with ambiguous tags-the performance of tagging words presents in the

training that exist in the dictionary with more than one tag.

 Seen words not existing in the dictionary-the performance of tagging words not listed in

the dictionary but seen in the training.

 Unseen words-the performance of tagging words absent in the training corpus.

Each accuracy is calculated as the ratio of number of correctly tagged words of the related

accuracy in the test corpus to the total number of tagged words of the related accuracy in the

test corpus. Table 2 presents the results of the experiments.

Table 2. Tagging performance

Methods Overall

Seen Words

Unseen

Words

Exist in Dictionary
Not Exist in

DictionaryUnique Tag
Ambiguous

Tags

1 38.50 42.30 7.08 40.31 30.10

2 81.81 92.00 75.78 38.97 33.42

3 81.71 92.00 75.83 38.33 32.22
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4 82.25 92.00 75.52 42.90 31.22

5 82.28 92.00 76.04 42.52 31.94

6 82.53 92.00 76.19 43.93 33.72

7 82.59 92.00 76.14 44.56 33.40

8 82.58 92.00 76.13 44.32 34.20

Legend of the Methods

1. Baseline

2. Viterbi (training iteration = 2) with words’ starting (max. length = 4)

3. Viterbi (training iteration = 3) with words’ ending (max. length = 8)

4. Viterbi (training iteration = 2) with morpheme (uniform distribution)

5. Viterbi (training iteration = 2) with morpheme (proportionate

distribution)

6. Viterbi (training iteration = 2) with combination of morphemes and

words’ starting (max. length = 8)

7. Viterbi (training iteration = 2) with combination of morphemes and

words’ ending (max. length = 5)

8. Viterbi (training iteration = 2) with combination of morphemes and

words’ starting (max. length = 1) with successive abstraction smoothing

ignores words have affixes

9. Viterbi (training iteration = 2) with combination of morphemes and

words’ ending (max. length = 6) with successive abstraction smoothing

ignores words have affixes

2.1.Viterbi Tagging with a Words’ Starting or Words’ Ending

This method of tagging unknown words can be looked as a character-based POS prediction.

There are two possibilities that influence this results, i.e. the number of training iterations and

the maximum predefined length of characters used in the words’ starting or ending.Due to this

reason, the experiment must be repeated for each predefined length of characters (ranging

from one to twelve characters) for the words’ starting and ending methods with various

numbers of iterations (ranging from one to ten iterations). The iteration and the length of
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characters that gives the highest overall performance is considered as the best performance.

The experiments revealed the best performance at the second iteration of HMM training with

a maximum predefined length of 4 characters for words’ starting method. The overall

accuracy drops to 81.81% (second row of Table 6). On the other hand, the overall accuracy

drops to 81.71% (third row of Table 6) on the third iteration of HMM training with 8

characters maximum predefined length of words’ ending method. Although the percentages’

do not present significant difference, there is a difference in terms of the number of tokens

with 0.1% of accuracy, reflecting about 121 tokens (out of 121,090 test tokens).

The tagging accuracy for unseen words by using a words’ starting information is 39.42% on

the fourth iteration of HMM training. On the other hand, using a words’ ending information,

the accuracy is 33.22% on the second iteration.The different percentage of 7.20%, indicates

that using a words’ starting information is slightly more accurate than using a words’ ending

information. Furthermore, using a words’ ending information requires more subsequent

characters.

Tagging seen words not listed in the dictionary using a words’ starting information

outperformed the use of a words’ ending information. The tagging accuracy for using a words’

starting information is 39.02% on the third iteration as compared to using a words’ ending

information, which is 38.36% on the fourth iteration.The difference of 0.66% reflects about

105 tokens (out of 15,882). This finding strengthens the argument to use words’ starting

information for character-based prediction of unknown words’ POS.

2.2 Viterbi Tagging with Unknown Words’ POS Predicted through Malay Affix

Morphemes

The number of training iterations can influence the results. Therefore, the experiments are

repeated for each iteration ranging from one to ten. The best overall performance from those

iterations is considered the best result.Table 6 depicts the results of tagging performance using

a combination of Viterbi with handling unknown words using morpheme-based POS guessing

(stated in row 4 and 5). The best overall tagging accuracy is 82.28% when the unknown

words’ emission is substituted by a value proportionate to the marginal distribution of tags.

