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ABSTRACT 

Conventionally, numerical integration

to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a

efficient and reliable alternative to implement the 

proposed a hardware implementation of four numerical integration algorithms using FPGA. 

The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle 

Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is 

evaluated based on target chip Altera Cyclone IV FPGA in the metrics of resources utilization, 

clock latency, execution time, power consumption and computational error compared to the 

other algorithms. The result also shows execution time of the FPGA are much faster compared 

to the software implementation.
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umerical integration algorithm is executed in software and time consuming 

to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a

alternative to implement the numerical integration algorithm

re implementation of four numerical integration algorithms using FPGA. 

The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle 

Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is 

arget chip Altera Cyclone IV FPGA in the metrics of resources utilization, 

clock latency, execution time, power consumption and computational error compared to the 

other algorithms. The result also shows execution time of the FPGA are much faster compared 

to the software implementation. 
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algorithm is executed in software and time consuming 

to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a much faster, very 

numerical integration algorithm. This paper 

re implementation of four numerical integration algorithms using FPGA. 

The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle 

Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is 

arget chip Altera Cyclone IV FPGA in the metrics of resources utilization, 

clock latency, execution time, power consumption and computational error compared to the 

other algorithms. The result also shows execution time of the FPGA are much faster compared 
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1. INTRODUCTION 

Recently, the High Performance Computing (HPC) system is the fastest growing area of 

computing in industries. It is related to the used of parallel processing for any complex and 

intensive application program to run faster, efficient and reliable. Numerical integration 

method which have long been used in the area of computing, is used in order to find the 

approximate solutions of a definite integral by using the software implementation. In other 

words, the integral can be known as the data obtained by sampling. Nowadays, many 

applications such as in the field of probability has used this function to describe the data sets. 

The numerical integration is an approximation, so error analysis is a very important thing. In 

order to achieve a better performance in implement numerical integration and since the high 

speed and accurate arithmetic is absolutely essential, the hardware oriented solution is 

developed upon the setback trending [1].  

Since a high level of hardware programmability is provided, the Field Programmable Gate 

Arrays (FPGAs) is the platform of choice for the implementation. It can perform custom 

hardware functionality using the logic blocks and programmable routing resources. FPGA is a 

reconfigurable hardware, which has the same software flexibility running on a processor but 

not limited to the number of cores. The performance of the FPGA is not affected by another 

processing since it is a parallel processing. The FPGA chip used in this project was an Altera 

Cyclone IV FPGA chip which was realized using Quartus II software to design the desired 

circuits in Verilog Hardware Description Language (HDL). The desired circuits were designed 

based on four integration algorithms; Left Riemann Sum (LRS), Middle Riemann Sum 

(MRS), Right Riemann Sum (RRS) and Trapezoidal Sum (TS). The quality for 

implementation of different algorithms on a single chip was evaluated using various metrics 

performance and were compared to software implementation like MATLAB and C++. 

In previous studies, the software implementation did not meet the desired evaluations for its 

sequential structure. Sometimes, there will be difficulties to compute the definite integral 

since it is for immobile embedded applications. Therefore, many applications can take 

advantages from the speed performance, area, power efficiency and memory resources when 

using the reconfigurable hardware. The computation also can be implemented anywhere and 
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anytime as long as the hardware is presented. 

 

2. RELATED WORKS 

Numerical simulation has been used in wide range of applications [6, 8]. FPGA in an 

attractive platform for the computation from electronics applications to engine system [7]. A 

hardware structure for numerical integration can be obtained by basic mapping of Trapezoidal 

sum on FIR structure. Parallel structure can be obtained by converting a single-input 

single-output system into a multiple-input multiple-output system. For example, in a 

4-parallel structure, the critical path does not change, but with four samples are processed in a 

clock cycle, the sampling frequency is four times compared to the original frequency. In a 

large input word length, the multiplication unit need to break into smaller units. This is to 

make sure that the sampling frequency is increased, hence increasing the number of clock 

cycles. It shows that this approach will reduce power dissipation by reducing the value of 

voltage [2]. 

In [2] pressed that the complexity of a problem will not allow mapping onto specific FPGA. 

Thus, an analysis on the arithmetic unit precision can solve the computational problem to 

allow mapping to smaller FPGAs and have high accuracy. Numerical algorithm can be 

implemented using fixed-point or floating point arithmetic with different precision. During 

FPGA computations, 64-bit floating point numbers are used to reach an appropriate accuracy 

but consumes more computing power. Significant speedup can be achieved by decreasing the 

state precision, which makes it possible mapping to some particularly complex problems onto 

an FPGA. For problems without analytic solution, the reduced precision results can be 

compared to the 64-bit floating point reference precision. 

