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ABSTRACT

In this paper, we explore the pruning effects on a hybrid mode sequential learning algorithm

namely FuzzyARTMAP-prunable Radial Basis Function (FAM-PRBF) that utilizes Fuzzy

ARTMAP to learn a training dataset and Radial Basis Function Network (RBFN) to perform

regression and classification. The pruning algorithm is used to optimize the hidden layer of

the RBFN. The experimental results show that FAM-PRBF has successfully reduced the

complexity and computation time of the neural network.
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1. INTRODUCTION

An artificial neural network (ANN) is generally constructed by three layers. They are input

layer, hidden neuron layer and output layer. The inputs are collected and fed into the network

through input layer. The second layer is the hidden neuron layer. This hidden neuron layers

may have one or several hidden layers, which depends on the structure of the neural network.

The output is commonly decided by an overall function of the ANN. The training data that

fed to the network, training approach and weights of the neurons decide the overall function.

Recently, hybrid models of ANNs have been proposed. Generally, there are three different

methods in the hybridization of ANNs. They are model, algorithms and data [1].
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1.1. Radial Basis Function Network

RBFN is a type of feedforward neural network that grounded on function approximation

theory. This network searches the most outstanding match in multidimensional space within

the knowledge that it learned from training data. RBF has good generalization, online

learning capability and tolerant to noisy inputs [2]. These advantages make the RBF network

widely applied in flexible control systems, dynamic systems and time-series prediction [3-7].

A simple RBFN consists of three layers. They are input layer, hidden neuron layer with Q

hidden neurons and output layer. The connection between the input layer and hidden neuron

layer is non-linear. However, the connection between the hidden neuron layer and output

layer is linear. The hidden neurons implement radial basis functions. The y is the linear output

of the RBFN, which is defined as follows:
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The X is input vector, Q is the number of hidden neurons, β is the output weights and

)(xjG is radial basis function of the hidden neurons.

There are various forms of basis functions that can be applied to RBFN. In this paper,

Gaussian function is selected. Gaussian function is commonly used. This function is local and

only responses to the input that near the center. The absolute value of this function decreases

continuously approaches zero in all dimensions when the inputs are away from its center. The

)(XjG is defined in Equation (2).
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The c is the center of the Gaussian function. The spread, σ controls the width of the

Gaussian function. The jβ can be found by using yjj
1Gβ . The jG may not be a square

matrix. If the jG is not a square matrix, jβ can be found by using the pseudoinverse of jG ,

yT
j GGGT 1)(  (3)

1.2. Fuzzy ARTMAP

Adaptive Resonance Theory (ART) has been developed by Carpenter and Grossberg in 1987

to overcome stability-plasticity dilemma. Fuzzy ARTMAP (FAM) is a supervised learning

member of the ART family. FAM embeds fuzzy [21] logic operations to their neurons based

on ART algorithm. The FAM is an incremental learning system with online learning
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capability. FAM can preserve information learned from previous information (stable), while

being flexible enough to learn new information incrementally (plastic). FAM does not forget

the previous learned information, i.e., it does not have problem with catastrophic forgetting

[8].

FAM has a pair of ART modules and a map field. They are ART-a and ART-b. Both ART

modules have three neuron layers, i.e. normalization layer, input layer and recognition layer

respectively. Training data that have inputs and target outputs are mandatory to be fed to

FAM. Assume {(X , T ), (X , T ), . . ., (X , T )} denotes inputs and its target outputs. The

ith training samples, X ∈ R and T ∈ R , are input vector with M-dimensions and

target output vector with L-dimensions. F and F are normalization layers. In these layers,

input vectors and its target output vectors are introduced to complement coding, i.e.,
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where A ∈ R is the complemented inputs vector, and B ∈ R is the complemented

target outputs vector. F and F are input layers. These input layers connected in between

normalization layers and recognition layers respectively. The vector that obtained from theA and B are presented to recognition layers via input layers.

The F and F are recognition layers. These two layers take complemented input and target

output vectors separately. Every neuron encodes an input and its target outputs in these two

layers. In the training phase, the number of hidden neurons can be increased. Each neuron j

has its specific adaptive weights set in vector form. The weights with Q hidden neurons for

both ART modules are w and w . The weights are imagined as hyper-rectangles.

