

 Journal of Fundamental and Applied Sciences

International License. Libraries Resource

HIGH SPEED NUMERICAL INTEGRATION ALGORITHM USING FPGA

F. N. A. Razak1, M. S. A. Talip

1Department of Electrical Engineering, Faculty of Engineering, University of

2Department of Electronic Systems Engineering, Malaysia

Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

3Department of Computer Engineering, Universiti Teknologi

Published online: 05 October 2017

ABSTRACT

Conventionally, numerical integration

to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a

efficient and reliable alternative to implement the

proposed a hardware implementation of four numerical integration algorithms using FPGA.

The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle

Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is

evaluated based on target chip Altera Cyclone IV FPGA in the metrics of resources utilization,

clock latency, execution time, power consumption and computational error compared to the

other algorithms. The result also shows execution time of the FPGA are much faster compared

to the software implementation.

Keywords: numerical integration algorithm; FPGA; Riemann sum; trapezoidal sum

Author Correspondence, e-mail:

doi: http://dx.doi.org/10.4314/jfas.v9i4s.

Journal of Fundamental and Applied Sciences

ISSN 1112-9867

Available online at http://www.jfas.info

Fundamental and Applied Sciences is licensed under a Creative Commons Attribution
Libraries Resource Directory. We are listed under Research Associations

NUMERICAL INTEGRATION ALGORITHM USING FPGA

Talip1,*, M. F. M. Yakub2, A. S. M. Khairudin

Izam1 and F. H. K. Zaman3

Department of Electrical Engineering, Faculty of Engineering, University of

Kuala Lumpur, Malaysia

Department of Electronic Systems Engineering, Malaysia-Japan International Institute of

Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

Department of Computer Engineering, Universiti Teknologi MARA, 40450 Shah Alam,

Selangor, Malaysia

Published online: 05 October 2017

umerical integration algorithm is executed in software and time consuming

to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a

alternative to implement the numerical integration algorithm

re implementation of four numerical integration algorithms using FPGA.

The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle

Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is

arget chip Altera Cyclone IV FPGA in the metrics of resources utilization,

clock latency, execution time, power consumption and computational error compared to the

other algorithms. The result also shows execution time of the FPGA are much faster compared

to the software implementation.

numerical integration algorithm; FPGA; Riemann sum; trapezoidal sum

mail: sofian_abutalip@um.edu.my

http://dx.doi.org/10.4314/jfas.v9i4s.7

Journal of Fundamental and Applied Sciences

http://www.jfas.info

Creative Commons Attribution-NonCommercial 4.0
Research Associations category.

NUMERICAL INTEGRATION ALGORITHM USING FPGA

Khairudin1, T. F. T. M. N.

Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603

Japan International Institute of

Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

MARA, 40450 Shah Alam,

algorithm is executed in software and time consuming

to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a much faster, very

numerical integration algorithm. This paper

re implementation of four numerical integration algorithms using FPGA.

The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle

Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is

arget chip Altera Cyclone IV FPGA in the metrics of resources utilization,

clock latency, execution time, power consumption and computational error compared to the

other algorithms. The result also shows execution time of the FPGA are much faster compared

numerical integration algorithm; FPGA; Riemann sum; trapezoidal sum.

Research Article

Special Issue

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AJOL - African Journals Online

https://core.ac.uk/display/478459386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 132

1. INTRODUCTION

Recently, the High Performance Computing (HPC) system is the fastest growing area of

computing in industries. It is related to the used of parallel processing for any complex and

intensive application program to run faster, efficient and reliable. Numerical integration

method which have long been used in the area of computing, is used in order to find the

approximate solutions of a definite integral by using the software implementation. In other

words, the integral can be known as the data obtained by sampling. Nowadays, many

applications such as in the field of probability has used this function to describe the data sets.

The numerical integration is an approximation, so error analysis is a very important thing. In

order to achieve a better performance in implement numerical integration and since the high

speed and accurate arithmetic is absolutely essential, the hardware oriented solution is

developed upon the setback trending [1].

Since a high level of hardware programmability is provided, the Field Programmable Gate

Arrays (FPGAs) is the platform of choice for the implementation. It can perform custom

hardware functionality using the logic blocks and programmable routing resources. FPGA is a

reconfigurable hardware, which has the same software flexibility running on a processor but

not limited to the number of cores. The performance of the FPGA is not affected by another

processing since it is a parallel processing. The FPGA chip used in this project was an Altera

Cyclone IV FPGA chip which was realized using Quartus II software to design the desired

circuits in Verilog Hardware Description Language (HDL). The desired circuits were designed

based on four integration algorithms; Left Riemann Sum (LRS), Middle Riemann Sum

(MRS), Right Riemann Sum (RRS) and Trapezoidal Sum (TS). The quality for

implementation of different algorithms on a single chip was evaluated using various metrics

performance and were compared to software implementation like MATLAB and C++.