In [3] mentioned that the time and power consumption had improved when reducing the 

FPGA resources. By using the FPGA, a SIMD architecture was designed in a floating point 

precision. The reduction of the resources had allocated the operation cores in a shared 

operation block. The pipelined architecture was able to execute an instruction per cycle and 

this had done by a compiler. The compiler had reorganized the instructions to exploit the 

architecture in maximum. The language used is a C programming on a Xilinx FPGA chip. 
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This had proved that the pipelined structure had minimized the loss in scalability when 

implemented on the FPGA chip. 

In [4] proposed a hardware implementation of ANN-based chaotic generator in FPGA. The 

chaotic generator was reconstructed by the Feed Forward Neural Network (FFNN), which 

was created using MATLAB. Meanwhile, the hardware was implemented on a Xilinx Virtex 6 

chip. Its architecture was presented in VHDL. All parameters were related to a single 

precision floating point number format. The design performance was achieved successfully 

when compared to the outputs of the chaotic generator. The accurateness of the design also 

was very high with low errors. 

The parallel implementation on CPU, GPU and FPGA were compared by [5]. They have 

proved that between the three implementations of Jacobi algorithm for matrix, the FPGA 

design gives the best task performance but the GPU had a superior scalability, while CPU was 

a poor computing platform. A systolic array structure was designed to support various matrix 

sizes on the FPGA implementation and thus, gives the best computing performance of 

matrices compared the other two [9-10]. 

 

3. NUMERICAL ALGORITHM INTEGRATION 

Numerical integration algorithm is an approximation of differential equation and a 

computation of a definite integral, ∫ �(�) ��
�

�
. There are four integration algorithms being used 

as a method for the numerical integration approximated to a desired precision such as LRS, 

MRS, RRS and TS. The best method is a systematic technique with less arithmetic operations 

involved resulting less error for small evaluations. 

3.1. Riemann Sum 

Riemann Sum consists of area summation for all vertical rectangles of height f(x) with base dx 

under a curve. The function f is approximated by the value at the end point of each rectangle 

with the dx, which the height is f(a+i*dx). The base dx is equal to the interval of lower a and 

upper b limits, which is then divided with the total number of equal rectangles n.  

∆� =
���

�
                                                (1) 
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Fig. 1 shows a linear graph of LRS. The value of 

point of each rectangle, which is from 0 to 

Area of LRS = ∑ �(� + ����
���

» [�(�) + �(� + ��) + �(�

Area of LRS from Fig. 1 

≈ [�(�) + �(� + ��) + �(� +

Fig. 2 shows a linear graph of RRS. The value of 

end point of each rectangle which is from 1 to 

Area of RRS =  ∑ �(� + ��
���

≈ [�(� + ��) + �(� + 2 ∗ ��

Area of RRS from Fig. 2 

≈ [�(� + ��) + �(� + 2 ∗ ��

Fig. 3 shows a linear graph of MRS. The function 

rectangle which initially gives 

Area of MRS =  ∑ �(� +�
���
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1 shows a linear graph of LRS. The value of � represents the red dotted from the left end 

which is from 0 to � − 1 where � = 5. 

 

Fig.1. Left Riemann Sum (LRS) 

� ∗ ��)�� 

(� + 2 ∗ ��) + ⋯ + �(� − ��)]��   

( + 2 ∗ ��) + �(� + 3 ∗ ��) + �(� − ��)]�� 

2 shows a linear graph of RRS. The value of � represents the red dotted from the right 

end point of each rectangle which is from 1 to � where � = 5 only for this case. 

� ∗ ��)�� 

��) + ⋯ + �(�)]��                                  

��) + �(� + 3 ∗ ��) + �(� + 4 ∗ ��) + �(�)]

 

Fig.2. Right Riemann Sum (RRS) 

3 shows a linear graph of MRS. The function � is approximated at the middle point of each 

tially gives � �� + �
��

�
��, � �� + �3 ∗

��

�
�� and so on until 

( � ∗ ��)�� 
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represents the red dotted from the left end 

           (2) 

]       (3) 

represents the red dotted from the right 

only for this case.  

                              (4) 

]��          (5) 

is approximated at the middle point of each 

and so on until � �� − �
��

�
��.  
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≈ [�(� + ��/2) + �(� + 3 ∗

Area of MRS from Fig. 3 

≈ �� �� +
��

�
� + � �� + 3 ∗

��

�

Fig.