The results are slightly better than the results of the experiment done on Viterbi with words’
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starting or ending methods. However, tagging unseen words is less accurate in Viterbi tagging

with morpheme-based POS guessing (31.94%) compared to the results of the experiment

done on Viterbi with words’ starting method (33.42%), with a difference of about 1.48% (see

row 2 and 5 of Table 6). This indicates that the affixation rules do not enhance the accuracy of

POS guessing of unseen words. However, Viterbi tagging with morpheme-based POS

guessing enhances the accuracy of tagging words absent in the dictionary by 42.52%; better

than the baseline.

2.3 Combination of Words’ Starting or Ending Methods with Affix Morphemes

Three factors influence the results, i.e. the number of training iterations, the maximum

predefined length of characters used in a words’ starting or ending methods and the number of

joint “word-tag” and word types used in the successive abstraction smoothing. Words that

contained affixes are ignored when counting the total number of joint “word-tag” that shared

the same sequence of words’ starting or ending used in Equation (13) and the total number of

word types that shares the same sequence of words’ starting or ending used in Equation (14).

The experiment is repeated for each maximum predefined length of characters, ranging from

one Equation (1) to twelve Equation (12) characters for a words’ starting and ending methods

with various numbers of iterations, ranging from one Equation (1) to ten Equation (10).For

each iteration, there are four sets of probabilities:

 SET 1: The probability of a tag given the first letters as formulated in Equation (9).

 SET 2: The probability of a tag given the last letters (using the reverse order of

characters).

 SET 3: The probability of a tag given the first letters, ignoring the affixed words.

 SET 4: The probability of a tag given the last letters, ignoring the affixed words.

The tagger checks whether the unknown word contains an affix morpheme. If present, the

words’ emission is substituted by a value proportionate to the marginal distribution of tags. If

the affix morpheme is absent, the emission is substituted by either the probability in SET 1 to

SET 4 above. The results are shown in the last four rows in Table 6 (row 6-9). Combined

methods of affix morpheme POS guessing tend to produce better results. The emission is

substituted by a value proportionate to the marginal distribution of tags and words’ ending
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information. The probability of a tag is given by the six-predefined length of letters with

successive abstraction, smoothing ignored affixed words (using the probability in SET 4). This

combination method performs overall tagging with 82.72% of accuracy, the highest among all

combinations whilst maintaining high accuracy in guessing tags for words that do not exist in

the dictionary.Without a combination method, i.e. the Viterbi using a words’ starting

information (maximum 4 characters of predefined length) is good for tagging unseen words.

2.4.Analysis on Malaya Affixes

A words’ starting and ending predictions model implicitly includes Malay linguistics, which is

affix information. It extends the paradigm of affixations in linguistic meaning. Malay affixes

have some significant statistical distribution. The distribution of words containing circumfixes,

prefixes or suffixes in the Malay language is almost consistent for different corpus size. Fig. 1,

2 and 3 show the distribution of affixes found in the training corpus (995,240 tokens) and test

corpus (121,090 tokens). The test corpus has 17,818 tokens of unknown words not listed in

the dictionary, (17.45%) implying that 44.46% of words containing affixes.Therefore, 45.13%

of tagging accuracy for words not in the dictionary using the combination methods of affix

morpheme for POS guessing and words’ ending with smoothing ignored affixed words in

Table 6 (row 9) is near to the percentage of words not listed in the dictionary with affixes

(44.46%). It is expected that 97.13% words would be correctly tagged using a combination of

morpheme-based POS guessing and words’ ending with smoothing ignored affixed words by

focusing only on derivative words. This percentage indicates that using morpheme-based POS

guessing for tagging affixed words is effective.
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Fig.1. The distribution of Malay circumfixes in two different corpuses

Fig.2. The distribution of Malay prefixes in two different corpuses

Fig.3.The distribution of Malay suffixes in two different corpuses

The perfect guessing by affix morphemes is shown by circumfixesmeng-...-kan and

memper-...-i with error percentage of zero. However, if only reliable data is considered, which

is data that occurred more than 100 times, the circumfixdi-...-kan is the best affix morpheme

for guessing because it is repeated 1,176 times (appeared in unknown words) in the tests

corpus with tagging error as low as 5.36%. The bad guessing is identified as unknown words

containing the morpheme ke-...-an, with the error percentage of 28.08%, over 381 unknown

words. The poor result is expected because the morpheme ke-...-an has ambiguous tags that

are KN, KK and KA.