Meanwhile, the centers of both ART modules are c and c .

When a fresh hidden neuron is created (i.e., Q ← Q +1), w and c in both ART modules

are fixed to be 1 and 0 respectively. The q, number of training sample which is assigned to

neuron j in F layer, is set to be 0.

During the training phase, a normalized input vector is presented to ART-a. Meanwhile, its

target output vector is presented to ART-b. An activation number is created to each neuron j

in by the choice function measurement. The hidden neuron which has the top activation

number, is selected as the winning neuron. The winning neuron must accomplish

winner-take-all competition rule.
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The α is choice parameter and W is weight vector of j neuron in F . The winning neuron is

characterised as neuron J. After that, a vigilance test is performed. The winning neuron, W ,

and Ai, are matched the vigilance parameter, ρa ,

a
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where ρa is ∈[0,1]. If the winning neuron fails vigilance test, then a searching cycle of a new

winning neuron is performed. This search cycle will be performed until the winning neuron

fulfils the vigilance test. The similar procedure is presented in ART-b.

Once identify the winning neuron in the reorganization layer of ART-a, a vigilance test in

ART-b is performed to its target output neuron in b
2F (i.e.,

b
Jw ). This test is required to

verify the neuron J is the concluding winner.
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The
b is a number between 0 and 1. If fails the vigilance test, a tracking match is presented as

follows:
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In F , to prevent the same neuron J to be chosen again, a very small positive constant

number,  is added. In ART-a , a new search cycle starts with another threshold level of
a .

If there is no neuron can fulfil Equation (7), a fresh neuron is created.

When the winner neuron J is examined, the centers and weights of winning neuron in

recognition layers are updated as:
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1.3. Pruning Algorithm

Pruning algorithm is not new to ANNs. Pruning algorithm has been proposed to improve

generalization of an ANN. It can escape from overfitting problems in huge system [9]. A huge

ANN carries unnecessary constraints. The network involves longer prediction responses,

inessential knowledge storage and high-priced hardware implementation. The large ANN

may overfit the training data and produce poor generalization performance. There are many

types of pruning algorithms and can be divided into two groups [9]. One group prunes the

hidden neurons based on the sensitivity of the error function. Another group is add a term to

the pruning objective, for example, the hidden neurons with small weights can be pruned.

Pruning algorithm can be applied to an ANN during training procedure or after each training

epoch. A resource allocating network (RAN) which was firstly introduced by Platt in 1991 is

used to allocate hidden neurons and prune insignificant hidden neurons [10]. RAN was

further enhanced. Minimal resource allocating network (MRAN) can grow and prune neurons.

Pruning strategy can be applied to an ANN during training procedure or after each training

epoch. In radial basis function networks with dynamic decay adjustment (RBFN-DDA)

algorithm, the pruning strategy is applied to the network after each training epoch [11].

Besides, in [12-13] introduced growing and pruning RBF (GAP-RBF) and generalized

growing and pruning RBF (GGAP-RBF). A similar algorithm, FAMDDA with temporary

neurons (FAMDDA-T) that consists dynamic decay adjustment [23] and pruning strategy is

developed by [14]. Recently, in [15] has proposed a self-organizing recurrent radial basis

function (SR-RBF) neural network that designed based on spiking mechanism and improved

Levenberg-Marquardt (LM) algorithm. The hidden neuron layer in this algorithm can add or

prune hidden neurons by calculating the spiking strength between hidden and output neurons

in recurrent radial basis function neural network.

2. METHODOLOGY

This paper proposes an algorithm that ties the pruning of insignificant hidden neurons on the

relevance of the hidden neurons in a hybrid neural network. This FAM-PRBF algorithm is

using sorting methods to measure the relevance of each hidden node in the proposed

algorithm. A simple pruning technique is applied to remove the insignificant hidden neurons

in RBFN.

Fig. 1 illustrates the architecture of the new algorithm. A remarkable arrangement of the

proposed algorithm the center of RBFN hidden neurons are determined by the hidden
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neurons in FAM. The center of hidden neurons in a RBFN are selected randomly from the

training dataset. A dataset is required to be divided into training dataset and testing dataset.