3.2. Trapezoidal Sum 

As we all know, the area of a trapezium is equal to the average length of its parallel sides 

multiply by the distance between them. So, adding all the area of

approximate area under the curve. If the number of trapezoid is large, they almost cover all 

the area under the curve which gives a better approximation.

Area of TS =  ∫ �(�) ��
�

�
 

»  ��[
�(� )

�
+ �(� + ��) + �(�

Area of TS from Fig. 4 

»  ∆�[
�(� )

�
+ �(� + ∆�) + �(�
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Fig.3. Middle Riemann Sum (MRS) 

As we all know, the area of a trapezium is equal to the average length of its parallel sides 

multiply by the distance between them. So, adding all the area of trapezoids will give the 

approximate area under the curve. If the number of trapezoid is large, they almost cover all 

the area under the curve which gives a better approximation. 

 

Fig.4. Trapezoidal Sum 

(� + 2 ∗ ��) + ⋯ + �(� + (� − 1)��) +
�(� )

�

(� + 2∆�) + �(� + 3∆�) + �(� + 4∆�) +
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           (6) 

� −
��

�
�� ��     (7) 

As we all know, the area of a trapezium is equal to the average length of its parallel sides 

trapezoids will give the 

approximate area under the curve. If the number of trapezoid is large, they almost cover all 

)
]           (8) 

� )

�
]      (9) 
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4. DESIGN AND IMPLEMENTATION 

In product development [11] process, it starts with defining the specification of the product. 

The designed products are developed and simulated using to determine the required 

specification on the designs. A prototype is implemented and thoroughly tested whether the 

design meets the requirement or not. 

Table 1. Implementation environment 

Name Tools 

Hardware description language (HDL) Verilog HDL 

Field Programmable Gate Array (FPGA) Cyclone IV (EP4CE115F29C7) 

Synthesis Quartus II 15.0 

Simulation ModelSim-Altera 

Programming Quartus II Programmer 

Library of parameterized module (LPM) Megawizard Plug-in Manager 

Table 1 displays the implementation environment in this project. The hardware platform used 

is a DE2-115 board with the lowest cost Altera’s Cyclone IV E FPGA chip. The 

implementation will be realized using Quartus II software and the circuits are designed in 

Verilog HDL language. The FPGA chip is built on an optimized low power process with high 

functionality and lowest cost without sacrificing its performance. Its resources are shown in 

Table 2. 

Table 2. Cyclone IV E device resources 

Resources EP4CE115 

Logic elements (LEs) 114,480 

Embedded memory (Kbits) 3,888 

Embedded 18x18 multipliers 266 

General purpose PLLs 4 

Global Clock Networks 20 

User I/O Banks 8 

Maximum user I/O 528 

Data size (bits) 28,571,696 
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LPMs are needed in order to create architecture independent designs that have high silicon 

efficiency. The LPM functions are supported by the Quartus II software and consists of 25 

functions at the present time. Instead of using own coding, the functions can save time and 

have more efficient logic synthesis. They are used to simplify the complexity of a design in 

the FPGA chip. 

 

Fig.5. Data flow graph for general circuit design 

Fig. 5 shows a data flow graph for a general circuit design that represent the four integration 

algorithms. In parallel processing, the query is divided into multiple smaller tasks. Each task 

executes immediately on its own processor and no delay time is involved. 

 

5. PERFORMANCE EVALUATION 

We evaluated our system performance based on the following performance metrics: resource 

utilization, clock latency, execution time, power dissipation and computational error. 

5.1. Resource Utilization 

Fig. 6 shows the graph of resource utilization. The amount of resources for LRS and RRS 

were approximately the same for the combinational functions, logic registers and pins. The 

total logic elements for the LRS was higher than the RRS, but for the total memory bits and 

the amount of embedded multiplier, the LRS was lower than the RRS. The embedded 

multiplier for the RRS had the same amount with the MRS. The amount of other resources for 

the MRS were much higher than the LRS and RRS. Comparing the amount of resources for 

the four algorithms, the TS had the highest amount of resources compared to others. But the 

total pin was the same as the MRS. These results showing that the highest amount of 

resources utilization has more complexity on the design. 
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Fig.6. Resource utilization for linear function 

5.2. Clock Latency 

The time for the complete output to produce is called a latency. The FPGA can be used to 

reduce the latency. This gives extremely precise timing and very reliable. It has flexibility 

since no physical changes need to be happened to the device to change its behavior, but has 

the speed of hardware which is executing at clock rates up to the megahertz range. A graph of 

latency is shown in Fig. 7. From the graph, the number of clock cycle for the LRS has the 

same amount as the number of clock cycle for the RRS. But, both has lower amount of clock 

cycle when compared to the MRS. TS had the highest latency compared to others. 