In previous studies, the software implementation did not meet the desired evaluations for its

sequential structure. Sometimes, there will be difficulties to compute the definite integral

since it is for immobile embedded applications. Therefore, many applications can take

advantages from the speed performance, area, power efficiency and memory resources when

using the reconfigurable hardware. The computation also can be implemented anywhere and

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 133

anytime as long as the hardware is presented.

2. RELATED WORKS

Numerical simulation has been used in wide range of applications [6, 8]. FPGA in an

attractive platform for the computation from electronics applications to engine system [7]. A

hardware structure for numerical integration can be obtained by basic mapping of Trapezoidal

sum on FIR structure. Parallel structure can be obtained by converting a single-input

single-output system into a multiple-input multiple-output system. For example, in a

4-parallel structure, the critical path does not change, but with four samples are processed in a

clock cycle, the sampling frequency is four times compared to the original frequency. In a

large input word length, the multiplication unit need to break into smaller units. This is to

make sure that the sampling frequency is increased, hence increasing the number of clock

cycles. It shows that this approach will reduce power dissipation by reducing the value of

voltage [2].

In [2] pressed that the complexity of a problem will not allow mapping onto specific FPGA.

Thus, an analysis on the arithmetic unit precision can solve the computational problem to

allow mapping to smaller FPGAs and have high accuracy. Numerical algorithm can be

implemented using fixed-point or floating point arithmetic with different precision. During

FPGA computations, 64-bit floating point numbers are used to reach an appropriate accuracy

but consumes more computing power. Significant speedup can be achieved by decreasing the

state precision, which makes it possible mapping to some particularly complex problems onto

an FPGA. For problems without analytic solution, the reduced precision results can be

compared to the 64-bit floating point reference precision.

In [3] mentioned that the time and power consumption had improved when reducing the

FPGA resources. By using the FPGA, a SIMD architecture was designed in a floating point

precision. The reduction of the resources had allocated the operation cores in a shared

operation block. The pipelined architecture was able to execute an instruction per cycle and

this had done by a compiler. The compiler had reorganized the instructions to exploit the

architecture in maximum. The language used is a C programming on a Xilinx FPGA chip.

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 134

This had proved that the pipelined structure had minimized the loss in scalability when

implemented on the FPGA chip.

In [4] proposed a hardware implementation of ANN-based chaotic generator in FPGA. The

chaotic generator was reconstructed by the Feed Forward Neural Network (FFNN), which

was created using MATLAB. Meanwhile, the hardware was implemented on a Xilinx Virtex 6

chip. Its architecture was presented in VHDL. All parameters were related to a single

precision floating point number format. The design performance was achieved successfully

when compared to the outputs of the chaotic generator. The accurateness of the design also

was very high with low errors.

The parallel implementation on CPU, GPU and FPGA were compared by [5]. They have

proved that between the three implementations of Jacobi algorithm for matrix, the FPGA

design gives the best task performance but the GPU had a superior scalability, while CPU was

a poor computing platform. A systolic array structure was designed to support various matrix

sizes on the FPGA implementation and thus, gives the best computing performance of

matrices compared the other two [9-10].

3. NUMERICAL ALGORITHM INTEGRATION

Numerical integration algorithm is an approximation of differential equation and a

computation of a definite integral, ∫ �(�) ��
�

�
. There are four integration algorithms being used

as a method for the numerical integration approximated to a desired precision such as LRS,

MRS, RRS and TS. The best method is a systematic technique with less arithmetic operations

involved resulting less error for small evaluations.

3.1. Riemann Sum

Riemann Sum consists of area summation for all vertical rectangles of height f(x) with base dx

under a curve. The function f is approximated by the value at the end point of each rectangle

with the dx, which the height is f(a+i*dx). The base dx is equal to the interval of lower a and

upper b limits, which is then divided with the total number of equal rectangles n.