The training dataset is presented to FAM. The task of FAM in this hybrid neural network is to

learn from the training dataset.

During the training process, the FAM hidden neurons grow as requested by the training

dataset. When the training process completed, the center weights of FAM,
a
Jc are employed

to compute the hidden neurons in RBFN. The
a
Jc is substituted as center of Gaussian

function in Equation (2) to compute the activation function of RBFN. The spread, σ is a

tuneable parameter that has to be determined before training phase. Then, the output weight,β are computed.

After computing the RBFN, testing dataset is applied to the network to test the accuracy of

this hybrid neural network [22]. Next, the pruning algorithm is implemented in the RBF

hidden layer based on the relevance of the hidden neurons. The pruning threshold, θ which

decides the insignificant hidden neurons, is defined before the pruning algorithm is executed.

The number of insignificant hidden neurons to be pruned which is defined in percentage form

has to be converted to decimal form within the range  1.0 , then multiplied with the total

number of hidden neurons, Q, to set the θ.

The pruning process of the proposed algorithm is described as follow:

Step 1: Re-allocate the absolute value of output weight, β that are arranged firstly in RBFN

of FAM-PRBF network in descending order. The hidden neurons are re-allocated together

with the β .

Step 2: If the qth hidden neurons is greater thanθ, it’s output weight, β will be remain and

store. The qth hidden neuron is defined as insignificant hidden neuron, if it is re-allocated

lower than θ. The β of the insignificant neurons will be set to 0. The connections that

linked to the insignificant hidden neurons will be trimmed.











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Fig.1. Architecture of FAM-PRBF network

Step 3: Re-organize the β and re-adjust using Equation (1), (2) and (3). Then, update the

RBFN of FAM-PRBF.

After pruning process, the training and testing datasets are re-applied to the RBFN of

FAM-PRBF. The training and testing performances of the RBFN are re-measured.

3. RESULTS AND DISCUSSION

In this study, the performance of the pruning effects on FAM-PRBF is evaluated on four

benchmarking problems (two classification dataset and two regression dataset) from UCI

machine-learning repository [16]. The two multi-class classification problems that have been

considered are Image Segment and Satellite Image. However, the two regression problems

that have been studied are Abalone and MPG. All the experiments were performed in

MATLAB 7.11 running on a Core i5, 2.6GHz CPU with 4G RAM surroundings.

The specification of the experiments are presented in Table 1. Each dataset was distributed

into training and testing data as presented in Table 1. All the outputs are normalized into the

range [0, 1] in the experiments. The inputs are normalized into the range [-1, 1] in

classification problems. The inputs are normalized into the range [0, 1] in regression

problems. The spread of the Gaussian function in RBFN, σ and vigilance parameters, ρ andρ of FAM had to be determined before conducting the experiments. The ρ is set to 1 andρ has to be tuned the in classification experiments. However, ρ is set to be 0 and ρ has

to be tuned in regression experiments.
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Table 1. Specification of benchmark datasets for experiments

Dataset Attributes Class Training Data Testing Data

Abalone 8 n/a 3,000 1,177

MPG 7 n/a 320 72

Image Segment 19 7 1500 810

Satellite Image 36 6 4435 2000

The objective of Abalone experiment is to predict the age of abalone based on their physical

dimensions. The intention of MPG experiment is to predict the fuel consumption of numerous

kinds of cars in term of miles per gallon. Besides, the main objective of image segmentation

experiment is to classify each region into one of the seven outdoor images through 19

attributes. The seven outdoor images are brick facing, sky, foliage, cement, window, pathway

and grass. Each image is a 3X3 region. The main goal of satellite image experiment is to

categorize each region into one of the six categories namely very dump grey soil, damp grey

soil, cotton crop, soil with vegetation stubble, red soil and grey soil by using 36 attributes.

The average training and testing accuracy are collected based on 50 trials. These accuracies

are indicated in root mean square (RMS) error for regression problems and in accuracy rates

(%) for classification problems.

