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ABSTRACT  

Electricity delivery to the consumer should be implemented in such a way that, cost is 

minimal, loss is minimal and voltage is within the acceptable limit. In general, the voltage 

level should be within 95% to 105% of the nominal limit in accordance to most international 

standard within the power engineering community. This phenomenon is addressed as secure 

voltage level. The dispatch of electricity is controlled by a dispatch body of the utility in a 

country. Economic dispatch requires a reliable optimization technique so loss is minimal. This 

paper presents Log-Normal Evolutionary Programming (LNEP) technique for solving 

Economic Dispatch (ED) problem considering loss minimization. Validations on the IEEE 

6-bus and IEEE 26-bus test systems demonstrated that LNEP is feasible and convincing is 

addressing the issues. It was revealed that the proposed LNEP gives better solution to solve 

ED problem than the Classical EP and traditional load flow. 
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1. INTRODUCTION 

Economic Dispatch (ED) is one of the power system planning and operation problems. 

Solving ED problem is important to utility companies to find the lowest possible cost of 

dispatching power from generations to consumers. Generally, ED is solved by considering 

number of generating units available and demand of electricity at a time. Power is dispatched 

from generations to the consumers through the grid system. The main objective to solve ED is 

to find the best setting of generating units output that give minimal cost of dispatching 

electrical power with respect to system constraints and units constraints. The typical system 

constraints for ED problem are the real power balance between the generation and the demand, 

reserve generation capacity, transmission network limits and network security. Furthermore, 

the unit constraints are the operating limits of generators, ramp rate limits and minimum ‘up 

time’. Many methods have been introduced to solve ED by researchers and engineers. These 

methods can be classified into two groups. The groups are mathematical methods and 

heuristic methods. For the past fifteen years, it was reported that researchers are more 

interested to use heuristic methods to solve ED. Some of the methods are particle swarm 

optimization [1] [2] [3] [4] [5] [6] [7] [8] artificial immune system [9], differential evolution 

algorithm [10] hybrid genetic algorithm [11] and evolutionary programming [12] [13]. This 

research used one of heuristic methods called Evolutionary Programming (EP) optimization 

technique to solve ED problem. 

EP has been used by many researchers to solve ED problem. For instance, [14] used Classical 

EP (CEP) to solve dynamic ED problem. They used Gaussian distribution to generate 

offspring in the mutation process. The problem with that method is that, the strategy 

parameters are not evolved (or learned) in parallel with decision variables. Therefore, the 

decision variables do not get a larger freedom grade in adapting itself to the shape of the 

fitness function. This results to the small rate of optimization due to the new sprayed trials 

have not been tuned to follow grooves and valleys on the surface to the optimal point. This 

paper presents the implementation of log-normal mutation EP in solving ED problem. The 

loss minimization is considered while solving the ED problem. Implementation of the 

proposed technique on several test systems revealed that LNEP managed to achieve better 

solutions. 
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2. PROBLEM FORMULATION   

The main objective of Economic Dispatch (ED) is to minimize the total operating cost while 

covering load demand and transmission losses. The objective function of ED can be written as 

follows: 

 
(1) 

Where  is the total operating cost and  is the fuel cost function of generating unit 

 in terms of real power output, .  The fuel cost function for each generator can be 

approximately represented by a quadratic function for mathematical convenience as shown in 

Equation (2). 

 
(2) 

Where ,  and  are cost coefficients of generating unit i, subject to: 

A. Power balance constraint 

 
(3) 

Where  is the total system load demand and  is the total system loss which can 

be calculated using Kron’s loss formula as shown in equation (4) 

 

 

(4) 

Where ,  and  are loss coefficients. B is generator operating limits. The inequality 

constraint for the power is given by (5). 

 

 (5) 

 

Where  and  are the minimum and the maximum real power outputs of ith 

generator, respectively. 
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2.1 Classical Evolutionary Programming Technique 

 

 

 

Fig.1. Flowchart of CEP for solving ED 

 

Dr. Lawrence J. Fogel (March 2, 1928 - February 18, 2007) was a pioneer in evolutionary 

computation and human factors analysis. He is known as the father of evolutionary 

programming [15]. Evolutionary Programming technique is a stochastic optimization method 

under the hierarchy of evolutionary computation, which uses the mechanics of evolution to 

produce optimal solutions to a given problem. The first type of EP was named Standard EP 