∆� =
���

�
 (1)

M. S. A. Talip et al.

Fig. 1 shows a linear graph of LRS. The value of

point of each rectangle, which is from 0 to

Area of LRS = ∑ �(� + ����
���

» [�(�) + �(� + ��) + �(�

Area of LRS from Fig. 1

≈ [�(�) + �(� + ��) + �(� +

Fig. 2 shows a linear graph of RRS. The value of

end point of each rectangle which is from 1 to

Area of RRS = ∑ �(� + ��
���

≈ [�(� + ��) + �(� + 2 ∗ ��

Area of RRS from Fig. 2

≈ [�(� + ��) + �(� + 2 ∗ ��

Fig. 3 shows a linear graph of MRS. The function

rectangle which initially gives

Area of MRS = ∑ �(� +�
���

 J Fundam Appl Sci. 2017,9(4S), 131-144

1 shows a linear graph of LRS. The value of � represents the red dotted from the left end

which is from 0 to � − 1 where � = 5.

Fig.1. Left Riemann Sum (LRS)

� ∗ ��)��

(� + 2 ∗ ��) + ⋯ + �(� − ��)]��

(+ 2 ∗ ��) + �(� + 3 ∗ ��) + �(� − ��)]��

2 shows a linear graph of RRS. The value of � represents the red dotted from the right

end point of each rectangle which is from 1 to � where � = 5 only for this case.

� ∗ ��)��

��) + ⋯ + �(�)]��

��) + �(� + 3 ∗ ��) + �(� + 4 ∗ ��) + �(�)]

Fig.2. Right Riemann Sum (RRS)

3 shows a linear graph of MRS. The function � is approximated at the middle point of each

tially gives � �� + �
��

�
��, � �� + �3 ∗

��

�
�� and so on until

(� ∗ ��)��

 135

represents the red dotted from the left end

 (2)

] (3)

represents the red dotted from the right

only for this case.

 (4)

]�� (5)

is approximated at the middle point of each

and so on until � �� − �
��

�
��.

M. S. A. Talip et al.

≈ [�(� + ��/2) + �(� + 3 ∗

Area of MRS from Fig. 3

≈ �� �� +
��

�
� + � �� + 3 ∗

��

�

Fig.

3.2. Trapezoidal Sum

As we all know, the area of a trapezium is equal to the average length of its parallel sides

multiply by the distance between them. So, adding all the area of

approximate area under the curve. If the number of trapezoid is large, they almost cover all

the area under the curve which gives a better approximation.

Area of TS = ∫ �(�) ��
�

�

» ��[
�(�)

�
+ �(� + ��) + �(�

Area of TS from Fig. 4

» ∆�[
�(�)

�
+ �(� + ∆�) + �(�

 J Fundam Appl Sci. 2017,9(4S), 131-144

��/2) + ⋯ + �(� − ��/2)]��

��

�
� + � �� + 5 ∗

��

�
� + � �� + 7 ∗

��

�
� + � ��

Fig.3. Middle Riemann Sum (MRS)

As we all know, the area of a trapezium is equal to the average length of its parallel sides

multiply by the distance between them. So, adding all the area of trapezoids will give the

approximate area under the curve. If the number of trapezoid is large, they almost cover all

the area under the curve which gives a better approximation.

Fig.4. Trapezoidal Sum

(� + 2 ∗ ��) + ⋯ + �(� + (� − 1)��) +
�(�)

�

(� + 2∆�) + �(� + 3∆�) + �(� + 4∆�) +
�(�

�

 136

 (6)

� −
��

�
�� �� (7)

As we all know, the area of a trapezium is equal to the average length of its parallel sides

trapezoids will give the

approximate area under the curve. If the number of trapezoid is large, they almost cover all

)
] (8)

�)

�
] (9)

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 137

4. DESIGN AND IMPLEMENTATION

In product development [11] process, it starts with defining the specification of the product.

The designed products are developed and simulated using to determine the required

specification on the designs. A prototype is implemented and thoroughly tested whether the

design meets the requirement or not.

Table 1. Implementation environment

Name Tools

Hardware description language (HDL) Verilog HDL

Field Programmable Gate Array (FPGA) Cyclone IV (EP4CE115F29C7)

Synthesis Quartus II 15.0

Simulation ModelSim-Altera

Programming Quartus II Programmer

Library of parameterized module (LPM) Megawizard Plug-in Manager

Table 1 displays the implementation environment in this project. The hardware platform used

is a DE2-115 board with the lowest cost Altera’s Cyclone IV E FPGA chip. The

implementation will be realized using Quartus II software and the circuits are designed in

Verilog HDL language. The FPGA chip is built on an optimized low power process with high

functionality and lowest cost without sacrificing its performance. Its resources are shown in

Table 2.