 

Fig.7. Clock latency 
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Fig.8. Comparison between FPGA, MATLAB and C++ for execution time 

5.3. Execution Time 

Execution time for the four algorithms are compared between the FPGA, MATLAB and C++ 

to show the speed performance on difference computations. In the FPGA’s row, it shows that 

the TS had the slowest execution time compared to the three Riemann Sums. The complexity 

of a design makes the output to produce slower than the simple design. The MRS was the 

slowest in the Riemann Sums, whereas LRS and RRS had approximately the same and the 

fastest execution time when comparing to the other algorithms. The speed performance for the 

FPGA chip is improved by the factor of 3,500,000 to 3,800,000 times faster than MATLAB 

and 380,000 to 410,000 times faster than C++. It shows that the speed performance for FPGA 

is the fastest compared to others, then followed by C++ and MATLAB computations. 

5.4. Power Consumption 

In estimating the power dissipation accurately for these designs in the chip, a PowerPlay 

Power Analysis tool is used to develop an appropriate power budget. The FPGA’s power 

dissipation can be calculated from the PowerPlay Early Power Estimator (EPE) spreadsheet 

with Microsoft Excel-based. In the Quartus II software, a PowerPlay Power Analyser (PA) 

also can be used to calculate more accurate power dissipation. 

From Fig. 9, both LRS and RRS produce the same total of power dissipation. Both MRS and 

TS also give the same total power dissipation, but were higher than the LRS and RRS. 

Comparing the power dissipation in Fig. 10, the TS had the highest total power dissipation 

than the total power dissipation for the Riemann Sums. Then, followed by the MRS, LRS and 
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RRS. When comparing to the EPE results for the four algorithms, the static power dissipation 

was reduced and the dynamic power dissipation was increased. 

Fig.9. Power estimation 

Fig.10. Power dissipation 

Fig.11. Computational error 

             141 

ts for the four algorithms, the static power dissipation 
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The results compiled by each design is studied to analyze the behavior of its approximation 

error. The input for a and b were key-in with n = 8, where the given n is the maximum length 

of sub-interval that can fit-in in the desired designs. The fit-in design is due to the used of 

fixed point binary numbers. The analytical value is an area estimation calculated manually 

based on Equation (3) for LRS, Equation (5) for RRS, Equation (7) for MRS and Equation (9) 

for the TS. Meanwhile, the approximation value is taken from the compilation data of 

functional simulation. The data is represented in a fixed-point number. The error is then 

calculated and compared between the analytical and the approximation value. This had shown 

in a graph of Fig. 11. The analytical error for LRS had approximately the same value as the 

RRS. Meanwhile, the MRS and TS had zero error. The approximation area is taken from the 

functional simulations representing the fixed point binary numbers. From the result, the LRS 

and RRS had the highest error compared to others. Meanwhile, the TS produces zero error. 

 

6. CONCLUSION 

In this project, hardware implementation of numerical integration algorithm using FPGA is 

proposed. All the performance metrics evaluation was resulting from the implementation of 

the four algorithms of numerical integration using Cyclone IV FPGA chip. The desired 

circuits were designed using the LPM in the Quartus II software to save the designing time. 

The number of resources increased as the circuit design becomes more complicated. The 

result shows that the TS had more complicated design compared to others. The FPGA chip 

also meets the speed performance which was much faster than the software implementation 

such as C++ and MATLAB and more complicated circuit increases the execution time. The 

power dissipation was reduced when compared to the early estimation which was before run 

the compilation. The complexity of the design also effects the power efficiency. More 

complex on the design causing higher power consumption. Lastly, the computational error for 

the FPGA computational was approximately ~10%. The error is caused by the used of fixed 

point binary numbers. 

As a future work to further improve and extend this project, there are three recommendations 

that can be modified. First, the circuit designs can use a floating point number to achieve 

greater precision and maintain its speed performance. Second, the use of multi-stages 

pipelined. It is a technique that implements parallelism within a single processor. Lastly, the 
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used of multi-FPGAs. The multi-FPGA systems contain more than one chip, and are 

constrained by the inter-chip connection topology. 
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