(SEP). Basically, SEP was made famous by the son of Lawrence J. Fogel as a method to solve 

optimization problem applied mainly in the field of engineering [16]. SEP is also known as 

Classical EP. Generally, EP involved several processes which are initialization, fitness 

calculation, mutation, combination, selection and convergence test. Fig. 1 shows the flowchart 

of EP. The processes in EP technique are briefly explained as follows:  

 

2.1.1 Initialization 

Initialization is a process to generate random number of variables that control the objective 

function. The variables values are also known as parents. Variables for this case are generators 

real power. Real power of the generators control the objective function of the ED. In other 
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word, initialization is a process to produce first population. Initial population within the size 

of 20 is formed by a set of randomly generated individuals. Each individual is subjected to the 

inequality constraint equations in (5), (6) and (7). 

 

 (6) 

 (7) 

 

The base values of total operating cost,  and total system loss,  are taken from 

load flow result. The fitness value calculated using the generated random numbers must be 

smaller than the initial solution set to ensure that fitness will be improved. Only the member 

that satisfies the constraints are included in the initial population set. 

 

2.1.2 Mutation 

Mutation is a process to produce offspring or children. The offspring is transformed from the 

initial population. This process only happens for the initialization only. However, for the 

second iteration and above; mutation process will consider the candidates selected from the 

previous iteration prescribed from the tournament/selection process. Classical EP, Gaussian 

mutation technique is used to generate the offspring. The Gaussian mutation technique 

equation is shown in equation (8). 

 
 (8) 

Where: 

 is mutated parent (offspring) 

 is parents 

 is mutation scale,  

 is maximum random number for every variable.  
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Fig.2. Flowchart of proposed Log-Normal EP (LNEP) for solving ED 

 

 is minimum random number for every variable 

 is fitness for ith random number 

 is maximum fitness 

 

2.1.3 Selection 

The parents’ matrix produced on the first 20 individuals are combined with the offspring 

matrix formed from the mutation process to undergo a selection process in order to identify 

the candidates that have the chance to be transcribed into the next generation. This can be 

done using priority ranking techniques. The ranking process was done in accordance to the 

minimal total operating cost as the fitness function. In other words, the combined population 

is sorted in ascending order in accordance to the number of the best individual. The best 

vector having minimum total operating cost will be selected from parents and offspring for 

the new individuals for the next generation. Initialization and mutation process are repeated 

until there is no appreciable improvement in the fitness value. 

 

2.1.4 Convergence Test 

The stopping criterion is set so as to achieve the optimal solution, based on the difference 

between the maximum fitness and minimum fitness. This value should be must less than the 



M. H. Mansor  et al.            J Fundam Appl Sci. 2017, 9(5S), 719-731         725 
 

pre-set value. If it is not achieved, the process will be repeated until it gets converged. In this 

case the pre-set value is 0.00001. This can be represented mathematically as follows: 

 

 (9) 

 

2.1.5 Proposed Log-Normal Evolutionary Programming to solve ED Problem 

Log-Normal EP (LNEP) is proposed to improve the Classical EP (CEP) to address the ED 

issues. The algorithm is presented in the form of flow chart as shown in Figure 2. The 

mutation process has been improved by applying log-normal mutation into the original EP 

algorithm. The offspring are produced from each parent using 

 (10) 

 (11) 

Where: 

 is mutation step size 

 and  are operator-set parameters, and their equations are as follows: 

 
(12) 

 

(13) 

Each decision variable has its own mutation step size,  value. The mutation step size 

can be included in the decision variables itself as an additional variable resulting in the 

following form: 

 (14) 

Each additional variable gets its own step size and the decision variables get a larger freedom 

grade in adapting itself to the shape of the cost function. These additional variables are 

transformed during the mutation. The  function is used to transform the  value. The 

additional variables also undergo evolution as those of the decision variables. The log-normal 

mutation rises the population’s performance over time. 

 

3. RESULTS AND DISCUSSION   

Prior to LNEP technique, the ED problem of 6-bus and 26-bus systems were solved using 
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Classical EP and traditional load flow (non-optimal) solution. These tests are conducted for 

comparative study purpose. It is important to compare the results produced by LNEP with 

respect to other approach to highlight its merit and feasibility. 

The Classical EP and LNEP techniques were tested to solve ED for two different objective 

functions. The first objective function is to minimize total operating cost, while the second 

objective function is to minimize the total system loss.  