Table 2. Cyclone IV E device resources

Resources EP4CE115

Logic elements (LEs) 114,480

Embedded memory (Kbits) 3,888

Embedded 18x18 multipliers 266

General purpose PLLs 4

Global Clock Networks 20

User I/O Banks 8

Maximum user I/O 528

Data size (bits) 28,571,696

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 138

LPMs are needed in order to create architecture independent designs that have high silicon

efficiency. The LPM functions are supported by the Quartus II software and consists of 25

functions at the present time. Instead of using own coding, the functions can save time and

have more efficient logic synthesis. They are used to simplify the complexity of a design in

the FPGA chip.

Fig.5. Data flow graph for general circuit design

Fig. 5 shows a data flow graph for a general circuit design that represent the four integration

algorithms. In parallel processing, the query is divided into multiple smaller tasks. Each task

executes immediately on its own processor and no delay time is involved.

5. PERFORMANCE EVALUATION

We evaluated our system performance based on the following performance metrics: resource

utilization, clock latency, execution time, power dissipation and computational error.

5.1. Resource Utilization

Fig. 6 shows the graph of resource utilization. The amount of resources for LRS and RRS

were approximately the same for the combinational functions, logic registers and pins. The

total logic elements for the LRS was higher than the RRS, but for the total memory bits and

the amount of embedded multiplier, the LRS was lower than the RRS. The embedded

multiplier for the RRS had the same amount with the MRS. The amount of other resources for

the MRS were much higher than the LRS and RRS. Comparing the amount of resources for

the four algorithms, the TS had the highest amount of resources compared to others. But the

total pin was the same as the MRS. These results showing that the highest amount of

resources utilization has more complexity on the design.

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 139

Fig.6. Resource utilization for linear function

5.2. Clock Latency

The time for the complete output to produce is called a latency. The FPGA can be used to

reduce the latency. This gives extremely precise timing and very reliable. It has flexibility

since no physical changes need to be happened to the device to change its behavior, but has

the speed of hardware which is executing at clock rates up to the megahertz range. A graph of

latency is shown in Fig. 7. From the graph, the number of clock cycle for the LRS has the

same amount as the number of clock cycle for the RRS. But, both has lower amount of clock

cycle when compared to the MRS. TS had the highest latency compared to others.

Fig.7. Clock latency

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 140

Fig.8. Comparison between FPGA, MATLAB and C++ for execution time

5.3. Execution Time

Execution time for the four algorithms are compared between the FPGA, MATLAB and C++

to show the speed performance on difference computations. In the FPGA’s row, it shows that

the TS had the slowest execution time compared to the three Riemann Sums. The complexity

of a design makes the output to produce slower than the simple design. The MRS was the

slowest in the Riemann Sums, whereas LRS and RRS had approximately the same and the

fastest execution time when comparing to the other algorithms. The speed performance for the

FPGA chip is improved by the factor of 3,500,000 to 3,800,000 times faster than MATLAB

and 380,000 to 410,000 times faster than C++. It shows that the speed performance for FPGA

is the fastest compared to others, then followed by C++ and MATLAB computations.

5.4. Power Consumption

In estimating the power dissipation accurately for these designs in the chip, a PowerPlay

Power Analysis tool is used to develop an appropriate power budget. The FPGA’s power

dissipation can be calculated from the PowerPlay Early Power Estimator (EPE) spreadsheet

with Microsoft Excel-based. In the Quartus II software, a PowerPlay Power Analyser (PA)

also can be used to calculate more accurate power dissipation.

From Fig. 9, both LRS and RRS produce the same total of power dissipation. Both MRS and

TS also give the same total power dissipation, but were higher than the LRS and RRS.

Comparing the power dissipation in Fig. 10, the TS had the highest total power dissipation

than the total power dissipation for the Riemann Sums. Then, followed by the MRS, LRS and

M. S. A. Talip et al.

RRS. When comparing to the EPE resul

was reduced and the dynamic power dissipation was increased.

 J Fundam Appl Sci. 2017,9(4S), 131-144

RRS. When comparing to the EPE results for the four algorithms, the static power dissipation

was reduced and the dynamic power dissipation was increased.

Fig.9. Power estimation

Fig.10. Power dissipation

Fig.11. Computational error

 141

ts for the four algorithms, the static power dissipation

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 142

The results compiled by each design is studied to analyze the behavior of its approximation

error. The input for a and b were key-in with n = 8, where the given n is the maximum length

of sub-interval that can fit-in in the desired designs. The fit-in design is due to the used of

fixed point binary numbers. The analytical value is an area estimation calculated manually

based on Equation (3) for LRS, Equation (5) for RRS, Equation (7) for MRS and Equation (9)

for the TS. Meanwhile, the approximation value is taken from the compilation data of

functional simulation. The data is represented in a fixed-point number. The error is then

calculated and compared between the analytical and the approximation value. This had shown

in a graph of Fig. 11. The analytical error for LRS had approximately the same value as the

RRS. Meanwhile, the MRS and TS had zero error. The approximation area is taken from the

functional simulations representing the fixed point binary numbers. From the result, the LRS

and RRS had the highest error compared to others. Meanwhile, the TS produces zero error.