3.1. Comparisons on Performance Evaluations

The performance of FAM-PRBF (before pruning) on regression problems is reported in Table

2. This performance is compared with other learning algorithms. The performances of the

compared learning algorithms in both regression and classification experiments are straight

denoted from the literature.

Table 2. Results of the regression experiments before pruning

Dataset Algorithms
RMSE Number of

Hidden NeuronsTraining Testing

Abalone

FAM-RBF 0.0742 0.0773 72

GAP-RBF 0.0963 0.0966 23.62

OS-ELM (RBF) [17] 0.0759 0.0783 25

MRAN [17] 0.0836 0.0837 87.571

MPG

FAM-RBF 0.0560 0.0744 64

GAP-RBF 0.1144 0.1404 3.12

OS-ELM (RBF) [17] 0.0696 0.0759 25

MRAN [17] 0.1086 0.1376 4.46



S. Y. Leow et al. J Fundam Appl Sci. 2017, 9(4S), 293-309 301

The number of hidden neurons in FAM-PRBF (before pruning) for Abalone experiment is

similar with MRAN. However, the training and testing RMS errors of FAM-PRBF (before

pruning), 0.0742 and 0.0773 in Abalone experiment are significantly better than the training

and testing RMS errors of MRAN (0.0836 and 0.0827). In this experiment, the training and

testing RMSE values of the FAM-PRBF (before pruning) are noticeable better than other

algorithms. Before the pruning algorithm in FAM-PRBF is performed in MPG experiment,

the number of hidden neurons, 64 is slightly larger than the number of hidden neurons in the

compared algorithms. The training and testing RMSE values of FAM-PRBF (before pruning)

are better than the compared learning algorithms. The FAM-PRBF (before pruning) has

comparable training and testing RMS errors (0.0560 and 0.0744) with the training and testing

RMS errors of OS-ELM (RBF) (0.0696 and 0.0759).

Fig. 2 summarizes the training and testing RMS errors on different numbers of insignificant

hidden neurons are pruned (%) for Abalone and MPG experiments correspondingly. With

regards to the Abalone experiment, both RMS errors and number of hidden neurons (after

pruning) are close to the training and testing RMS error of OS-ELM (0.0759 and 0.0783) and

hidden neurons, 25. In comparison with GAP-RBF that has 23.62 hidden neurons, GAP-RBF

obtains higher training and testing RMS errors at 0.0963 and 0.0966. However, the training

RMS error of the FAM-PRBF (after pruning) in MPG experiment increases with number of

insignificant hidden neurons are pruned. When 10% to 70% insignificant hidden neurons are

pruned, the testing RMS error steadily increases. When there are 70% of insignificant hidden

neurons are pruned, the training and testing RMS error are 0.0692 and 0.0742, and the

number of hidden neuron in the new RBFN is 19.24. This result is comparable with the

OSELM (RBF) network which has 25 hidden neurons, obtains training and testing RMS error

at 0.0696 and 0.759.

As observed from Table 3, FAM-PRBF (before pruning) obtains a comparable performance

results in both classification experiments. The training and testing performances of

FAM-PRBF (before pruning) in both experiments are better than the compared algorithms.

However, the number of hidden neurons of FAM-PRBF (before pruning) in both experiments

are visibly larger than the compared learning algorithms.

The training and testing accuracies on different numbers of insignificant hidden neurons are

pruned (%) for Image Segmentation and Satellite Image experiments respectively are

tabulated in Fig. 3. The testing accuracy of the FAM-PRBF decreases steadily in Satellite

Image experiments when 10% to 60% of insignificant hidden neurons are pruned. When 60%
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of the insignificant hidden neurons are removed in Satellite Image experiment (453.2 hidden

neurons in FAM-PRBF), the training and testing accuracies are better than the training and

testing accuracies of OS-ELM (RBF).

Based on the performance evaluations in Fig. 2 and 3, it can be noticed that there is a sharp

falling on the testing accuracy or raising on the testing RMS error when there are about 80%

of insignificant hidden neurons are pruned. Further pruning (prune more than 80% of

insignificant hidden neurons) worsens training and testing performances of the network. This

is a natural stopping point of pruning strategy in this algorithm. The pruning strategy has

successfully remove the insignificant hidden neurons in this proposed algorithm.