Table 3 depicts the significance of Malay circumfixes based-on the lowest error rate when

morphemes are used for guessing the unknown words’ POS. This analysis is based on the

result in Table 2 (row 5) in which unknown words are handled by Malay affix morphemes by

replacing the unknown words’ emissions by marginal proportionate distribution of tags. As
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morphemes are used for guessing the unknown words’ POS. This analysis is based on the

result in Table 2 (row 5) in which unknown words are handled by Malay affix morphemes by

replacing the unknown words’ emissions by marginal proportionate distribution of tags. As

Prefixes

995,240 tokens 121,090 tokens

-man -kan -isme -in -i -at

Suffixes

995,240 tokens 121,090 tokens
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Fig.1. The distribution of Malay circumfixes in two different corpuses

Fig.2. The distribution of Malay prefixes in two different corpuses

Fig.3.The distribution of Malay suffixes in two different corpuses

The perfect guessing by affix morphemes is shown by circumfixesmeng-...-kan and

memper-...-i with error percentage of zero. However, if only reliable data is considered, which

is data that occurred more than 100 times, the circumfixdi-...-kan is the best affix morpheme

for guessing because it is repeated 1,176 times (appeared in unknown words) in the tests

corpus with tagging error as low as 5.36%. The bad guessing is identified as unknown words

containing the morpheme ke-...-an, with the error percentage of 28.08%, over 381 unknown

words. The poor result is expected because the morpheme ke-...-an has ambiguous tags that

are KN, KK and KA.

Table 3 depicts the significance of Malay circumfixes based-on the lowest error rate when

morphemes are used for guessing the unknown words’ POS. This analysis is based on the

result in Table 2 (row 5) in which unknown words are handled by Malay affix morphemes by

replacing the unknown words’ emissions by marginal proportionate distribution of tags. As

-an -ah
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per observations, Malay words that contain the circumfixdi-...-kan is rarely listed as entries in

the dictionary. The circumfixdi-...-kan is used to derive passive verbs, which is quite similar

to suffix …-ed in English, for indicating the past tense. Therefore, our method to penalise the

emission probabilities of unknown words using Malay affix morphemes is effective for

certain morphemes.

Table 3. The best circumfixes for guessing unknown words’ POS

Circumfixes Percentage of Errors

di-...-kan 5.36%

per-...-an 5.56%

di-...-i 8.13%

mem-...-kan 11.27%

mem-...-i 14.83%

pen-...-an 17.30%

ber-...-an 21.09%

pem-...-an 21.95%

Table 4. The best prefixes for guessing unknown words’ POS

Prefixes Percentage of Errors

men- 4.63%

se- 7.45%

di- 9.29%

ber- 20.20%

peng- 21.15%

ter- 27.02%

ke- 28.27%

Table 4 shows the significance of Malay prefixes based on the lowest error rate when the

regarding morphemes are used for guessing the unknown words’ POS. This analysis is also

based on the result in Table 2 (row 5). According to the condition, whereby only some amount

of words is considered as reliable data (words that occur more than 100 times), the prefix di-

shows the best guessing with an error rate of 9.29% from 990 words.The bad guessing is
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identified as unknown words that contain prefix be-... with an error rate of 66.67% from 105

words. The reason for this, is that the prefix be-... clashes with Malay words that originally

begin with be-… (such as begitulah, benar-benar, benihnya, etc.) in a way that the words

become unknown because their word-form orthographically changed after adding particle lah,

cliticnya or hyphen.

According to the condition, whereby only some amount of words are reliable data (words that

occur more than 100 times), the suffix …-ishows the best guessing with an error rate of 15.76%

from 590 words. The reason for this high error rate is because the morpheme …-i clashes with

Malay words that originally end up with letter i such as ahli-ahli, saksi-saksi, Hilmi, Fahmi,

koboi, etc. In general, guessing the POS using Malay suffixes give inaccurate results; for

example, the suffix …-an has successfully guessed only half of the 644 words (error rate

49.69%). The other prefixes show an error rate higher than 50%.The original Malay prefixes

in the rules are only -an, -kan and -i; the others are from use in foreign words, such

as …-in, …-ah, …-at from Arabic and …-isme from English.