The comparison of results produced by Load Flow, Classical EP and LNEP when total 

operating cost minimization as objective function are tabulated in Table 1 and Table 2. On the 

other hand, Table 3 and Table 4 tabulate the comparison of results obtained using the similar 

methods when total loss minimization is chosen as the objective function. 

 

Table 1. Results obtained using load flow, classical EP and LNEP with total 

operating cost minimization as objective function for 6-bus system 

Methods 
Load Flow 

(Non-Optimal) 
Classical EP LNEP 

 (MW) 108.19 50.26 50.13 

 (MW) 50.00 38.55 37.50 

(MW) 60.00 75.20 45.15 

∑  218.19 164.01 133.25 

Total System Loss (MW) 8.19 7.83 9.27 

Total Operating Cost ($/h) 3193.40 2521.10 2155.70 

 

 

Table 2. Results obtained using load flow, classical EP and LNEP with total 

operating cost minimization as objective function for 26-bus system 

Methods 
Load Flow 

(Non-Optimal) 

Classical 

EP 
LNEP 

 719.53 129.64 106.68 

 79.00 53.26 173.70 
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Table 2. Results obtained using load flow, classical EP and LNEP with total 

operating cost minimization as objective function for 26-bus system 

Methods 
Load Flow 

(Non-Optimal) 

Classical 

EP 
LNEP 

 20.00 198.61 86.13 

 100.00 137.97 67.16 

 300.00 177.81 109.91 

 60.00 105.03 50.00 

∑  1278.53 802.32 593.59 

Total System Loss (MW) 15.53 12.87 15.75 

Total Operating Cost ($/h) 16760.70 10049.90 7568.00 

 

Table 3. Results obtained using Load Flow, Classical EP and LNEP with 

Total System Loss Minimization as Objective Function for 6-Bus System 

Methods 
Load Flow 

(Non-Optimal) 

Classical 

EP 
LNEP 

 108.19 58.22 59.16 

 50.00 89.04 83.43 

 60.00 64.80 82.44 

∑  218.19 212.06 225.03 

Total System Loss (MW) 8.19 6.80 6.72 

Total Operating Cost ($/h) 3193.40 3074.20 3229.50 

 

Table 4. Results of Load Flow, Classical EP and LNEP with Total 

System Loss Minimization as Objective Function for 26-Bus System 

Methods 
Load Flow 

(Non-Optimal) 

Classical 

EP 
LNEP 

 719.53 289.16 487.96 

 79.00 151.09 190.84 
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Table 4. Results of Load Flow, Classical EP and LNEP with Total 

System Loss Minimization as Objective Function for 26-Bus System 

Methods 
Load Flow 

(Non-Optimal) 

Classical 

EP 
LNEP 

 20.00 263.07 220.04 

 100.00 149.99 150.00 

 300.00 192.42 196.38 

 60.00 79.37 82.84 

∑  1278.53 1125.10 1328.06 

Total System Loss (MW) 15.53 12.59 12.49 

Total Operating Cost ($/h) 16760.70 13634.70 16181.50 

 

From Table 1 and Table 2, it is found that the total generation cost obtained using LNEP 

technique to solve ED problem for 6-bus system and 26-bus system are 2155.7 $/h and 7568.0 

$/h respectively. It is found that the cost resulted using LNEP is lower than the total 

generation cost obtained using the Classical EP (CEP) and load flow (non-optimal) solution. 

This implies that implementation of LNEP is worth and better than the other two methods. 

Based on the optimization results tabulated in Table 3 and Table 4, it is observed that the total 

operating cost computed by LNEP is slightly higher than the total operating cost computed by 

Classical EP. However, LNEP computed a significantly lower total system loss than Classical 

EP and Load Flow. This is because when total system loss minimization is set as the objective 

function, EP programs intent to minimize the total system loss rather than the total operating 

cost. 

 

4. CONCLUSION  

This paper has presented log-normal based mutation evolutionary programming (LNEP) 

technique for solving economic dispatch problem considering loss minimization. LNEP 

optimization technique has been developed to solve the ED problem. Two objective functions 

have been considered in sequential i.e. total operating cost minimization and system loss 

minimization. Results obtained from the study revealed that the proposed LNEP technique 
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outperformed the other two techniques to address most cases. These results imply that the 

proposed LNEP technique has the possibility for larger system implementation, with 

considerable minor amendments in the control variables setting. 
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