Fig.2. Training and testing RMS errors for (a) Abalone dataset (b) MPG dataset
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Table 3. Results of the classification experiments before pruning

Dataset Algorithms
Accuracy (%) Number of Hidden Neurons

(Before Pruning)Training Testing

Image

Segmentation

FAM-RBF 99.16 95.71 413.8

FAM-OELM [18] 96.39 95.06 200

OS-ELM (RBF) [17] 96.65 94.53 180

FAM [19] n/a 93.09 33

MRAN [20] n/a 93.30 53

Satellite Image

FAM-RBF 96.80 92.12 1133

FAM-OELM [18] 91.36 91.10 390

OS-ELM(RBF) [17] 93.18 89.01 400

FAM [19] n/a 82.5 69

MRAN [20] n/a 86.36 20

We can conclude that the significant hidden neurons play important participations to this

algorithm. The participation is defined by the absolute value of output weight, β in RBFN.

The output weight that is nearly zero has less influence to the RBFN. Therefore, it can be

pruned. The training error is expected to be high in regression experiments and the training

accuracy is expected to be felled in classification experiments when pruning algorithm is

applied to FAM-PRBF network. During the training phase (before pruning), training data has

been used to estimate the number of hidden neurons in this proposed algorithm. The hidden

neurons are created as required by the training data. When pruning algorithm is applied, the

training error raises because the FAM-PRBF network becomes underfit after pruning.
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Fig.3. Training and testing accuracies for (a) Image Segmentation dataset (b) Satellite Image

dataset

Some of the insignificant hidden neurons which are related and important to training dataset

were removed in the pruning phase.

In both regression experiments, the best pruning results occurs when there are 30% of

insignificant hidden neurons is pruned. The testing errors in both experiments at this pruning

threshold were improved. When 20% to 30% of insignificant hidden neurons are removed,

the testing error in Abalone and MPG experiments was felled from 0.077265 to 0.077224 and

0.073469 to 0.073083 respectively. The testing accuracy in Image Segmentation experiment

is slightly improved from 95.97% to 96.11% when 10% to 30% insignificant hidden neurons



S. Y. Leow et al. J Fundam Appl Sci. 2017, 9(4S), 293-309 305

are pruned. This pruning threshold has solved the overfitting problems and improved the

testing performances in these experiments. The repetitive hidden neurons that detract the

testing performance of the network has been recognized and removed. Therefore, in the

previous study, [5], the pruning threshold was set at 30% for the regression experiments.

3.2. Comparisons on Computation Time

Fig. 4 reports the computation time reduced of RBFN (after pruning) in these four

experiments. The ideal computation time reduced that is expected to be linearly proportional

to the number of pruned insignificant hidden neurons is represented in dashed line in these

four experiments. However, the solid line denotes the real-world computation time of the new

RBFN in the proposed algorithm.



Fig.4. Computation time reduced (%) versus number of insignificant hidden neurons pruned

(%) for: (a) Abalone dataset, (b) MPG dataset, (c) Image segmentation dataset and (d)

Satellite image dataset

The computation time of RBFN reduced is calculated based on percentage change formula

below:

%100(%).. 
before

afterbefore
reducedTC


 (13)

The C.T. Reduced indicates the computation time reduced in percentage form, before

indicates the computation time before pruning in seconds, and after indicates the computation

time after pruning in seconds.

These four graphs have successfully reported the relationship between the numbers of pruned

insignificant hidden neurons and the computation time of the RBFN (after pruning) is linearly

proportional.
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4. CONCLUSION

In conclusion, the pruning algorithm has been successfully proposed in FAM-PRBF. The

pruning algorithm has reduced the size of hidden neurons layer in the RBFN of FAM-PRBF

network and computation time of FAM-PRBF network. The definition of pruning algorithm

in this paper is to remove the insignificant hidden neurons that has output weights nearly zero

and less influence to the network. The performances of FAM-PRBF on regression and

classification benchmarking problems are compared with other well-known learning

algorithms. Using the correct pruning threshold, FAM-PRBF can return substantial or better

training and testing accuracies. The pruning algorithm in FAM-PRBF is an exciting topic for

further research.
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