3. EXPERIMENTAL

Unknown words often play an important role in describing the meaning of a sentence because

an unknown word is mostly a special word that carries more semantic information than a

known word [26]. Most of the unknown words can be assigned with an open class, such as

nouns or verbs, by the assumption that they are impossible to exist in close class category

such as determiners or prepositions. Handling unknown words is a key to improve the

performance of POS taggers [27].Any POS tagging models which handle unknown words are

often used and adapted for tagging under-resourced languages [28].

The term "unknown word" in statistical POS tagging refers to words that are absent in the

training corpus or dictionary. In case of unsupervised HMM POS tagging, words that are not

in the training corpus are known as “unseen words”. The unseen words lead to the problem of

inexistence of their emission probabilities, which requires the Viterbi tagging to approximate

the value with some mechanism.Furthermore, absence of words in the dictionary implies that

such words in the corpus cannot be matched to their tags. The initial emission probabilities of
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such words must be approximated with some mechanism. In this case, the substitution method

can be used to replace emission probability of words not listed in the dictionary, i.e.( | )with some value produced using the mechanism of handling unknown words.

3.1.Assigning the Initial Emissions of HMM Training

Prior to the initialisation, all word types in the corpus can be grouped into their equivalent

classes after being matched with POS tags referred in the dictionary. For example, words that

are categorised as only noun are pooled into one equivalent class, and words that are

categorised as either verb or adjective are form in another class, and so on. Grouping the

words into their equivalent classes tremendously reduces the number of emission parameters,

giving an advantage in estimating the transitions more reliably [29-30]. Furthermore, a word

that occurred in the corpus more than 100 times should individually group into a single class

to avoid a skewed probability of high frequency with low frequency words within the same

class. Each group is treated as a metaword, , where is a subset of the integers from 1

to and is the number representing the tags.

In our Malay POS tagger development, the HMM training employs an untagged Malay corpus

containing 995,240 tokens which consisting of 30,640 word types including symbols. Out of

30,640 word types, 14,068 words are not listed in the dictionary. After completing the training,

the metaword belonging to ‘unknown tag’ group also has an emission probability, which is the

probability of the metaword given by an ‘unknown tag’, ( | ).The value of this

probability is produced in conjunction with other emission values by training. Nevertheless,

this value must be substituted with certain probabilistic measures during Viterbi tagging.

3.2.Estimating the Number of Joint “Word-Tag” ( , )
For every iteration in the HMM training, the trained emission probability ( | ) can be

proportionate to the conditional probability of the word given a tag ( | ) by the

assumption ( | ) = ( )( ) ( | ) if ∈ where ( ) is the number of token

and ( ) is the total token accumulated in meta-word . Hence, the joint probability of

metawords with tag is estimated as follows:( , ) = ( | ) ( )(1)
The marginal ( ) is estimated using the following equation:
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( ) = ∑ ( )∑ ∑ (2)
( ) is the probability of being in state at observation for a given observation

sequence in the HMM model.The probability of a metaword ( ) is calculated after

grouping the words into metawords and dividing the number of a metaword over all

metawords:

( ) = ( )∑ ( ) (3)
A reverse conditional probability ( | ) is counted as follows:( | ) = ( , )( ) (4)
The number of joint “word-tag” is estimated as follows:( , ) = ( | ) ( )(5)
The ( | ) in Equation (5) can be substituted by ( | ) for every ∈ as per

assumption ( | ) = ( )( ) ( | )mention above. Therefore:( , ) = ( | ) ( )( ) ; ∀ ∈ (6)
3.3.Morpheme-Based POS Guessing

The way of forming derivative words in Malay is accomplished by merging root words with

affixes. For example, a root word serap (absorb) can produce new words such as menyerap

(absorb), menyerapkan (induct), diserapkan (inducted), menyerapi (permeated), diserapi (be

permeated), penyerap (absorber), penyerapan (absorption), terserap (absorbed), terserapkan

(absorbable), serapan (absorption), keterserapan (absorptive), dayaserap (absorptive) and

kedayaserapan (absorptiveness).Affixes are considered bound morpheme as opposed to root

words, which are unbound that can receive affixations. Therefore, affixes cannot present alone

in a sentence (for example, ber-, ter-, ke-, me-, -nya, -kah, -lah, -pun, -an), they must be

affixed to root words. Affixes can be categorised into three types, i.e. prefixes, suffixes and

circumfixes.