6. CONCLUSION

In this project, hardware implementation of numerical integration algorithm using FPGA is

proposed. All the performance metrics evaluation was resulting from the implementation of

the four algorithms of numerical integration using Cyclone IV FPGA chip. The desired

circuits were designed using the LPM in the Quartus II software to save the designing time.

The number of resources increased as the circuit design becomes more complicated. The

result shows that the TS had more complicated design compared to others. The FPGA chip

also meets the speed performance which was much faster than the software implementation

such as C++ and MATLAB and more complicated circuit increases the execution time. The

power dissipation was reduced when compared to the early estimation which was before run

the compilation. The complexity of the design also effects the power efficiency. More

complex on the design causing higher power consumption. Lastly, the computational error for

the FPGA computational was approximately ~10%. The error is caused by the used of fixed

point binary numbers.

As a future work to further improve and extend this project, there are three recommendations

that can be modified. First, the circuit designs can use a floating point number to achieve

greater precision and maintain its speed performance. Second, the use of multi-stages

pipelined. It is a technique that implements parallelism within a single processor. Lastly, the

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 143

used of multi-FPGAs. The multi-FPGA systems contain more than one chip, and are

constrained by the inter-chip connection topology.

7. ACKNOWLEDGEMENTS

This work was supported by the Fundamental Research Grant Scheme (FRGS), Grant No.

FP042-2014B.

8. REFERENCES

[1] Khurshid B, Mir R N. A hardware intensive approach for efficient implementation of

numerical integration for FPGA platforms. In 27th IEEE International Conference on VLSI

Design and 13th International Conference on Embedded Systems, 2014, pp. 312-317

[2] Kiss A, Nagy Z, Csik Á, Szolgay P. Examining the accuracy and the precision of PDEs for

FPGA computations. In 13th International Workshop on Cellular Nanoscale Networks and

their Applications, 2012, pp. 1-5

[3] Carrascosa J C, Mas J R, del Moral B A, Balaguer M, Jiménez A L, del Toro Iniesta J C.

SIMD architecture on FPGA for scientific computing aboard a space instrument. Journal of

Systems Architecture, 2016, 62:1-11

[4] Alçın M, Pehlivan İ, Koyuncu İ. Hardware design and implementation of a novel

ANN-based chaotic generator in FPGA. Optik-International Journal for Light and Electron

Optics, 2016, 127(13):5500-5505

[5] Torun M U, Yilmaz O, Akansu A N. FPGA, GPU, and CPU implementations of Jacobi

algorithm for eigenanalysis. Journal of Parallel and Distributed Computing, 2016, 96:172-180

[6] Zexi D, Feidan H. Cuckoo search algorithm for solving numerical integration. In IEEE

International Conference on Cyber Technology in Automation, Control, and Intelligent

Systems, 2015, pp. 1508-1512

[7] Osorio R R. Pipelined FPGA implementation of numerical integration of the

Hodgkin-Huxley model. In IEEE 27th International Conference on Application-Specific

Systems, Architectures and Processors, 2016, pp. 202-206

[8] Drexler D A, Kovács L. Second-order and implicit methods in numerical integration

improve tracking performance of the closed-loop inverse kinematics algorithm. In IEEE

M. S. A. Talip et al. J Fundam Appl Sci. 2017,9(4S), 131-144 144

International Conference on Systems, Man, and Cybernetics, 2016, pp. 003362-003367

[9] Ueno T, Sano K, Yamamoto S. Bandwidth compression of floating-point numerical data

streams for FPGA-based high-performance computing. ACM Transactions on Reconfigurable

Technology and Systems, 2017, 10(3):1-22

[10] Liu S, Han J. Hardware ODE solvers using stochastic circuits. In 54th ACM Annual

Design Automation Conference, 2017, pp. 1-6

[11] Fadhlan H K Z, Md. Hazrat A, Amir A S, Zairi I R. Development of mobile face

verification based on locally normalized gabor wavelets. International Journal on Advanced

Science, Engineering and Information Technology, 2017, 7(3):1026-1031

How to cite this article:

Razak FNA, Talip MSA,. Yakub MFM, Khairudin ASM, Izam TFTMN, Zaman FHK

. High speed numerical integration algorithm using FPGA. J. Fundam. Appl. Sci., 2017, 9(4S),

131-144.