The part of speech (POS) of many derivative words formed by Malay morphological rules are
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predictable such as derivative nouns classified as Kata Nama (Noun) or KN, derivative verbs

classified as Kata Kerja (Verb) or KK and derivative adjective classified as Kata Adjektif

(Adjective) or KA. The morphological rules are represented in Table 5.

Table 5. Malay morphological rules

Rule 1:

POS = {‘KN’} if the derivative word has any following affixes:

1. Circumfixes: { per-...-an, penge-...-an, peng-...-an, pen-...-an, pem-...-an, pel-...-an,

pe-...-an }

2. Prefixes: { tata-..., supra-..., sub-..., pra-..., per-..., penge-..., peng-..., pen-...,

pem-..., pel-..., pe-..., maha-..., ke-..., juru-..., eka-..., dwi-... }

3. Suffixes: { ...-wati, ...-wan, ...-man, ...-isme, ...-in, ...-at, ...-an, ...-ah }

Rule 2:

POS = {‘KK’} if the derivative word has any following affixes:

1. Circumfixes: {menge-...-kan, meng-...-kan, meng-...-i, men-...-kan, men-...-i,

memper-...-kan, memper-...-i, mem-...-kan, mem-...-i, me-...-kan, me-...-i, ke-...-an,

diper-...-kan, diper-...-i, di-...-kan, di-...-i, ber-...-kan, ber-...-an }

2. Prefixes: { meny-..., menge-..., meng-..., men-..., memper-..., mem-..., me-..., diper-...,

di-..., ber-..., bel-..., be-... }

3. Suffixes: { ...-kan, …-i }

Rule 3:

POS = {‘KA’} if the derivative word has any following prefixes:

1. Prefixes: { te-…, se-… }

Rule 4:

POS = {‘KN’, ‘KA’} if the derivative word has the following circumfix:

1. Circumfix: { ke-...-an }

Rule 5:

POS = {‘KK’, ‘KA’} if the derivative word has the following prefix:

1. Prefix: { ter-... }
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It is critical to apply the linguistic rules presented in Table 5 to evaluate the precedence of

affixes for the best guessing of word classes. However, by examining the letters in each affix,

the longest affix string becomes a superset to the shorter one. For example, the prefix pe-… in

Rule 1 is a subset to the prefix per-..., penge-..., peng-..., pen-..., pem-... and pel-….Therefore,

the longest affixes are always the highest precedence. The circumfixes are made up of both

certain prefixes and suffixes, in which both prefixes and suffixes are subsets to circumfixes.

For example, the circumfixdiper-…-kan is made up of a combination of the prefix diper-…

and suffix …-kan. Therefore, the circumfix becomes the highest precedence followed by

prefixes and suffixes. The suffixes have lower precedence compared to prefixes because they

are fewer in numbers.

The directed graphs are used to integrate the Malay morphological rules into HMM POS

tagger. Fig. 4 represents the circumfixes of Rule 1, 2 and 4; Fig. 5 represents the prefixes of

Rule 1, 2, 3 and 5; and Fig. 6 represents the suffixes of Rule 1 and 2. The red nodes indicate

the start of tracking prefixes in Fig. 5, whereas the blue nodes indicate the start of tracking

suffixes in Fig. 6. An algorithm to guess the POS of unknown words using morphological

rules is given in Table 7. This algorithm is used to examine the existence of Malay affix

morphemes in unknown words and then predict their POS. The algorithm concludes a word is

having affixes if the graph either in Fig. 4, 5 and 6 is traceable according to character

sequence in the word. Circumfixes in Fig. 4 are successfully concluded if tracking both

prefixes and suffixes encounter at the determinant nodes indicated by the orange colour in

which the predicted POSs are stored in the node.Similarly, prefixes and suffixes are

successfully concluded if the tracking encounter at the determinant node (orange colour) in

Fig. 4 and 5 respectively.The algorithm is treated as baseline tagging based on morphological

rules and does not involve any training corpus or tagged dictionary.
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Fig.4.Circumfix graph

Fig.5. Prefix graph

Fig.6. Suffix graph

Table 3. POS guesser algorithm using affix morphemes

For each unknown word, find their affix morpheme using the following steps:

1. Travers the circumfix graph
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If meet determinant node, then

Return POS set embedded to the node

2. Else travers prefix graph

If meet determinant node, then

Return POS set embedded to the node

3. Else travers suffix graph

If meet determinant node, then

Return POS set embedded to the node

4. Else

Return POS set = { ‘KN’, ‘KNK’, ‘KK’ }

3.4. Penalizing Unknown Words’ Emissions

Whenever the tagger encounters unknown words, the tags are allocated with possible tags

given by the POS guesser algorithm. Due to this, Viterbi tagging needs words’ emission

probability to disambiguate and assign the most possible POS tags as per word context. Since

unknown words are absent in the training corpus, such emission values are found missing.

To resolve this issue, the emission probabilities are estimated in two ways. First, the emission

probabilities are assigned according to uniform distribution of all possible tags given in

Equation 7. Second, the emission probabilities are assigned according to marginal

proportionate distribution of tags produced during HMM training given in Equation 8.

3.5. Emission Probabilities by Uniform Distribution of all Possible Tags

( | ) ≅ ⎩⎨
⎧ 1 +| | + | | ∈
| | + | | ∉ (7)

where is a set of possible POS of the unknown word returned by the POS guesser algorithm,| | is the number of all tags (| | = 40) and is a smoothing factor in which the best value

is 0.01. The value comes from cross-validation result using the development corpus (30,017

tagged-tokens). The cross-validation observation is done by partitioning the development

corpus into ten partitions with similar size (about 3K each). Nine of them are merged back

and used for training and the rest is used for testing observation. This process is repeated ten



H. Mohamed et al. J Fundam Appl Sci. 2017, 9(3S), 457-483 476

times, such that each partition is used for training and observation. Table 6 depicts the

different values given to against the accuracies of tagging the unknown words in each

partition.

Table 6. Observation results for tagging unknown words in each partition against different

given values

ObservingCorpus Given Values

Partition 1 32.14% 38.74% 37.62% 37.61% 37.61%

Partition 2 31.22% 37.74% 36.01% 35.32% 35.10%

Partition 3 32.32% 38.05% 37.01% 36.82% 36.70%

Partition 4 33.00% 38.73% 37.62% 37.61% 37.61%

Partition 5 31.82% 38.64% 38.00% 37.80% 37.80%

Partition 6 32.00% 37.84% 36.61% 35.82% 35.80%

Partition 7 31.00% 37.54% 36.91% 35.72% 35.50%

Partition 8 31.23% 37.94% 36.91% 36.32% 36.10%

Partition 9 32.24% 38.77% 37.52% 37.51% 37.51%

Partition 10 32.10% 38.70% 37.82% 37.31% 37.11%

3.6.Emission Probabilities by Marginal Proportionate Distribution of Tags

( | ) ≅ ( ) + , ∈, ∉ (8)
where ( ) is the probability of tag, is the normalisation factor and is the smoothing

factor defined as the lowest ( ) for in multiply by coefficient ( = 0.1 is the best

value observed). This observed value is also determined by a cross validation observation.

Table 7 presents the different values given to against the accuracies of tagging the

unknown words in each partition.
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Table 7. Observation result for tagging unknown words in each partition against different

given values

Observing

Corpus

Given Values

Partition 1 39.31% 38.26% 37.86% 37.82% 37.80%

Partition 2 38.50% 37.87% 37.18% 37.11% 37.08%

Partition 3 39.51% 38.37% 37.97% 37.90% 37.85%

Partition 4 39.61% 38.36% 37.96% 37.83% 37.80%

Partition 5 38.90% 38.01% 37.52% 37.08% 37.00%

Partition 6 38.90% 38.00% 37.55% 37.49% 37.45%

Partition 7 38.40% 37.87% 37.17% 37.10% 37.08%

Partition 8 38.80% 37.81% 37.56% 37.49% 37.40%

Partition 9 39.50% 38.10% 37.25% 37.20% 37.19%

Partition 10 39.00% 38.00% 37.20% 37.19% 37.15%

3.7. Predicting POS through a Words Starting

The term “words’ starting” is the sequence of characters that begin a word string. For example,

the word “hasut” (instigate) can have a word starting set of {“h”, “ha”, “has”, “hasu”} for a

predefined length of four characters. Intuitively, the longer the sequence of characters, the

stronger the judgment in predicting a words’ tag. For substantial amounts of this information

alternative emission probability values of unknown words can be estimated.For example, the

probability of a tag given a words’ starting is estimated based on the statistical data available

for words that begin with the same sequence of letters. Therefore, the probability distribution

can be generated from all words in the training corpus that share the same sequence of letters

for some predefined length. This model implicitly embedded the linguistic knowledge of

Malay affixes. The probability of a tag given the first letters … of the letter

sequence in a word is estimated and smoothed using successive abstraction [31-32].

This estimation is recursively calculated by considering the marginal distribution of tags( ) produced by HMM training, formulated in Equation (2) and the standard division in

Equation (15) to every successive character.
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( | … ) = ( | … ) + ( | … )1 + (9)( | ) = ( | ) + ( )1 + (10)( | … ) = ( , … )( … ) (11)( ) = ( )(12)
For any defined length of and > 0, ( , … ) is the total number of joint

“word-tag” that shares the same words’ starting … with tag ; ( … ) is the

total number of word types that shares the same words’ starting … .Therefore:( , … ) = ( , )⊂ … (13)( … ) = ( )⊂ … (14)
The number of word type ( ) can be counted based on the word type’s frequency in the

training corpus.The number of joint “word-tag” ( , ) is estimated using Equation (6) and

the value of is a standard deviation of the marginal distribution of tags Equation (15)

produced in each iteration of HMM training.

= 1− 1 ( ( ) − ) , = 1 ( ) (15)
3.8.Predicting POS through a Words’ Ending

By looking at the backward sequence of characters of a word, a similar concept to predicting

the POS through a words’ starting is used for words’ ending. For example, the word “hasut”

can have a word ending set of {“t”, “ut”, “sut”, “asut”} for a predefined length of four

characters.

The probability distribution for a words’ ending is generated from all word types in the

training corpus that share the same words’ ending of some predefined length. The probability

of tag t_i given the last m letters l_(n-m+1) l_(n-m+2)…l_n of a word is recursively estimated

and smoothed, like predicting POS for unknown words through a words’ starting in the above

section, but treated in reverse order of characters
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4. CONCLUSION

This work presented a Malay POS tagger based on the unsupervised Hidden Markov Model

(HMM). The dependence of training on an untagged corpus and limitation of unsupervised

training limited to a published dictionary is a major challenge in the work. The dictionary

does not include all words found in the corpus, especially derivative words such as passive

verbs and derivative nouns. Therefore, the training outcome has a problem with unknown

words, not just words absent in the corpus, but also words that appeared but are not listed in

the dictionary.

Effort has been made for finding the exact morphemes of prefixes, suffixes and circumfixes in

the agglutinative Malay language.When tagging a new sentence, words in the sentence

identified as not listed in the dictionary are assigned with probable tags based on linguistically

meaningful affixes, as defined in morphological rules through the morpheme-based POS

guessing algorithm.

Viterbi tagging with words’ starting information is better than using a words’ ending

information for guessing unknown words’ POS. A good overall accuracy is achieved using a

words’ starting information with the need to check a maximum of four characters in

predefined length (81.81%) compared to using a words’ ending information, where a

maximum of six characters predefined length (81.71%) is necessary.The overall performance

of Viterbi tagging with morpheme-based POS guessing shows that the unknown word

emissions substituted by the value proportionate to marginal distribution of possible tags of

unknown words (82.28%) is better than the words’ emission substituted by the equal

distribution of all possible tags of the unknown word (82.25%). However, emissions

substituted by the equal distribution of all possible tags are good for tagging words not listed

in the dictionary (42.90%). On the other hand, emissions substituted by a value proportionate

to the marginal distribution are good for tagging unseen words (31.94%). Viterbi tagging with

morpheme-based POS guessing (good overall accuracy was 82.28%) is better than

HMM-Viterbi tagging with a words’ starting information prediction (good overall accuracy

was 81.81%). Therefore, tagging unknown words identified as not existing in the dictionary is

better with the assistance of morpheme-based POS guessing (42.52%)
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